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Abstract

Using contests to generate innovation has and is widely used. Such

contests often involve o¤ering a prize that depends upon the accom-

plishment (e¤ort). Using an all-pay auction as a model of a contest, we

determine the optimal reward for inducing innovation. In a symmetric

environment, we �nd that the reward should be set to c(x)=(c0(x)��)

where c is the cost of producing an innovation of level x and � is the

weight attached by the designer to the sum of e¤orts. In an asym-

metric environment with two �rms, we �nd that it is optimal to set

di¤erent rewards for each �rm. There are cases where this can be

replicated by a single reward that depends upon accomplishments of

both contestants.
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1 Introduction

Using contests to generate innovation has been around for hundreds of years.

In the 1700s, the Longitude prize of £ 20,000 o¤ered by the British Parliament

induced John Harrison to invent the marine chronometer (see Sobel, 1996).

More recently, the Ansari X-prize was a ten-million-dollar competition cre-

ated to jump-start the space tourism industry by attracting the attention of

the most talented entrepreneurs and rocket experts in the world.1 Such R&D

contests are an example of a competition in which all contestants, including

those that do not win any reward (prize), incur costs as a result of their

e¤orts but only the winner gets the reward. In such contests, the designer

may often o¤er smaller prizes for lesser achievements. In fact, while the full

longitude prize was given for determining longitude within 30 nautical miles,

£ 10,000 was given for a method for determining longitude within 60 miles,

and £ 15,000 for a method within 40 nautical miles. Another example with

smaller prizes is where Net�ix o¤ers a prize for improving their movie rec-

ommendation system.2 This prize increases if the improvement is more than

10%.3

1See www.xprize.org for details.
2See www.net�ixprize.com.
3Other interesting examples include the Methuselah Mouse Prize (see www.mprize.org)

for creating a long-lived mouse. If the prize money is z, the oldest previous mouse lived
x years and someone creates a mouse that lives y > x years, then they would receive
z � y=(x + y). There was also the Schneider trophy (see Eves, 2001) created to inspire
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We model a contest as an all-pay auction. When the prize depends upon

the result, this is equivalent to having a bid-dependent reward. Such environ-

ments have been analyzed before both positively, studying the equilibrium

behavior properties and normatively, determining what are optimal contest

designs. Environments with complete information have been analyzed from

a positive point of view in Kaplan et al. (2003) and Siegel (2009, 2010), the

normative point of view was analyzed in Che and Gale (2003) and Fu et

al. (2011). Environments with incomplete information were studied from a

positive point of view in Kaplan et al. (2002), the normative point of view

was investigated in Moldovanu and Sela (2002) and Chen et al. (2008). Simi-

lar research was carried out for rent-seeking contests, Nitzan (1994) provided

a positive analysis, Franke et al. (2009) provided a normative analysis. Kon-

rad (2009) provides an excellent survey of equilibrium and optimal design in

contests.

In this paper, we provide further normative analysis for environments

with complete information. We look at the optimal rewards under complete

information when the designer cares about both the largest e¤ort and the

sum of the e¤orts by the participants. The designer wishes to maximize this

expression net of the rewards paid out. We determine the designer�s optimal

bid-dependent reward structure to acheive this goal as a function of costs in

both symmetric and asymmetric environments.

Interestingly, the solution under symmetry when the designer cares only

about the highest e¤ort produces equivalent behavior to that in Che and

aviation design. There was a competition between the fastest seaplanes held 11 times
between 1913 and 1931. Each victory won a smaller prize and the full prize of 70,000 Franc
prize would be given if the same club won three times in a row. When this happened by
an English group (won by a forerunner to the Spit�re), the competition ceased.
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Gale (2003) where the �rms compete by choosing both e¤ort and price. In

our paper, the solution under asymmetry is similar to that under symmetry

except the rewards are a �rm speci�c function that �rm�s costs. One may

consider this problematic in the sense that the designer must know which

�rm is which and bias the contest in favor one of the �rms. We address this

issue by describing settings where this �rm speci�c reward structure can be

replaced by a reward (to the winner) that depends upon both of the �rms�

e¤orts. In our setting, we consider a richer class of contests than considered

by Che and Gale (2003) and as a result, in some cases, the optimal contest

generates higher surplus for the designer than their solution of handicapping

one �rm.

