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”Do you mean now?” – Baseball player and manager Yogi Berra, when asked for the time.22

1 Introduction23

Suppose a police officer on foot patrol happens upon a dead man with a knife in his back.24

An autopsy firmly establishes that the time of death was 5:00 AM earlier that day. Detec-25

tives would like to know when he was stabbed. With no witnesses, the stabbing could26

have occurred at 4:59 AM with the victim dying quickly. Or, the stabbing could have oc-27

curred the previous evening with the victim dying slowly. There are other possibilities,28

and thus, the time of the crime is not identified.29

A time series analyst often faces a similar problem. Suppose the analyst observes a30

series of outcomes (e.g. real GDP), each of which is indexed by a known time. Suppose31

the analyst does not observe the sequence of impulses (e.g. preference shocks) or their32

associated times. A current change in an observable might be due to immediate response33

to a contemporaneous impulse. Or, the current change might be a delayed response to34

an impulse that occurred long ago. To the analyst, this is known as the non-invertibility35

identification problem. It is distinct from the ”simultaneous equation problem” that arises36

because of multiple simultaneous unobserved shocks1.37

The police detective and the time series analyst have different standard operating pro-38

cedures for dealing with this identification problem. The police detective would look for39

other evidence to inform when the shock (i.e. the stabbing) occurred, such as the stiffness40

of the dead body. Faced with the same crime, on the other hand, the time series analyst41

typically would assume that the stabbing occurred at 4:59, because this is the response42

with the shortest delay from impulse to observable. In technical language, the analyst43

has dealt with the non-invertibility problem by assuming the invertible representation,44

i.e. the one with minimal delay, is the correct one. In non-technical terms, the analyst has45

done shabby police work.46

In this paper, we develop a procedure for handling the identification problem with-47

1In most problems, one must cope with both equation simultaneity and non-invertibility. Handling both
is a part of our paper.
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out assuming that responses to structural shocks occur with minimal delay. Rather, we48

follow the police detective’s method. We ask whether other evidence, including the co-49

movement of the observable with other observables or the sign of impulse responses, are50

consistent or inconsistent with restrictions implied by economic theory. We wish to use51

as few clues given by economic theory as possible.52

This paper addresses non-invertibility, also known as non-fundamentalness, in a lim-53

ited information framework.2 We treat non-invertibility in a similar manner to the one54

that researchers already use in SVARs to deal with the simultaneous equations identifica-55

tion problem. That is, compute all of the stochastic processes consistent with the data and56

then apply identifying restrictions from economic theory to exclude some (and potentially57

all but one) of these processes.58

Our procedure has four steps.59

Step One: Estimate a reduced-form VARMA(1,1) on the observables.60

We begin by assuming the time series has a state-space representation. Under some61

general assumptions discussed in later, the observables from a state-space representation62

can be written as a VARMA(1,1). Many dynamic economic models is consistent with this63

form. To be concrete, let Yt represent a vector of k observable, stationary variables.64

Step Two: Calculate all covariance equivalent representations.65

With k observable variables, there are at most 2k state-space forms that have the iden-66

tical covariance functions, modulus the simultaneous equations problem. One of these67

state-space forms will be invertible, i.e. have minimal delay. However, there is no ratio-68

nale for simply choosing this one over a non-invertible representation, without further69

identification restrictions in hand. As such, this step records and keep tracks of each one.70

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each71

representation.72

This step mimics that of the SVAR approach. A structural shock is a primative of an73

economic model, such as an exogenous change in technology or monetary policy. The74

2Throughout this paper, we use the term non-invertibility rather than the equivalent non-
fundamentalness. Using the latter can generate confusion, since economists often refer to fundamental shocks
as the economically meaningful shocks, such as changes in preferences or technology. Fundamental shocks
in the time series sense are not necessarily fundamental in sense of economic theory.
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restriction might concern the short run, e.g. output does not respond to current monetary75

policy changes, or the long run, e.g. only technological change affects long-run labor76

productivity. This step is needed because the simultaneous equations problem exists77

apart from the non-invertibility issue.78

Step Four: Impose agnostic restrictions on each representation, delivered from step three, to fur-79

ther rule out potential structural responses.80

Uhlig uses the phrase ”agnostic restrictions” to describe identifying assumptions of81

the kind implemented for example in Faust (1998), Scholl and Uhlig (2008) and Uhlig82

(2005).3 For example, a positive innovation to the structural shock might be required to:83

(i) have a non-negative long-run effect on a particular observable; (ii) imply a positive re-84

sponse to an observable at the two-year horizon; (iii) explain the variation in one variable85

within a certain range. In contexts outside of non-invertibility, researchers have over the86

past several years found agnostic restrictions very useful.487

After step four, the researcher is left with one or multiple structural impulse responses88

to the structural shock of interest. When only one response remains, the impulse response89

is fully identified. When multiple remain, the impulse response is partially identified. In90

either case, the invertible form may or may not belong to the set. If the invertible form is91

consistent with the restrictions from step four, then it will be a valid structural response.92

Importantly, our procedure does not a priori choose this response.93

The problem of non-invertibility has received great attention in economics and time94

series analysis. In an introductory chapter of his textbook, Hamilton (1994, pg. 64) dis-95

cusses the issue and presents practical reasons for preferring the invertible representa-96

tion.5 Sargent (1987) presents an early textbook discussion.6 Fernandez-Villaverde et al97

(2007, FRSW hereafter) explain that non-invertibility is induced by missing variables.98

Economists have pointed out that non-invertibility can arise in many environments.99

3Other work using agnostic identification include: Cardoso-Mendonca, Medrano and Sachsida (2008),
Mountford and Uhlig (2009) and Owyang (2002).

4Fry and Pagan (2010) contains an extensive and critical survey of one type of agnostic restriction–the
sign restriction.

5We discuss these reasons and how our method addresses them in section two.
6Other textbook presentations on the invertibility of MA processes include Brockwell and Davis (2009)

and Lutkepohl (2010).
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Model features that can induce non-invertibility in the structural responses include: per-100

manent income economies (Hansen and Sargent 1991, Hansen, Roberds and Sargent 1991101

and FRSW 2007); learning-by-doing (Lippi and Reichlin 1993); anticipated fiscal policy102

shocks (Leeper, Walker and Yang 2009); anticipated technology shocks (Blanchard et. al.103

2009). Alessi, Barigozzi and Capasso (2011) surveys the prevalence of non-invertibility in104

rational expectations models. Lippi and Reichlin (2003) discuss the possibility of misspec-105

ification due to non-invertibility in Blachard and Quah (1989). Sims (2009) is an exception106

to the above studies. Using data simulated from a calibrated DSGE model, he finds that107

non-invertibility, while present, introduces little bias in the impulse responses from a108

structural VAR.109

Despite these extensive discussions of the problem and its practical relevance, only110

three categories of solutions have been offered. These are: (i) adding more observables;111

(ii) using full information estimation of a correctly specified DSGE model; (iii) standard112

SVAR estimation augmented with something akin to our Step Three. Each differs from113

ours in separate and important ways.114

First, one could expand the observables. Most directly, researchers can try to directly115

observe the structural shocks. If the shock and its arrival time are known, the identifi-116

cation problem disappears. Case studies applied to particular changes in tax policy are117

well-suited for this approach. Also, Romer and Romer (2004, 2010) have used the nar-118

rative approach to create time series measures of the values of actual monetary policy119

shocks and actual government spending shocks. However, in most cases, shocks are not120

directly observed.121

Even when structural shocks are not observed, adding observables potentially elim-122

inates non-invertibility. Alessi, Barigozzi and Capasso (2010) recommend using a large123

number of observables and then applying structural restrictions, e.g. a Choleski decom-124

position, to the estimated factor-augmented VAR. Forni, Giannone, Lippi and Reichlin125

