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We use non-experimental data from a large panel of schools and districts to 
evaluate curricular effectiveness. Using matching methods, we estimate causal 
curriculum effects at a fraction of what it would cost to produce experimental 
estimates. Furthermore, external validity concerns that are particularly cogent 
in experimental curricular evaluations suggest that our non-experimental 
estimates may be preferred. We find large short-term differences in 
effectiveness across some math curricula. However, as with many other 
educational inputs, math-curriculum effects do not persist over time. Publishers 
that produce less effective math curricula in one cycle do not lose market share 
in the next cycle. One explanation for this result is the dearth of information 
available to administrators about curricular effectiveness. 
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I. Introduction 

According to a 2002 survey sponsored by the National Education Association and the 

American Association of Publishers, 80 percent of teachers use textbooks in the classroom, and 

over half of students’ in-class instructional time involves textbook use (Finn, 2004).1 In 2006 

alone, expenditures on K-12 instructional materials totaled close to $8.1 billion.2 Despite the 

prominent role played by curricula in schools, and the significant public expenditures devoted to 

curriculum purchases, we know surprisingly little about curricular effectiveness. This makes it 

difficult for educational administrators, who face increasing pressure from state and federal 

agencies to improve student outcomes, to make informed decisions regarding curriculum 

adoptions.  

Different curricula are developed using different theories about how students learn - this 

results in different content, organization and structure across curricula for the same subject and 

grade group. While hundreds of studies have attempted to evaluate the curricular alternatives 

available to educational administrators, much of the literature on curricular effectiveness lacks 

scientific rigor, raising concerns about the reliability of the findings (for reviews of the literature 

see National Research Board 2004; Slavin and Lake, 2008). For example, in 2007, the What 

Works Clearinghouse (WWC), which was established by the Institute for Education Sciences to 

serve as a filter for education research, evaluated over 200 studies of curricular effectiveness in 

elementary mathematics and found that over 96 percent of these studies did not meet reasonable 

quality standards (WWC, 2007).3  

                                                 
1 Textbooks are just one component of the curricula purchased by schools from publishers. Other aspects include 
teacher instructional support services and supplementary materials such as student workbooks and solution manuals. 
2 See http://www.aapschool.org/vp_funding.html 
3 The WWC reviews the literature on a variety of topics in education, including the effects of curriculum adoptions, 
and classifies studies as either (1) meets evidence standards, (2) meets evidence standards with reservations or (3) 
does not meet evidence standards. Of the 237 studies on elementary math curricula reviewed by the WWC as of 
July, 2007, just nine were deemed to be of sufficient quality to be included in categories (1) and (2) (WWC, 2007). 
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Likely in response to the dearth of reliable evidence in the literature, recent research has 

turned to randomized controlled trials (RCTs) to evaluate curricular effectiveness (see, for 

example, Agodini et al., 2009; Borman et al., 2008; Resendez and Azin, 2007). RCTs randomly 

assign curricula across schools (and/or classrooms) and produce causal estimates of curriculum 

effects that are internally valid. However, a general drawback of RCTs that is particularly cogent 

in curricular evaluations is that the estimates may not extrapolate well outside of the experiment.  

We highlight two concerns with RCTs in the context of curricular evaluation that will 

potentially limit their external validity.4 First, RCTs require voluntary participation by both 

schools and curriculum publishers. If the schools that select into the experiment differ from the 

general population of schools, then Manski’s (1996) “experimentation on a subpopulation” 

concern is relevant, and the experimental results may not extend to schools that are not 

represented in the study.5 Perhaps more importantly, there is a selection problem with respect to 

publishers because publishers are typically actively involved in the experiments. For example, in 

recent experimental studies by Agodini et al. (2009), Borman et al. (2008) and Resendez and 

Azin (2007), publishers directly provided teacher training and support services. The active role 

of publishers in experimental studies means that publishers must agree to participate, and only 

publishers that expect their curriculum to be successful in the setting of the RCT are likely to do 

so. Overall, the requirements of voluntary school and publisher participation limit the extent to 

which experimental designs can be used to evaluate the full curricular landscape. 

A second threat to the external validity of RCTs is publisher responsiveness to 

evaluation, commonly referred to as Hawthorne effects. In the general experimental literature, 

Hawthorne effects refer to the subjects of the experiment. In the case of curricular evaluation, the 

                                                 
4 See Heckman and Smith (1995) and Manski (1996) for general discussions about experimental research designs. 
5 A common concern in educational experiments is that participating schools may differ in leadership from the 
average non-participating school.   
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active role of publishers suggests that in addition to schools and students, they are subjects. 

Given that experimental evaluations are high-stakes competitions for publishers, there is no 

reason to expect them to take a “business-as-usual” approach. This raises concerns about how 

well experimental findings will extrapolate to lower-stakes environments for publishers.6  

In addition to these threats to external validity, the costs associated with RCTs limit the 

amount of information that they can provide. For example, because RCTs are expensive, they 

generally focus on just one or two curricula evaluated at small numbers of schools and districts.7 

The expenses associated with RCTs also limit their usefulness in evaluating long-term impacts 

because it is costly to maintain the validity of the experiment over time.  

Experimental evaluations are informative and offer a number of benefits; however, these 

issues, some of which are specific to curricular evaluation, suggest that a careful and rigorous 

non-experimental analysis can make a useful contribution to the literature. This is precisely what 

we provide in our study, using non-experimental data from the entire state of Indiana to estimate 

math-curriculum effects on student achievement. We evaluate the three most-used curricula in 

the state from 1998 - 2004, which together, accounted for 86 percent of all curriculum adoptions 

in the grades that we study. Indiana provides the most detailed information about curriculum 

adoptions over time of any of the 50 states, and also provides thorough school- and district-level 

data about student achievement, demographics and school finances. With the exception of the 

information about curriculum adoptions, similar data are available in many other states, 

suggesting that it would be straightforward to replicate our analysis elsewhere.   

                                                 
6 In the Agodini et al. (2009) study, the study team “provided logistical and financial support for any level of 
training the publishers indicated was appropriate.” Although publishers typically provide support services whenever 
a new curriculum is adopted, they have added incentive to provide high-quality training and support during a RCT.  
7 In what is a relatively large-scale RCT, Agodini et al. (2009) evaluate four different curricula at four school 
districts and 39 schools in the first wave of their study (in the second wave they will study 100 schools). Borman et 
al. (2008) and Resendez and Azin (2007) each evaluate a single curriculum, at five and four schools, respectively.  
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We use school-level matching estimators in our study, adopting the pairwise-comparison 

approach suggested by Lechner (2002) to evaluate the three curricula. Drawing on the extensive 

methodological literature on matching, we show that the data conditions in Indiana are generally 

favorable to our approach, particularly in the comparison of the two most popular curricula in the 

state. A key feature of our study is our extended data panel of Indiana schools containing 

information from multiple cohorts of students who were never exposed to the curricula that we 

evaluate. We use these cohorts to perform a series of falsification tests for our primary estimates, 

which suggest that our findings are unlikely to be driven by selection into the different curricula. 

We highlight three primary results from our study: (1) differences across some math 

curricula have large short-term effects on student achievement, (2) as has been found with other 

educational inputs (see, e.g., Jacob et al., 2008; U.S. Department of Health and Human Services, 

2010), math-curriculum effects do not persist over time, and (3) curriculum publishers that are 

relatively less effective in one adoption cycle do not lose market share in future adoption cycles. 

This latter result shares a common theme with prior research suggesting that educational 

administrators may not make optimal choices (Ballou, 1996). In this case, one explanation is the 

limited availability of reliable evidence on curricular effectiveness. 

II. The Curriculum Selection Process 

Curriculum adoptions in Indiana occur annually across the entire state, and rotate in six-

year cycles by subject. For example, Indiana’s districts adopted new math curricula in 1998, 

2004, and 2010. Similarly, recent reading adoptions occurred in 1994, 2000 and 2006. We focus 

our attention primarily on the math-curriculum adoption that occurred in 1998.8 

The curriculum selection process begins with the state’s Department of Education (DOE) 

providing a list of approved curricula to school districts. Upon receiving this list, districts have 
                                                 
8 We focus on this adoption in order to maximize the number of grade cohorts whose achievement data we observe. 
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three choices. First, and most commonly, they can adopt one or more of the state-approved 

curricula. Second, districts may apply to use alternative curricula that are not on the list, but this 

rarely happens in practice (e.g., no more than one out of the roughly 300 districts chooses this 

option in any grade in our data). Third, districts can apply for “continued use” where they quite 

literally continue to use the old textbooks from the prior adoption cycle. Overall, over 98 percent 

of the districts in Indiana adopted new math curricula from the approved list during the 1998 

adoption cycle in each grade.9   

III. Data 

We construct a 17-year data panel of schools and districts in Indiana to evaluate the 

effects of math-curriculum adoptions in grades one, two and three on grade-3 test scores in math 

(grade-3 is the first time that students are tested in Indiana). Indiana is the only state where 

curriculum-adoption information is available at the district level for multiple statewide adoption 

cycles. Upon request, Indiana provides detailed school- and district-level information on test 

scores (from the Indiana state test, the ISTEP), attendance rates, enrollment demographics, and 

district-level financial information.   