While in this paper we phrase the problem as designing a research contest,

our analysis is applicable to many other scenarios that have such a winner-

take-all form. For instance, many races o¤er prizes to the winners that

depend upon time. Also, in a contest to receive a promotion at a company,

the �rm may set the salary increase with the promotion conditional on the

worker�s performance. This paper would suggest how to structure these

rewards.

Our paper is proceeds as follows. In Section 2, we introduce the general

environment with the optimal rewards for symmetric case. Afterwards, in

Section 3, we allow for asymmetry between �rms. Finally, in Section 4, we

present the concluding remarks.
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2 Symmetric Environment

2.1 Model

A buyer (designer) desires an innovation. There are n �rms that have poten-

tial to innovate. Firms can create an innovation of value x (to the designer)

for a cost c(x). This value x includes external bene�ts generated by the

contest.4 We assume c(0) � 0; c0 � 0; c00 > 0, and is common knowledge.5

Furthermore, we assume there exists an x such that x > c(x). The buyer can

design a contest where the reward depends upon the bid of the �rm. He does

so by choosing a reward function R(x) that depends upon the winning bid (it

could be constant). We assume that R must be continuous with R(0) � 0.6

The buyer wishes to maximize:

E[maxfx1; :::; xng+ �
nX
i=1

xi �R(maxfx1; :::; xng)]:

At this point we would like to further motivate our study of contests

rather than other mechanisms: One alternative could be to run a Vickrey

auction where the �rms compete by o¤ering potential innovations and then

the winning �rm would create the innovation promised. Another could be

making a take-it-or-leave-it-o¤er to a single �rm (or multiple �rms when

4We assume that the designer has the potential to capture all the external bene�ts
accrued to the winner with a contract signed before the contest (such as with the show
Pop Idol).

5While we assume the designer knows c, we also assume that c is not veri�able in court.
6The assumption of continuity of R is natural, since even a discontinuous reward func-

tion is equivalent to a continuous reward function with a minimum amount of noise.
Consider the case that each xi has a noise " that a¤ects the �nal result. (For instance,
there could be a slight wind in the 100 m dash.) In this case, the actual reward would beeR(xi) � E[R(xi + ")] and is continuous.
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� > 0). Our reasons are as follows. First, there may be external bene�ts

(publicity) for both the designer and winning �rm for running a contest.7

Second, as mentioned in Scotchmer (2004, chapter 2), without a contest,

there is a hold-up type problem when the ex-post payment depends upon

the �rm delivering a future innovation of a speci�c quality.8 Finally, in

practice, contests are commonly used in a plethora of economic activities,

while Scotchmer (2004, chapter 2) points out that to her knowledge (and

ours) that a Vickrey auction has never been used in procuring an innovation.

Thus, studying the optimal contest is a worthwhile endeavor.

2.2 Analysis

As long as there exists an x such that R(x) > c(x), there is no pure strategy

equilibrium.9 In such a case, however, there will be a symmetric mixed-

strategy equilibrium where each �rm chooses x according to a cumulative,

atomless (except possibly at 0) distribution F .

Proposition 1 In the optimal design, the buyer sets R(x) = c(x)=(c0(x)��).

This generates a surplus of

n

n� 1

Z c0�1(1)

maxfc0�1(�);0g
(xc0(x)� c(x)) c00(x)

(c0(x)� �)
n�2
n�1
dx:

7In 1959, Feynmann o¤ered a prize for the development of a small motor and reducing
written text that could �t the encyclopedia on a pin. The innovations themselves were
useless, but the challenge provided inspiration for nanotechnology.

8It is reasonable to assume that the designer can commit to paying a prize (for instance
by setting up a foundation) and avoid a hold-up problem the other way.

9When this condition does not hold, the pure-strategy equilibrium has no �rm entering
and the buyer earning zero surplus.
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Proof. The designer�s expected surplus can be rewritten as

Z
(x�R(x)) dF n + � � n

Z
xdF:

Similar to Kaplan et al. (2003), the �rms will have zero expected pro�ts.