(2009) advocate this approach by showing that moving from a structural VAR to a factor-126

augmented structural VAR changes the responses of output to permanent supply shocks.7127

Second, FRSW (2007) draws upon their discussion of the danger in using SVARs.128

7See also Giannone and Reichlin (2006).
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SVARs always choose the invertible representation of a time series. When the actual129

structural response is non-invertible, the SVAR leads to incorrect inference. Rather than130

an SVAR, they recommend correctly specifying a full dynamic, stochastic general equi-131

librium (DSGE) model and using a full information technique. Our limited information132

procedure is less likely to suffer from misspecification than using a fully specified model.133

FRSW (2007) also provide a condition to use, case-by-case, to determine whether an134

SVAR would generate incorrect inferences. To check this condition, one uses the estimates135

or calibration of the DSGE model relevant for the particular time series. However, with136

a correctly specified DSGE model in hand, one should use all of the information in the137

DSGE model rather than the limited information SVAR on efficiency grounds.138

In a somewhat-related way, Mertens and Ravn (2010) use DSGE models together with139

structural VARs in an inventive way, to address non-invertibility. They specify and cali-140

brate a DSGE model with news shocks, and then use it to determine the placement of the141

non-invertibility in the system’s moving-average structure, along with the magnitude of142

the roots associated with the non-invertibility. In their exercise, Mertens and Ravns preset143

the values of the roots associated with the non-invertibility.144

Third, Lippi and Reichlin (1994) suggest a limited information approach. It is the clos-145

est antecedent of our work. They compute the structural impulse response using a VAR146

and a standard rotation restriction. The estimated structural response is by construction147

invertible, as discussed in FSRW. Recognizing that non-invertible solutions are also con-148

sistent with the observed data, they then do a visual inspection of roots from the estimated149

VAR in search of an MA structure.150

Based on the inspection, they plot both non-invertible and invertible structural re-151

sponses implied by their VAR. This is similar to our step three. As they explain, their152

method is only suitable for a two variable system. On the other hand, our procedure153

works for a system with more variables because we estimate the MA component directly154

(i.e. our step one). Also, our procedure allows us to exclude some of the potential struc-155

tural responses (i.e. our step four) in a systematic manner. Moreover, their procedure156

can only analyze a single shock with non-invertibility, while our procedure is suitable for157

cases with multiple non-invertible shocks.158
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Our procedure has three distinct benefits not shared by the other approaches: (i) it159

directly estimates the model’s moving average component (i.e. Step One), which is the160

heart of identification issue; (ii) by using the quadratic matrix equation (i.e. Step Two), it161

quickly and intuitively finds the entire set of covariance equivalent stochastic processes;162

(iii) by using agnostic restrictions (i.e. Step Four), it stays within the limited information163

framework of structural VARs.164

First, since the entire source of non-identification is the multiplicity of moving average165

components of an observed covariance function, it makes sense to estimate the moving166

average component directly. At the same time, an autoregressive part may also be present.167

As such, we use a VARMA model to capture both parts. Lippi and Reichlin (1994), in168

contrast, estimate a VAR and then do a visual inspection for MA roots. This limits the169

applicability of their procedure as discussed above.170

In the past, researchers have avoided estimating moving average models with good171

reason. There is a relatively old (circa the 1970s) concern that implementing a VARMA is172

so difficult as to make their use infeasible. The erstwhile approach centered on nonlinear173

maximization of a likelihood function over a high dimensional parameter space. While174

possible in theory, it can be unreliable practically.175

Numerous recent advances in VARMA estimation largely ameliorate this concern. Du-176

four and Pelletier (2008) for example extend to the vector case the innovation-substitution177

method developed by Hannan and Rissanen (1982). The method involves feeding the178

residuals from a long-lag AR as the innovations in the estimation of an ARMA model.179

OTHER METHODS: Koreisha and Pukkila GLS (1990), Larimore CCA subspace (1983)180

and Kapetanios iterative LS (2003), Hannan and Kavalieris 3SLS (1984). We use Dufour181

and Pelletier’s method in all of our examples. Kascha (2007) compares the above meth-182

ods using a well-known macro application and shows that the innovation-substitution183

method dominates.184

Second, we compute the entire set of structural representations using a simple formula185

(Potter 1966) that solves a quadratic matrix equation. We set out to develop a procedure186

is easy for practitioners to use. The Potter equation is easy to code and fast to run. It187

requires only a single matrix inversion and a single eigenvalue decomposition.188

7



An alternative technique, Blaschke factorization, can in principle do the same job. It189

appears in many theoretical discussions about non-invertibility;8 however, to our knowl-190

edge, it has never been used in applications. Perhaps this is because it is much more191

involved from a practical standpoint. It begins with a single eigenvalue computation192

that is then followed by a large number of “root flipping” steps, where each root flipping193

requires the calculation of the null space of a particular matrix.194

Third, our paper maintains the limited information spirit of BLAH BLAH BLAH.FINISH195

THIS.196

To set the stage, the next section contains a bivariate process where non-invertibility is197

present. Section 3 presents the four-step procedure along with its theoretical substructure.198

Section 4 applies the procedure to two sets of model-generated data and section 5 applies199

the procedure to a real world application. Section 6 concludes.200

2 Non-invertibility in A Bivariate Example201

We illustrate the nature of non-invertibility using a two variable example.9 Suppose an202

economist observes y1t and y2t. For concreteness, call them the money growth rate and203

real output. Each variable has expectation zero and an own first-order autocorrelation204

equal to 0.01. At further lags, each has a zero autocorrelation. The two are uncorrelated205

with each other at every horizon. Also, suppose there are two shocks driving the system,206

which, for concreteness, are technology shocks and monetary policy shocks.207

What VMA(1) processes are consistent with the above covariance structure? Indexing

each process by j, these are

yt = Γj
0ω

j
t + Γj

1ω
j
t−1

where Γj
0 and Γj

1 are square matrices of dimension two . The number of processes, or208

forms, modulus the simultaneous equations issue, is at most 2k. Since k = 2, there are209

up to four forms. Figure 1 plots the impulse responses for three of these. We omit the210

8These include Whiteman (1983), Hansen and Sargent (1991), Lippi and Reichlin (1994), Leeper, Walker
and Yang (2009) and Alessi, Barigozzi and Capasso (2010).