We evaluate the three curricula that dominated the market during the adoption cycle of 

interest (1998-2004). These curricula were published by Saxon, Silver-Burdett Ginn and Scott-

Foresman, and they accounted for roughly 48, 23 and 15 percent of observed curriculum 

adoptions in the state, respectively. We denote the Saxon curriculum as curriculum A, the Silver-

Burdett Ginn curriculum as curriculum B, and the Scott-Foresman curriculum as curriculum C.  

                                                 
9 Indiana is one of 22 states that have a centralized component to the adoption process. The state’s role in approving 
the curricula adds a constraint to the adoption environment. However, it is not clear that the constraint is 
meaningfully binding given that the alternative-curriculum option is rarely exercised. Perhaps more telling, the 
majority of the curriculum market belongs to just a handful of publishers, with 86 percent of all curriculum 
adoptions in the grades that we study involving just three of the ten state-approved curricula. Also, note that Tulley 
(1989) finds that review processes and adoption lengths are similar in states that don’t have a state-level component. 
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Because we first observe student outcomes in grade 3, our estimated curriculum effects 

characterize the impacts of sequences of treatments. That is, grade-3 test scores are presumably a 

function of the curricula to which students are exposed in grades one, two and three. To allow for 

cleanly identified curriculum effects, we exclude districts that adopted more than one curriculum 

in grades one, two and/or three from our analysis. To illustrate the assignment problem for these 

districts, consider a district that adopted curriculum A in grade one and curriculum B in grades 

two and three. In identifying the effect of curriculum A relative to curriculum B, the schools in 

this district are not well-defined as either treatments or controls.10  

We refer to districts that used the same curriculum in all three grades as “uniform 

curriculum adopters.” Restricting our analysis to these districts reduces our district sample size 

by eight percent and our analogous school sample size by seven percent (see Appendix Table 

A.1 for details). That is, most districts are “uniform adopters.” Overall, our analysis includes data 

from 213 districts and 716 schools. Contrasted with the experimental literature, our non-

experimental design allows for a much broader evaluation of curricular effectiveness.  

In Table 1 we report differences in means across the schools and districts that adopted the 

different curricula, using pre-adoption information from 1997. There are only small differences 

in test score performance and attendance outcomes across adopters of the different curricula, 

suggesting that selection into the curricula may be limited. However, there are noticeable 

differences in terms of school demographics, district size, and to some extent, median household 

income (measured at the district level from the US Census). Among other things, Table 1 

indicates that Saxon adopters are disproportionately rural districts, as evidenced by their much 

smaller district sizes (and corresponding revenues) and their larger shares of white students.  

                                                 
10 Although we want to distinguish our estimates from estimates of single-year curriculum effects, our analysis is not 
related to the literature on sequences of treatments that also involve sequential decisions (see, for example, Lechner, 
2004; Lechner and Miquel, 2010). In our study, districts make a treatment decision at a single point in time. Thus, 
methodologically, our evaluation procedure is the same as in the typical one-shot treatment case. 



7 
 

IV. Curriculum Descriptions 

In 1998, Mathematically Correct (MC), a national organization of mathematicians, 

scientists and engineers, qualitatively evaluated eight grade-2 math curricula, including the three 

curricula that we evaluate here. We briefly highlight the key differences between the curricula as 

indicated by MC, and report the MC rating for each curriculum, which was based on a 5-point 

scale. It is important to note that while the MC reviews provide useful insights, they are not 

based on analyses of actual implementation, let alone student outcomes. We present the 

descriptions simply to highlight some of the differences that exist across the curricula. 

Curriculum A: Saxon Math (overall rating: 3.6) 

The MC evaluation indicates that the program design is “easily implemented by 

teachers,” and instructions to teachers are “clear and direct.” The teacher’s manual includes 

scripted statements, worksheet problems are assigned for homework, and students are given 

periodic written and oral assessments. Saxon Math is very thorough in the topics that are 

covered, but more advanced topics are generally not covered. As one example, of the three 

curricula of interest here, Saxon is the only one that does not cover addition and subtraction with 

three-digit numbers in the second grade. Overall, the MC evaluation suggests that Saxon Math 

may be the most effective curriculum for low-achieving students given its thorough coverage of 

the topics it covers, but will be less effective for high-achieving students.  

Curriculum B: Silver-Burdett Ginn Math (overall rating: 3.4) 

 The teacher’s manual provides guidance to teachers, although the guidance is not as 

direct as in Saxon Math. Student worksheets are tied to the daily lesson, but no information is 

given about the regularity of assessments or homework assignments. The MC review identifies 

this curriculum’s heavy reliance on graphics to aid in calculations as a weakness (however, 
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notably, MC still rated curriculum B similarly to the other curricula in our study). The level of 

this curriculum appears to be higher than that of Saxon Math – MC reports that students using 

this program have a “reasonable chance of moderate achievement levels” but also that the 

program is “not seen as supporting high achievement levels.”  

Curriculum C: Scott-Foresman Addison Wesley Math (overall rating: 3.8) 

The teacher’s edition received mixed reviews from the MC evaluation. Like the Silver-

Burdett Ginn curriculum, the lessons also involve some discretion for teachers (although there 

appear to be fewer teacher choices). Vocabulary development is an important part of this 

curriculum – new vocabulary words are introduced at the beginning of each lesson, and a verbal 

skills assessment occurs after each lesson. A one page homework sheet is also attached to each 

lesson. The level of this program appears to be somewhere in between the levels in the prior two 

curricula. On the one hand, the MC review indicates that “the level is low in a few topics” and 

“at the top level of students…some topics should be augmented.” On the other hand, the review 

also notes that “some areas are very well taught and at an excellent level.”  

V. Methodology 

We use school-level matching estimators to identify curriculum effects. Matching is an 

increasingly common empirical technique, and the conditions under which matching will identify 

causal estimates of treatment effects have been well-documented (see, for example, Rosenbaum 

and Rubin, 1983; Heckman et al., 1997). The key benefits of matching relative to simple 

regression analysis are (1) matching imposes weaker functional form restrictions and (2) 

matching resolves any “extrapolation” problems that may arise in regression analysis by limiting 

the influence of non-comparable treatment and control units in the data (Black and Smith, 2004).  
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Briefly, the key assumption under which matching will return causal estimates of 

treatment effects is the conditional independence assumption (CIA). The CIA requires that 

potential outcomes are independent of the curriculum uptake decision conditional on observable 

information. Denoting potential outcomes by {Y0, Y1,..,YK}, curriculum treatment options by D 

є {0,1….K}, and X as a vector of (pre-treatment) observable school- and district-level 

information, the CIA in our multi-treatment context can be written as:11 

XDYYY K |,...,, 10 ⊥                                 (1) 

Conditional independence will not be satisfied if there is unobserved information that influences 

both treatment and outcomes. For example, if districts have access to information that is 

unobserved to the econometrician, Z, such that P( | , ) P( | ),D k X Z D k X= ≠ =  and the additional 

information in Z influences outcomes, matching estimates will be biased.  

We estimate average treatment effects (ATEs) for the three curricula using the pairwise-

comparison approach suggested by Lechner (2002), and match schools using an estimated 

propensity score (Rosenbaum and Rubin, 1983). For example, for the comparison between 

curricula j and m, where Yj and Ym are outcomes for treated and control schools, respectively, we 

estimate }),{|(, mjDYYEATE mjmj ∈−≡ . Defining Pj as the probability of choosing j, we 

match schools by ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
≡

mj

j
jm PP

P
ρ , where Pj and Pm are estimated using a multinomial probit 

that simultaneously models the three treatment options (Lechner, 2002).  

 We use kernel and local-linear-regression (LLR) matching estimators. These estimators 

construct the match for each “treated” school using a weighted average over multiple “control” 

                                                 
11 The CIA is actually a stronger assumption than is required to identify causal treatment effects, although it is 
difficult to imagine an environment where only the weaker but necessary condition of conditional mean 
independence is satisfied (Heckman et al., 1997; Imbens, 2004). 
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schools, and vice versa. We estimate ATEj,m by: 

 ∑ ∑∑ ∑
∩∈ ∩∈∩∈ ∩∈

−−−=
pm pmpj pj SNm SIj

jm
SNj SIm

mjSmj YjmWYYmjWY
N

00

}]),({}),({[1ˆ
,θ   (2) 

In (2), SN is the number of schools using j or m on the common support, Sp. I0j indicates 

the set of schools that chose m in the neighborhood of observation j, and I0m indicates the set of 

schools that chose j in the neighborhood of observation m (neighborhoods are defined based on 

propensity scores using a bandwidth parameter – see Appendix B). W(j,m) and W(m,j) weight 

each comparison school outcome depending on its distance, in terms of estimated propensity 

scores, from the observation of interest. We omit a detailed discussion of these matching 

estimators for brevity. For more information, see Heckman et al. (1997, 1998), and Fan (1993).12 

Our matching estimators condition on all of the observable information detailed in Table 

1. Ex ante, it is unclear how unobserved selection might bias our estimates. For example, we 

might be worried that adopters of different curricula have student populations that differ in 

unobservable ways, or that differences in administrator quality that are correlated with  

curriculum adoptions may bias our results.13 Although the CIA is not a testable assumption, in 

Section IX we provide some insight about the likely role of unobserved selection in our analysis 

using a series of falsification tests. In these tests, we estimate curriculum “effects” for multiple 

cohorts of students who were never actually exposed to the curricula of interest. If our matching 

procedure is producing estimates that are not biased by unobserved selection, we should estimate 

effects of zero for these cohorts. We present 80 different falsification estimates along these lines, 

which show that our primary findings are unlikely to be driven by selection on unobservables. 

