
Asymmetric Phase Shifts

in U.S. Industrial Production Cycles

Yongsung Chang

University of Rochester & Yonsei University

Sunoong Hwang∗

Korea Institute for Industrial Economics and Trade

October 8, 2010

Abstract

Based on the industrial production of 74 U.S. manufacturing industries, we identify the

turning points of industry cycles. Industry peaks and troughs are concentrated around

national turning points, con�rming that the comovement is a salient feature of the

business cycle. However, we �nd a substantial asymmetry in the distribution of turning

points: troughs (upturns) are much more concentrated than peaks (downturns). This

is in contrast to the conventional notion of a �sudden stop and slow recovery.� While

both aggregate shocks and spillover e�ects from input-output linkages are signi�cant

determinants of turning points across industries, their e�ects are also asymmetric. For

example, monetary policy and government spending shocks exhibit larger e�ects on

troughs (upturns) than on peaks (downturns).
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1. Introduction

The comovement of industries over the course of business cycles has been considered a

salient feature of market economies (Burns and Mitchell, 1946; Lucas, 1981). The empirical

pattern of industrial comovement is of profound importance because it forms the basis for

modern (multi-sector) business cycle models. While the previous studies have found a strong

degree of comovement across industries based on interindustry correlations, considerably less

attention has been paid to the phase-shift property of the business cycle.1 As is evident from

the following quotation, characterizing a cycle as a recurrent sequence of distinct phases is

a key ingredient of the business cycle:

�A period in which expansions are concentrated is succeeded by another in which

cyclical peaks are concentrated, by another in which contractions are concentrated,

by another in which cyclical troughs are concentrated ; and this round of events

is repeated again and again (Burns and Mitchell, 1946, p. 70).�

The objective of this paper is to examine the patterns of the distribution of business cycle

turning points.2 By doing so we uncover new empirical regularities about the interindustry

comovement of turning points that are useful to understand the propagation mechanism of

business cycles. We ask the following questions. (i) How do industry turning points shape

up over the business cycle? (ii) Do the distributions of industry peaks and troughs exhibit

similar dispersion between the national peaks and troughs? (iii) What are the important

determinants for the coincidence of phase shifts across industries?

1For example, Christiano and Fitzgerald (1998) and Hornstein (2000) �nd that the pairwise correlations of
outputs and inputs across industries are largely positive and quite high, with a mean correlation of about
0.5. Veldkamp and Wolfers (2007) �nd that the average correlations of industry outputs and inputs with
their aggregate counterparts all exceed 0.5. Murphy et al. (1989), Shea (2002), and Kim and Kim (2006)
also provide the estimation results of the correlations between industry variables and aggregate business
cycle indicators. Using the factor analytic methods, Long and Plosser (1987), Forni and Reichlin (1998),
Foerster et al. (2008), and others suggest evidence that common factors account for a large fraction of
sectoral �uctuations.

2In particular, the timing of turning points (rather than correlations) is of great interest to policy makers,
�nancial analysts, and academics as well as to individual investors.
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To answer these questions, we �rst identify a set of turning points by applying a nonpara-

metric dating algorithm, proposed by Harding and Pagan (2002), to quarterly data on the

production series for 74 U.S. manufacturing industries. We then investigate the comovement

by examining the distribution of industry turning points around the national peaks and

troughs. Comparison of the degrees to which industry peaks and troughs are concentrated

around their national counterparts is conducted based on a clustering method proposed by

Harding and Pagan (2006). Finally, we employ a panel logit model to investigate whether the

coincidence of phase shifts across industries can be attributed to macroeconomic common

shocks and spillovers from input-output linkages, which have been emphasized as two main

sources of interindustry comovement by the previous literature.3

Our empirical analysis con�rms a strong comovement across industries even in terms of

phase shifts. But more interesting from our point of view are the distributional properties

of turning point clusters. We �nd that industry troughs (i.e., upturns) are much more

concentrated than industry peaks (i.e., downturns). This result is robust with respect to

various treatments of the data. Our �nding of higher concentration of troughs (upturns) is

in contrast with the conventional notion of a �sudden stop and slow recovery� dating back

to Keynes (1936): `... the substitution of a downward for an upward tendency often takes

place suddenly and violently, whereas there is, as a rule, no such sharp turning point when

an upward is substituted for a downward tendency.' However, our result is consistent with

`sharp' troughs and `round' peaks documented by McQueen and Thorley (1993) based on

the growth rate of industrial outputs.

We �nd that both the common (aggregate) shocks and the interindustry linkages are im-

portant for the joint occurrences of cyclical turns across industries. However, their relative

importance di�ers between peaks and troughs. The downstream spillover e�ect from input

suppliers is signi�cant both for peaks and troughs. The upstream spillover e�ect from output

3For example, Lucas (1981) and Dupor (1999) attribute such comovement to aggregate shocks. The multi-
sector RBC models, such as Long and Plosser (1983), Hornstein and Praschnik (1997), Horvath (2000),
Shea (2002), and Carvalho (2007) attribute comovement to the interindustry linkages.
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users is statistically signi�cant only for peaks (i.e., downturns). Finally, we �nd that both

monetary policy shocks (identi�ed by Romer and Romer (2004)) and government spending

shocks (identi�ed by Ramey (2009)) have large and statistically signi�cant e�ects in predict-

ing industry troughs and peaks. However, the e�ectiveness of policy shocks are substantially

stronger for troughs (upturns) than for peaks (downturns).