9Examples using one variable are presented in Hamilton (1994) and Sargent (1987). While instructive,
the scalar case cannot elucidate the important cross-covariagram implications of non-invertibility.
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fourth to avoid clutter. Each row corresponds to a moving-average form and each column211

corresponds to a particular shock applied to a particular variable.212

To deal with the simultaneity of shocks, we have imposed a short-run restriction that213

output does not respond contemporaneously to the monetary shock. In the figure, the214

period zero response of output to the monetary shock is zero in each panel of the second215

column of the figure. Suppose this short-run restriction holds in the underlying structural216

model.217

Suppose that the true structural model, or economy, that delivers the observed covari-218

ance matrices is in the first row of the figure. This economy corresponds to one of the219

non-invertible forms. The economy has three key features: a money growth shock is not220

neutral (see panel (b)), monetary policy responds counter-cyclically to technology shocks221

(see panel (c)), and there is a large “news component” to money growth shocks (see panel222

(d)). The news interpretation of panel (d) is appropriate because, although the money223

growth shock arrives at time zero, the most substantial increase in the money supply224

happens at time one. An economist that observes yt, but does not observe either shock,225

may try to identify the shocks using a structural VAR, which automatically chooses the226

invertible form. Suppose the economist knows that the above short-run restriction is true227

for this economy. If the economist runs an SVAR using the restriction, she will estimate228

the second row of Figure 1. This is the invertible form. This economist would come away229

incorrectly believing that money shocks are neutral (see panel (f)) and monetary growth230

does not respond to technology shocks (see panel (g)).231

What is going on? There is a ‘covariance accounting’ requirement that is satisfied for232

the various forms. Each form has sets of moving average coefficients that line up in a way233

that the corresponding second moments across forms are identical. In the next section, we234

provide a simple equation to construct all forms that satisfy the covariance requirement.235

Armed with only the short-run restriction, the structural model is not identified. Even236

worse, an SVAR with only the short-run restriction will estimate the wrong model. The237

estimated model says money is neutral with respect to output when in reality it is not!238

How can one deal with this under-identification? Our solution is to bring more a239

priori knowledge about the economic environment to the table. The goal should be to240
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Figure 1: Three covariance-equivalent stochastic processes
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Notes: The fourth and final form, another non-invertible process, is not pictured above.

bring restrictions that are agnostic, in the sense of Uhlig (2005), as possible to reduce the241

set of valid forms. An alternative approach, advocated by FRSW (2007) and discussed242

in our introduction, is to bring a lot to the table, in the form of a fully-specified dynamic243

general equilibrium model. As we explained in the introduction, the dynamic general244

equilibrium approach goes against the spirit of the limited information technique and245

moreover eliminates the need for limited information anyways.246

3 Theory and A Four-Step Procedure247

A generic covariance-stationary stochastic process is given by:248

st+1 = Qst + Uet+1 (1)

rt+1 = Wst + Zet+1
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where et+1 is k by 1 and N(0, I). We refer to (Q, U, W, Z) as a state-space form (with associ-249

ated shock process et) for the stochastic process {st, rt}. Here, Q, U, W, Z are real-valued.250

Only rt is observed by the economist. Also, we make the following assumptions.251

Assumption 1: The left inverse of W, which we denote W̄, exists.252

Assumption 2: All eigenvalues of Q and WQW̄ are inside the unit circle.253

Assumption 3: The matrix Z is invertible.254

Assumption 1 requires that there are least as many observables as states. To identify255

the underlying system, economists need to have enough information,i.e enough observ-256

able variables. This assumption is not as restrictive as it may seem. If the economy is257

actually driven by a few common factors, e.g. the dynamic factors as those identified by258

Stock and Watson (2002) or used by Bernanke, Boivin and Eliasz (2005), most multivariate259

time series models have more observables than states.260

Assumption 2 ensures the stationarity of observables. In our exercise, we rule out261

cases with non-stationary variables. However, it is straightforward to covert non-stationary262

variables to stationary ones by detrending them or choosing correct cointegration vectors.263

Our procedure then is ready to go.264

Assumption 3 requires there are at least as many observables as structure shocks of265

concern. This assumption is for technical purposes and not restrictive, since we can add266

include measurement errors as structural shocks. FRSW (2007) also make this assump-267

tion.268

In lieu of additional information, the time series analyst knows or can estimate the co-269

variance generating function of the observables. Let this covariance structure be denoted270

Ci = E
(
rtr′t−i

)
for all i.271

To understand the theory that follows as we as our procedure, it is useful to compute272
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these covariances as functions of the underlying structural form:273

C0 = WQW̄C0 (WQW̄)
′
+ ZZ′ + WUU′W ′

−WQW̄C0 (WQW̄)
′

C1 = WQW̄C0 + WUZ′ −WQW̄ZZ′

Ci = (WQW̄)
i−1 C1 for all i > 1

In the theorem that follows, we find the number of matrix triples {Aj, Bj, Dj} corre-274

sponding to covariance equivalent forms and also show how to conveniently compute275

each of them.276

Moving from the structural form to an observationally equivalent one changes the

amount of delay in the system, as seen in Section 2. Intuitively, this can be seen in the

state space system by examining the MA representation of the original structural system.

This MA representation is:

rt+1 = Zet+1 + W
∞

∑
i=0

QiUet−i

Because the original and observational equivalent state-space forms differ in terms of U277

and Z, the corresponding impulse responses will differ in magnitude of a shock’s in-278

stantaneous effect, i.e. et+1, versus its lagged effect, et, et−1,.... Moreover, as seen in the279

bivariate example of section 2, changing the delay in the response of one variable to a280

shock has implications for all of the other impulse responses because of the known co-281

variance structure of the observables. The theorem below formalize the relation between282

the structural form and its covariance-equivalent cousins. Furthermore, it lays out the283

theoretical foundation for the practical procedure we use to tackle non-invertibilities.284

Theorem 1: If rt is a length k stochastic process with the structural state-space form285

(1) and assumptions 1 through 3 are satisfied, then there exists at most 2k infinite-order286

covariance equivalent moving average representations for {rt}, indexed by j, where the287

12



innovations process ε
j
t satisfies E

(
ε

j
tε

j′
t

)
= Ik. Representation j is given by288

rt+1 = (I − AL)−1 [Dj + BjL
]

ε
j
t+1, (2)

The coefficient matrices, A , Bj and C̃i, i = 0, 1 are:289



A = C2C1
−1

C̃1 = C1 − AC0

C̃0 = C0 − AC0A′ − AC̃′1 − C̃1A′

Bj = C̃1(D′j)
−1

(3)

where Ci is the ith order autocovariance of the observable vector. The matrix, Dj, satisfies:290

(i)291

(DjD′j)(C̃
′
1)
−1

(DjD′j)− C̃0(C̃′1)
−1

(DjD′j) + C̃1 = 0, (4)

(ii) Dj = Dc
j Kj, where Dc

j is the lower triangular matrix generated by the Cholesky de-292

composition of DjD′j. The orthonormal matrix, Kj is determined by the relation between293

the cholesky decomposition and the identifying restriction. When we use the short-run294

restriction, Kj ≡ I. If we use the long-run restriction, Kj differs from each other.295

(iii) one of the Djs is invertible and the corresponding MA form matches the Wold296

representation for rt.297

This theorem tells us: (i) a time series can have multiple representations; (ii) all of298

these forms can be backed out from a single reduced-form estimation. This multiplicity299

of covariance equivalent forms is one source of an identification problem with VARs.10
300

Equation (4) provides a way to find all of these forms. Hence, it allows us to dramatically301

reduce the dimension of the identification problem.302

As an aside, note that this identification difficulty is not specific to structural VARs.303

The difficulty can also apply if a full information method, such as maximum likelihood,304

is used instead. This is because the covariance equivalence of the various forms implies305

multiple peaks in the likelihood function.306

10The other source is the well-known simultaneous equations problem.
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From Theorem 1, we develop our four-step procedure. In sections 4 and 5, we use307

model-generated data and real-world data to demonstrate the procedure.308

Step One: Estimate a reduced-form VARMA(1,1) model on the observables.309

Under Assumptions 1 through 3, the structural model has a unique invertible VARMA(1,1)310

form. It can be consistently estimated with traditional methods.311

Step Two: Calculate all covariance equivalent representations.312

Under the same assumptions, the true model can have multiple non-invertible VARMA(1,1)313

forms in addition to the one invertible form. Each corresponds to a solution of a quadratic314

matrix equation. All can be found simultaneously using the Potter (1964) equation. This315

computation is simpler than the existing Blaschke method, as discussed in the introduc-316

tion. Although the number of forms at this step can theoretically large,11, this issue is317

mitigated in practice. As seen in the following two sections, (i) impulse response from a318

subset or subsets of forms is often ‘clustered,’ making them quantitatively indistinguish-319

able; (ii) solutions with imaginary components are thrown out.320

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each321

representation.322

When the dimension of the observable variables is k, there are at most 2k solutions for323

fully specified rotation matrices. There is always at least one solution—the invertible one.324