Finally, average treatment-on-the-treated effects (ATTs) may also be of interest. ATT’s 

can provide important information if the curricula differentially affect different subgroups of 

                                                 
12 Our results are robust to alternative matching estimators, and weighting estimators (see Section VIII).  
13 Additionally, students may move across districts in response to curriculum adoptions. We find no evidence of 
such movement in the data.  
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schools. For example, consider a case where ,j mθ = 0. This could occur even if schools that chose 

j were better off for having chosen j, and schools that chose m were also better off for having 

chosen m. In addition to our ATE estimates, we estimate ATT’s for all of the curriculum 

comparisons in both directions (i.e., we estimate ATTj,m and ATTm,j). We briefly discuss our 

findings in Section VIII, but in general, we gain little additional insight by estimating the ATTs. 

VI. Timing and Treatment Definition 

Timing is an important issue in our analysis. Our data panel spans 17 years, starting with 

the 1991-1992 school year and ending with the 2007-2008 school year. The curricula of interest 

were adopted in the fall of 1998, and replaced with new curricula in the fall of 2004. We observe 

seven cohorts of grade-3 students who were never exposed to the curricula of interest during the 

pre-period (1991-1992 through 1997-1998), one cohort that was exposed to the curricula in grade 

three only (1998-1999), one cohort that was exposed in grades two and three only (1999-2000), 

four cohorts that used the curricula in grades one, two and three and were thus “fully exposed” 

(2000-2001 through 2003-2004), one cohort that was exposed in grades one and two only (2004-

2005), one cohort that was exposed in grade one only (2005-2006), and two additional cohorts 

that were never exposed to the curricula in the post-period (2006-2007 and 2007-2008).  

The fully-exposed cohorts provide our cleanest estimates of curriculum effects because 

they were exposed to the curricula of interest in all three grades. Treatment effects can still be 

estimated for the partially-exposed cohorts (those that were exposed to the curricula for at least 

one year, but less than three), however, because we do not observe curriculum treatments outside 

the adoption cycle of interest, inference will be somewhat limited. A similar concern is relevant 

for our falsification tests; this issue will be addressed in more detail in Sections VIII and IX. 

An additional concern related to timing is that “curriculum familiarity” in schools may be 
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important. For example, the cohorts of students who used the curricula when the curricula were 

first introduced to teachers may have had a different experience than the cohorts of students who 

used the curricula toward the end of the adoption cycle. Unfortunately, familiarity effects cannot 

be identified using the partially-exposed cohorts in our data because differences in familiarity are 

inseparable from differences in the length of time cohorts were exposed to the curricula, as well 

as the grade level(s) in which they were exposed. We can only identify familiarity effects across 

the four fully exposed cohorts who used the curricula in all three grades.  

Finally, a third timing issue involves district restructuring over the course of our 17-year 

data panel, where there is a pattern of school consolidations in the data. As we discuss in the next 

section, we match schools based on their static characteristics from the 1996-1997 and 1997-

1998 school years. School consolidations may alter the populations of students served by the 

schools that remain in our data over time, reducing the quality of our matches and potentially 

introducing bias into our estimates. 

In order for the school consolidations to bias our estimates they must be correlated with 

curriculum adoptions. However, this does not appear to be the case. Using a 2χ  test for 

independence, we fail to reject the null hypothesis that curriculum adoptions are independent of 

whether a district experiences a school closing (p-value ≈ 0.40). Additional evidence that our 

results are unlikely to be biased by school consolidations is provided in Section VII, where we 

evaluate covariate balance across matched treatment and control schools over the entire course of 

the data panel (see Table 2). If the schools that drop out of our sample over time systematically 

adopted specific curricula, we should find that our treatment and control samples become less 

balanced as we move away from the matching years. We find little evidence of this, supporting 
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our contention that school closings are not correlated with curriculum adoptions.14 

Although we do not expect the school consolidations to bias our results, they will reduce 

the quality of our matches as we move away from the 1996-1997 and 1997-1998 school years in 

the data panel. This will add noise to our estimates. Ultimately, we simply report this issue as a 

caveat, and caution the reader to interpret results that are estimated far away from the matching 

years more liberally.15  

VII. The Propensity Score 

We use a multinomial probit (MNP) to estimate the propensity scores for schools. The 

covariates from the MNP are documented in Table 1, and include both school- and district-level 

information. At the school level, we include controls for enrollment, demographics (race, free 

and reduced-price lunch status, language status) and outcomes (grade-3 test scores in math and 

language arts, and attendance) from the 1996-1997 school year, and controls for enrollment and 

demographics from the 1997-1998 school year. At the district level, we include enrollment, 

outcome and finance controls from 1996-1997, and enrollment and finance controls from 1997-

1998. We also use district-level zip codes to assign year-2000 Census measures of local-area 

socioeconomic status to each school; namely, median household income and the share of the 

adult population without a high-school diploma. We treat the census variables as fixed area 

characteristics.  

The covariates in the MNP were selected to represent the relevant information set 

                                                 
14 Of course, this use of balancing to test for non-random attrition will only catch non-random attrition if it is 
correlated with observables. 
15 In an omitted analysis, we also considered a more direct solution to this problem – at any point where a school 
closing was observed in a district, we dropped all school-level observations from that district for the remainder of 
the data panel (an analogous procedure was done for schools that came into existence between 1991-1992 and 1996-
1997). This alternative approach produces estimates that are qualitatively similar to what we report in the text, but 
comes at the cost of reduced efficiency. Another limitation of this district-dropping strategy is that a school closing 
may not only re-shuffle students to other schools within that district, but also across district lines. Consequently, this 
approach may still retain schools which have been altered by the closings of other schools.   
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available to schools and districts at the time of the adoption decision.16  For instance, because the 

curriculum adoption decision was made by the summer of 1998, it is unlikely that decision 

makers would have had access to spring 1998 test scores, and consequently we do not include 

them in the model (we also omit annual attendance figures from 1997-1998 for the same reason). 

That said, our findings are not qualitatively sensitive to reasonable adjustments to the MNP 

specification, including the addition of the 1997-1998 outcome variables. Similarly, our findings 

do not depend on whether we include additional years of lagged test scores in the MNP. An 

important reason for limiting the number of lagged years of achievement in the model is that we 

want to use as many years of data as possible for the falsification tests. Each year of data that we 

use to match schools is one less year that we can use in the falsification exercise.  

In each comparison we match treatment and control schools based on the estimated 

pairwise propensity scores, and test for balance in the covariates among the treated and control 

samples used for estimation.17 Balancing tests are motivated by Rosenbaum and Rubin (1983). 

The tests determine whether )|(| XKDPDX =⊥ , a necessary condition if the propensity score 

is to be used to reduce the dimensionality of the matching problem to one.  

Although achieving covariate balance is important for any matching analysis that relies 

on a propensity score, there is no clearly preferred test for balance. Furthermore, in some cases, 

different balancing tests return different results (Smith and Todd, 2005). Given this limitation we 

consider two different tests. The first is a regression-based test suggested by Smith and Todd 

(2005), estimated separately for each pairwise comparison, and for each covariate in each year of 

our analysis. In the comparison between curricula j and m we estimate: 

                                                 
16 The timeline for the current math-curriculum adoption cycle is available at 
http://www.doe.in.gov/olr/docs/CHRONOLOGYFORTHE2009MATHEMATICSADOPTIONApr09.pdf. 
17 For brevity we do not report the results from the propensity-score model, but they are available upon request. To 
provide a sense of the predictive power of the covariates in the model, we estimate separate linear-regression models 
for each curriculum comparison where the dependent variable indicates the adoption of one of the curricula, and the 
independent variables are the covariates from the MNP. Within comparison pairs, the covariates explain 23 to 42 
percent of the variability in curriculum adoptions. 
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In (3), Xk represents a covariate from the propensity-score specification, jmρ  is the estimated 

pairwise propensity score, and D indicates treatment. We test whether the coefficients 5 9-β β   are 

jointly equal to zero in each regression – that is, we test whether treatment predicts the X’s 

conditional on a quartic of the propensity score. 

 The second test measures the absolute standardized difference in observables after 

matching, and was originally suggested by Rosenbaum and Rubin (1985). The formula for the 

absolute standardized difference for covariate Xk is given by: 
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The numerator in (4) is analogous to the formula for our matching estimators in (2) where we 

replace Y with Xk and take the absolute value (note the denominator is calculated using the full 

sample). A weakness of using standardized differences is that there is not a clear rule by which to 

judge the results, although Rosenbaum and Rubin (1985) suggest that a value of 20 is large. 

Our MNP specification uses 32 school- and district-level covariates. The results from the 

balancing tests are reported in Table 2 by comparison and year. From the regression tests we 

report the number of covariates where the F-tests reject the null hypothesis at the 5- and 10-

percent levels (the former group is a subset of the latter), and the average p-values across all F-

tests. We also report the average absolute standardized difference across all covariates.   