Since it is a mixed strategy equilibrium, the �rms must be indi¤erent over

all x in the support of F . Hence,

F (x)n�1R(x)� c(x) = 0:

By integrating we get:

Z
F (x)n�1R(x)dF �

Z
c(x)dF = 0 =)Z

R(x)dF n = n

Z
c(x)dF:

Substituting this into the designer�s objective yields

Z
xdF n + � � n

Z
xdF � n

Z
c(x)dF =

n

Z �
xF n�1 + � � x� c(x)

�
dF:

We can now do a change of variables so that we are integrating over F (rather

than x).

n

Z 1

0

�
x(F )F n�1 + � � x(F )� c(x(F ))

�
dF:

Now we can independently choose our x(F ) to maximize the integrand. Thus,

we get F n�1 + � = c0(x(F )) or F (x)n�1 + � = c0(x): From the zero pro�t
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equation of the �rm, F (x)n�1R(x)� c(x) = 0, the optimal reward is R(x) =

c(x)=(c0(x)��). This is true for whenever c0(x)�� > 0. No one would choose

x such that c0(x) � � < 0 since in equilibrium, there would be no chance

of winning. Hence, as long as reward is �nite, it will not a¤ect behavior.

The expression for the surplus is generated by substitution (for example,

F (x) = (c0(x)� �)1=(n�1), so dF (x)
dx

= 1
n�1 (c

0(x)� �)1=(n�1)�1 c00(x)). Note

the lower limit of the integral yielding the surplus is 0 if there is no x such

that c0(x)� � = 0.

Remark 1 While we have thus talked about a single reward for the winner,

if there is an x > 0 such that c0(x) � � = 0, the optimal reward would

involve in�nite rewards. This can be avoided since a designer can implement

the optimal reward structure with any two functions L and R such that the

winner receives R and the losers receive L where (c0(x) � �)n�1R(x) + (1 �

(c0(x)� �)n�1)L(x) = c(x) and L(x) � c(x) for all x � x� and L(x) = c(x�)

for x � x� where c0(x�) = �.

Example 1 n = 2; � = 1, c(x) = x2. With just a reward we have R(x) =

x2=(2x � 1) (for x > 1=2 and 0 elsewhere). In such a case x� = 1=2: We

can also have L(x) = c(x) � 2x = 2x3 for x < 1=2 and L(x) = 1=4 for

x � 1=2. We then must have ((2x� 1)R(x) + (2 � 2x)=4 = x2 or R(x) =

(x2 + x=2� 1=2) =(2x� 1) = (x+ 1)=2:

2.3 Comparison to Che and Gale (2003)

In Che and Gale (2003), a buyer also wishes to acquire an innovation that

can be of varying quality. There, the buyer designs a competition where �rms
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expend e¤ort to innovate where a higher e¤ort results in a higher quality of

innovation. After innovating each �rm speci�es a price to the buyer. The

buyer then chooses the �rm o¤ering the highest surplus (quality minus price).

The winning �rm receives payment while all �rms bear the cost of their sunk

e¤ort. In this setup, the buyer cares only about the �rm o¤ering the largest

surplus and derives no surplus from e¤ort put forth by the other �rms, i.e.,

� = 0.

In the simplest version of the Che-Gale model, each �rm i chooses e¤ort

xi, surplus si and price pi to solve maxxi;si;pi �(si)pi � c(xi) s.t. xi � pi =

si (where � is the probability that the other �rms choose a surplus lower

than one�s own). Substituting the constraint into the maximand, we get

�(xi� pi)pi� c(xi). The �rm will optimize over the choices of x and p which

implies (from the FOCs) �0(si)pi = �(si) and �0(si)pi = c0(xi): Together,

these imply �(si) = c0(xi). The zero pro�t condition of the �rm implies that

�(si)pi = c(xi): Thus, pi = c(xi)=c
0(xi): The behavior induced and payo¤s

are identical to our solution for the case when � = 0.

Intuitively, this works out to be the same since the �rms in the Che and

Gale model optimize over e¤ort and price given a speci�c level of surplus

o¤ered. In our model, the designer optimizes the trade-o¤ between value of

the e¤ort (to the designer) and its cost (to the �rm) for a given probability

of winning (note an e¤ort is worthless to the designer if it is not the highest).

For the symmetric environment, each mechanism has its own bene�ts.