Step Four: Impose agnostic restrictions on each representation, delivered from step three, to rule325

out further structural representations.326

Usually there are multiple solutions after step three. More restrictions other than those327

on the pattern on the rotation matrix help reduce the set of covariance-equivalent forms.328

If only one solution remain, the structural model is fully identified, otherwise, the model329

is only partially identified.330

4 Two Model-Based Implementations of Our Procedure331

In this section, we use two model-generated examples to illustrate how our procedure332

identifies the structural model when the structural VAR cannot. The first example is333

11For example, with eight observables there are potentially 256 covariance equivalent forms.
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adopted from the permanent income economy in FRSW (2007). The second example334

is from a model of anticipated tax shocks (i.e. “news” regarding the future tax rate) in335

Leeper, Walker and Yang (2009).336

4.1 Savings and Permanent Income in FRSW (2007)337

The permanent income model is a workhorse of modern economics. FRSW (2007) show338

how applying structural VAR analysis to data from a permanent income model leads to an339

incorrect conclusion about the consumption response to an income shock. The incorrect340

conclusion occurs because the procedure fails to handle an inherent non-invertibility. We341

show how our procedure leads to the correct conclusion.342

The economic model has two equations.343

ct+1 = βct + σw(1− R−1)wt+1, (5)

zt+1 = yt+1 − ct+1 = −ct + σwR−1wt, (6)

Equation (5) is the intertemporal Euler equation and equation (6) defines saving. In the344

model, ct is the unobserved state, while zt = yt − ct is saving, the only observable in the345

model. This process is non-invertible, since Q−UZ−1W = β+ R− 1 > 1, when β is close346

enough to one. The ARMA(1,1) representation of the observable is given by:347

zt+1 = βzt + σwR−1wt+1 − σw[1− R−1 + βR−1]wt, (7)

which is non-invertible. The innovation representation is:348

ĉt+1 = βĉt + σw(
β− β2 + 1

R
− β)εt+1 (8)

zt+1 = −ĉt + σw(
β− 1 + R

R
)εt+1. (9)

Straightforwardly, the ARMA(1,1) model corresponding to the innovation representation349

is:350

zt+1 = βzt + σw(
β− 1 + R

R
)εt+1 −

σw

R
εt. (10)
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The innovation representation is invertible, since Q̂− ÛẐ−1Ŵ ′ = 1
R+β−1 ∈ (0, 1). How-351

ever, since the implied state variable is not the true state variable, i.e, ĉt = E
(
ct|zt) 6= ct,352

where zt refers to the history of the observable saving, zt; therefore, FRSW (2007) warn353

that inference based on the (estimated) innovation representation is not reliable.354

Suppose the economist observes a time series for savings, zt, however, she is unin-355

formed regarding consumption and income. She would apply our procedure as follows:356

Step One: Estimate a reduced-form ARMA(1,1) on the observable.357

Step Two: Calculate all covariance-equivalent representations.358

With only one observable variable, there are only two covariance equivalent MA(1)359

representations.360

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each361

representation.362

Define a positive savings shock as a disturbance that increases savings in the period of363

the shock. Different researchers may have different interpretations as to what exogenous364

factors drive savings changes, such as shocks to permanent income, transitory income365

or preferences. With a scalar observable and a scalar shock, there is no simultaneous366

equations problem. As such, an SVAR-type restriction is unnecessary.367

Before imposing Step Four, we plot the impulse responses that come out of Step Three.368

These areappear in Figure 2 both the saving level rate and the consumption. The solid369

and dashed lines are, respectively, the non-invertible and invertible responses. Both of370

these impulse response functions give the same population moments as those from (7)371

or (10). The non-invertible response is the true response and the invertible representa-372

tion is spurious. As FRSW (2007) explain, a structural VAR always selects the invertible373

representation; therefore, it would lead to the incorrect impulse responses.374

Step Four: Impose an agnostic restriction on each representation, delivered from Step Three, to375

rule out further potential structural responses..376

Rather than a priori select the invertible form, we impose an agnostic restriction based377

on economic theory. We will impose the standard idea that people save now in order to378

consume more later. Formally, we require that: if savings is non-zero in at least one period,379
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then it must switch signs at least once.380

Examining Figure 2, only the invertible response satisfies the agnostic restriction. Af-381

ter Step Four, we have a single structural impulse response, which is the true response382

from the economic model. It is exactly the structural model’s impulse response.383

Figure 2: Covariance-equivalent impulse responses to a positive savings shock
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from step three and before application of step four.

In a wide class of models, an individual increases current savings in order to finance384

greater future consumption. The use of agnostic restrictions is, in our view, very powerful385

exactly because it implies transparency regarding the source of identification.386

4.2 An Anticipated Fiscal Shock in Leeper, Walker and Yang (2009)387

The second model-generated example is based on Leeper, Walker and Yang (2009, LWY388

hereafter). This example has an anticipated fiscal shock: changes in the tax rate are an-389

nounced two quarters before their implementation.390

Consider a neoclassical model with fixed labor supply and full capital depreciation.

The capital stock kt is the single endogenous state variable. In equilibrium, it satisfies

(1− αL)(1− θL−1)kt = −
τ

1− τ
Et (τt+1) + at − θEt (at+1)

where every variable is the log deviation from its steady-state value. The variables τt and391

at are the tax rate and technology level.392

17



LWY assume there is a random component to the tax rate, which is announced two393

periods before the tax implementation. This news is denoted by ετ,t. The equilibrium law394

of motion for capital, consumption ct and output yt are:395

kt+1 = αkt + at+1 −
τ

1− τ
(1− θ)[θετ,t+1 + ετ,t], (11)

ct+1 = αkt + at+1 +
τ

1− τ
θ[θετ,t+1 + ετ,t], (12)

yt+1 = αkt + at+1. (13)

LWY show that non-invertibility affects not only the identification of fiscal shocks,396

but also the identification of the technology shock. They assume that the tax rate has397

both the above anticipated random component as well as a contemporaneous response to398

technology. The tax rate is τt = ψat + ετ,t−2.399

LWY demonstrate the non-invertibility problem using a structural VAR where τt and400

kt observed. In this case, the shocks identified by the structural VAR are not the true401

shocks, but rather combinations of the technology and tax/news shocks.402

Our four-step procedure can identify, at least partially, the structural shocks in the403

model. It is applied step-by-step below. We require having enough observable variables,404

hence, we augment the observable space with consumption, ct and the shocks with ut, a405

measurement error on consumption. The addition of consumption does not remove the406

non-invertibility.407

The state-space representation is:408

st+1︷ ︸︸ ︷
kt+1

ετ,t+1

ετ,t

 =

Q︷ ︸︸ ︷
α − τ(1−θ)

1−τ 0

0 0 0

0 1 0


st︷ ︸︸ ︷
kt

ετ,t

ετ,t−1

+

U︷ ︸︸ ︷
1 − τθ(1−θ)

