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Abstract

Large cities produce more output per capita than small cities. This may occur because

more talented individuals sort into large cities, because large cities select more productive en-

trepreneurs and firms, or because of agglomeration economies. We develop a model of systems

of cities that combines all three elements and suggests interesting complementarities between

them. The model can replicate stylised facts about sorting, agglomeration, and selection in

cities. It can also generate Zipf’s law for cities. Finally, it provides a useful framework within

which to reinterpret existing empirical evidence.
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1 Introduction

Output per capita is higher in larger cities. For instance, across 276 us metropolitan areas in 2000,

the elasticity of average city earnings with respect to city population is 8.2%. This paper proposes

a model that integrates three main reasons for this fact. The first is agglomeration economies:

economies external to firms taking place within cities lead to citywide increasing returns. The

second is sorting: more talented individuals may ex ante choose to locate in larger cities. The third

is selection: larger cities make for larger markets where selection is tougher so that only the most

productive firms may ex post profitably operate there.

Integrating these three explanations of the urban premium into a theoretical framework where

cities are determined endogenously is important for three reasons. First, it yields a better theoret-

ical understanding of how sorting, selection and agglomeration interact. Our results suggest some

interesting complementarities between these three forces. Tougher selection in larger cities implies

that only more talented individuals will locate there in the first place: selection induces sorting.

Conversely, the presence of more talented individuals reinforces selection. Cities with more talen-

ted individuals where selection is tougher also end up with more productive firms paying higher

wages. In turn, this attracts more individuals and makes these cities larger, thereby strengthening

agglomeration economies.

Second, our model matches a number of key stylised facts about cities. The literature strongly

suggests the existence of a causal effect of city size on productivity, even after controlling for sorting

and selection. There is also evidence that returns to talent (or skills) increase with city size and

that this leads to the sorting of more talented individuals into larger cities. At the same time,

there is a non-degenerate distribution of firm productivities in any city. Less productive firms are

less likely to operate in larger cities but there is no evidence of stronger selection after conditioning

out agglomeration and sorting. Finally, the size distribution of cities is well described by a Pareto

distribution with a unitary shape parameter. Section 2 below discusses these facts in greater detail.

Third, our model provides a useful framework within which to interpret existing quantitative

evidence. As mentioned above, the coefficient on log city population is 8.2% in a city earnings

regression for the us. This coefficient drops to 5.1% when conditioning out talent through the log

share of city college graduates. Because of sorting, 8.2% is actually the elasticity of urban costs

with respect to population size in our model. This number can be confirmed using direct measures

of urban costs. When controlling for city talent, the coefficient of 5.1% reflects the elasticity of

earnings with respect to population size. In our model, the (small) difference between these two

numbers should also be equal to the elasticity of city talent with respect to city size. The data for

the us are consistent with this result. Put differently, small differences in talent across cities are

enough to generate very large differences in city sizes. Finally, our model also predicts that cities are

‘naturally’ oversized by a factor close to e (≈ 2.72, Euler’s number) in equilibrium. Nevertheless,

this significant oversize has trivial economic costs. These two results hold for a range of plausible
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values for the elasticities of earnings and urban costs with respect to population size.

Formally, we extend the monopolistic competition framework of Dixit and Stiglitz (1977) to a

two-stage production process (as in Ethier, 1982) with heterogeneous firms (as in Melitz, 2003) to

generate local increasing returns. We then embed this production structure in a system of cities in

the tradition of Henderson (1974) where commuting is more costly in larger cities.1 The key to our

model is that firms are operated by entrepreneurs whose productivity is revealed in two stages. Each

individual initially knows about her draw of talent and chooses a location. Upon moving, she gets

another draw, which we call luck. Productivity as an entrepreneur is a combination of talent and

luck, whereas labour as a worker is homogeneous. Individuals sort across cities ex ante depending

on their talent and they select ex post into entrepreneurship or become workers depending on

their productivity. At its heart, our model is thus an assignment problem. We characterise the

assignment function from individuals’ talents to cities. The difficulty with regards to standard

assignment theory (e.g., Sattinger, 1993) is that cities are endogenous and their characteristics

depend on the location choices of everyone.

In equilibrium, cities result from a tradeoff between agglomeration economies and urban costs.

In each city, only the most productive individuals become entrepreneurs. The others become

workers. Profits as an entrepreneur increase with productivity and city size. Hence, more talented

individuals, who stand a higher chance of becoming highly productive entrepreneurs, have more

to gain from larger cities. This complementarity between talent and city size, together with the

fact that urban costs do not depend on talent, lead to the sorting of more talented individuals

into larger cities. Then, tougher selection in more talented cities implies more productive firms. A

higher productivity, in turn, complements the agglomeration benefits of cities. This justifies why

more talented cities are larger in equilibrium.

The remainder of this paper is organised as follows. Section 2 discusses the stylised facts

mentioned above in greater depth. Section 3 presents the model and solves for its ‘short-run’

equilibrium, which takes the distribution of population as given. Section 4 solves for the ‘long-run’

equilibrium with endogenous cities. Section 5 discusses the quantitative implications of our model.

Section 6 provides some extensions. Finally, Section 7 concludes.

2 Stylised facts and related literature

Agglomeration economies. It would be hard to justify the existence of cities without some form

of underlying increasing returns. The positive correlation between various measures of output per

capita (or productivity) and city size is extensively documented in the literature. See Rosenthal

and Strange (2004), Melo, Graham, and Noland (2009), and Puga (2010) for reviews. Estimates

1For tractability reasons, we ignore sectoral issues and work with a single sector. The distribution of sectors

across and within cities is the focus of much of the literature on systems of cities. We leave it to future work to

combine the insights developed here with a more sectoral perspective.
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for the elasticity of wages or productivity with respect to city size in many countries are usually

close to the 5 − 8% we report above for us msas. There are strong indications that city size has

a causal effect on local productivity. Instrumental variable approaches (Ciccone and Hall, 1996;

Combes, Duranton, Gobillon, and Roux, 2010) and natural experiments (Greenstone, Hornbeck,

and Moretti, 2010) suggest that the existence of agglomeration effects is robust to reverse causation

and missing variables. Furthermore, positive agglomeration effects persist even after controlling for

ability sorting (Combes, Duranton, and Gobillon, 2008) and firm selection (Combes, Duranton,

Gobillon, Puga, and Roux, 2009).

Recent evidence also points at input-output linkages as the single most important source of

agglomeration economies, though such effects potentially arise from a broad range of economic

mechanisms. See Holmes (1999), Amiti and Cameron (2007), Overman and Puga (2009), and

Ellison, Glaeser, and Kerr (2010).

Sorting. A higher per capita output in larger cities may also reflect the sorting of individuals

(Combes, Duranton, and Gobillon, 2008; Baum-Snow and Pavan, 2009). That larger cities host

more talented individuals is documented extensively in the literature (e.g., Berry and Glaeser, 2005;

Bacolod, Blum, and Strange, 2009; Lee, 2010). For 276 us msas in 2000, the elasticity of the share

of college graduates with respect to population is 6.8%.