Our work contributes to various bodies of literature. First, our study sheds new lights on

the sources of interindustry comovement. While Lucas (1981) and Dupor (1999) attribute

such comovement to aggregate shocks, the proponents of multi-sector RBC models, such as

Long and Plosser (1983), Hornstein and Praschnik (1997), Horvath (2000), and Carvalho

(2007), argue that input-output linkages also play an important role for the comovement of

industries. Our results of asymmetric distribution of phase shifts across industries suggest

that uncertainty can be an important feature of business cycles (e.g. Bloom (2009) and

Nieuwerburgh and Veldkamp (2006)).

Empirical work on this topic include Long and Plosser (1987), McQueen and Thorley

(1993), Bartelsman et al. (1994), Forni and Reichlin (1998), Shea (2002), Conley and Dupor

(2003), and Foerster et al. (2008). All of these studies analyze continuous quantitative

variables like the growth rates of the IP index. On the contrary, we deal with the discrete

state variable. As is common in the literature on �nancial crisis contagion, we consider

that a spillover e�ect is present if the probability of a phase shift in a particular industry is

signi�cantly a�ected by past occurrences of phase shifts in the other industries. An important

advantage of this panel logit analysis is that we can estimate the peak and trough equations

separately and thus can evaluate whether the sources of comovement have (a)symmetric

e�ects over peaks and troughs.

Second, our result o�ers another dimension to the literature on the business cycle asym-

metries. While previous studies have exclusively focused on the conditional mean or variance

properties of aggregate series, asymmetries in the higher moment properties of cross-sectional

distribution have received relatively little attention. We complement this literature by adding

3



new evidence on the asymmetric dispersions of industry turning points.

Finally, we enlarge the scope of analysis on the stylized facts of the business cycle to

include those for industry cycles. Recently, a series of work by Harding and Pagan (2002,

2005, 2006) have revived interest in the classical approach as a tool for collecting business

cycle features, and many studies have adopted this method to analyze comovement of inter-

national (Artis et al. 2004; Krolzig and Toro, 2005; Camacho et al., 2008), regional (Hall

and McDermott, 2007), and U.S. macroeconomic variables (Chauvet and Piger, 2008). As

far as we are aware, however, our work is the �rst attempt to analyze comovement across

industries using this method.4

The remainder of this paper is organized as follows. Section 2 brie�y describes the

methodology used for dating the industry-speci�c and the reference cycles. Section 3 presents

the results for conformity analysis. Empirical results for the asymmetric dispersions of

industry turning points are given in Section 4. Section 5 conducts the panel logit analysis to

investigate the determinants of interindustry comovement. Section 6 concludes the paper.

2. Dating industry cycles

2.1. Algorithm

In order to identify industry business cycle phases we apply Harding and Pagan's (2002)

algorithm to the level of industrial output. Using this approach has at least three bene�ts.

First, it does not require a particular de�nition of trend components from the raw series,

which is often unobservable to a researcher. Thus it can avoid potential problems inherent in

de-trending methods.5 Second, using a level series is consistent with the practice maintained

4Using a multi-level smooth transition model, Fok et al. (2005) analyzed common nonlinear features of
industrial production in 19 U.S. manufacturing industries. Unlike ours, their focus was more on developing
econometric methodologies and less on collecting business cycle features per se; they did not provide a
summary measure for the degree of comovement nor the asymmetric patterns of turning points.

5For example, Harvey and Jaeger (1993) and Cogley and Nason (1995) provide analyses of spurious cycles
arising from the application of the Hodrick-Prescott �lter. Canova (1998) illustrates how the di�erent
de-trending methods generate di�erent �stylized facts� of U.S. business cycles.
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by the NBER's Business Cycle Dating Committee, which has provided the most authoritative

chronology for U.S. business cycles. Third, it is consistent with many previous studies seeking

to establish business cycle features based on �aggregate� level time series data (e.g., among

others, Watson (1994), Hess and Iwata (1997), and Harding and Pagan (2002)). One of the

(potential) shortcomings, however, is that it may fail to detect any turning point in a series

with a steady upward or downward trend. Hence, we will check the robustness of our results

by considering detreneded data from the Hodrick-Prescott (1997) �lter where appropriate.

The implementation of Harding and Pagan (2002), which is a quarterly variant of the

Bry-Boschan (1971) algorithm, involves the following stages:

1. De�ne a peak in {yt}Tt=1 as occurring at time t if yt = max {yt−2, yt−1, yt, yt+1, yt+2}

and a trough as occurring at time t if yt = min {yt−2, yt−1, yt, yt+1, yt+2}. That is, a

peak (trough) occurs at time t if it is higher (lower) than two preceding as well as two

succeeding periods.

2. Check whether these peaks and troughs satisfy the predetermined �censoring rules.�

Censoring rules make sure that (i) peaks and troughs alternate and that (ii) a phase and

a complete cycle have minimum durations. If these requirements are not ful�lled, the least

pronounced among adjacent turning points is eliminated. In this paper, we set the minimum

duration of a phase to be 2 quarters and that of a cycle to be 5 quarters.