1−τ 0

0 1 0

0 0 0


et+1︷ ︸︸ ︷
at+1

ετ,t+1

ut+1

 (14)

rt+1︷ ︸︸ ︷
τt+1

kt+1

ct+1

 =

W︷ ︸︸ ︷
0 0 1

α − τ(1−θ)
1−τ 0

α τθ
1−τ 0


st︷ ︸︸ ︷
kt

ετ,t

ετ,t−1

+

Z︷ ︸︸ ︷
ψ 0 0

1 − τθ(1−θ)
1−τ 0

1 τθ2

1−τ 1


et+1︷ ︸︸ ︷
at+1

ετ,t+1

ut+1


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Our analysis requires setting values for the parameters. We follow LWY for most409

parameters.12 In addition, the fiscal shock has unit standard deviation and σa = 0.1, The410

standard deviation of the measurement error is 0.05.13
411

By checking the ”poor man’s invertibility condition” from FRSW (2007), we see that412

the system is non-invertible. This is because the matrix Q − UZ−1W has eigenvalues413

outside the unit circle for our parameterization. The three eigenvalues of Q−UZ−1W are414

.33, −8.98 and −0.45; therefore, there is one dimension of non-invertibility.415

The structural VAR approach ignores the embedded non-invertibility. On the other416

hand, our procedure takes all possible non-invertibilities into consideration.417

Step One: Estimate a reduced-form VARMA(1,1) on the observables.418

Denote the VARMA(1,1) representation of the structural model as rt+1 =

A︷ ︸︸ ︷
WQW̄ rt +

D︷︸︸︷
Z et+1 +

B︷ ︸︸ ︷
(WU −WQW̄Z) et with the following matrices:

A =


0 (τ−1)

τ
(1−τ)

τ

0 α 0

0 α 0

 , D =


ψσa 0 0

σa
τθ(θ−1)

1−τ 0

σa
τθ2

1−θ σu

 , B =


0 θ

(1−τ)
τ σu

0 τ(1−θ)
τ−1 0

0 τθ
1−θ 0


419

The traditional structural VAR approach can only give the innovation representation,

rt+1 = Art + D̂êt+1 + B̂êt, of the true model. The AR coefficient matrix, A is consistently

identified, but D̂ and B̂ are biased. In our numerical example, the true VARMA(1,1) rep-

resentation is:

A =


0 −3 3

0 .36 0

0 .36 0

 , D =


.12 0 0

.12 .065 0

.12 −.024 .05

 , B =


0 −.27 −.15

0 .24 0

0 .89 0

 .

12We choose α = .36, β = .99, τ = .25.
13The size of technology shock is set up to allow the contribution of technology shocks and tax shocks

on the variance of consumption is equalized in the long run. This parameterization is purely for analytical
simplicity, and it does not affect the result qualitatively
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The estimated innovation representation, on the other hand, is:14

A =


0 −3 3

0 .36 0

0 .36 0

 , D̂ =


.29 0 0

.21 .14 0

−.01 −.01 .15

 , B̂ =


0 −.12 −.08

0 .13 .03

0 −.04 0.01

 .

In the true VARMA(1,1) representation, there are eigenvalues of BD−1 outside the unit420

circle, while every eigenvalue of B̂D̂−1 in the innovation representation is inside the unit421

circle.15
422

Step Two: Calculate all covariance equivalent representations423

This step finds all the representations with the same autocovariance structure. Each424

covariance equivalent form has an associated triple {Aj, Dj, Bj}. It is easy to verify that425

Aj = A and every pair of {Dj, Bj} satisfies the following equations:426

DjD′j + BjB′j = (15)
ψ2σ2

a + θ2 + (σu
κ )

2
ψσ2

a + κθ(1− θ) ψσ2
a − κθ2

ψσ2
a + κθ(1− θ) σ2

a + κ2(1 + θ2)(1− θ)2 σ2
a − κ2θ(1− θ)(1 + θ2)

ψσa
2 − κθ2 σ2

a − κ2θ(1− θ)(1 + θ2) σ2
a + κ2θ2(1 + θ2) + σ2

u



BjD′j =


0 κθ2(1− θ) −κθ3 − σ2

u
κ

0 κ2θ(1− θ)2 −κ2θ2(1− θ)

0 −κ2θ2(1− θ) κ2θ3

 ,

where κ = τ/ (1− τ). The equation system (16) can be equivalently converted into427

a quadratic matrix equation in DjD′j. The solution of this quadratic matrix equation is428

given in Potter (1964). Since DjD′j is a 3× 3 matrix for each j, there are at most 23 = 8429

different lower triangular matrices solving the quadratic matrix equation. Under this430

current parameterization, DjD′j has one pair of complex eigenvalues. As such, there are431

only four sets of real-valued structural responses.432

Step Three: Define the structural shock of interest and impose an SVAR-type restriction on each433

14Here we only show the result after imposing a short run restriction.
15The true model has two eigenvalues outside the unit circle, which are complex conjugates of each other.
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representation.434

A positive technology shock is defined as a shock which increases consumption and435

does not reduce the tax rate. Consumption increases because of the positive effect of436

technology shocks on production capacity. Obviously, a positive tax shock increases the437

tax rate as well; however, the way it affects capital and consumption is not clear. One438

possible way to separate the positive tax shock from the positive technology shock is by439

assuming that an anticipated tax rate change cannot changes the current tax rate. Since440

we know that measurement error only affects the measurement of consumption, it should441

not affect the tax rate or capital on impact. Based on the definitions, we can impose the442

following short-run restriction: a valid D matrix should be lower triangular.443

Figure 3 plots the impulse responses to a positive tax shock (upper panel) and those to444

a positive technology shock (lower panel) in all the four possible cases after imposing the445

short-run restriction. One of them overlaps with the VAR-based inference, which is the446

(invertible) innovation representation of the model. In response to a positive tax shocks,447

capital and output falls in all four possible cases and tax rate increases in all of them. The448

only difference is the magnitude of responses. When studying the responses to a positive449

technology shock, capital falls in two cases but rises in other two. Output falls in the450

innovation representation but rises in all the other three cases. The fall in output seems to451

contradict traditional wisdom, however, there are evidences in existing research to show452

technology shocks are contractionary. At this stage, we cannot rule out any of the four453

cases without further justification.454

455

Step Four: Impose agnostic restrictions on each representation, delivered from step three, to fur-456

ther rule out structural responses.457

Two agnostic restrictions are imposed. Both are based on the short-term forecast error458

variance decomposition. In order to identify the true impulse responses, we employ mul-459

tiple criteria based on reasonable economic intuition. First, measurement errors should460

not be important factors to explain volatilities in any of the variables, especially in the461

longer term. Therefore, we setup a quantitative threshold of 30% for the average contri-462

bution of measurement errors on all observable variables (criterion one). Second, technol-463
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Figure 3: Response To Tax and Technology Shocks (after step three)
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nology shock. PS i: the ith solution based on the Potter equation.
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Table 1: Identification Based on Short-Term Variance Decomposition

Model One Model Two Model Three Model Four
The average contributions on different horizons of identified measurement errors on variables

tax rate 0 34.82 0 14.78
capital 0 39.32 0 0.51

consumption 7.84 39.45 7.84 70.51

The average contributions of technology on tax rate at different horizons

1.42 35.05 1.42 53.24

The contribution of technology shocks on capital and consumption when h = 1

capital 0 37.55 79.11 71.01
consumption 0 48.01 83.23 0.09

ogy shocks should not be the dominant factor to explain the volatilities in the tax rate,464

especially in longer time horizons. Quantitatively, we set up the threshold value to be465