For more talented individuals to sort into larger cities where urban costs are larger, their rewards

must be relatively higher there. This is exactly what the literature finds. Agglomeration economies

are stronger for individuals with more education (Wheeler, 2001; Glaeser and Resseger, 2010) or

individuals with better cognitive and people skills (Bacolod, Blum, and Strange, 2009). At the

same time, more talented individuals migrate to areas that offer them higher rewards (Dahl, 2002).

Finally, ability sorting by individuals does not imply perfect productivity sorting for the firms

they operate or work for. Large cities host on average more productive firms but they also contain

lots of poorly productive firms (Combes, Duranton, Gobillon, Puga, and Roux, 2009). Heterogen-

eity in firm productivity within cities is a major feature of the data.

Selection. A third reason for the higher per capita output in larger cities is tougher selection.2

Larger cities are larger markets. They may also be tougher markets. As emphasised by Sinatra in

his 1979 New York, New York song: “If I can make it there, I’ll make it anywhere”. More rigour-

ous evidence about selection shows that less productive firms exit more frequently (Bartelsman

and Doms, 2000; Foster, Haltiwanger, and Syverson, 2008). It also highlights that the survival

productivity cutoff is higher in larger markets (Syverson, 2004).

However, after conditioning out sorting and agglomeration, there is no evidence that selection

is really tougher in larger cities (Combes, Duranton, Gobillon, Puga, and Roux, 2009). Consistent

2Our model below ignores a fourth possible reason, natural advantage. While fundamental for early urban

development, the role of natural advantage in mature urban systems may be more limited. Ellison and Glaeser

(1999) conclude that it only accounts for a small fraction of industrial concentration in the us. Combes, Duranton,

and Gobillon (2008) find that sorting and agglomeration account for the bulk of spatial wage disparities in France.
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with this, the share of self-employed – a proxy for entrepreneurship – is independent from city

population in the us.3 In short, selection occurs but it is not directly apparent in urban data.

Size distribution of cities. Last, it is well known that the size distribution of cities is right-

skewed and reasonably well approximated by a Pareto distribution with unitary shape parameter

(Gabaix and Ioannides, 2004; Soo 2005).

Related theoretical literature. There is a large literature about sorting on income and pref-

erences within cities and its fiscal implications (see Epple and Nechyba, 2004, for a review). The

literature about ability sorting across cities is more limited. In earlier work, Abdel-Rahman and

Wang (1997) consider the sorting of skilled workers in core cities and that of unskilled workers in

peripheral satellite cities. Sorting by talent also occurs in Mori and Turrini (2005) in a two-region

setting. Like us, Nocke (2006) assumes a continuum of talents for entrepreneurs. Unlike us, he

maps talent directly into productivity (i.e., he does not consider selection) in a partial equilibrium

setting. Importantly, he shows that perfect productivity sorting across exogenously determined

cities generally occurs. In a two-region setting with immobile workers and ex ante identical firms,

Baldwin and Okubo (2006) assume that firms can relocate at a cost after receiving their productiv-

ity draw. This leads to the relocation of the most productive firms from the small market to the

large one and incomplete productivity sorting.

The two models most closely related to ours are Behrens and Robert-Nicoud (2009) and Davis

(2009). The former propose a multi-region framework that builds on Melitz and Ottaviano (2008)

where ex ante identical individuals can move from a rural hinterland to cities. In cities, they

benefit from agglomeration but may get a poor entrepreneurial draw so that urbanisation also

generates inequalities. To our knowledge, this is the only prior model to embed market selection

in an urban framework. Unlike in our model, inter-city trade plays a role but sorting is ignored.

Davis (2009) develops an original model of learning and matching inspired by Antràs, Garicano,

and Rossi-Hansberg (2006). Individuals with ex ante heterogeneous abilities simultaneously choose

to locate in one of two cities and their occupation. In equilibrium, the most talented individuals

become managers, those of intermediate abilities become workers, and the least talented end up

producing a local good. Complementarities in production lead to positive assortative matching and

the pairing of the best managers with the best workers. Learning among managers then leads the

best manager-and-workers teams to cluster in the same city.

Finally, Zipf’s law and the size distribution of cities have attracted much attention recently. In

random growth models, the current size of a city reflects its balance of past shocks (amenity for

Gabaix, 1999; productivity for Eeckhout, 2004, or Rossi-Hansberg and Wright, 2007; innovation

3We regress the employment share of self-employed on log city population in 276 us msas using 2000 Census

data. The share of self-employed is computed as the share of civilian employees above 16 who are self-employed

(both incorporated and non-incorporated) in sectors other than agriculture, forestry, fishing, and mining. Although

entrepreneurship and self-employment are not identical, the latter is often used in the literature as a proxy for the

former (e.g., Doms, Lewis, and Robb, 2010). The coefficient is 0.0003 and nowhere near statistical significance.
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for Duranton, 2007). Our approach is radically different. It builds on a static model of cities.

In equilibrium, the size of a city depends on the productivity of its entrepreneurs magnified by

the tradeoff between agglomeration economies and urban costs. More specifically, city size is a

function of the talent of its residents elevated to a power which is the inverse of the difference

between the intensity of agglomeration economies and that of urban costs. When this difference

is small, as seems to be the case in the data, small differences in productivity between cities lead

to large differences in size. The resulting size distribution of cities is thus close to degeneracy and

approximately Zipf.4

3 The model

There is a continuum of individuals in the economy. They are identical except for their ‘talent’, t,

and their ‘luck’, s. Talent and luck determine an individual’s entrepreneurial productivity, ϕ ≡ t×s.
There is also a continuum of sites that can be used as cities. The ‘number’ of cities, their population

size, and their composition are endogenous.

3.1 Timing

(1) Talent is revealed
-

(2) City is chosen

(3) Luck is revealed

(4) Occupation is chosen:

�

R

Become a worker and

Become an entrepreneur and

supply homogeneous labour

produce differentiated intermediates

R
�

Production
(5) Consumption

Markets clear

Figure 1. Timing

Each individual initially knows her talent and chooses where to locate. Upon moving to a

city, her luck is revealed. Knowing her luck and thus her productivity, each individual selects

into an occupation, worker or entrepreneur. A worker supplies a unit of homogeneous labour.

Each entrepreneur sets up a firm that produces with productivity ϕ a variety of differentiated

intermediate goods using labour. Finally, firms maximise profit, markets clear, and production and

consumption take place. Figure 1 illustrates this timing.