Table 2 shows that our comparison between B and A achieves better balance than our 

other comparisons. For this comparison, both the regression tests and the standardized-difference 
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results suggest that schools are well-matched. For our comparisons between C and A, and C and 

B, the covariates appear to be less balanced, although it is not clear that the levels of imbalance 

in these comparisons are cause for concern. For example, the average p-values from the F-tests 

in both comparisons are fairly close to 0.50 in all years, which suggests good balance, despite 

there being more unbalanced covariates than would be expected by chance in both cases. 

Similarly, although the average absolute standardized difference is larger in these comparisons 

than in our comparison of B and A, by some standards it is still quite reasonable.18 

We also calculate the divergence between the densities of the estimated propensity scores 

for treated and control units in each comparison. Intuitively, density divergence will affect the 

precision of the estimates obtained from matching. Frölich (2004) measures density divergence 

using the Kullback-Leibler (KL) information criterion; we follow his approach here, using 

kernel-density plots based on the Epanechnikov kernel. We estimate the divergence between the 

densities of jmρ  for treatment and control schools as:  
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In (5), )(| jmjDpf ρ= is the density function of jmρ among schools treated with j, and )(| jmmDpf ρ=  

is the analogous density function for schools that used m. A KL-information-criterion measure of 

zero suggests that the densities are identical, and the measure increases with density divergence. 

Note that when the parameters of interest are average effects of treatment on the treated, 

researchers use a unidirectional version of the KL information criterion (Frölich, 2004). In our 

                                                 
18 Although it is not obvious that the level of imbalance in any of our comparisons is large enough to be problematic, 
in unreported results we considered many alternative propensity score specifications where we added higher-order 
and interaction terms in an effort to improve covariate balance.  Likely due in part to our relatively small samples, 
these alternative models generated only modest improvements in covariate balance, and did not affect our findings 
qualitatively. Thus, we proceed using the MNP model described in the text, noting that the balancing results are less 
compelling in our comparisons between C and A, and C and B. 
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case, where average treatment effects are the parameters of interest, we use the bidirectional 

information criterion originally suggested by Kullback and Leibler (1951). 

 Figure 1 plots the estimated density functions of the propensity scores for treatment and 

control schools for each pairwise comparison, and Table 3 reports the corresponding KL 

information criteria. Similarly to the balancing tests, the density-divergence measures suggest 

that the data conditions are most favorable in our comparison between B and A. Density 

divergence is largest in our comparison between C and A.19 

Both the balancing tests and the density-divergence measures indicate that our data are 

best-suited to compare curricula B and A, which combined, accounted for over 70 percent of the 

curriculum market in Indiana during the 1998 adoption cycle. In the other two comparisons the 

data conditions are generally less favorable; however, even in these comparisons, it is not clear 

that they are cause for concern. We consider the reliability of our results further in Section IX.  

VIII. Estimates of Curricular Effectiveness in Math 

Rather than overwhelm the reader with estimates using the numerous matching 

algorithms available in the literature, we instead present estimates using kernel and LLR 

matching only (for details on these and other matching estimators, see, for example, Mueser et 

al., 2007). Frölich’s (2004) analysis indicates that kernel matching in particular should perform 

well in our context. As for LLR matching, the evidence in the literature is mixed.20 Although our 

estimates using LLR matching are less precise than the kernel-matching estimates, they are 

generally very similar. We present results using the Epanechnikov kernel for both types of 

                                                 
19 Frölich (2004) uses unidirectional density divergence measures in his study. Although the one and two-sided 
measures are not directly comparable; roughly speaking, our comparison of B and A corresponds to his most 
favorable design, C and B to his middle, and C and A to his least favorable design. This is purely by coincidence.    
20For instance, Caliendo and Kopeinig (2005) suggest LLR is useful when controls are distributed asymmetrically 
around treated observations. Frölich (2004) notes that LLR will perform worse in regions of sparse data, which is 
consistent with the large standard errors that we estimate using LLR in our comparisons with less density overlap. 
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matching estimators. In unreported results available upon request we show that our results are 

robust to alternative estimators, including kernel and LLR matching estimators that use the 

Gaussian kernel, other matching estimators based on simple pair matching or radius matching 

using various radii, and regression-adjusted and weighting estimators (see Imbens (2004) and 

Millimet and Tchernis (2009) for discussions of weighting estimators). 

Table 4 presents results for all grade-3 cohorts who were ever exposed to the curricula of 

interest using fixed-bandwidth matching estimators where the bandwidths are obtained via 

conventional cross-validation (see Appendix B). All of our matching estimators impose the 

common support condition. We also report OLS estimates where we regress test score outcomes 

on the covariates used in the propensity score model and indicator variables for curriculum 

adoptions, retaining the pairwise comparisons (i.e., when we compare B to A, we drop all schools 

at districts that adopted C). The standard errors for the matching and OLS estimates are clustered 

at the district level and the matching-estimator standard errors are bootstrapped with 250 

repetitions. We obtain the optimal number of bootstrap repetitions to use for our standard errors 

following Ham et al. (2006), who use a special case of Andrews and Buchinsky (2001).21  

Each cohort is labeled in the tables according to the year of its spring test score (e.g., the 

1998-1999 cohort is labeled “1999”). All of the effects in the table are standardized using the 

distribution of school-level test scores. For example, the estimate in Table 4 for ATEB,A in 2002 

indicates that, among the sample of schools that chose B or A, the average effect of using B 

instead of A was 0.40 standard deviations of the distribution of school-level test scores. More 

typically, researchers report effects that are standardized based on the distribution of individual-

                                                 
21 Our bootstrapping procedure re-samples entire districts. Abadie and Imbens (2006) show that bootstrapping 
cannot be used to obtain standard errors for nearest-neighbor matching estimators, but their study does not apply to 
smoother estimators like those used here. For our estimators, the optimal number of bootstrap repetitions is 
consistently near 200, so we use 250 repetitions to ensure that we meet or exceed the optimal count in each year.  
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level scores, but we do not have access to the distributions of individual-level scores over the 

entire course of the data panel. In Appendix Table A.2, for the years where we have access to the 

distribution of individual-level test scores, we show the scaling factors that convert the estimates 

in Table 4 into the more common metric. Roughly speaking, dividing the coefficients by three 

returns estimates in units of standard deviations of the individual-level distribution of scores. 

Focusing first on our largest comparison between B and A, and the estimates for the fully-

exposed cohorts (2001 – 2004), we find that curriculum B meaningfully outperformed 

curriculum A. Averaging the kernel-matching estimates across all four fully-exposed cohorts, 

and using the appropriate scaling factors in Appendix Table A.2, the effect of using curriculum B 

instead of A was approximately 0.12 standard deviations of the test. Our estimates are also 

consistent with C outperforming A. There we estimate an average effect of roughly 0.06 standard 

deviations of the student-level distribution of scores, although only two of the four estimates are 

statistically significant and the estimate from 2004 is particularly small. Our results also suggest, 

at least weakly, that B outperformed C, although inference from this comparison is limited 

because the estimates are imprecise. Finally, we do not observe any pronounced trends in 

curricular effectiveness across the four fully-exposed cohorts, providing no evidence to suggest a 

role for curriculum-familiarity effects.22  

The magnitudes of the estimated curriculum effects are economically meaningful, 

particularly when weighed against the marginal costs associated with choosing one curriculum 

over another. Fryer and Levitt (2006) show that between grades one and three, the black-white 

                                                 
22 Although we note that our data are not well-suited to definitively evaluate curriculum-familiarity effects. For 
example, it may be that familiarity is quite important during the first few years after implementation, but we cannot 
distinguish familiarity effects for the partially-exposed cohorts per the discussion in Section VI. 
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achievement gap grows at a rate of approximately 0.10 standard deviations per year.23 In our 

most-compelling curriculum comparison, we estimate that the effect of choosing curriculum B 

over curriculum A is equivalent to roughly one year’s worth of expansion of the black-white 

achievement gap. Given that the curricula are very similarly priced (the texts from A, B and C 

were, averaged over grades 1-3, $23.08, $24.80 and $25.34 each, respectively, in 1998 dollars), 

selecting a better curriculum appears to be a cost-effective way to improve student achievement.  

Our results for the partially-exposed cohorts differ by comparison. One common theme is 

that the point estimates for the 2005 and 2006 cohorts are generally larger than for the 1999 and 

2000 cohorts. In fact, in our comparison between B and A, the estimates for the 2005 and 2006 

cohorts are large and statistically distinguishable from zero. One explanation for this finding is 

that although we cannot distinguish any curriculum-familiarity effects using the fully-exposed 

cohorts, there may be familiarity issues upon immediate adoption, which would affect the 1999 

and 2000 cohorts but not the 2005 and 2006 cohorts. Also, per Section IV, curriculum B is 

distinguished from the other curricula by its reliance on models to teach mathematics. Although 

it would be entirely speculative to link the benefits of curriculum B to any specific attribute, this 

pedagogical difference may have the potential to stay with teachers beyond the 1998 adoption 

cycle. Equally interesting is that MC rated curriculum B similarly to A and C despite its use of 

models, which MC does not favor. That curriculum B was likely downgraded for using models, 

but still received a rating similar to A and C, suggests that its overall quality may be high.   

It is important to note that the students in the partially exposed cohorts were exposed to 

other curricula in other adoption cycles, and this may attenuate the partial-exposure estimates. 