We use the seasonally adjusted quarterly IP indices covering 1972:Q1 to 2009:Q2. The

data were extracted from the Board of Governors of the Federal Reserve System. In our data

the U.S. manufacturing sector is classi�ed into 74 industries that correspond roughly to the

4-digit level of disaggregation in the 2002 North American Industry Classi�cation System

(NAICS).6

670 industries correspond exactly to the 4-digit NAICS. Four industries are at the 3-digit level. They are
apparel (315), leather and allied products (316), printing and related support activities (323), and petroleum
and coal products (324).
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Before we turn to the industry cycle analysis, Figure 1 compares the NBER business

cycle phases to those identi�ed by the Harding-Pagan method applied to the log GDP. Two

business cycle dates are very close to each other except that the Harding-Pagan method does

not detect the 2001 recession, which was a very mild one.

2.2. Summary Statistics

Table 1 summarizes the statistics of industrial business cycle phases identi�ed by the

Harding-Pagan algorithm applied to log IP indices. For comparison, we include the corre-

sponding statistics for the U.S. economy based on the NBER dates and aggregate manufac-

turing cycles based on a multi-variate Harding-Pagan (MHP) method.7

Manufacturing industries have experienced more frequent phase shifts than the U.S.

economy. During the sample period (1972:Q1 - 2009:Q2) the U.S. economy experienced 4

trough-to-trough cycles, whereas manufacturing industries on average experienced 9.5 cy-

cles. The average duration of a trough-to-trough cycle is 26.8 quarters for the U.S. economy,

whereas the average duration of manufacturing industries is just about 14.1 quarters. Manu-

facturing industries also exhibit duration asymmetries between expansions and contractions.

The average duration of expansions (10.8 quarters) is twice as long as that of recessions (5.8

quarters), while the same ratio for the U.S. economy is 7.

Table 1 also shows that there are large cross-sectional di�erences in the duration prop-

erties of industry cycles. For example, the average duration of production cycles goes up to

38 quarters in the computer and peripheral equipment (NAICS=3341) industry; meanwhile

it drops to 8 quarters in the iron and steel products (NAICS=3311) industry. The semicon-

ductor and other electronic components (NAICS=3344) industry experiences, on average,

the longest expansion, with a duration of 31 quarters, which is in sharp contrast to the

minimum expansion duration of 4 quarters recorded for the apparel (NAICS=315) industry.

The cross-sectional di�erences in duration asymmetries are also quite striking. The average

7We discuss the multi-variate version of the Harding-Pagan algorithm in Section 4.
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duration of expansions, for instance, is ten times longer than that of recessions for the com-

puter and peripheral equipment (NAICS=3341) industry, while it is less than two-thirds of

that of recessions for the leather and allied products (NAICS=316) industry.

Figure 2 displays the frequencies of industry peaks and troughs over time. It represents

the fractions of industries experiencing their own peak (circle) and trough (crosses), respec-

tively, at a given quarter. The fraction of trough industries is multiplied by minus one (−1)

to facilitate visual inspection. Shaded areas re�ect the NBER recessions. As Burns and

Mitchell (1946) pointed out, peaks and troughs tend to be concentrated around national

turning points, suggesting a strong comovement across industries. However, it clearly shows

asymmetry in the comovement of cyclical turning points, as the fractions of trough indus-

tries at the NBER troughs are on average much higher than those of peak industries at the

NBER peaks. In other words, troughs (upturns) are much more concentrated than peaks

(downturns). We will discuss these features in more depth in the following sections.

3. Concentration of cyclical phases

In this section we brie�y discuss two measures of comovement of cyclical phases: di�usion

indices and concordance. The di�usion indices measure the fraction of industries sharing

the same phase at a given point of time. Concordance measures the fraction of time that

two industries are in the same phase.

Based on the industry cycles identi�ed in the previous section, the di�usion index for

contractions is computed as follows:

Dt =
N∑
i=1

witSit,
N∑
i=1

wit = 1, t = 1, . . . , T. (1)

where wit is the weight assigned to ith industry at time t, Sit is a binary variable taking the

value of 1 in contraction phases and 0 otherwise, and N is the cross-sectional dimension.

We use two measures of industry weights: one is equal to all industries and the other is
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the (time-varying) output shares of each industry available from the database of the Federal

Reserve Board. Constructed in this way, the di�usion index for contractions, Dt, measures

how widely contractions are spread throughout the manufacturing sector in terms of (i)

the number of industries (for the case of equal weights) or (ii) the total production of the

manufacturing sector (for the case of industry-speci�c output-share weights). The di�usion

index for expansion is easily computed as one minus the di�usion index for contractions.

The di�usion indices for contractions and expansions are plotted in the top and bottom

panels of Figure 3, respectively. Note that the fraction of industries experiencing a con-

traction rises above 65% during every NBER recession period, while it remains low during

NBER expansion periods. More precisely, the average of the fractions of industries that

are in contraction is 69% (74%) for the NBER recessions and 30% (34%) for the NBER

expansions when the industry-speci�c (equal) weights are used. By contrast, the fraction

of industries experiencing expansions stays far above 50% for most of the NBER expansion

periods and sharply drops below 50% at about the beginning of the NBER recessions. The

average of fractions of industries undergoing expansions is computed to be 70% (66%) for

the NBER expansions and 31% (26%) for the NBER recessions when the industry-speci�c

(equal) weights are used.