4We know of two other papers that generate Zipf’s law from a static model. Hsu (2008) relies on central place

theory. The argument of Lee and Li (2009) is the static equivalent of random growth models where size is determined

by the (multiplicative) aggregation of many randomly distributed local characteristics.
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A key feature of our model is that productivity is revealed in two steps. The knowledge of their

talent allows individuals to sort across cities. The revelation of luck after choosing a city leads to

their selection into occupations. ‘Luck’ subsumes many local interactions that are uncertain and

affect productivity such as being acquainted with the right people at the right time, etc. To avoid

the introduction of arbitrary productivity differences across cities, the cumulative distribution of

luck is assumed to be the same in all cities. The distributions of talent and luck are summarised

by the continuously differentiable cumulative probability distribution functions Gt over T ≡ [t, t]

and Gs over Σ ≡ [s, s], respectively, where 0 ≤ s ≤ s ≤ ∞ and 0 ≤ t ≤ t ≤ ∞. We do not allow

for relocations. Empirically, there are frictions to mobility. In our static model we formalise these

frictions in a parsimonious way by assuming free mobility before luck is realised and prohibitive

mobility costs afterwards.

This two-step revelation process enables us to consider both the spatial sorting of individuals

and the productivity selection of firms in a simple framework.5 Selection without sorting would

lead all cities to be symmetric in equilibrium. Sorting without selection would imply that all firms

in any one city have the same productivity. Both predictions are counterfactual.

3.2 Preferences and technology

Individuals consume two goods: a final good and land. For simplicity, individuals require one unit

of land for accommodation and do not increase their utility by consuming more land. They are

also risk-neutral so that their utility can be taken to be linear in final good consumption.

To produce the final good, competitive final producers in each city use locally produced differen-

tiated intermediate inputs, which enter into their technology with constant elasticity of substitution

1 + 1/ε with ε > 0. Aggregate output in city c is given by

Yc =

[∫

Ω+
c

xc(i)
1

1+εdi

]1+ε

, (1)

where xc(i) is the amount of variety i, and Ω+
c is the endogenously determined set of varieties of

intermediate inputs produced in city c. Unlike intermediate inputs, the final good is freely tradable

across cities. We use it as the numéraire.

As in Ethier (1982), intermediate inputs are produced by monopolistically competitive firms à

la Dixit and Stiglitz (1977). Each entrepreneur sets up a firm which employs labour to produce a

different variety. Hence Ω+
c , the set of varieties, also denotes the set of entrepreneurs and i refers

equivalently to an entrepreneur, her firm, or the variety she produces. Entrepreneurs differ in their

5Melitz (2003) and subsequent literature model the selection of firms by imposing a sunk cost to create a firm

and receive a productivity draw. Firms with poor draws then exit the market. In our case, this investment decision

is potentially complex because would-be entrepreneurs differ by talent. We simplify it by giving one free draw to

each individual. Formally, this allows individuals to select directly into occupations. This simplification does not

change the nature of our results in the equilibrium we examine below.
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productivity as in Melitz (2003). Output of variety i is

xc(i) = ϕc(i)lc(i), (2)

where lc(i) is labour demand for the production of variety i and ϕc(i) is entrepreneur i’s productivity,

which, in turn, depends on her ‘talent’, t, and her ‘luck’, s.

3.3 ‘Short-run’ equilibrium

For expositional purposes, it is convenient to solve for the equilibrium in two steps. First, we study

each city in isolation and take the set of individuals, Ωc, in that city and the distribution of their

productivity as given. Thus, individuals know their own productivity, its cumulative distribution

Fc(·), which we assume for now to be continuously differentiable over a closed support, and the

population size of their city, Lc. The focus is on selection, i.e., the occupational choice between

being a worker and an entrepreneur, conditional on productivity. In section 4, we solve for the

‘long-run’ equilibrium where individuals sort across endogenously determined cities based on their

talent. To ease notation, we drop the city subscript c wherever possible.

Minimising production costs in the final goods sector subject to the technology described by

equation (1) yields the demand for intermediates inputs:

x(i) =

[
p(i)

P

]− 1+ε
ε Y

P
, where P ≡

[∫

Ω+

p(j)−
1
εdj

]−ε
(3)

is the appropriate price index. It is immediate from (3) that the own-price elasticity of demand is

−(1 + ε)/ε. Hence, the profit-maximising price for each intermediate displays a constant markup

over marginal cost:

p(i) = (1 + ε)
w

ϕ(i)
, (4)

where w is the wage. This allows us to re-write the demand (3) as follows:

x(i) =

[
ϕ(i)

Φ

]1+ 1
εY

P
, where Φ ≡

[∫

Ω+

ϕ(j)
1
εdj

]ε
(5)

is a measure of aggregate productivity in the city. More entrepreneurs in a city (i.e., a larger

measure of Ω+) and/or better entrepreneurs (i.e., ‘on average’ larger ϕ’s) imply a larger aggregate

productivity, Φ. In turn, individual sales are negatively affected by aggregate productivity through

a crowding effect. Using expressions (4) and (5), we rewrite the price index P in (3) as a function

of aggregate productivity, Φ, and obtain

P = (1 + ε)
w

Φ
. (6)

After combining this equation with (4) and (5), operating profit becomes

π(i) =
ε

1 + ε
p(i)x(i) =

ε

1 + ε
Y

[
ϕ(i)

Φ

] 1
ε

. (7)
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As made clear by this expression, the profit of entrepreneurs increases with the economic size of

their city, Y , and with their own productivity relative to aggregate productivity, ϕ/Φ.

Recall that labour is homogeneous.6 Hence, individuals choose their occupation by comparing

their prospective profit, as given by (7), with the wage w. An individual with productivity ϕ

becomes an entrepreneur if the expected benefits of doing so exceed the forgone opportunity w, that

is if π(ϕ) > w. This individual becomes a worker if the opposite inequality is true and is indifferent

across occupations otherwise. Assuming that the set of individuals in the city, Ω, is convex (which

is true in equilibrium), there exists a unique productivity cutoff ϕ defined by π(ϕ) = w such that all

individuals with productivity above ϕ become entrepreneurs and all individuals with productivity

below ϕ become workers. Using (7), the productivity cutoff is

ϕ ≡ Φ

(
1 + ε

ε

w

Y

)ε
. (8)

Selection is tougher when aggregate productivity is higher (∂ϕ/∂Φ > 0), for it is more difficult to

compete against more productive and numerous entrepreneurs. Selection is also tougher in smaller

markets where demand is lower (∂ϕ/∂Y < 0) and in markets where workers are paid higher wages

(∂ϕ/∂w > 0).

The city supply of labour is composed of all individuals with productivity below ϕ:

LS = F (ϕ)L .

From equation (2), labour demand for an entrepreneur with productivity ϕ is l(ϕ) = x(ϕ)/ϕ. After

combining this expression with equations (5) and (6) and aggregating over all entrepreneurs, we

obtain city labour demand:

LD = L

∫ sup Ω+

ϕ

l(ϕ)dF (ϕ) =
1

1 + ε

Y

w
.