50% when the the time horizon is longer than two quarters (criterion two). The result of466

this variance decomposition exercise is shown in Table 1.467

Based on criterion one, case 2 and case 4 are ruled out, since these two cases attribute468

too much variation to measurement errors. In this model, case 4 corresponds to the inno-469

vation representation, in other words, the model identified with traditional SVAR meth-470

ods. This specification can be ruled out based on our second criterion as well, since tech-471

nology shocks should not be the main driving force for tax rates. The reason why we can472

use variance decompositions to identify the correct model is that covariance-equivalent473

representations other than true models are likely to mix different shock together. There-474

fore, the variance decomposition is distorted in those representations. Leeper et al (2009)475

makes a similar point from a different perspective. They view this as a failure of iden-476

tification with traditional SVAR methods. Our procedure goes one step further: some477

mis-identification will give wildly implausible variance decomposition. Therefore, we478

can rule out such mis-identified models. Such identification scheme share the same spirit479
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as the identification methods proposed by Faust (1997) and Uhlig (2005). As long as eco-480

nomic theory gives us enough restrictions on the model, e.g, the variance decomposition,481

the sign of impulse responses or the sign of magnitude of a particular coefficient, we can482

always apply them to rule out mis-identified models.483

However, we still cannot achieve full identification here. As shown in Table 1, we484

cannot choose between case one and case three based on the first two criteria we pro-485

posed. Until this step, we achieve partial identification. Figure 4 compares the impulse486

responses implied by the remaining solutions to those of the true model and by the inno-487

vation representation. Both solutions recover the true responses to a positive tax shock in488

the structural model. One of them (the ”identified model”) recovers the true responses to489

technology shocks as well.490

In this example, we cannot uniquely pin down the true model. The reason is that the491

first solution based on our procedure only mis-specifies the timing or invertibility of the492

technology shock, but it does disentangle tax shocks and technology shocks effectively. To493

further refine the result, we require more restrictions. For instance, if we have a strong be-494

lief that the transmission of technology shocks is fast enough, then the technology shock495

should explain the bulk of changes in capital and consumption in the short term. Hence,496

we might add a third agnostic restriction: the contribution of technology shocks to the497

one step forecast error variances in consumption and capital should be higher than 30%.498

With this extra restriction, we uniquely pin down the model as shown in Table 1. In the499

true model, capital and output fall in response to an anticipated tax shock. Consumption500

rises on impact but falls in following period. The initial rise is due to the substitution501

effect induced by higher tax rate in the future while the following decrease is because of502

the drop in production capacity.503

When the model is identified correctly, capital, output and consumption all rise in re-504

sponse to a positive technology shock, while the innovation representation shows capital505

and output falls in response to it. Adding this third criterion, the true model is uniquely506

identified. From our perspective, criteria three is too strong to be used. Here, our proce-507

dure is not a slam dunk.508
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Figure 4: Response To Tax and Technology Shocks (after step four)
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5 Application with Real Data: Technology Shocks in the509

U.S.510

Fisher (2006) uses a three-variable model to study the effect of technology shocks on the511

U.S. economy in the second half of the twentieth century. In his exercise, the investment-512

specific shock, which is captured by surprise changes in the relative price of investment,513

is important to explain the variation in output and working hours in U.S.514

Recently, studies on the effect of ”news shocks”, which is the anticipated component515

in technology shocks, have drawn more and more attentions of economists, since the sem-516

inal work by Beaudry and Portier (2006). They show that technology shocks identified by517

traditional long run restrictions can be well replicated by another shock originated in the518

stock index but are orthogonal to contemporaneous technology changes. They argue that519

this piece of evidence shows technology shocks are anticipated (”news shocks”) and they520

further show this news shock is important to explain business fluctuations. Jaimovich and521

Rebelo (2009) show that certain real frictions, including habit persistence in consumption,522

investment adjustment costs and costly capacity utilization, are important to the propa-523

gation of news shocks in a real business cycle model. Christiano et al (2009) estimate a524

dynamic general equilibrium model featuring nominal and real frictions for the U.S. econ-525

omy and show that news shocks are important sources of business fluctuations. However,526

Sims (2009) uses traditional SVAR methods to identify news shocks in a large scale VAR527

model and finds that news shocks fail to generate co-movement in macro variables, so528

news shocks cannot be a valid candidate for the main driving force of business cycles.529

To shed light on the effect of anticipated technology shocks or news shocks on the530

economy, we estimate a small scale VARMA model similar to Fisher (2006). There are531

three variables in the model: the growth rate of real equipment price, the growth rate of532

labor productivity and the log index of average working hours. The rationale behind this533

exercise is as follows: if there is a significant anticipated component in either the invest-534

ment specific technology shock or the neutral technology shock, the implied time series535

becomes non-invertible. With our four-step procedure, we should be able to identify the536

true model with enough reasonable restrictions, no matter it is non-invertible or not. The537
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application of the four-step procedure is given as follows:538

539

Step one: Estimate a reduced-form VARMA(1,1) on the observables540

First, we estimate a VARMA(1,1) model on the data. In practice, there are at least two ad-541

vantages of this VARMA(1,1) setup over the traditional long VAR models: (i) the model542

requires less parameters, which relieves the concern on too many estimated parameters543

to some extent; (ii) the VARMA(1,1) setting is more consistent with the DSGE models544

studied in macroeconomics.16 The VARMA model is estimated in a two-step manner.545

The first step is estimating a long VAR model to obtain a residual series. In the second546

step, we estimate a VARMA(1,1) model by adding the residual series from the first step547

as a regressor and check for convergence.17 After obtaining the estimated VARMA(1,1)548

model, we get variance matrix of error terms, Ω̂, which is the estimate of DjD′j, and the549

MA coefficient matrix, N, which is the estimate of BjD−1
j . These moment estimates are550

used in the second step.551

552

Step two: Calculate all covariance equivalent representations553

Second, we compute all covariance equivalent representations. As we show in section554

three, all the covariance equivalent representations are solutions of the Potter equation555

defined by the moments of observable variables, and the true model should be one of556

them. In the current application, the Potter equation is given by:557

DjD′j + BjB′j = Ω̂ + NΩ̂N′ (16)

BjD′j = NΩ̂.

Step three: Define the structural shocks of interest and impose an SVAR-type restrictions on each558

representation.559

Following Fisher (2006) and Altig et al (2009), a positive investment specific shock is de-560

fined as the only shock which lowers the real equipment price in the long run, while a561

16See for example Kehoe (2007).
17The efficiency of estimation could be improved by employing a 3SLS procedure or iterated 2SLS proce-

dure. Kascha (2007) gives a good survey on estimation methods of the VARMA models.
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positive neutral technology shock is define as the other shock which increases labor pro-562

ductivity in the long run apart from the positive investment specific shock. Based on the563

definitions, two long run restrictions are imposed on the estimated model to identify the564

two technology shocks. There are eight structural representations satisfying the Potter565

equation as well as the two long run restrictions.566

Figure 5 shows the impulse responses of all eight cases along with the point estimate567

and the confidence interval based on the innovation representation. The latter is the coun-568

terpart of the traditional VAR identification in our VARMA(1,1) setup. In the invertible569

case, the estimated effect of identified shocks are in line with existing research: in re-570

sponse to a positive investment shock, hours and output increase prominently, however,571

labor productivity falls for a long period after the shock. Output and labor hours increase572

less significantly in the case with a positive neutral technology shock. In non-invertible573

cases, the responses to the investment shocks are similar to those in the invertible case.574