The two NBER recessions of 1974-75 and 2008 deserve special attention, since the dif-

fusion index for contractions rises close to 1 during these periods, meaning that almost all

industries experienced declines in the levels of production during these national recessions.

By contrast, during two other major NBER recessions�1980 and 1981-82�about 30% of in-

dustries continued to increase their production. The �gure also shows that there are several

periods (i.e., 1984-85, 1995-96, and 2003) when a considerable number of industries experi-

enced a contraction, while the U.S. economy as a whole did not. Finally, the choice between

the two weighting methods does not substantially a�ect the results.

The pairwise concordance measures the fraction of time that two industries are in the
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same phase:

Ci,j =
1

T

T∑
t=1

[SitSjt + (1− Sit)(1− Sjt)], (2)

where Sit and Sjt are dummy variables de�ned as above. Similarly, the degree of concordance

between the production cycles of industry i and the business cycles of the U.S. economy is

de�ned as:

Ci,US =
1

T

T∑
t=1

[SitSUS,t + (1− Sit)(1− SUS,t)]. (3)

where SUS,t is a dummy variable taking a value of 1 or 0 in case of the NBER recession or

expansion, respectively.

The left panel of Figure 4 presents kernel densities of the concordance indices computed

for the 2,701 industry pairs. As is apparent from the �gure, there is a high degree of

concordance between industry cycles. The estimates of pairwise concordance range from

0.360 to 0.880, with mean of 0.608, suggesting that two manufacturing industries are in the

same phase 60.8% of the time on average. The result presented in the right panel of the �gure

indicates that the degree of concordance between industry cycles and the business cycles of

the U.S. economy is on average slightly higher than the degree of pairwise concordance across

industries. Taken jointly, the patterns of two measures clearly con�rm that comovement

across industries is a salient feature of U.S. business cycles.

4. Concentration of turning points

We have already seen from Figure 1 that there is a bunching of cyclical turns around

national peaks and troughs. We now ask whether the clusters of turning points have the same

dispersion between peaks and troughs. To shed light on this issue, we begin by inspecting

the frequencies of industry peaks and troughs computed at the corresponding NBER turning

points. The left panel of Table 2 reveals that at the NBER peaks, just about 14% of

industries on average experience their peaks as well. On the other hand, when the NBER
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recession culminates, more than 34% of industries on average simultaneously climb out of

their recessions. Thus, the likelihood that industry-level turning points coincide with their

national counterparts is clearly asymmetric between peaks and troughs, with troughs being

twice as likely to coincide as peaks. This asymmetric pattern does not change substantially

during the sample period, although the degree of asymmetry has somewhat increased in the

last two NBER recessions.

When determining the U.S. reference-cycle dates, the NBER Business Cycle Dating Com-

mittee considers the behavior of various economic indicators besides IP indices. Therefore,

the NBER dates may not be the right measure of turning points in the reference cycle speci�c

to the manufacturing sector. To address this problem we extract the reference (or common)

cycle for the manufacturing sector by applying a multi-variate version of the Harding Pagan

(MHP) algorithm. A detailed description of identifying manufacturing-reference cycles using

MHP is provided in the appendix.

The right panel of Table 2 reports the reference-cycle dates for the manufacturing sector

obtained by the MHP algorithm and the frequencies of industry turning points corresponding

to each reference date. Using the trough-to-trough de�nition, the MHP algorithm identi�es

7 cycles for the period 1972:Q1-2009:Q2, which is 3 more than those for the U.S. economy

as a whole recorded by the NBER. Accordingly, the average duration of the manufacturing

reference cycles is calculated to be just about one half of that for the NBER cycles, as

is shown in Table 1. Among the 8 troughs identi�ed for the manufacturing sector, 5 are

associated with the NBER recessions, but the other 3 are speci�c to the manufacturing

sector. Note that for the �rst 5 cases, the manufacturing sector reaches its troughs exactly

at the same time as the troughs of the NBER cycles or just shortly after them. In contrast,

peaks for the manufacturing sector generally come earlier than peaks for the U.S. economy,

with the leads varying from 1 to 6 quarters. Finally and most important, the fraction of

industries experiencing their turning points is still higher at troughs than at peaks, even

when we use the MHP reference-cycle dates instead of the NBER dates. Although the
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degree of di�erence is smaller than in the case using the NBER dates, the fractions of peak

industries computed at the MHP peaks are, on average, just about one-half of those for

trough industries computed at the MHP troughs.

An interesting interpretation proposed by Harding and Pagan (2006) about the MHP

turning points is that these points can be considered the central dates of clusters consisting

of individual turning points, in the sense that the average distance from time t and the set

of nearest turning points in individual cycles is minimized at those points. Following this

interpretation we here build the clusters of turning points to provide a more general picture

of the patterns of cyclical turns.