The Che and Gale mechanism has the advantage that the designer does not

need to know the cost function beforehand which our mechanism requires

for determining the rewards. The Che and Gale mechanism has the disad-
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vantage that o¤ equilibrium, the buyer may have to purchase the inferior

innovation since it o¤ers him a lower price. This could be politically di¢ cult

and precludes the possibility of renegotiation on price.

2.4 Properties of the optimal reward

Remark 2 The optimal reward function may assume many forms: increas-

ing, decreasing, have both increasing and decreasing parts, or be constant.

The remark is shown through a series of examples when � = 0 for sim-

plicity. Such examples also exist for � > 0.

Example 2 A strictly increasing reward function: n = 2, c(x) = x� where

� > 1.

For such a cost, the optimal reward is R(x) = c(x)
c0(x) =

x�

�x��1 =
x
�
. This

is strictly increasing in x. In equilibrium, the �rms choose e¤ort by using a

cumulative distribution function F (x) = c0(x) = �x��1.

Example 3 A strictly decreasing reward function: n = 2; c(x) = 1
1�x � x.

The optimal reward is R(x) = c(x)
c0(x) = x + 1

2x
� 3

2(2�x) which is strictly

decreasing and positive for 0 � x < 1.

In equilibrium, the �rms choose e¤ort by using a cumulative distribution

function F (x) = c0(x) = 1
(1�x)2 � 1. Thus, each �rm uses a mixed strategy

on [0; 0:2929]. See Figure 1.
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Example 2: Decreasing optimal reward.

Example 4 An increasing and then decreasing reward function: c(x) =
x6+x2

8
.

The optimal reward is R(x) = c(x)
c0(x) =

x5+x
6x4+2

: This increases until x = 0:76

and then decreases. See Figure 2.
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Example 3: Increasing and decreasing optimal reward.

In equilibrium, the �rms choose e¤ort by using a cumulative distribution

function F (x) = c0(x) = 6x5+2x
8

on [0; 1].

Example 5 A constant reward: n = 2; c(x) = ex=2:

The optimal reward is R(x) = c(x)
c0(x) = 2: In equilibrium, the �rms choose

e¤ort by using a cumulative distribution function F (x) = c0(x) = 1
2
ex=2 on

[0; 1:39]. Notice that there is an atom of 1=2 at zero. If one �rm makes an

" e¤ort, it has a 1=2 chance of winning a reward of 2 and it costs the �rm

1. Also note that we implicitly assume that a �rm can stay out and not pay

c(0).

Remark 3 The optimal R(x) is constant if and only if there is a �xed cost

and c(x) = ex=r+
��r where r > 0; ln(�r) � 
 < ln(r(1+�)) and R(x) = r:
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Proof. Since R(x) = c(x)
c0(x)�� ; if R(x) is constant and equal to r, we have

c0(x)��
c(x)

= 1
r
. This yields c(x) = ex=r+
 � � � r. Since F (x)n�1 = c0(x) � � =

c(x)=r; we have F (0) � 0 if e
��r � 0. Also, we must have F (0) < 1; which

implies we must have e
 � �r < r. These two inequalities yield the bounds

on 
 in the remark.

Remark 4 When � = 0, multiplying the costs by a constant does not e¤ect

the optimal R(x).

One may intuitively think that doubling costs would entail an increase of

the optimal rewards; however, since R(x) = c(x)
c0(x) , there is no change. This is

due to the result that if cost is doubled, then it is optimal to have F doubled

(a decrease in the e¤ort). In order to induce this, R(x) should stay the same.

This is clearly not true when � > 0.

3 Asymmetric Environment

Now assume that there are two �rms that di¤er by their cost functions c1(x),

c2(x) where c1(x) � c2(x): For now, assume that the designer can make a

separate reward o¤er to either �rm: R1(x) and R2(x): Assume that the buyer

chooses rewards such that the equilibrium has both �rms making a positive

e¤ort.

Under these assumptions, again there must be a mixed-strategy equilib-

rium which we denote by F1(x) and F2(x).

Lemma 1 In the optimal design, �rms make zero pro�ts.
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Proof. The proof is by contradiction. Let us say that the two reward

functions R1 and R2 are optimal and induce behaviour F1 and F2: Assume

that the equilibrium is such that R1(x)F2(x)� c1(x) = 0 and R2(x)F1(x)�

c2(x) = �: (Note that in equilibrium at least one must make zero pro�ts.)