The degree of attenuation will depend on the extent to which curriculum quality is correlated 

across adoption cycles for treatment and control schools. We explore this issue to the extent 
                                                 
23 Fryer and Levitt (2006) analyze a different testing instrument; however, similar estimates of the black-white 
achievement gap spread are available elsewhere (see, for example, Chubb and Loveless, 2002).  
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possible in Table 5, where we compare curriculum adoptions in the 2004 adoption cycle across 

uniform adopters from 1998 (curriculum data are unavailable prior to the 1998 adoption cycle, 

meaning that we can only directly evaluate the across-cycle curriculum adoptions that are 

relevant for the 2005 and 2006 cohorts).  

For brevity, Table 5 shows adoption shares in 2004 only for the four most popular 

curricula from that adoption cycle (published by Saxon, Harcourt, Houghton-Mifflin and Scott-

Foresman). The table shows that while Saxon adopters (curriculum A) in 1998 were much more 

likely to adopt Saxon in 2004, adopters of the other two curricula are quite dispersed across 

alternative options. Without knowing the respective qualities of the different curricula adopted 

outside of the 1998 adoption cycle, including those from the same publishers (there is no 

evidence that we are aware of on the persistence of publisher quality), it is difficult to form 

expectations based on the patterns in Table 5. Ultimately, given the potential for attenuation in 

the estimates for the partially exposed cohorts, and the sizes of our standard errors, we cannot 

make strong inference about partial-exposure curriculum effects.24 

Table 5 is also informative about the changing market shares of curriculum publishers 

over time. It shows that the publisher of curriculum A, despite its relative underperformance, 

maintained its near-50-percent market share from the 1998 adoption cycle to the 2004 cycle. 

Although curriculum B was the most effective curriculum during the 1998 adoption cycle, it did 

not appear in 2004. The publisher of curriculum B was bought by Pearson Publishing during the 

1998 cycle and Pearson phased out curriculum B in favor of C, which it also publishes. 

Curriculum C’s market share fell from roughly fifteen to nine percent across adoption cycles. 

Finally, in an omitted analysis we also consider the possibility that the treatment effects 

                                                 
24 Evidence on the persistence of publisher quality would be difficult to obtain without the availability of consistent 
comparisons over time. For example, because Silver-Burdett Ginn did not offer a curriculum in Indiana during the 
2004 adoption, our most reliable comparisons (per Section VII) cannot be replicated in the later adoption cycle. 
Even more, we cannot reliably compare Saxon and Scott-Foresman in 2004 because of the large decline in Scott-
Foresman’s market share across adoption cycles. Even in cases where curriculum publishers are consistently 
represented across adoption cycles, long cycle durations imply that long data panels will be required to evaluate the 
persistence of publisher quality. 
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depend on treatment status. For example, despite our finding that curriculum B outperformed A 

on average, it could be that curriculum A was still better for schools that actually chose A, while 

curriculum B performed better for schools that chose B. To investigate the extent to which the 

curriculum effects might depend on treatment status, for each of our comparisons we estimated 

average treatment-on-the-treated effects (ATT) in each direction. Our findings provide few 

insights. In our comparison between B and A, the treatment effects do not depend on treatment 

status. Similarly, the ATT’s in our comparison between C and B do not suggest differential 

effects (although again, these estimates are noisy). Only in our comparison between C and A do 

we find any evidence of differential effects. There, curriculum A appears to perform less poorly 

relative to C at schools that actually chose A. Nonetheless, even our estimates of ATTA,C suggest 

that schools that actually chose A would have been better off had they instead chosen C. 

Overall, our most reliable estimates of curriculum effects come from the four fully-

exposed cohorts of students. Our estimates from these cohorts indicate that curriculum B 

outperformed curriculum A by a substantial margin. We also find that C outperformed A, 

although the differential effect was smaller. The statistical imprecision associated with our 

comparison between C and B limits inference, but if anything, our estimates suggest that B 

outperformed C. The relative underperformance of A did not adversely impact the publisher’s 

market share in the next adoption cycle in Indiana.  

IX. Falsification Tests 

Matching estimators will not return causal estimates if conditional independence is 

violated. Although conditional independence is not a testable assumption, we provide some 

evidence on its plausibility using a series of falsification tests. We present falsification tests 

based on data from students who were never actually exposed to the curricula of interest, and 
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from students who were exposed, but we estimate curriculum effects on reading test scores. For 

the former, we expect to estimate “effects” that are statistically indistinguishable from zero, 

whereas for the latter, timing does not rule out the possibility of causal effects for some cohorts. 

However, at most, we would expect only small across-subject spillover effects. 

Potentially confounding both types of falsification estimates are correlations in 

curriculum adoptions across grades, subjects, and adoption cycles. Recall from Table 5 that there 

are non-zero correlations in math-curriculum adoptions across adoption cycles. Not surprisingly, 

in unreported results (omitted for brevity and available upon request) we also find that math-

curriculum adoptions are correlated across grades within adoption cycles, and to a lesser extent, 

with adoptions in other subjects. However, in practice, the correlations do not seem to be strong 

enough to limit inference from our falsification exercise – as we show below, almost all of the 

falsification estimates are statistically indistinguishable from zero.25  

For brevity, we only report falsification estimates using kernel matching with the 

Epanechnikov kernel. We present 80 falsification estimates in all (but note that the tests are not 

independent).26 Summarizing the results, the tests do not uncover any consistent evidence of 

selection bias in any of our comparisons, although similarly to Table 4, the falsification estimates 

are noisy in our comparison between C and B, limiting inference. 

We first estimate curriculum “effects” on math test scores for cohorts of grade-3 students 

from 1992 through 1996, and 2007 and 2008. The results are reported in Table 6. Our most-

convincing falsification estimates are from the 1992-1996 cohorts, who passed through Indiana 

schools prior to the 1998 adoption cycle. For these cohorts, all of the estimates are small and 

statistically indistinguishable from zero with the exception of the 1992 estimate in our 

                                                 
25 Also note that we match schools based on 1997 achievement, which will include curriculum effects from the prior 
adoption cycle. For relevant cohorts, this should reduce any bias from across-cycle correlations in curriculum 
quality. 
26 If the falsification tests were independent we would expect roughly eight “false positives” in total. However, 
treatment and control schools are uniformly defined over time, making it unclear how many false positives to 
expect.  
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comparison between C and A. Although the 2007 and 2008 cohorts were not exposed to the 

curricula of interest, their outcomes are observed after the curriculum-adoption cycle we study. 

This leaves open the possibility of non-zero treatment effects, limiting inference to some degree, 

but even so, none of the estimates from these cohorts are statistically significant.   

Next we estimate curriculum “effects” using cohorts of grade-6 students who were never 

exposed to the curricula of interest (cohorts from 1993-2001). For these falsification tests we use 

the same matching procedure to predict the same treatments (the uniform adoption of curriculum 

A, B or C in grades one, two and three), only we match schools that have grade-6 classrooms and 

estimate the “effects” of the curricula on grade-6 achievement. Unfortunately, our grade-6 

analysis is limited by sample-size issues. Specifically, because many districts teach grade six in 

middle school, and multiple elementary schools generally feed into a single middle school, our 

grade-6 sample of schools is much smaller than our grade-3 sample. In the data, the number of 

grade-6 curriculum-C schools is particularly small (roughly 80, on average, across the data 

panel), and we cannot balance treatment and control schools in either of our comparisons 

involving this curriculum. Because the unbalanced comparisons will not be informative, we 

present grade-6 falsification estimates only for our comparison between B and A.27 These 

estimates are reported in Table 7, where we estimate one non-zero “effect” in 1993, but 

otherwise, the point estimates are generally small and statistically indistinguishable from zero. 

In Table 8 we return to our well-balanced grade-3 samples and estimate math-curriculum 

effects on reading scores for all cohorts in the data. Students in the cohorts from 1992 through 

1996, and 2007 and 2008, were never exposed to the curricula of interest. The other cohorts were 

exposed, and it is unclear a priori whether we should expect any across-subject spillover 

                                                 
27For example, taking the average p-values from the Smith and Todd (2005) balancing regressions across years for 
the comparisons involving C, they fall from roughly 0.50 in the grade-3 analysis (Table 2), to roughly 0.20 in the 
grade-6 analysis. In contrast, the average p-value falls to just below 0.50 in our grade-6 B to A comparison.  
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effects.28 Although we do not have a strong prior about whether math curricula affect reading 

outcomes, one straightforward expectation is that their effects on math test scores should be 

larger than their effects on reading test scores. Thus, at its most basic level, this final test should 

confirm this result. Table 8 presents estimates for the effects of the math curricula on reading test 

scores throughout the data panel. The point estimates are generally small and there is only one 

statistically significant estimate (in the comparison between B and A in 2002).29 

X. Persistence 

Finally, we use our extended data panel to evaluate the persistence of curriculum effects 

over time (which would be quite difficult, and expensive, with an experimental research design). 

Specifically, in our comparison between B and A, we ask whether the cohorts of students who 

were exposed to curriculum B in grades one, two and three still performed better by grade six.30 

We measure persistence using test scores for cohorts of grade-6 students between 2002 and 

2008, where the fully-exposed cohorts were in grade six between 2004 and 2007.  