Let rl be the lth peak in the reference cycle and Ψl be the lth cluster of industry peaks

centered on rl. Then, Ψl is de�ned as follows

Ψl = { τPij | d(rl − τPij ) < d(rm − τPij ) for all m 6= l; and d(rl − τPij ) ≤ d̄ } (4)

where d̄ is a predetermined constant. We choose d̄ = 8 for our quarterly data, following the

suggestion of Harding and Pagan (2005). Clusters of industry troughs can be de�ned in a

similar fashion.

Figure 5 presents the results of the cluster analysis. In this �gure, the dotted line indicates

nonparametric estimates of the Gaussian kernel densities for the di�erences between industry

peaks and the corresponding central dates of clusters. The solid line represents the Gaussian

kernel densities for the di�erences between industry troughs and the corresponding central

dates of clusters. The absolute value of the negative (positive) values on the horizontal axis

denotes the number of quarters by which an industry cycle leads (lags) the reference cycle.

For the central dates of clusters, we use two sets of the reference-cycle dates: the �rst set

corresponds to the NBER dates and the second set corresponds to the MHP dates. We

also include in this �gure the results for the deviation cycles, which are extracted from the

Hodrick-Prescott (1997) �lter. The same nonparametric algorithm as above is applied to the
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detrended series to identify turning points in the deviation cycles.

Inspection of the plots presented in Figure 4 reveals a sharp contrast between the shapes of

peak and trough clusters: the clusters of industry troughs are highly compact and comparably

symmetric. On the contrary, the clusters of industry peaks are dispersed and skewed toward

leads. Using the MHP reference-cycle dates in lieu of the NBER dates helps correct the

skewness of peak distributions, but does not change the general pattern of the asymmetric

concentration of turning points between peaks and troughs. Furthermore, the lower panels of

Figure 4 show that this asymmetric pattern becomes even more apparent when the deviation

cycles are used. We perform a two-sample Komogorov-Smirnov test to evaluate whether the

distributions of peaks and troughs are the same and �nd that the null hypothesis of equal

distribution is rejected at the 1% signi�cance level for all the cases considered.8 Thus, our

conclusion that troughs are more concentrated than peaks appears to be robust. Our �nding

of higher concentration of troughs (upturns) is in contrast with the conventional notion

of a �sudden stop and slow recovery� but consistent with `sharp' troughs and `round' peaks

documented by McQueen and Thorley (1993) based on the growth rate of industrial outputs.

5. Determinants of comovement

5.1. Panel logit model

In this section we analyze the determinants of interindustry comovement to investigate

whether the coincidence of phase shifts across industries can be attributed to macroeconomic

common shocks and spillovers from input-output linkages, which have been emphasized as

two main sources of interindustry comovement by the previous literature. In addition, this

section examines whether the e�ects of these determinants are (a)symmetric between the

occurrences of peaks and troughs.

8When the null distribution is discrete as is the case for the present study, it is known that the Komogorov-
Smirnov test tends to yield conservative results. Therefore, the rejections at the 1% signi�cance level can
be considered strong evidence in favor of asymmetry between the distributions of peaks and troughs
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Consider a sample of binary variable DP
it that takes the value of 1 if industry i is at peak

at time t and otherwise takes the value of 0, for t = 1, . . . , T and i = 1, . . . , N . Similarly,

consider another sample of binary variable DT
it taking the value of 1 if industry i is at trough

at time t and otherwise having the value of 0. To examine the e�ects of the determinants on

the coincidence of peaks or troughs across industries, we estimate the following binary panel

logit model with �xed e�ects:

• Peak equation

Pr(DP
it = 1 | xPit , αP

i ) = Γ(XP
it ′βP + αP

i ), (5)

• Trough equation

Pr(DT
it = 1 | xTit, αT

i ) = Γ(XT
it ′βT + αT

i ), (6)

where superscripts P and T denote peak and trough, respectively, Pr(·) is the probability of

an event, Γ(·) is a logistic function of the form Γ(z) ≡ exp(z)/(1 + exp(z)), Xit is the vector

of covariates, β is the vector of coe�cients, and αi is the unobserved industry-speci�c e�ect.

We also allow for the unobserved individual e�ect αi to be correlated with covariates Xit.

Our approach signi�cantly di�ers from the previous studies on the comovement of in-

dustries in that we deal with the discrete variables rather than continuous variables like the

growth rates of IP indices. The model we use is also di�erent from the existing models for

predicting recessions (e.g., Estrella and Mishkin, 1998; Sensier et al., 2004) mainly in two

respects: we use a panel data model instead of a simple probit model and we estimate peak

and trough equations separately, unlike previous studies that use only one equation for the

probability of the economy being in a recession. Our approach has two potential advantages.