Equating labour supply and demand then implies that workers receive a share 1
1+ε

of city output:

Y = (1 + ε)F (ϕ)Lw . (9)

Competition and cost minimisation by final good producers yield P = 1, for P is the marginal

cost of final producers and the price of the final good is normalised to unity. Then (6) yields

w =
1

1 + ε
Φ, (10)

where aggregate productivity, Φ, as defined in (5) can be rewritten as

Φ =

[
L

∫ sup Ω+

ϕ

ϕ
1
εdF (ϕ)

]ε
. (11)

6This assumption is for simplicity. The equilibrium occupational choice obtained here only requires more pro-

ductive individuals to have a comparative advantage at being entrepreneurs.
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Finally, aggregating (7) over all firms yields aggregate profit Π = ε
1+ε

Y . Combining this with

equation (9) implies

Π = εF (ϕ)Lw. (12)

Expressions (8) to (12) fully characterise the ‘short-run’ equilibrium for the tuple {ϕ,Φ, w,Π, Y }.

Proposition 1 (Existence and uniqueness of the ‘short-run’ equilibrium) Given population,

L, and its productivity distribution, F (·), the equilibrium in a city exists, is unique, and character-

ised by (8) to (12).

Proof. Using equation (9) to eliminate w and Y from equation (8) yields a positive relationship

between productivity and selection: ϕ
1
εF (ϕ) = Φ

1
ε /(εL). Using equation (11), the implicit solution

for ϕ may be written as:

F (ϕ) =
1

ε

∫ sup Ω+

ϕ

(
ϕ

ϕ

) 1
ε

dF (ϕ). (13)

The left-hand side of this expression is monotonically increasing from 0 to 1 in ϕ, whereas the

right-hand side is monotonically decreasing and equal to 0 when ϕ = sup Ω+. By continuity, this

establishes the existence of a unique ‘short-run’ equilibrium. Knowing ϕ, we can retrieve w, Y , Π

and Φ from (9)–(12).

Proposition 2 (‘Short-run’ equilibrium properties) Given the productivity distribution, F (·),

larger cities have higher aggregate productivity, per-capita income, and wages than smaller cities.

The productivity cutoff for selection does not depend on city size.

Proof. By inspection of (13), ϕ does not depend on city size. By contrast, Φ is increasing in

L by (11). Once ϕ and Φ are known, the equilibrium values for Y , w, and Π follow from (9), (10),

and (12), respectively. These are all increasing in Φ (and thus in L) by inspection.

Our model displays agglomeration economies since per capita income increases with population

size. To see them more clearly, we can use equations (9), (10), and (11) to write aggregate city

income as

Y = F (ϕ)ΦL = F (ϕ)

[∫ sup Ω+

ϕ

ϕ
1
εdF (ϕ)

]ε
L1+ε. (14)

City production exhibits aggregate increasing returns to scale and ε measures their intensity. The

reason is that an increase in population increases the number of entrepreneurs and thus the number

of intermediate inputs. Final producers become more productive as they have access to a wider

range of varieties. Sharing local differentiated inputs produced under increasing returns is a pop-

ular way to generate agglomeration economies in the literature (Duranton and Puga, 2004). Our

innovation here is to enrich the standard framework by considering heterogeneous firms in the spirit
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of Melitz (2003). In the absence of individual heterogeneity equation (14) would take a simpler

form: Y = AL1+ε with A being a constant.

The empirical evidence in favour of agglomeration economies is very strong (for recent reviews,

see Rosenthal and Strange, 2004; Melo, Graham and Noland, 2009; and Puga, 2010). Casual

observation and formal evidence also suggest substantial heterogeneity in productivity across firms

within cities (e.g., Syverson, 2004, and Combes, Duranton, Gobillon, Puga, and Roux, 2009). Our

model accounts for both agglomeration economies and productivity dispersion in cities.

The result that the equilibrium productivity cutoff does not depend on city size conditional on

the distribution of productivity is the outcome of two offsetting forces. Larger cities have at once

a higher demand (which lowers the productivity cutoff) and more entrepreneurs (which raises it).

These two effects exactly offset each other in our framework. There would be at least two ways to

make the productivity cutoff vary with city size conditionally on the distribution of productivity.

The first would be to impose a different demand structure for varieties. In the spirit of Melitz

and Ottaviano (2008), Behrens and Robert-Nicoud (2009) use non-ces preferences to generate

markups that decrease with the number of local varieties. This naturally leads to tougher selection

in larger markets. The second possibility would be to change the supply side of our model and

have the ratio of fixed to variable costs for firms depend on city size. For instance, a fixed cost (in

addition to the entrepreneur’s foregone labour) paid in numéraire would be relatively less costly in

larger cities where productivity is higher. This would imply a greater proportion of entrepreneurs

in larger cities. On the other hand, a fixed cost paid with a factor that is in fixed supply locally

(such as land) would increase faster than operating profit as cities get larger. In turn, this would

mean a lower proportion of entrepreneurs in larger cities. However, the empirical results of Combes,

Duranton, Gobillon, Puga, and Roux (2009) support our specification. They show that there are no

differences in selection for French firms across cities after correcting for differences in productivity

levels that affect all firms uniformly (i.e., agglomeration effects and sorting).

3.4 Urban structure

To close our model, we assume a standard internal spatial structure for cities. Production takes

place at a single point, defined as the central business district (cbd). Surrounding a city’s cbd,

there is a line with residences of unit length. Residents commute from their residence to the cbd

and back at a cost. Commuting costs are paid in numéraire, and we assume that the cost of a

resident’s round-trip from a location at distance x to the cbd is t(x) = τxγ, where τ, γ > 0 are

parameters.7 For cities to be of finite size in equilibrium, we require that urban costs eventually

7In practice, commuting costs include both the direct monetary cost of travelling and the opportunity cost of the

time spent on the journey (Small and Verhoef, 2007). Ignoring the time cost of commuting avoids having to deal

with residential choices for individuals with heterogeneous values of time. The location of workers and entrepreneurs

within cities is not a focus of this paper. Observe further that the literature often imposes γ = 1. Recent evidence

(e.g., Baum-Snow and Pavan, 2009a) suggests that, empirically, the elasticity of urban costs to city size is well below
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dominate agglomeration benefits: γ > ε.

Each resident chooses her place of residence so as to maximise utility given her income and the

land rent schedule in the city. Because of fixed lot size, this is equivalent to choosing a residence

so as to minimise the sum of the differential land rent and commuting, r(x) + t(x), with respect

to x. At the residential equilibrium, the lack of arbitrage across residential locations ensures that

r(x) + t(x) is the same for all residents and that the city is symmetric with its edges at a distance

L/2 from the cbd. The equilibrium land rent schedule is such that τxγ + r(x) = τ(L/2)γ + r(L/2)

for all 0 ≤ x ≤ L/2. Without loss of generality, the rent at the city edges is normalised to zero,

which yields the land rent schedule

r(x) = τ

[(
L

2

)γ
− xγ

]
.