Create an bR2(x) as follows: bR2(x) = R2(x) � �
F1
. This bR2 is less costly

and induces the same equilibrium distribution functions. Hence, there is a

contradiction to the initial assumption that R1 and R2 are optimal for the

designer.

When pro�ts are zero the objective of the designer can be written as the

sum of total social welfare and the expected sum of e¤orts multiplied by �.

Let us look at the case were there are cost functions c1(x) and c2(x): The

objective function is then:

�Z
xdF1F2 �

Z
c1(x)dF1 �

Z
c2(x)dF2

�
+ �

�Z
xdF1 +

Z
xF2

�
=Z

(xF2 + �x� c1(x))dF1 +
Z
(xF1 + �x� c2(x))dF2

The designer�s problem is then

max
F1;F2

Z
(xF2 + �x� c1(x))dF1 +

Z
(xF1 + �x� c2(x))dF2

s:t: the supports of F1 and F2 coincide.

Proposition 2 If c0�11 (1) = c0�12 (1) and c01(0) = c02(0), then optimal design

has the buyer set Ri(x) = ci(x)=(c0i(x)� �).

Proof. Let us do a change of variables to choose x(F1) and F2(F1). Now
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the maximization problem becomes

max
x(F1);F2(F1)

Z
(x(F1)F2(F1) + �x(F1)� c1(x(F1)) + [x(F1)F1 + �x(F1)� c2(x(F1))]F 02(F1)) dF1:

Choosing x() pointwise leads to the following FOC:

F2(F1) + � � c01(x(F1)) + [F1 + � � c02(x(F1))]F 02(F1) = 0:

Choosing F 02(F1) pointwise leads to the second FOC:

�
Z F1

0

x( eF1)d eF1 + x(F1)F1 + �x(F1)� c2(x(F1)) = 0
Note that in order to do this last step, we have to use integration by

parts to rewrite the integral
R
x(F1)F2(F1)dF1 as

R F1
0
x( eF1)d eF1F2(F1)���1

0
�R R F1

0
x( eF1)d eF1 � F 02(F1)dF1.

Let us now write the second FOC by writing F in terms of x:

Z x

0

F1(ex)dex� xF1(x) + xF1(x) + �x� c2(x) = 0Z x

0

F1(ex)dex+ �x� c2(x) = 0

F1(x) = c02(x)� �

Substituting this into the �rst FOC yields F2(x) = c01(x) � �. Using

the indi¤erence conditions of the �rms yields the optimal reward functions.

The conditions c0�11 (1) = c0�12 (1) and c01(0) = c
0
2(0) ensures that the supports

coincide.

Example 6 � = 0; c1(x) =
xa

a
; c2(x) =

xb

b
(where a; b > 1). We have
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R1(x1) =
x1
a
and R2(x2) = x2

b
where F1(x1) = xb�11 and F2(x2) = xa�12 :

Notice that such a reward structure requires that the designer not only

knows which �rm has which cost function, but is also able to openly dis-

criminate against one of the �rms. Such favoritism could be problematic

politically. It would be much easier and more elegant if there could be a

single reward function. We, hence, proceed to try and construct a reward

function that depends not only on one�s own e¤ort but also on that of the

other �rm and which in expectation replicates, in equilibrium, the two sepa-

rate reward functions.

Remark 5 The optimal design can sometimes be implemented by a single

reward function that depends upon both e¤orts.

Proof. We wish to create a reward function R(xh; xl) This reward

function represents the reward paid to the �rm with the highest e¤ort and

depends upon both the high and low e¤ort levels xh and xl. The expectation

of this reward function should yield the individual expected reward functions,

namely, R xh
0
R(xh; xl)F

0
2(xl)dxl

F2(xh)
= R1(xh);R xh

0
R(xh; xl)F

0
1(xl)dxl

F1(xh)
= R2(xh):

Rewriting yields

Z xh

0

R(xh; xl)F
0
2(xl)dxl = R1(xh)F2(xh);Z xh

0

R(xh; xl)F
0
1(xl)dxl = R2(xh)F1(xh):
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Substituting the functions used in our example yields

Z xh

0

R(xh; xl)x
a�2
l dxl =

1

a(a� 1)x
a
h;Z xh

0

R(xh; xl)x
b�2
l dxl =

1

b(b� 1)x
b
h:

The solution to these two equations is R(xh; xl) = 1
a+b�1x

ab
a+b�1
h x

1� ab
a+b�1

l :

Note that for the example in the above proof the exponent on xh is always

positive and the exponent on xl is always less than 1 and could be negative.