First, it enables us to analyze the asymmetric e�ects of the determinants on the occurrences

of peaks and troughs. In addition, our approach provides a convenient way to avoid the

problem of serial correlation, which is likely to arise because of employing a �censoring rule�

to identify phases of a cycle; see Harding and Pagan (2009) for details.
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5.2. Explanatory variables

The explanatory variables are grouped into two categories. The �rst group consists of

the weighted averages of spillover e�ects from all the other industries, constructed as:

Zit−1 =
∑
j 6=i

wijD
P
jt−1, in peak equation, (7)

=
∑
j 6=i

wijD
T
jt−1, in trough equation

where wij denotes the weight capturing the importance of the phase shift of industry j at

time t − 1 with respect to the phase shift of industry i at time t. DP
jt−1 and DT

jt−1 are

constructed in a similar way as explained above.9

Following Shea (2002), we distinguish spillover e�ects depending on the origins of the

e�ects. The �rst is from input suppliers (downstream or supply-side), the second is from

output users (upstream or demand-side), and the third is unconditional on the input-output

structure. Let mij be the value of products of industry i used as intermediate materials in

industry j. Then we measure the importance of industry j as an input supplier to industry

i by using the following weight

ωij =
mji∑
j 6=imji

Applying this weight to equation (8), we construct a downstream spillover index as an ex-

planatory variable for the probability of the phase shift of industry i. Similarly, the impor-

tance of industry j as a user of the product of industry i is computed as

ωij =
mij∑
j 6=imij

Using this weight, we construct an upstream spillover index as an explanatory variable for

the phase shift of industry i. To construct these two types of weights, we use the 2002 U.S.

input-output table provided on the website of the Bureau of Economic Analysis. Finally,

9We are thus implicitly assuming a one-period lag in spillovers from other industries.
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to control for unconditional spillover e�ects, which are independent of the input-output

structure, we construct an index for which all industries are given equal weight such that

wij = 1/N .

The second group of explanatory variables consists of four di�erent macroeconomic

shocks. To avoid the problem of endogeneity, we employ the measures of macroeconomic

shocks constructed as being exogenous to economic conditions from the previous studies us-

ing narrative records. The measure of monetary policy shocks is obtained from Romer and

Romer (2004), who analyze narrative records around the meetings of the Federal Open Mar-

ket Committee (FOMC) and identify monetary policy shocks as the changes in the intended

federal funds rate not taken in response to information about in�ation and real growth.

Government spending shocks are based on Ramey (2009), who constructs the defense news

variable as the changes in the expected discounted value of government spending due to

foreign political events, divided by the previous quarter's nominal GDP. The measure of tax

revenue shocks is provided by Romer and Romer (2008) and constructed as the changes in

tax liabilities at the prevailing level of GDP, taken to deal with an inherited budget de�cit or

to achieve a long-run goal. Finally, the measure of exogenous oil supply shocks is obtained

from Kilian (2008) and estimated as the rates of changes in the OPEC-wide oil production

shortfall.

We restrict the sample period to end in 1996 because the measure of monetary policy

shocks, provided by Romer and Romer (2004), is available only up to that year. In order to

avoid the endogeneity problem, we enter the spillover indices in the right-hand side of (6)

and (7) only with the �rst lag, whereas for the macroeconomic shocks, the contemporaneous

values as well as the �rst lags are used, since they are relatively free of the endogeneity

problem by de�nition. In line with other studies using binary variables, we use McFadden's

(1974) pseudo−R2 as a measure of goodness-of-�t of the model. Note that though the

coe�cient estimates in the tables below provide important information due to their signs

and signi�cance, they cannot be interpreted as directly representing the marginal e�ects of
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the covariates on the probabilities of peaks and troughs because the model used is nonlinear.

5.3. Empirical Results

Table 3 presents the estimation results of the peak equation. The left panel shows the

estimation result of the unrestricted model that includes all explanatory variables, and the

right panel presents the result of the restricted model that excludes the explanatory variables

whose coe�cients turned out to be statistically insigni�cant in the �rst-stage regression.

Both macroeconomic common shocks and spillovers from input-output linkages are signi�cant

determinants of the occurrence of a peak (downturn). For the spillover e�ects, the coe�cients

of all three indices�downstream, upstream, and unconditional�are signi�cant at the 1%

level and have a positive sign. It is worth noting that even after we control for unconditional

spillover e�ects, the upstream and downstream spillover e�ects are highly signi�cant. An

industry is more likely to switch into a contraction if upstream or downstream industries

have entered a contraction in the preceding quarter.

The coe�cients of both the contemporaneous and the lagged values of monetary policy

shocks are signi�cant at the 1% level and have a positive sign, implying that an increase

in the federal funds rate due to exogenous reasons yields higher probabilities of switching

from an expansion to a contraction in manufacturing. The e�ects of government spending

shocks are estimated to be signi�cant with a one-period lag such that an increase in defense

spending lowers the probability of downturns. An increase in tax revenue is also signi�cant

with a one-period lag. An exogenous increase in tax leads to a higher probability that

a downturn will occur. Finally, the coe�cients on the oil supply shocks are signi�cant

only for the contemporaneous e�ects. Oil production shortfalls increase the probability

of downturns in manufacturing production. Overall, all four macroeconomic shocks are

signi�cant determinants of cyclical turning points and yield signs that conform to our priors.

Table 4 presents the estimation results of the trough equation. What is most striking is

that the coe�cient of upstream spillover indices is now insigni�cant even at the 10% level. By
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contrast, the coe�cient of downstream spillover indices is still highly signi�cant and shows

a positive sign. According to this estimate, spillover e�ects from input suppliers are still

important for cyclical upturns whereas those from output users are not. Our results raise

another interesting question regarding the underlying mechanisms of asymmetric spillover

e�ects in the literature (see Bartelsman et al. (1994), Shea (2002), and Conley and Dupor

(2003)).