In response to the neutral technology shock, hours rise faster and stronger in some non-575

invertible cases, but the response of output on impact becomes weaker. In those cases,576

labor productivity increases gradually, instead of jumping up as shown in the invertible577

case. If technology is only disseminated slowly in the economy, we should observe the578

slow buildup of labor productivity in response to technology shocks as shown here. The579

strong response of hours in can be readily explained by strong intertemporal substitution580

effect as in Jaimovich and Rebelo (2009). Up to this step, economic theory cannot distin-581

guish between the invertible and the invertible models. Therefore, we need additional582

selection criteria to pin down the true model, which is the purpose of the fourth step in583

our procedure.584

585

Step four: Impose agnostic restrictions on each representation, delivered from step three, to fur-586

ther rule out structural responses.587

In this step, we impose agnostic restrictions on variance decompositions: (i) the invest-588

ment shock should explain the long run variance in the growth of real equipment price589

at least 10%; (ii) the neutral technology shock contributes the long run variance on the590

growth of labor productivities at least 10%; (iii) the third shock, with is a combination of591
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Figure 5: Response To Technology Shocks (All Cases)
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Notes: solid blue line: the point estimate of impulse responses in the innovation representation;
gray area: 90% confidence interval in the innovation representation; dashed black lines: impulse
responses from the solutions of the Potter equation

other non-technology shocks and measurement errors, should not contribute more then592

30% to the long run volatility in either the real equipment price or the labor productivity.593

The result of the variance decomposition is summarized in table 2.594

As shown in the table, we successfully rule out some cases. Based on the third cri-595

terion, we can rule out case models 1, 3, 5 and 7. In all the four cases, the contribution596

of other non-technology shocks on the growth of technology in the long run are unrea-597

sonably large. However, we cannot refine the outcome further, in other words, we only598

achieve a partial identification in this example.599

Figure 6 plot the responses of models satisfying the agnostic restrictions based on vari-600

ance decompositions along with the invertible case. In all the four valid cases, impulse601

responses are very similar to each other. Furthermore, the invertible case is among the602
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four cases we keep. The variance decomposition analysis also show similar result in all603

the four cases. Therefore, we can reach the conclusion that the inference based on analy-604

sis on an invertible VAR model is valid and reliable. In other words, news or anticipated605

components in technology shocks does not play important roles when studying the ef-606

fect of these two types of technology shocks. Between the two technology shocks, the607

investment specific shock is more important to explain the dynamics in labor hours. In608

additional, we notice that the remaining cases actually ”cluster” based on our identifica-609

tion. It might indicate all the identification on technology shocks are correct, while the610

identification of the third shock might differ. If our interest is only on technology shocks,611

we probably can keep all of them.612

Figure 6: Response To Technology Shocks (Identified)
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6 Conclusion613

Traditional limited information econometric methods, including the widely applied struc-614

tural VAR approach, cannot handle non-invertiblility embedded in many business cy-615

cle models. However, researchers need not abandon the limited information approach,616

which is the power and soul of the structural VAR. We show that non-invertible time se-617

ries can be recovered with its invertible counterpart. That is, there is always an invertible618

innovation representation corresponding to a non-invertible model. The invertible in-619

novation representation shares the same population moment with the structural model.620

Therefore, we can recover all the valid models through those consistently estimated mo-621

ments, regardless of invertibility.622

Based on the theory developed in this paper, we propose a four step procedure to623

handle non-invertibility in practice. This four steps are: (i) estimate a reduced form624

VARMA(1,1); (ii) compute all VARMA(1,1) models with the same autocovariance struc-625

ture using Potter’s (1964) algorithm; (iii) use the outcomes from step two and an SVAR-626

type restriction to find a finite number of valid structural impulse responses; (iv) use ag-627

nostic restriction implied by economic theory to identify, at least partially, the true model.628

We then apply this procedure to two model-generated examples. In both the perma-629

nent income model of FRSW (20007) and the anticipated fiscal shock model in LWY, our630

procedure recovers the true model. We further apply our method to cases with real data.631

We find that result in Fisher (2006)’s study on technology shocks holds even when we632

consider possible non-invertibilities in the model. It indicates that anticipated compo-633

nent technology shocks or ”news shocks” do not spoil the inference of the transmission634

mechanism of technology shocks.635
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Appendix636

A Proofs637

Proof of Theorem 1: First, we prove equations (2) -(4) are necessary for any MA represen-638

tation to be covariance equivalent to the structural form. That is, every MA representation639

of the structural form satisfies these conditions. The structural form has an MA represen-640

tation in the same format as (2).641

Let W̄ be the left inverse of W, which exists by Assumption 1. The MA representation642

of st+1 is:643

st+1 = (I −QL)−1Uet+1 =
∞

∑
i=0

QiUet+1−i. (A. 1)

Substituting (A. 1) in the observer equation from the state-space form is:644

rt+1 = W
∞

∑
i=0

QiUet−i + Zet+1, (A. 2)

Premultiplying both side by W̄L and rearranging,

∞

∑
i=0

QiUet−1−i = W̄(rt − Zet).

Hence, (A. 2) can be rewritten as:645

rt+1 = W[Uet + QW̄(rt − Zet)] + Zet+1 (A. 3)

= WQW̄rt + Zet+1 + (WU −WQW̄Z)et,

The MA representation of (A. 3) is given by:646

rt+1 = [I −WQW̄L]−1
[Z + W(U −QW̄Z)L]et, (A. 4)

647

In the next step, we prove that WQW̄ = A and W(U −QW̄Z) = C̃1(Z′)−1.648
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Next, we show that the MA representation (A. 4) satisfies (3) and (4). Define Ci to be649

the ith order autocovariance matrix of rt.650

Suppose yt is a general VARMA(p,q), yt = M(L)yt + N(L)w with wt ∼ N (0, I). The

autocovariance-generating function of yt is

Gy(z) = [I −M(z)]−1 N(z)N(z−1)′
[

I −M(z−1)′
]−1

Therefore, we have:651

C0 = E
(
rtr′t
)

= WQW̄C0(WQW̄)
′
+ ZZ′ + WUU′W ′

−WQW̄ZZ′(WQW̄)
′ (A. 5)

C1 = E (rtrt−1)

= WQW̄C0 + WUZ′ −WQW̄ZZ′ (A. 6)

Ci = E
(
rtrt−i

′)
= (WQW̄)

i−1C1 for i ≥ 2 (A. 7)

Simplifying notation, let A = WQW̄, B = WU − AZ and D = Z. Then,

A = WQW̄ = C2C1
−1

Based on the definitions, C̃0 and C̃1 satisfy:652

C̃1 = C1 − AC0 = BD′

C̃0 = C0 − AC0A′ − AC̃′1 − C̃1A′ = DD′ + BB′

Therefore, we have:

B = W(U −QW̄Z) = C̃1Z′−1
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We further substitute B in the equation for C̃0,

C̃0 = ZZ′ + C̃1(ZZ′)−1C̃′1

Premultiplying both sides with C̃−1
1 ZZ′,653

(ZZ′)(C̃′1)
−1

(ZZ′)− C̃0(C̃′1)
−1

(ZZ′) + C̃1 = 0, (A. 8)

Thus, ZZ′ satisfies (4). Also, since ZZ′ is a symmetric positive semi-definite matrix,654

its Cholesky decomposition generates a lower triangular matrix Zc such that ZcZc′ =655

ZZ′. Based on Uhlig (2005), there always exists an orthonormal matrix K such that656

K = (Zc)−1Z.657

658

In our final step, we show that (2)-(4) are also sufficient for a valid covariance equiva-659

lent representation: every process satisfying (2)-(4) is covariance equivalent the structural660

form.661

It is obvious that the proposed representations have the same first moments as the662

structural form. Hence, if the second moments of the proposed processes are also the663

same as those implied by the structural form, then the proposed forms are covariance664

equivalent..665

Based on the construction, the general form of each candidate is:666

r̂t+1 = Ar̂t + Zjε
j
t+1 + C̃1(Z′j)