Integrating land rent over the city after making use of its symmetry yields total land rent:

TLR = 2

∫ L/2

0

r(x)dx =
2τγ

γ + 1

(
L

2

)γ+1

. (15)

By the same token, integrating commuting costs over the city yields total commuting cost:

TCC = 2

∫ L/2

0

t(x)dx =
TLR

γ
= θLγ+1

where θ ≡ 2−γτ(γ + 1)−1. Finally, income from land rents is equally redistributed across all local

residents, who thus receive TLR/L each. All this implies that each and every resident pays the

average commuting cost, TCC/L = θLγ, as urban cost.

3.5 The complementarity between talent and city size

Before looking at location choices, it is useful to write the expected indirect utility of an individual

with talent t in her city before she learns her luck

EV (t) =

∫ s

s

max{w, π(ts)}dGs(s)− θLγ =

∫ s′

s

wdGs(s) +

∫ s

s′
π(ts)dGs(s)− θLγ

= wGs(s
′) + w

(
t

ϕ

) 1
ε
∫ s

s′
s

1
εdGs(s)− θLγ (16)

=
1

1 + ε

[
εF (ϕ)L

]ε
ϕ

[
Gs(s

′) +

(
t

ϕ

) 1
ε
∫ s

s′
s

1
εdGs(s)

]
− θLγ

where s′ ≡ min{s,max{ϕ/t, s}}.8 The second and third equalities follow from (7) and (8) and from

π(ϕ) = w. The final equality follows from (10) and (11). In this expression, F (ϕ) is the solution

one. We confirm this below and show that a small value of γ has important implications.
8This expression for s′ accounts for the fact that some poorly talented individuals may never become entrepreneur

regardless of their (good) luck, whereas some highly talented individuals may always become entrepreneurs regardless

of their (bad) luck.
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to (13), where F is the joint distribution of the product s× t within city c.9

In the last line of expression (16), the first series of terms (up to and including ϕ) is the

equilibrium wage w, which is proportional to Lε (as a result of agglomeration economies) and to

ϕ (as a result of selection). The middle square bracket is the expected premium of becoming an

entrepreneur. It is increasing in talent t and decreasing in the productivity cutoff ϕ. The last term

in (16) is urban crowding: urban costs are larger in more populated cities.

Proposition 3 (Complementarity between talent and city size) More talented individuals

benefit disproportionately from being located in larger cities:

∂2EV (t)

∂t∂L

∣∣∣
F (.)
≥ 0.

Proof. Using (16), making use of the fact that ∂s′/∂t ≤ 0, and noting that ϕ is independent

of L conditional on F (Proposition 2), we have:

∂2EV (t)

∂t∂L

∣∣∣
F (.)

=
ε

1 + ε

ϕ

L

[
εF (ϕ)L

]ε
{

1

εt

(
t

ϕ

) 1
ε
∫ s

s′
s

1
εdGs(s) +

[
1−

(
s′t

ϕ

) 1
ε

]
gs(s

′)
∂s′

∂t

}

=
1

(1 + ε)L

[
εF (ϕ)L

]ε
(
t

ϕ

)−1+ 1
ε
∫ s

s′
s

1
εdGs(s) ≥ 0 ,

where gs is the p.d.f. associated with Gs. The second equality in the above expression follows from

the definition of s′. At an interior point we have s′ = ϕ/t, in which case the expression in square

brackets is zero; and at a non-interior point we simply have ∂s′/∂t = 0.

As apparent in equation (7), there is a complementarity between the economic size of a city,

Y , and the productivity of an entrepreneur, ϕ, so that more productive entrepreneurs benefit

more from being in larger markets. As shown by Propositions 1 and 2, the economic size of a

city increases more than proportionately with its population (keeping the distribution of talent

constant). We also know that entrepreneurial productivity is the product of talent and luck. Given

this, the complementarity between Y and ϕ naturally translates into a complementarity between

population, L, and talent, t. Urban costs play no role here because they are the same for everyone

in a city.

This complementarity between population size and talent highlighted by Proposition 3 pushes

the most talented individuals to locate in the largest cities and acts as a sorting force. Empirical

work (e.g., Wheeler, 2001; Bacolod, Blum and Strange, 2009; and Glaeser and Resseger, 2010)

often underscores such complementarity between cities and what we call talent (i.e., education and

predetermined skills).

9Even for simple distributions like the Pareto distribution, the joint distribution of the product s× t is involved

(see, e.g., Glen, Leemis and Drew, 2004). Nevertheless, we can derive our main results without imposing any specific

form for Gt or Gs.
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Returning to equation (7), it also highlights that the profit of an entrepreneur increases with

her productivity relative to aggregate city productivity. Using again the link between talent and

productivity, equation (16) takes this relation one step back and shows how expected profit in a city

depends on talent relative to the selection threshold in this city. That is expected profit depends

on the talent of an individual relative to that of the others in her city. All else equal, this pushes

talented individuals to locate in cities where they are more talented than the others.

To illustrate the tradeoff between these two opposing forces, we use the aphorism attributed to

Julius Caesar: “I had rather be the first in a village than second in Rome”. Caesar knew that for a

man of his talent there was much to be gained from being in Rome, the dominant city of a nascent

empire. This ‘Rome’ effect is the same as the complementarity described above. At the same time,

Caesar also knew there were benefits from being first, i.e., be more talented than the others in a

village. This ‘first-in-village’ effect pushes towards the dispersion of talent across cities.10

More formally, the cross-partial derivative in Proposition 3 resembles a single-crossing condition.

There is a key difference. It is conditional on the distribution of productivity F (.) in a city. Hence,

unlike more standard cases, the sign of this cross-partial derivative does not ensure the existence

of a separating equilibrium since different cities may face different distributions of talent and thus

productivity. More specifically, the first-in-village effect makes it harder to exhibit equilibria where

the likes of Julius Caesar eventually cross the Rubicon and take their chances in Rome.

4 Location choices and cities

We now turn to the ‘long-run’ equilibrium of our model. Individuals make optimal location choices

based on their talent. No individual wants to deviate to another city given the location choices

of all other individuals. When choosing a city c an individual with talent t maximises expected

utility, EVc(t) (luck is still unknown). We define the assignment function µ : T → C which maps

talents into cities. An equilibrium is a correspondence c = µ(t) such that, for all t ∈ T and for all

c, c′ ∈ C:

µ(t) = {c : EVc(t) ≥ EVc′(t), ∀c′ ∈ C} . (17)

Then, once in a city individuals also make an occupational choice based on their productivity, ϕ,

the product of their talent, t, and their luck, s, to maximise utility. Entrepreneurs also choose

employment in their firm to maximise profit and all markets clear. Hence, in addition to the

‘short-run’ equilibrium conditions, the population of each city, Lc, is endogenous and is given by

Lc ≡
∫ t

t

Lc(t)dt , (18)

10There is also a symmetric force pushing towards the dispersion of less talented individuals. Larger cities pay

higher nominal wages (by Proposition 2). This encourages less talented individuals who have little chance of becoming

entrepreneurs anyway to try their luck in a large city. “Panem et circenses” (bread and circuses) at the bottom of

the distribution in Rome may be preferable to relative mediocrity in a village.
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where Lc(t) is the population with talent t in city c. In addition, the set of cities, C ≡ [0, c], is

also endogenous and cities arise under ‘self-organisation’ (to use the terminology of Henderson and

Becker, 2000).