Turning to the macroeconomic shocks, the coe�cients of monetary policy shocks are

highly signi�cant and have a negative sign both for the contemporaneous and one-period

lagged values. A decrease in the federal funds rate increases the probability of upturns

(occurrence of troughs) in manufacturing production. Remarkably, the absolute value of the

sum of the coe�cients of monetary policy shocks is about twice as large in the trough equation

as in the peak equation. This result supports the �ndings of the previous studies that the

e�ects of monetary policy on output are much greater in recessions than in expansions; see

Lo and Piger (2005) and Peersman and Smets (2005), among others. The coe�cients of

government spending shocks are signi�cant for the �rst lags of the variable, but not for the

contemporaneous values. Comparing the results for government spending shocks between

Tables 3 and 4, we �nd that not only monetary policy shocks but also government spending

shocks have larger output e�ects at troughs than at peaks. The coe�cients of tax revenue

shocks are signi�cant only for the �rst lags of the variable and, in that case, have a positive

sign. This is a somewhat unusual result, and that goes against common perception.10 Finally,

although the coe�cients of oil supply shocks are signi�cant both for the contemporaneous

values and the �rst lags of the variable, the sum of the coe�cients is not di�erent from zero,

implying that this variable does not have signi�cant e�ects on the likelihood of upturns in

industrial production.

10There is no signi�cant di�erence in other coe�cients when we estimate the model excluding tax revenue
shocks.
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6. Summary

The comovment over the business cycle is a salient feature of the modern economy.

The phase shift carries far richer information about the nature of business cycles than a

simple correlation. In particular, the timing of turning points is of great interest to policy

makers, �nancial analysts, academics, and individual investors. Based on the IP indices of

74 U.S. manufacturing industries, we identify the turning points of industry cycles using a

nonparametric method developed by Harding and Pagan (2002).

We uncover new empirical regularities about the interindustry comovement of turning

points. First, industry peaks and troughs are concentrated around national turning points,

con�rming that the comovement is a salient feature of the business cycle. Second and most

important, we �nd a substantial asymmetry in the distribution of turning points between

peaks and troughs. Troughs (upturns) are much more concentrated than peaks (downturns).

This is in contrast to the conventional notion of a �sudden stop and slow recovery.� Finally,

we �nd that both aggregate shocks and spillovers from input-output linkages are signi�cant

determinants of turning points. However, their e�ects are also asymmetric between upturns

and downturns. For example, upstream spillover e�ects are more important for downturns,

whereas downstream spillover e�ects are signi�cant for both upturns and downturns. Mone-

tary policy and government spending shocks are important for occurrences of both downturns

and upturns, yet they exhibit much larger e�ects on upturns than on downturns. Our results

of asymmetric distribution of phase shifts across industries suggest that uncertainty can be

an important feature of business cycles (e.g. Bloom (2009)).
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A Appendix

The multi-variate Harding-Pagan (MHP) algorithm used to identify the manufacturing

reference cycle proceeds as follows:

1. Let τPij and τTij be the dates to the jth peak and trough in the ith industry cycle,

respectively, for i = 1, . . . , N . De�ne dPit and d
T
it as the distance from time t and the

nearest peak and trough in the ith industry cycle, respectively, for t = 1, . . . , T ; that

is, dPit = min d(t − τPij ) and dTit = min d(t − τTij ) for all j, where d(·) is a measure of

distance.

2. For each t, compute the cross-sectional averages of the distances from time t and the

nearest peak and trough in industry cycles, respectively. Let's denote these results as

dPt and dTt . Harding and Pagan (2006) propose to use the median as the measure of

the average distance. But since we have the information on the output shares of each

industry, we instead employ the weighted average of dPit and d
T
it to measure the average

distance. Formally, dPt =
∑N

i=1witd
P
it and d

T
t =

∑N
i=1witd

T
it for t = 1, . . . , T , where wit

is the weight assigned on the ith industry and
∑N

i=1wit = 1.

3. Determine the local minima in dPt and dTt , respectively. Then the peaks and troughs

in the reference cycle are de�ned as the dates of these local minima.

4. Finally, apply the �censoring rule� to ensure that the identi�ed peaks and troughs yield

a cycle satisfying the requirement explained in Section 2 of this paper.
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Table 1. Average numbers and durations of completed cycles, expansions, and contractions

Average duration in quarters

Number of cycles Cycles Expansions Contractions

T to T P to P T to T P to P T to P
(A)

P to T
(B)

A/B

U.S. economy 4.0 5.0 26.8 27.2 23.8 3.4 7.0
Manufacturing 7.0 8.0 16.1 16.5 10.8 5.8 1.9
Summary of industry cycle features
Mean 9.5 10.3 14.1 14.0 8.8 5.1 2.0
Median 10.0 10.0 12.9 13.0 7.5 4.7 1.6
Max 15.0 16.0 38.7 34.5 31.3 10.1 10.3
Min 3.0 4.0 8.3 8.3 4.0 2.6 0.6
Std. 2.5 2.5 5.0 4.6 4.7 1.4 1.6

Note: `T' denotes trough and `P' denotes peak. Manufacturing cycle dates are based on the multi-variate
Harding-Pagan method applied to the industrial production indices of 74 industries.