Two issues merit attention in our persistence analysis. First, if there are test-score ceilings 

in higher grades on the Indiana test, it will be difficult to detect persistence effects because the 

tests in later grades may not adequately differentiate student learning. We test for ceiling effects 

                                                 
28We suggest five possible mechanisms that may generate spillover effects. First, math curricula may directly affect 
reading performance (i.e. via exposure to word problems). Second, the training for teachers associated with each 
math curriculum could affect teacher performance in other subjects. Third, a better math curriculum may afford 
teachers more time to spend on reading instruction. Fourth, a better math curriculum may increase the return to math 
instruction and encourage teachers to substitute out of reading and into math instruction. Fifth, students could 
become more interested in school in general if they do well in math or perceive it to be more fun. 
29 We also consider how a pure-bias interpretation of the reading estimates would impact our results by assuming 
that across-subject spillover effects are zero. To do this, we estimate math-curriculum effects on schools’ de-trended 
math test scores, where we de-trend each school’s math score by separately standardizing its math and reading test 
scores, and subtracting the reading score from the math score. We omit the estimates for brevity, but note that they 
are in line with what would be expected by subtracting the stand-alone reading estimates from the stand-alone math 
estimates. The estimates that are statistically significant in Table 4 for our comparisons between B and A, and C and 
A remain statistically significant in the de-trended analysis. In the comparison between C and B, the curricula are not 
statistically distinguishable in any year using the de-trended estimates.  
30 As discussed in the previous section, we are unable to construct observationally equivalent comparisons of treated 
and control schools from the grade-6 sample in our evaluations involving curriculum C.  Therefore, we only 
examine persistence in our comparison between B and A. 
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following Koedel and Betts (2010) and find that the testing instruments should be sufficient to 

detect any persistence effects should such effects exist. A second concern is that we cannot track 

individual students over time, and must assume that the district a student attends during grade six 

is the same district they attended during grades one, two and three. Student movement across 

districts will add noise to our treatment classifications, attenuating the persistence estimates.31  

Table 9 presents our persistence findings (using kernel matching with the Epanechnikov 

kernel). The estimates provide little indication that curriculum effects persist over time, despite 

the likelihood that there is some attenuation bias. Put differently, for the estimates in the table to 

be driven by downward bias from student movement across districts, the amount of movement 

would need to be inordinately large. Our persistence findings are consistent with a large body of 

evidence pointing to a general lack of persistence in the effects of educational inputs (see, for 

example, Jacob et al., 2008; U.S. Department of Health and Human Services, 2010), and raise 

doubts about the extent to which administrators can improve student performance in the long run 

by choosing more effective curricula.  

XI. Conclusion 

We identify causal curriculum effects using non-experimental data from the state of 

Indiana. A key component of our study is our falsification exercise, where we use data from 

multiple cohorts of students who were never exposed to the curricula of interest, and students’ 

out-of-subject test scores, to show that our findings are unlikely to be driven by selection into the 

different curricula. In cases where data conditions are favorable, and some form of confirmation 

exercise is possible (like our falsification tests), much can be learned from careful, non-

experimental work. A caveat relating to curricular evaluation is that, somewhat surprisingly, 

                                                 
31 Student churning across districts is also an issue in our primary analysis, to a lesser extent, and implies some 
attenuation bias in the estimates in Table 4 as well. 
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most states do not centrally track curriculum adoptions. Given that it would be relatively 

inexpensive to track this information, and that curricula play such a large role in students’ 

everyday learning experiences, this seems peculiar.  

Currently, the bulk of the curricular-effectiveness debate is not based on rigorous 

evidence from analyses of implementation. For example, in addition to the general lack of rigor 

in comparative curricular evaluations (WWC, 2007), much of the literature relies on case studies 

or content studies, where curriculum impacts on student outcomes are not measured (National 

Research Board, 2004). Rigorous scientific evidence about how different curricula actually affect 

achievement is needed in order for administrators and educators to make informed decisions. Our 

study provides such evidence on a scale not yet seen in the curriculum-evaluation literature. 

That our study is non-experimental allows us to bypass some of the limitations inherent 

to experimental analyses of curricular effectiveness. These limitations include the 

experimentation on a subpopulation problem (Manski, 1996), and the possibility of publisher 

Hawthorne effects. The latter concern seems particularly important given publishers’ active roles 

in curriculum experiments. Another benefit of our non-experimental approach is that it is feasible 

to replicate in other environments both methodologically and fiscally. In contrast to the ongoing 

project by Agodini et al. (2009), a particularly well-designed RCT that is funded by the Institute 

for Education Sciences for roughly 21 million dollars over five years, our study was performed 

using publicly available data at only a small fraction of the cost. 

We also note several limitations of our study. For one, we do not have enough data, or the 

right kind of data (i.e., student level), to evaluate the extent to which curricula differentially 

affect different types of students (e.g., high and low-achieving, English-proficient and English as 

second language, etc.). This deficiency in our analysis is likely to be less problematic in the 
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future because districts and states continue to develop longitudinal databases that track individual 

students. These data could be linked to curriculum data, if such data were available, quite easily. 

We also depend on the standardized test administered by the state of Indiana as our outcome 

measure (the ISTEP). While we expect our results to extrapolate well to other states or districts 

that use similar tests, they may not carry over to states or districts where the testing instrument 

differs greatly in content. Our results also may not extrapolate well to states or regions where the 

population differs greatly from the population in Indiana, which is a fairly rural state.   

Our findings indicate that students in Indiana who used curricula B or C outperformed 

students who used curriculum A. In our most compelling comparison, between B and A, the 

effect of exposure to the better curriculum for three consecutive years is roughly 0.12 standard 

deviations of the grade-3 ISTEP test. This effect is similar in magnitude to one year’s growth of 

the black-white achievement gap over these grades (Fryer and Levitt, 2006). Interestingly, 

despite the consistent underperformance of curriculum A in our analysis, the publisher of 

curriculum A did not lose market share in the next adoption cycle in Indiana. There are many 

possible explanations for this finding, ranging from a lack of reliable information available to 

administrators about curriculum quality (WWC, 2007), to poor decision making by educational 

administrators (also see Ballou, 1996). 

Overall, our results are encouraging because choosing a better curriculum can non-

negligibly improve student performance. Further, the near-zero marginal cost of choosing one 

curriculum over another suggests that implementing a better curriculum will be quite cost-

effective. However, our finding that curriculum effects do not persist over time, although not 

unique to curricula in education, dampens enthusiasm about the potential benefits of improved 

curricula. By grade six, the benefits of the most-effective curriculum in our study are no longer 
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distinguishable. 
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Figure 1. Probability Density Functions for Estimated Propensity Scores for Treatment and Control Units on the Common Support in 
Each Comparison Using 2001 Data (Solid Lines are Treatment Densities, Dashed Lines are Control Densities). 
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Table 1. Average Characteristics of Schools and Districts, by Adopted Curriculum (1997 values) 
 Sample 

Average 
Saxon (A) Silver (B) Scott (C) 

School-Level Outcomes     
Attendance Rate  96.2 96.3a 96.1a 96.3 
Grade-3 Math Test Score 496.6 496.5 494.2c 499.7c 
Grade-3 Language Test Score 496.7 496.1 495.8 498.7 
     
School-Level Characteristics     
Percent Free Lunch 27.4 24.7a,b 28.5a 30.5b 
Percent Reduced Lunch 6.7 7.1a 6.3a 6.6 
Percent Not Fluent in English 1.2 0.7a 1.7a 1.2 
Percent Language Minority 2.6 1.8a 3.9a 2.6 
Percent White 91.3 95.4a,b 88.0a 88.4b 
Percent Black 5.6 2.3a,b 7.2a,c 9.2b,c 
Percent Asian 0.7 0.4a,b 0.9a 1.1b 
Percent Hispanic 2.2 1.8a,b 3.7a,c 1.1b,c 
Percent American Indian 0.2 0.1 0.2 0.2 
Enrollment (logs) 5.95 5.92 5.97 5.96 
N (Schools) 716 311 221 184 
     
District-Level Outcomes     
Attendance Rate  95.8 95.7b 95.8 96.1b 
Grade-3 Math Test Score 498.1 495.8b 498.1a,c 506.9b 
Grade-3 Language Test Score 498.9 496.5a,b 500.6a 505.6b 
     
District-Level Characteristics     
Enrollment (logs) 7.72 7.60a,b 7.8a,c 8.2b,c 
Total Per-Pupil Revenue (logs) 8.83 8.81b 8.84 8.87b 
Local Per-Pupil Revenue (logs) 7.24 7.18b 7.24c 7.47b,c 
     
Census Information (District Level)     
Median Household Income (logs) 10.81 10.8a,b 10.8a,c 10.9b,c 
Share of Population with Low Education 18.2 18.8b 19.2c 14.3b,c 
N (Districts) 213 124 56 33 
a Indicates statistically significant difference at the 10% level between Saxon and Silver-Burdett Ginn adopters. 
b Indicates statistically significant difference at the 10% level between Saxon and Scott-Foresman adopters. 
c Indicates statistically significant difference at the 10% level between Silver-Burdett Ginn and Scott-Foresman 
adopters. 
Note: The propensity-score specification also uses italicized information from 1998 – differences in means for these 
years are not reported for brevity. 
 