4.1 Symmetric equilibrium

Proposition 3 suggests that more talented individuals benefit disproportionately from being located

in larger cities. It does not, however, preclude the existence of a symmetric equilibrium where all

types of talents are equally represented in all cities. A natural question to ask is under which

conditions a symmetric equilibrium may be stable.

Proposition 4 (Symmetric equilibrium) Assume that Fc(·) = F (·) for all cities c. Then the

only equilibrium is a symmetric equilibrium with Lc = L, φc = φ and ϕ
c

= ϕ for all c. This

equilibrium is stable only if the variation in talent across the population is small enough.

Proof. Assume that Fc(·) = F (·) for all c. By the uniqueness of the solution to (13), which

is independent of Lc, we then have ϕ
c

= ϕ for all c. This implies that selection is constant across

cities: φc = Fc(ϕc) = φ for all c. Because all types of talent are located in all cities, it must be that

EVc(t) = EV (t) for all cities and talents. Since Fc ≡ F , the condition in Proposition 3 is a true

single-crossing condition: more talented individuals benefit more from larger cities. Hence, it must

be that Lc = L for all c ∈ C for all talents to be indifferent across all cities.

Symmetry is a stable equilibrium only if EV (t) ≥ 0 and ∂EV (t)/∂L < 0 for all t ∈ [t, t]. The

first condition ensures that individuals want to stay in existing cities (the outside option of starting

a new city yields zero utility). The second condition implies that no deviation of any small mass

of representative individuals to another city is profitable. Using (16) and the fact that expected

indirect utility is increasing in t, these two conditions will hold for all t ∈ [t, t] if and only if

ε

γ
ϕ

[
Gs

(ϕ
t

)
+

(
t

ϕ

) 1
ε
∫ s

ϕ

t

s
1
εdGs

]
< θLγ−ε

1 + ε

(φε)ε
< ϕ

[
Gs

(
ϕ

t

)
+

(
t

ϕ

) 1
ε
∫ s

ϕ

t

s
1
εdGs

]
.

This expression bounds the size L of symmetric cities. In addition, it implies:

ε

γ
<

Gs

(
ϕ

t

)
+
(
t
ϕ

) 1
ε

∫ s

ϕ

t

s
1
εdGs

Gs

(ϕ
t

)
+
(
t
ϕ

) 1
ε

∫ s

ϕ

t

s
1
εdGs

,

which must hold at any stable symmetric equilibrium. Since γ > ε, the left-hand size of this

expression is smaller than unity. The right-hand side is increasing with t and decreasing with t.

Furthermore, it is also smaller than unity, but it limits 1 as t→ t. Hence, this condition is fulfilled

for a ‘sufficiently homogeneous’ population (t ≈ t).
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Proposition 4 shows that symmetry is stable only if the variation of talent across the population

is small enough. This suggests that ability sorting is a natural equilibrium outcome when individuals

are sufficiently heterogeneous.

4.2 Perfect sorting equilibrium

We now construct an equilibrium with a single type of talent tc in each city. We refer to cities

in this equilibrium as talent-homogeneous cities. While we postpone our discussion of equilibrium

selection, we note that this equilibrium allows us to account for the stylised facts described above.

It also displays all the main tradeoffs in a tractable analytic setting.

Lemma 5 (Selection under perfect sorting) In talent-homogeneous cities, the productivity cutoff

is proportional to talent: there exist S ∈ (s, s) and φ ∈ (0, 1) such that ϕ
c

= Stc and Gs(S) = φ for

all c ∈ C, with

φ ≡ Gs(S) =
1

ε

∫ s

S

( s
S

) 1
ε

dGs(s). (19)

Proof. It follows from the definition of Fc(ϕc) that the fraction of individuals choosing to

become entrepreneurs after learning their luck, s, is independent from c: Fc(ϕc) ≡ Pr{ϕ < ϕ
c
} =

Gs(ϕc/tc). Inserting this expression into (13) and replacing ϕ by s tc and ϕ
c

by Sc tc yields (19)

since it it immediate that Sc must be the same for all c.

Lemma 5 highlights two important results. First, sorting induces selection. Talent-homogeneous

cities where talent is higher have a proportionately higher productivity cutoff, ϕ
c

= Stc. Second,

conditional on sorting there are no differences in selection across cities. We also note that S is the

implicit solution to equation (19). Obtaining an explicit solution would require the specification of

a tractable functional form for the cumulative distribution of luck, Gs.
11

To establish the conditions under which perfect sorting is part of an equilibrium, let us first use

equations (16) and (19) to write the expected indirect utility of an individual endowed with talent

t in talent-homogeneous city tc of size Lc:

EVc(t) =
1

1 + ε
(εφLc)

ε Stc

[
Gs (s′) +

(
t

tc

) 1
ε
∫ s

s′

( s
S

) 1
ε

dGs(s)

]
− θLγc

=
1

1 + ε
(εφLc)

ε Stc

[∫ S

s

dGs(s) +

∫ s′

S

dGs(s) (20)

+

(
t

tc

) 1
ε
∫ s

S

( s
S

) 1
ε

dGs(s) +

(
t

tc

) 1
ε
∫ S

s′

( s
S

) 1
ε

dGs(s)

]
− θLγc .

11The implicit function theorem shows that ∂S/∂ε < 0: selection is tougher when varieties become closer substi-

tutes. This is because greater substitutability leads to lower price markups and, in turn, lower profits. This then

leaves room for fewer entrepreneurs.
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It is easy to see that expected indirect utility increases with talent, t. A higher level of talent

increases the probability for an individual to make it into entrepreneurship and, in turn, increases

her expected earnings (given city size Lc). As an aside and for future reference, we note that

for t = tc, equation (20) indicates the expected consumption of a representative individual in

talent-homogeneous city c. Since t = tc implies s′ = S, equation (20) then simplifies into:

EVc(tc) = φ1+εStc(εLc)
ε − θLγc . (21)

Each individual chooses a city by solving maxc∈C EVc(t), where EVc(t) is given by (20). Observe

that the support of t is convex by assumption and that EVc(t) is continuously differentiable in Lc,

tc, and t. As a result, we can order cities so that tc = t(c) and Lc = L(c) are continuous functions

of c where t(c) comes from (17) and L(c) is given by (18).12 Hence, an equilibrium with talent

homogeneous cities is characterised by a function Lc(tc) that assigns one city size to each talent.