We can also compute the expected pro�t for the above example which isR 1
0
(xc01(x)� c1(x))c002(x)dx+

R 1
0
(xc02(x)� c2(x))c001(x)dx =

1� 1
a
� 1

b
+ 1

a+b�1 :

3.1 Comparison to Che and Gale (2003)

Che and Gale allow the buyer to handicap the stronger �rm by limiting the

price the �rm can charge. Now the �rm�s problem ismaxxi;si;pi �i(si)pi�ci(xi)

s.t. xi � pi = si and pi � p�i . Without the constraint binding, as before

�i(si) = c0i(xi) and pi = ci(xi)=c
0
i(xi): Once the constraint binds, �i(si) =

(ui + ci(s+ p
�)) =p� where ui is the pro�t of �rm i: The buyer is able to choose

p� in order to limit the pro�t of this �rm. The pro�t is determined by the

maximum surplus the other �rm can o¤er which equals s�j = maxx x� cj(x):

If p�i is binding, then ui = p
�
i � ci(s�j + p�i ): If one wishes to set ui to zero, we

have p�i = ci(s
�
j + p

�
i )

Example 7 The Che and Gale (2003) mechanism when c1(x) = 2
3
x
3
2 ; c2(x) =

1
2
x2.
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For the weak buyer pj = cj(xj)=c
0
j(xj) = 2xj=3: Since sj = xj � pj, we

have sj = xj=3. Since �j(si) = c0j(xi); we have �j(s) = (3 � s)1=2 : Likewise

for the strong buyer, when p� is not binding, we have �i(s) = 2s: Using the

probability of winning �i; we can determine the strategy Gi of each player:

G1(s) = (3 � s)1=2

G2(s) =

8<: 2 � s if s < p;
(s+p)2

2�p if s > p where p = 2�
p
3

3
:

We can now compute the expected pro�t:

Z 1=3

0

s � d(G1 �G2) =
Z p

0

s � d(G1 � 2s) +
Z 1=3

p

s � d(G1 �
(s+ p)2

2 � p ) =Z p

0

3 (3)1=2 � s3=2ds+
Z 1=3

p

(3)1=2

2
s � d((s)1=2 � (s+ p)

2

p
) =�

173� 76
p
2 + 20

p
3 + 44

p
6
� 1

945
=

0:220041:

Using the mechanism in this paper, the expected pro�t is 1 � 1
a
� 1

b
+

1
a+b�1 =

7
30
= 0:23333; which is higher.

Note that this �nding does not contradict those in the Che and Gale

(2003), since our mechanism uses bid-dependent rewards which are not feasi-

ble in their environment and added �exibility is an advantage. Furthermore,

we avoid directly handicapping one of the �rms by using a combined reward

function. This allows the handicapping indirectly through the behaviour of

the other �rm that handicaps it.
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4 Conclusion

We have examined the optimal design of rewards in a contest with complete

information. We �nd a simple rule for setting the optimal rewards in the

symmetric case. This allows the designer to simply choose the best design

and pay the winner according to the prespeci�ed reward. With asymmetry,

it is optimal to have di¤erent �rms receive di¤erent rewards. We show it

might be possible, for some environments, to replicate this with a common

joint reward function that depends upon both e¤orts. This design method

yielded �better outcomes�then previously used mechanisms.

Further research is needed to examine the e¤ect of changing the number

of �rms. Several open issues remain for the asymmetric environment case:

What are general conditions under which it is possible to create a joint reward

function? What is the best design, when the optimal reward functions do

not share the same support? Finally, it is of interest to see what the optimal

reward function would be under additional constraints, for instance, if one

were limited to o¤ering the same reward to both �rms where this reward

could only depend upon the highest e¤ort.
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