Table 2. Frequencies of industry peaks and troughs at the reference dates

NBER dates MHP dates for manufacturing

Peak % of
industries

Trough % of
industries

Peak % of
industries

Trough % of
industries

1973:Q4 14.9 1975:Q1 37.8 1974:Q1 16.2 1975:Q2 37.8
1980:Q1 21.6 1980:Q3 41.9 1978:Q4 12.2 1980:Q3 41.9
1981:Q3 23.0 1982:Q4 25.7 1981:Q1 6.8 1982:Q4 25.7

� � � � 1984:Q4 13.5 1985:Q4 9.5
1990:Q3 12.2 1991:Q1 32.4 1989:Q1 16.2 1991:Q2 18.9

� � � � 1995:Q1 20.3 1996:Q1 23.0
2001:Q1 5.4 2001:Q4 35.1 2000:Q2 20.3 2001:Q4 35.1

� � � 2002:Q3 18.9 2003:Q3 20.3
2007:Q4 9.5 � � 2007:Q1 6.8 � �
Average 14.4 34.6 Average 14.6 26.5

Note: �MHP dates for manufacturing� denote reference-cycle dates for the manufacturing sector identi�ed
by the multi-variate Harding and Pagan (MHP) algorithm.
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Table 3. Estimation result of peak equation

Unrestricted model Restricted model

Coe�cient s.e. Coe�cient s.e.

Spillover e�ects

Unconditional (t− 1) 0.056∗∗∗ (0.009) 0.056∗∗∗ (0.009)
Downstream (t− 1) 0.028∗∗∗ (0.009) 0.028∗∗∗ (0.009)
Upstream (t− 1) 0.027∗∗∗ (0.009) 0.027∗∗∗ (0.009)

Common macroeconomic shocks

Monetary policy shocks (t) 0.863∗∗∗ (0.243) 0.895∗∗∗ (0.234)
Government spending shocks (t) -0.002 (0.043)
Tax revenue shocks (t) 0.113 (0.240)
Oil supply shocks (t) -0.072∗∗ (0.036) -0.072∗∗ (0.035)
Monetary policy shocks (t− 1) 0.730∗∗∗ (0.266) 0.706∗∗∗ (0.257)
Government spending shocks (t− 1) -0.060∗ (0.033) -0.061∗ (0.034)
Tax revenue shocks (t− 1) 0.580∗∗ (0.235) 0.614∗∗∗ (0.236)
Oil supply shocks (t− 1) 0.050 (0.041)

Log likelihood -1425.01 -1425.87
Pseudo-R2 0.134 0.134
Number of observations 4914 4914

Notes: ∗∗∗, ∗∗, and ∗ indicate signi�cance at the 1%, 5%, and 10% level, respectively. The numbers in
parentheses are standard errors.

Table 4. Estimation result of trough equation

Unrestricted model Restricted model

Coe�cient s.e. Coe�cient s.e.

Spillover e�ects

Unconditional (t− 1) 0.045∗∗∗ (0.007) 0.048∗∗∗ (0.006)
Downstream (t− 1) 0.038∗∗∗ (0.010) 0.038∗∗∗ (0.010)
Upstream (t− 1) 0.013 (0.009)

Common macroeconomic shocks

Monetary policy shocks (t) -1.189∗∗∗ (0.260) -1.155∗∗∗ (0.257)
Government spending shocks (t) 0.056 (0.039)
Tax revenue shocks (t) -0.042 (0.193)
Oil supply shocks (t) 0.122∗∗∗ (0.044) 0.115∗∗∗ (0.043)
Monetary policy shocks (t− 1) -1.717∗∗∗ (0.196) -1.714∗∗∗ (0.196)
Government spending shocks (t− 1) 0.114∗∗ (0.046) 0.114∗∗∗ (0.046)
Tax revenue shocks (t− 1) 0.808∗∗∗ (0.232) 0.821∗∗∗ (0.236)
Oil supply shocks (t− 1) -0.106∗∗ (0.043) -0.118∗∗∗ (0.042)

Log likelihood -1356.56 -1358.69
Pseudo-R2 0.168 0.166
Number of observations 4836 4836

Notes: ∗∗∗, ∗∗, and ∗ indicate signi�cance at the 1%, 5%, and 10% level, respectively. The numbers in
parentheses are standard errors.
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Figure 1. Business Cycle Dates: NBER vs Harding and Pagan

Note: P and T denote peaks and troughs, respectively.

P   T PT P T P T P

Note: `P' and `T' corresponds to the peaks and troughs identi�ed by the Harding-
Pagan method applied to the GDP. The shaded areas are recessions de�ned by the
NBER.
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Figure 2. Frequencies of industry turning points over 1972:Q1-2009:Q2
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encing peaks and troughs, respectively, at a given quarter. For visualization purpose,
the fractions of trough industries are multiplied by minus one. Shaded areas are NBER
recessions.
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Figure 3. Di�usion indices for cyclical phases
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Figure 4. Kernel densities of the concordance and correlation indices
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Figure 5. The shapes of clusters of peaks and troughs
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