Individuals choose their preferred city from a ‘menu’ of possible combinations of talent and size,

knowing that the choice of a talent tc implies the choice of a size Lc(tc). Formally, this implies that

each individual solves a constrained optimisation problem which consists in picking the city with

talent tc that maximises her expected indirect utility from the menu of possible cities. Inserting

the constraint Lc ≡ Lc(tc) into the objective function, for an individual of talent t the first-order

condition to the city selection problem (17) with talent-homogeneous cities can be written as:

∂EVc(t)
∂Lc

∣∣∣∣
t=tc

dLc +
∂EVc(t)
∂tc

∣∣∣∣
t=tc

dtc = 0. (22)

Hence, for talent-homogeneous cities to be an equilibrium, there must exist a relationship between

talent and size such that each and every individual chooses a city where everyone has the same

talent as hers, and this choice maximises her expected indirect utility. More formally, we must find

a function Lc(tc) such that (22) holds for all t at t = tc.

We may view such equilibrium function Lc(tc) as describing an envelope of indifference curves

in the (tc, Lc) space. This function is represented by the bold curve in figure 2. As we will show, it

is convex when γ − ε < 1 (which is empirically the case, as highlighted by section 5). Consider an

individual with talent t0 choosing from the menu of equilibrium cities described by Lc(tc). Assume

that she picks city c1, which offers (t1, L1). In that case, this individual faces the indifference

curve EVc1(t0), which describes all the combinations of talent tc and size Lc that offer her the

same expected utility as city c1 conditional on her talent t0. The lower indifference curve EVc0(t0)

describes all the combinations of talent tc and size Lc that offer the same expected utility as city c0

conditional on a talent t0.13 Since expected indirect utility is increasing in the direction represented

12For µ(t) to be invertible we need either a strict inequality in (17) (which occurs in equilibrium) or that ties are

always broken in the same way in case of equality. Also, we can label cities in such a way that t is a continuous

function of c. It then follows from this labelling and from (22) that L is also a continuous function of c.
13Observe that this curve yields higher utility as it has smaller cities (less congestion) and more talent (higher

productivity): this is easily confirmed (locally at t = tc) by computing ∂EVc(t)/∂Lc

∣∣
t=tc

> 0 and ∂EVc(t)/∂tc
∣∣
t=tc

>
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by the arrow, EVc0(t0) maximises the expected utility of an individual with talent t0 subject to the

equilibrium menu of cities. Hence, for this individual with talent t0 utility is maximised in a city

where all individuals have the same talent t0 as hers. More generally, the bold curve Lc(tc) is the

envelope of indifference curves for all levels of talent. As we move up this curve, we progressively

read the optimal choices of individuals with higher talent. These are larger cities.

6

-

EVc0(t0)

EVc1(t1)

EVc1(t0)

Lc(tc)

t

L

0

^
x

x

x
EVc2(t2)

t1t0

L0

L1

Figure 2. Equilibrium with talent-homogeneous cities

We now solve formally for the equilibrium. From expressions (20) and (22), we obtain:14

{
ε

1 + ε
(εφLc)

ε Stc

[
φ

[
1 + ε

(
t

tc

) 1
ε

]
+

∫ S

s′

[(
st

Stc

) 1
ε

− 1

]
dGs(s)

]
− γθLγc

}
dLc
Lc

+
1

1 + ε
(εφLc)

ε S

{
φ

[
1 + (ε− 1)

(
t

tc

) 1
ε

]

−
∫ S

s′

[(
st

Stc

) 1
ε ε− 1

ε
+ 1

]
dGs(s)− tc

[(
s′t

Stc

) 1
ε

− 1

]
gs(s

′)
∂s′

∂tc

}
dtc = 0 (23)

Two properties of (23) are noteworthy. First, setting the term inside the first curly bracket to zero

for t = tc admits an interior solution in Lc. Because this term corresponds to the first term in

(22), this solution maximises expected utility with respect to size in a talent-homogeneous city.

Put differently, for t = tc, the solution to ∂EVc(t)/∂Lc = 0 in Lc is the (constrained) socially

optimal size of talent-homogeneous city c.15 Second, still for t = tc (and thus s′ = S), the terms

0, which yields the shape of the indifference maps (the arrow in figure 2 points in the direction of increasing expected

indirect utility).
14s′ is not generally differentiable with respect to t. Hence, ∂s′/∂tc should be viewed as a generalised derivative.

This does not matter for our problem at hand since, at the talent-homogeneous equilibrium, the term involving

∂s′/∂tc vanishes regardless of that (finite) derivative.
15Given labour supply, the equilibrium is optimal. However, the equilibrium choice of occupations is not in general

socially efficient. The equilibrium equates the wage with the profit of the marginal entrepreneur whereas optimality
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of the third line of (23) are equal to zero. In turn, this implies that the second curly bracket is

positive. Since this term corresponds to the second term in (22), the first-order condition for a

social optimum is violated at equilibrium city size for talent-homogeneous cities. Individuals have

an incentive to move to a city less talented than socially optimal. This is a consequence of the

first-in-village effect described above. The only reason why more talented individuals will accept

to be in more talented cities is that they are larger and, as shown by Proposition 3 more talented

individuals benefit relatively more from larger cities. These properties imply that cities are too

large in equilibrium. Coming back to our earlier metaphor, Rome must grow sub-optimally large

to offset the first-in-village effect and attract the likes of Julius Caesar.

Writing L and t as explicit functions of c, i.e. Lc ≡ L(c) and tc ≡ t(c), plugging these into (23),

and evaluating the resulting expression at t = t(c) yields a differential equation that determines

the menu (tc, Lc) that supports the talent-homogeneous equilibrium. Formally, we have to solve:

γθL(c)ε
[
ξt(c)

L′(c)

L(c)
− L(c)γ−ε

L′(c)

L(c)
+ δ

]
= 0, (24)

where

ξ ≡ S

γθ
(εφ)1+ε and δ ≡ ξ

1 + ε
> 0,

and ξ is increasing in selection and decreasing in the intensity of urban costs. Observe that δ may

be interpreted as the equilibrium market distortion that results from sorting since it arises from

the second term in (22).

Equation (24) under δ = 0 enables us to characterise the optimal size of talent-homogeneous

cities. This size is such that total land rent is equal to output times the degree of increasing returns.

This result is known as the Henry George Theorem and occurs in many urban models.16

Proposition 6 (Optimal city size under perfect sorting) Talent-homogeneous cities of op-

timal size are such that:

Lo(c) = [ξt(c)]
1

γ−ε . (25)

Optimal size increases with talent, tc, and agglomeration economies, ε, decreases with urban costs,

θ and γ, is such that the Henry George Theorem holds: TLR(c) = εY (c), and leads to expected

indirect utility: EV 0(c) = θ
ε
(γ − ε)[Lo(c)]γ.