−1
ε

j
t (A. 9)

where ε
j
t ∼ isN (0, I) and A, Zj and C̃1 are determined by (3) and (4). The autocovariance667

of r̂t is:668

Ĉ0 = E
(
r̂t+1r̂′t+1

)
= AĈ0A′ + AZj(Zj)

−1C̃1 + (AZj(Z′j)
−1C̃′1)

′
+ ZjZ′j + C̃1(ZjZj)

−1C̃′1

Ĉ1 = E
(
r̂tr̂′t−1

)
= AĈ0 + C̃1(Z′j)

−1Zj

Ĉi = E
(
r̂tr̂′t−i

)
= (A)i−1Ĉ1 for i ≥ 2
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Since ZjZ′j is a solution to (A. 8),669

C̃0 = (ZjZ′j) + C̃1(ZjZ′j)
−1C̃′1 (A. 10)

Therefore, the equation for C̃0 becomes:670

Ĉ0 = AĈ0A′ + AC̃1 + C̃1A′ + C̃0 (A. 11)

Hence, the solution of Ĉ0 is given by671

vec(Ĉ0) = [I − (A⊗ A)]−1vec(AC̃1 + C̃1A′ + C̃0) (A. 12)

where vec(•) is the vectorization operation turning an m by n matrix into an mn by 1672

vector. Based on the definition of C̃0 and C̃1,673

vec(C0) = [I − (A⊗ A)]−1vec(AC̃1 + C̃1A′ + C̃0) (A. 13)

Therefore,674

Ĉ0 = C0. (A. 14)

Given the equivalence between C0 and Ĉ0, it is easy to see that675

Ĉ1 = AĈ0 + C̃1 = AC0 + C̃1 = C1 (A. 15)

and676

Ĉi = Ai−1Ĉ1 = Ai−1C1 = Ci, ∀i ≥ 2. (A. 16)

Hence, we if a representation satisfies (2)-(4), it is covariance equivalent to the structural677

form.678

As for the number of valid Zjs, there are

 2k

k

 solutions to equation (c). The form679

of ZjZ′j requires it to be symmetric and positive definite; thus, the valid solution is less680
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than

 2k

k

. With an alternative approach, we can show there are a total of 2k valid681

representations. Furthermore, we show that among all the valid covariance-equivalent682

representations, there is one presentation which is invertible. The detail of this alternative683

approach is included in appendix B. Q.E.D684

B The equivalence between Blaschke Matrices and the Potter Equation685

Lippi and Reichlin (1994) show every noninvertible stationary VARMA(p,q) model has686

one invertible representation by multiplying an appropriate Blaschke matrix. A Blaschke687

matrices, B(z), is a special matrix satisfying the following property:688

689

B(z)B(z−1)
′
= I. (B. 17)

As we know, every orthonormal matrix is a Blaschke matrix. In the remaining part of this690

section, we show how to use Blaschke matrices to get an invertible representation and691

how this alternative procedure is related to the proposed procedure in the main text.692

Lemma Every covariance-equivalent form can be achieved by multiplying an appropriate Blaschke693

matrix on the original model694

Proof:695

rt+1 = WI −QL−1Uet + Zet+1 (B. 18)

= W
∞

∑
i=0

QiUet−i

= WQW̄(rt − Zet) + WUet + Zet+1

= WQW̄yt + Zet+1 + (WU −WQW̄Z)et.

For simplicity in notations, define M = WQW̄, N0 = Z and N1 = WU −WQW̄Z. There-696

fore, we have the autocovariance generating function of rt is given by:697

Gr(z) = ([I −Mz])−1(N0 + N1z)(N0 + N1z−1)′[I −M′−1]
−1

(B. 19)
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Equation () is a VARMA(1,1) representation of the structural model, which might be in-698

vertible or non-invertible. Next, we show that there is an alternative VARMA(1,1) rep-699

resentation of the same model, and furthermore, this representation is invertible. To this700

end, we construct a square matrix A(L) of dimension m. This matrix depends on the ma-701

trix lag polynomial N(L) = N0 + N1L. More specifically, let {λi}m
i=1 be the eigenvalues of702

N(L). Define a matrix R(λi, z) as follows:703

R(λi, z) =




Ii−1 0 0

0 1−λ̄iz
1−λiz

0

0 0 Im−i

 , |λi| > 1

Im, otherwise

(B. 20)

The matrix R(λi, z) is known as a Blaschke matrix. It satisfies the property R(λi, z)R′(λ̄i, z−1) =704

I. Now, we defines another matrix Ki. This matrix is an orthonormal matrix, whose ith705

column is the normalized solution of N(λi)x = 0.706

Firstly, we can construct another lag polynomial Ni(L) = Ni
0 + Ni

1L = (N0 + N1L)KiR(λi, L).707

By right multiplying N(L) with Ki, one can move all the entries containing the factor708

1− λiL on the ith column. By further right multiplying R(λi, L), one replaces 1− λiL with709

λi− L but leave other elements untouched, in other words, ”flips” a particular eigenvalue710

of the lag polynomial. At the same time, we even have:711

Gi
r(z) = ([I −Mz])−1(Ni

0 + Ni
1z)(Ni

0 + Ni
1z−1)′[I −M′−1]

−1

= ([I −Mz])−1(N0 + N1z)KiRi(λi, L)R′(λ̄i, L−1)K′i(N0 + N1z−1)′[I −M′−1]
−1

= ([I −Mz])−1(N0 + N1z)(N0 + N1z−1)′[I −M′−1]
−1

= Gr(z) (B. 21)

Therefore, we construct another VARMA(1,1) representation of the structural model:712

rt+1 = Mrt + Ni
0ei

t+1 + Ni
1ei

t. (B. 22)
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Compared to the model in equation (B), model (B. 22) has the same variance-covariance713

structure and the same likelihood. Based on construction, we know that the eigenval-714

ues of the covariance-equivalent forms are either the eigenvalues of the structural form715

or the reciprocal of them. Therefore, if there are eigenvalues outside the unit circle (non-716

invertible), there has to be a covariance-equivalent form ”flipping” all the explosive eigen-717

values while keeping the stable eigenvalues untouched.718

Q.E.D719

720

Lemma The method with Blaschke matrices gives the same result as the procedure based on the721

Potter equation722

723

Proof: The proof applies to a general VARMA(p, q)model, M(L)xt = N(L)wt, where724

M(L) is stable. (i) Any solution implied by Blaschke matrices is a solution implied by the Pot-725

ter equation. This is obvious. Based on construction, a representation generated by using726

Blaschke matrices have the same covariance structure as the structural form. Hence, it is727

satisfies conditions (2) to (4)728

729

Any solution satisfying conditions (2) to (4) is a solution by using Blaschke matrices This is730

based on Theorem 2 in Lippi and Reichlin (1994). Assume the invertible VARMA(p, q)731

model is given by M(L)xt = N(L)ut. an arbitrary solution from the potter equation is732

given by M(L)xt = Ñ(L)wt. Based on definition, xt = M(L)−1Ñ(L)wt is a MA repre-733

sentation of the original VARMA model. Therefore, we have to have M(L)−1Ñ(L) =734

M(L)−1N(L)B(L), where B(L) is a Blaschke matrix. Thus, Ñ(L) = N(L)B(L).735

736

Q.E.D737
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