 
 



34 
 

Table 2. Balancing details for the 32 covariates included in the multinomial probit specification. 
 1992 1993 1994 1995 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
Silver (B) to Saxon (A)                
# of unbalanced covariates  
(p-values below 0.05/0.10) 

1/4 0/4 0/3 0/2 0/2 0/2 0/0 0/0 0/2 0/1 0/0 0/0 0/2 1/2 1/3 

                

Average p-value from 
balancing tests, all covariates 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.57 0.58 0.58 0.57 0.53 
                

Mean Standardized Diff 3.4 2.9 3.8 3.9 3.3 3.5 3.6 3.3 3.5 3.3 3.0 3.7 3.9 4.2 4.7 
                
Scott (C) to Saxon (A)                
# of unbalanced covariates  
(p-values below 0.05/0.10) 

2/4 4/6 3/6 4/6 3/5 3/6 3/5 3/5 3/6 5/5 3/5 4/5 5/5 5/5 3/4 

                

Average p-value from 
balancing tests, all covariates 0.48 0.49 0.49 0.48 0.50 0.49 0.48 0.48 0.49 0.44 0.45 0.46 0.47 0.47 0.46 
                

Mean Standardized Diff 8.5 5.9 6.1 6.2 6.1 6.0 6.6 6.3 6.0 7.2 7.6 7.4 7.6 7.6 8.2 
                
Scott (C) to Silver (B)                
# of unbalanced covariates  
(p-values below 0.05/0.10) 

2/5 2/5 2/5 2/5 1/3 0/4 0/4 1/4 1/4 0/4 0/4 0/4 1/4 3/5 2/4 

                

Average p-value from 
balancing tests, all covariates 0.48 0.47 0.44 0.46 0.51 0.50 0.50 0.49 0.50 0.52 0.54 0.54 0.50 0.51 0.54 
                

Mean Standardized Diff 9.6 10.2 8.8 9.3 9.3 9.2 9.5 9.7 9.8 10.1 10.6 10.6 10.8 10.6 10.8 
Note: Columns in italics are for years that are contiguous to the years from which the matching criteria are drawn. Results reported using the samples of 
treatments and controls that are on the common support in each year for the kernel-matching estimators. The numbers of covariates that fail the balancing tests at 
the 5 percent level are a subset of those that fail at the 10 percent level. 
 
 
Table 3. Kullback-Leibler (KL) Information Criteria by Curriculum Comparison. 
Comparison KL Information Criterion 
B and A 0.63 
C and A 1.58 
C and B 0.91 
Note:  Based on 2001 sample of schools. 
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Table 4. Estimates of Math Curricular Effectiveness on Math Test Scores for Partially and Fully-
Exposed Cohorts. All Comparisons. 

 1999 2000 2001 2002 2003 2004 2005 2006
 

Treatment: B   Control: A 
 

OLS 0.124 
(0.105) 

0.162 
(0.101) 

0.354 
(0.095)** 

0.356 
(0.087)** 

0.374 
(0.099)** 

0.268 
(0.131)* 

0.293 
(0.104)** 

0.250 
(0.110)* 

         
Kernel Matching 0.144    

(0.139)  
0.191    

(0.145)  
0.396    

(0.125)** 
0.400    

(0.102)** 
0.401  

(0 .116)**   
0.279    

(0.135)* 
0.318    

(0.130)** 
0.253   

(0.132)† 
         
LLR Matching 0.154    

(0.184)  
0.173   

(0.153)  
0.397    

(0.117)** 
0.398   

(0.122)** 
0.398     

(0.126)** 
0.273    

(0.147)†   
0.308    

(0.138)*   
0.259   

(0.134)†  
 

Treatment: C   Control: A 
OLS 0.130 

(0.120) 
-0.013 
(0.134) 

0.187 
(0.104)† 

0.261 
(0.096)** 

0.208 
(0.110)† 

0.014 
(0.119) 

0.109 
(0.104) 

0.183 
(0.119) 

         
Kernel Matching 0.117    

(0.169) 
0.010    

(0.184) 
0.215   

(0.158)   
0.270    

(0.122)*  
0.272    

(0.124)* 
-0.042    
(0.118)   

0.113    
(0.187)   

0.150    
(0.187)   

         
LLR Matching 0.128  

(0.248) 
0.135   

(0.269) 
0.169    

(0.220)    
 0.295   

(0.156)†  
0.301  

(0.199)   
 0.032    
(0.224) 

0.085   
(0.243)    

0.141     
(0.354)   

         
         

Treatment: C   Control: B 
OLS 0.008 

(0.100) 
-0.160 
(0.123) 

-0.100 
(0.117) 

-0.186 
(0.129) 

-0.285 
(0.166)† 

-0.271 
(0.162)† 

-0.181 
(0.129) 

-0.083 
(0.139) 

         
Kernel Matching -0.088   

(0.255)  
-0.237   
(0.274)  

-0.165    
(0.230) 

-0.164    
(0.183)  

-0.331    
(0.193)†  

-0.275  
(0.204)  

-0.208   
(0.239)  

-0.148   
(0.249)  

         
LLR Matching -0.072    

(0.657)  
-0.230   
(0.531)  

-0.149  
(0.652)  

-0.122    
(0.898) 

-0.302    
(0.358)  

  -0.236    
(0.219)  

-0.163    
(0.484)  

-0.163    
(0.798)   

         
N(A) 309 307 307 305 300 294 286 287 
N(B) 220 219 219 213 213 212 210 207 
N(C) 184 182 182 181 176 174 169 163 

Notes: Bolded columns are for the fully-exposed cohorts. Matching estimators impose the common support 
restriction. Standard errors in parentheses are clustered at the district level for all estimates, and bootstrapped using 
250 repetitions for the matching estimators. N(A) refers to the number of schools in our sample that use curriculum 
A (Saxon), and similarly for N(B) and N(C). Estimates are provided in terms of the school-level distribution of test 
scores. Dividing the estimates by three will roughly return estimates in the more common student-level metric (see 
the discussion in the text and Appendix Table A.2 for more details).  
** Denotes statistical significance at the 1 percent level or better 
*   Denotes statistical significance at the 5 percent level or better 
†   Denotes statistical significance at the 10 percent level or better 
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Table 5. Average 2004 Curriculum Adoptions in Math by District for the Four Most Common 
Curricula from the 2004 Adoption Cycle.  

  1998 Uniform Math Adoptions – Grades 1 Through 3  
 All Saxon (A) Silver-Burdett 

Ginn (B) 
Scott-Foresman 

(C) 
Other 

2004 Math Adoptions      
Grade 1      

Saxon 0.48 0.76 0.25 0.12 0.21
Harcourt 0.19 0.07 0.32 0.35 0.24

Houghton Mifflin 0.10 0.06 0.11 0.21 0.15
Scott-Foresman 0.09 0.07 0.07 0.15 0.18

Grade 2      
Saxon 0.48 0.77 0.25 0.09 0.24

Harcourt 0.19 0.08 0.32 0.35 0.21
Houghton Mifflin 0.10 0.06 0.11 0.21 0.15

Scott-Foresman 0.09 0.05 0.07 0.18 0.18
Grade 3      

Saxon 0.48 0.76 0.23 0.09 0.24
Harcourt 0.18 0.08 0.32 0.35 0.21

Houghton Mifflin 0.12 0.07 0.14 0.21 0.15
Scott-Foresman 0.09 0.06 0.05 0.21 0.15

Grade 4      
Saxon 0.47 0.73 0.21 0.12 0.24

Harcourt 0.18 0.09 0.30 0.35 0.21
Houghton Mifflin 0.12 0.09 0.12 0.18 0.15

Scott-Foresman 0.11 0.07 0.11 0.21 0.15
Grade 5      

Saxon 0.47 0.74 0.21 0.18 0.22
Harcourt 0.18 0.08 0.30 0.32 0.22

Houghton Mifflin 0.10 0.07 0.11 0.18 0.16
Scott-Foresman 0.11 0.08 0.11 0.18 0.16

      
N 286 128 57 34 33

Notes: N indicates the number districts where we observe a 2004 math-curriculum adoption and at least one grade-3 
math test score between 1998 and 2008. The “other” category includes all districts that did not adopt any of the “big 
three” curricula in any grade during the 1998 adoption cycle. Districts that adopted at least one of the big-three 
curricula non-uniformly during the 1998 adoption cycle are included only in the “all” category.  



37 
 

Table 6. Falsification Estimates of Math Curricular Effectiveness, Estimated Using Math Test 
Scores for Grade-3 Cohorts Who Were Never Exposed to the Curricula of Interest. All 
Comparisons. 

 1992 1993 1994 1995 1996  2007 2008
 
Treatment: B   Control: A 

Kernel Matching   -0.120   
(0.112)  

0.072    
(0.135)  

-0.019    
(0.120) 

0.079   
(0.137) 

0.094    
 (0.129)  

 0.091    
(0.117)  

0.192    
(0.127)  

 
Treatment: C   Control: A 

Kernel Matching -0.326   
(0.162)*  

-0.046   
(0.174)  

-0.011    
(0.146)  

-0.035    
(0.186)  

-0.045     
(0.153)  

 -0.020    
(0.157)     

-0.050    
(0.270)  

 
Treatment: C   Control: B 

Kernel Matching -0.171     
(0.274)  

0.077   
(0.277)  

0.032    
(0.237)  

0.072    
(0.294)   

-0.066   
(0.280) 

 -0.147    
(0.202)  

-0.235    
(0.263)   

         
N(A) 301 304 304 306 308  284 280 
N(B) 209 210 213 216 220  205 201 
N(C) 179 179 182 182 182  163 162 

Notes: Matching estimators impose the common support restriction. Standard errors in parentheses are clustered at 
the district level and bootstrapped using 250 repetitions. See the notes for Table 4 for details on how to interpret the 
estimates. 
** Denotes statistical significance at the 1 percent level or better 
*   Denotes statistical significance at the 5 percent level or better 
†   Denotes statistical significance at the 10 percent level or better 
 
 
 
Table 7. Falsification Estimates of Math Curricular Effectiveness, Estimated Using Math Test 
Scores for Grade-6 Cohorts who were Never Exposed to the Curricula of Interest. Comparison of 
B and A only. 

 1992 1993 1994 1995 1996  1999 2000 2001
 
Treatment: B   Control: A 

Kernel Matching -0.126 
(0.155) 

-0.290 
(0.165)† 

-0.055 
(0.158) 

-0.133 
(0.139) 

0.045 
(0.142) 

 0.016 
(0.177) 

-0.190 
(0.151) 

-0.100 
(0.130) 

          
N(A) 205 208 213 213 218  212 205 204 
N(B) 117 118 122 125 127  122 120 120 

Notes: Matching estimators impose the common support restriction. Standard errors in parentheses are clustered at 
the district level and bootstrapped using 250 repetitions. See the notes for Table 4 for details on how to interpret the 
estimates. 
** Denotes statistical significance at the 1 percent level or better 
*   Denotes statistical significance at the 5 percent level or better 
†   Denotes statistical significance at the 10 percent level or better 
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Table 8. Estimates of Math Curricular Effectiveness, Estimated Using Reading Test Scores for all Grade-3 Cohorts. All Comparisons. 
 1992 1993 1994 1995 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Treatment: B   Control: A 
Kernel Matching -0.152 

(0.110) 
 

-0.036 
(0.131) 

-0.078 
(0.130) 

0.082 
(0.129) 

0.135 
(0.141) 

0.160 
(0.141) 

0.186 
(0.146) 

0.197 
(0.146) 

0.228 
(0.123)† 

0.150 
(0.120) 
 

0.084 
(0.127) 

0.027 
(0.148) 

0.044 
(0.122) 

-0.084 
(0.118) 

0.069 
(0.117) 

Treatment: C   Control: A 
Kernel Matching 
 

-0.200 
(0.156) 

-0.126 
(0.175) 

-0.107 
(0.178) 

-0.154 
(0.206) 

-0.161 
(0.178) 

0.023 
(0.207) 

0.048 
(0.237) 

0.036 
(0.221) 

-0.043 
(0.159) 

0.037 
(0.177) 

-0.030 
(0.205) 

-0.080 
(0.205) 

0.184 
(0.208) 

0.028 
(0.205) 

0.084 
(0.212) 

Treatment: C   Control: B 
Kernel Matching -0.023 

(0.294) 
0.149 

(0.305) 
0.118 

(0.268) 
0.009 

(0.288) 
-0.179 
(0.290) 

-0.172 
(0.281) 

-0.143 
(0.321) 

-0.166 
(0.289) 

-0.222 
(0.245) 

-0.125 
(0.259) 

-0.095 
(0.213) 

-0.020 
(0.297) 

0.113 
(0.297) 

0.065 
(0.262) 

-0.014 
(0.303) 

 
N(A) 301 304 304 306 308 309 307 307 305 300 294 286 287 284 280 
N(B) 209 210 213 216 220 220 219 219 213 213 212 210 207 205 201 
N(C) 179 179 182 182 182 184 182 182 181 176 174 169 163 163 162 

Notes: Bolded columns are for the fully-exposed cohorts. Matching estimators impose the common support restriction. Standard errors in parentheses are 
clustered at the district level and bootstrapped using 250 repetitions. See the notes for Table 4 for details on how to interpret the estimates. 
** Denotes statistical significance at the 1 percent level or better 
*   Denotes statistical significance at the 5 percent level or better 
†   Denotes statistical significance at the 10 percent level or better 
 
Table 9. Persistence Effects. Estimated Curriculum Effects for Grade-6  
Cohorts who were Partially or Fully Exposed. Comparison of B and A only. 

 2002 2003 2004 2005 2006 2007 2008 
Treatment: B   Control: A 

Kernel Matching -0.064 
(0.151) 

0.141 
(0.146) 

0.156 
(0.199) 

0.077 
(0.173) 

0.007 
(0.150) 

-0.023 
(0.169) 

-0.016 
(0.159) 

        
N(A) 200 189 174 165 163 160 156 
N(B) 118 115 105 101 97 94 93 

Notes: Bolded columns are for the fully-exposed cohorts. Matching estimators impose the common  
support restriction. Standard errors in parentheses are clustered at the district level and bootstrapped  
using 250 repetitions. See the notes for Table 4 for details on how to interpret the estimates. 
** Denotes statistical significance at the 1 percent level or better 
*   Denotes statistical significance at the 5 percent level or better 
†   Denotes statistical significance at the 10 percent level or better
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Appendix A 
Supplementary Tables 

 
Appendix Table A.1. Data Sample Details. 
 Schools % of  

Universe 
Districts % of  

Universe 
Universe*  1115  294  
     
Missing Information:     
District-reported curriculum adoption 3 0.3 3 1.0 
District outcome variables (1997) 2 0.2 2 0.7 
School outcome variables (1997) 23 2.2 1 0.3 
District finance/enrollment data (1997, 1998) 2 0.2 1 0.3 
School enrollment/demographic data (1997, 1998) 82 7.3 12 4.0 
     
Did not use one of the primary curricula in grades 
one, two or three 

211 18.9 38 12.9 

Used only primary curricula, but did not uniformly 
adopt 

76 6.8 24 8.2 

     
Final Sample 716 64.2 213 72.4 
* The universe consist of those schools and districts for which any information was reported in 
1997, and at least one grade-3 math test score was reported for an exposed cohort (1999-2006). 
 
 
Appendix Table A.2. Scaling Factors Used to Convert Estimation Metric from  
School-Level Distribution to Individual-Level Distribution for Grade-3 Math Scores. 

 
 

Year 

Standard Deviation 
of Distribution of 

School Scores 

Standard Deviation of 
Distribution of 

Individual Scores 

Approximate 
Scaling Factor 

1992 2.8 N/A N/A 
1993 2.9 N/A N/A 
1994 2.8 N/A N/A 
1995 2.8 N/A N/A 
1996 1.9 N/A N/A 
1999 21.3 N/A N/A 
2000 20.5 61.0 0.34 
2001 21.0 61.4 0.34 
2002 19.9 59.7 0.33 
2003 20.7 60.9 0.34 
2004 22.5 63.1 0.36 
2005 21.0 62.2 0.34 
2006 20.0 64.3 0.31 
2007 21.3 65.4 0.33 
2008 22.5 63.7 0.35 
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Appendix B 
Bandwidth Selection 

 
We use standard leave-one-out cross validation (C-V) to obtain fixed bandwidths for the kernel 
and LLR matching estimators. The grid search for kernel and LLR matching is over the range 
(0.005, 2.0). Using Frölich’s (2004) notation, the C-V approach selects the optimal bandwidth, 
hCV, by solving the following minimization problem for control observations:32 
 

∑
=

−−=
Q

q
qqq
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CV pmYh

1

2

)(
))(ˆ(minarg  

 
where q indexes the sample of control units, Y is the outcome (test score) and ˆ ( )q qm p− is the 
estimate of the mean outcome among the control observations, excluding observation q, 
conditional on the estimated propensity score for unit q.  
 
As has been reported in other contexts (see, for example, Ludwig and Miller, 2007), the loss 
function used to select the bandwidth is fairly flat in most of our comparisons. Therefore, we use 
a combination of conventional C-V and “visual inspection” to identify the appropriate bandwidth 
for each of our matching estimators.  
 
First, Figure B.1 illustrates a case where cross-validation produces a clear bandwidth choice at 
the global minimum of the loss function, for our comparison between B and A in 2000 using the 
kernel matching estimator. In this case we use the bandwidth at the global minimum, 0.048. 
 

 
 

                                                 
32 In our case the definition of “treatment” and “control” is arbitrary and therefore, we could use either group. We 
use the largest group in each comparison as the control group. 
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Next, Figure B.2 illustrates a case where cross-validation suggests an optimal bandwidth at the 
edge of our grid search, for our comparison between B and A in 2005 using the kernel matching 
estimator. For this comparison we use a bandwidth of 0.062, which occurs just prior to the 
narrowly upward sloping portion of the curve. 
 

 
 
We describe our bandwidth selection procedure for the comparison in Figure B.2 as a 
combination of cross-validation and visual inspection. Because the flat region of the curve has a 
mild negative slope, the mechanical application of the C-V procedure would produce a 
bandwidth at the edge of our grid search, 2.0. However, by visual inspection, we can see that 
there is very little difference in the loss function between the bandwidth determined 
mechanically by the C-V procedure and a much narrower bandwidth selected after the initial 
drop in the loss function. We ultimately use the narrower bandwidth in this and similar cases 
because the efficiency gains associated with the wider bandwidth will be minimal, and the 
narrower bandwidth should reduce bias in the estimates. 
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