Proof. By definition, talent-homogeneous cities of optimal size solve equation (24) for δ = 0.

Standard methods to solve such differential equations yield equation (25). The comparative statics

results are immediate by γ > ε. Observe that Lo(c) is actually a local maximum if EVc(t) is

concave in L(c) at t = t(c). Appendix A shows under which circumstances this necessary second-

order condition is satisfied. Next, total land rent is equal to TLR(c) = θγL(c)1+γ by (15) and city

requires equating the output of the marginal entrepreneur with foregone output from inframarginal ones.
16See Arnott (2004) for further discussions of the Henry George Theorem.
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output is Y (c) = εε [ϕL(c)]1+ε St(c) by (21). Using (25), it is easy to verify that TLR(c)−εY (c) R 0

if and only if L(c) R= Lo(c). Finally, plugging (25) into (21) yields the expression for expected

indirect utility.

As made clear by equation (25), optimal city size is determined by three elements. The first is

the standard trade-off between agglomeration economies (as given by ε) and urban costs (as given

by γ and θ). The second is talent in the city. The third is the proportion of entrepreneurs, which

is endogenously determined (but constant across cities). Cities with more talented entrepreneurs

have a larger optimal size. This is because more talent and better luck lead to higher productivity

firms and, in turn, productivity is magnified by agglomeration economies as shown by equation

(14).

We also note that this optimal size is equal to the one obtained when maximising expected utility

with respect to size in equation (21). This is unsurprising. When cities are talent-homogeneous

and in the absence of interactions between them, the optimal assignment of talent boils down

to finding an optimal size for each city depending on the talent of its residents regardless of the

overall distribution of talents. We now turn our attention to the decentralised solution, which solves

equation (24) under δ 6= 0:

Proposition 7 (Equilibrium size under perfect sorting) The talent-homogeneous equilibrium

is unique and such that

L∗(c) =

(
1 + γ

1 + ε

) 1
γ−ε

Lo(c). (26)

Equilibrium size is too large, increases with talent, tc, and agglomeration economies, ε, decreases

with urban costs, θ and γ, and leads to expected indirect utility: EV ∗(c) = θ
ε
γ−ε
1+γ

L∗(c)γ.

Proof. The solution to (24) for δ 6= 0 is slightly more complicated than for δ = 0. So we

proceed in two steps. First, we know that it must be of the same form as (25) because δ only

appears as a constant in (24). Hence, we impose L(c) = zt(c)
1

γ−ε , for some z, and plug this into

(24). This yields an equation involving the parameters of the model that is linear in z. Solving for

z gives

z = [(γ − ε)δ + ξ]
1

γ−ε ,

which establishes the result. For the second-order conditions, see Appendix A.

Cities are too large in equilibrium as in Henderson (1974). Because of the first-in-village effect,

when cities are of optimal size, any individual would like to relocate to smaller and less talented

cities to lessen selection. Less talented cities, when oversized, become less attractive in that respect.

However, it should also be that individuals should not want to relocate to larger cities where wages

are higher even if this comes at the cost of stronger selection. More talented cities, when oversized,

have higher urban costs and thus become less attractive in that respect. In the end, the gap between
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optimal and equilibrium cities depends only on the intensity of urban costs, γ, and agglomeration

economies, ε.

We also note that city sizes are uniquely determined in equilibrium. The trade-off between

agglomeration economies and urban costs leads to net output per resident being a bell-shaped

function of city size. With homogeneous individuals, there would be a coordination failure in

city formation so that any size between optimal city size and grossly oversized cities leaving their

residents with zero consumption can occur in equilibrium (Henderson and Becker, 2000). In our

model, the sorting of heterogeneous individuals makes this indetermination disappear entirely.

Formally, this follows from Proposition 3 and from the uniqueness of the solution to the differential

equation. Intuitively, more talented cities must be larger in equilibrium to attract more talented

individuals and discourage less talented individuals. At the same time, they cannot be so much

larger without discouraging more talented individuals as well. At the limit with a continuum of

talents and talent-homogeneous cities, equilibrium city sizes are uniquely determined.17

4.3 The size distribution of cities

To close the model, we return to the assignment function µ(t) = c, with µ(·) = µo(·) in the optimal

allocation and µ(·) = µ∗(·) in the equilibrium one. This assignment function assigns all individuals

in the economy to a city where to live. Roughly speaking, the assignment function tells us to which

share µ(tc) of cities the share of individuals with talent less than tc is assigned. After denoting Λ

the population size and gt the p.d.f. of Gt, the ‘full-population condition’ thus requires that

Λ

∫ t

t

gt(ν)dν =

∫ µ(t)

0

L(c)dc, ∀t ∈ [t, t] (27)

µ(t) = 0.

Proposition 8 (Number of cities) The equilibrium ‘number’ of cities is proportional to popula-

tion size Λ and too small relative to the social optimum.

Proof. Differentiating the first expression of (27) and using the definition of the assignment

function yields Λgt(t) = L(µ(t))µ′(t) = L(t)µ′(t), where µ′(t) can naturally be interpreted as the

density of cities hosting individuals with talent t. Solving this differential equation for µ(t) implies

µ(t) = µ(t) + Λ

∫ t

t

gt(z)

L(z)
dz, (28)

where the constant of integration µ(t) is equal to zero by (27). Inserting µ(t) = c into this expression

pins down the measure of C:

c = µ(t) = Λ

∫ t

t

gt(z)

L(z)
dz, (29)

17Henderson and Venables (2009) propose a dynamic fix for this coordination failure.
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which shows immediately that c increases proportionately to Λ. Let ξ̃ ≡ ξ at the optimal solution

and ξ̃ ≡ 1+γ
1+ε

ξ at the equilibrium. Then, using (25) and (26), equations (28) and (29) may be

rewritten as

µ(t) =
Λ

ξ̃

∫ t

t

gt(z)

z
1

γ−ε
dz and c = µ(t) =

Λ

ξ̃

∫ t

t

gt(z)

z
1

γ−ε
dz. (30)

Because, ξ̃ is smaller at the social optimum than at the market equilibrium, the second equality in

(30) immediately implies the second part of the result.

To derive sharper results about the size distribution of cities, we make additional assumptions

about the distribution of talent. Assume for now that it follows a truncated Pareto distribution

with support [t, t]:

Gt(t) =
1− (t/t)m

1−
(
t/t
)m . (31)

We note that this allows us to consider distributions of talent that are right skewed (m > −1),

uniform (m = −1), or even left skewed (m < −1).

Proposition 9 (Size distribution of cities) When talent follows a truncated Pareto distribu-

tion with shape parameter m over [t, t], the size distribution of talent-homogeneous cities is then a

truncated Pareto with shape parameter 1 + (γ − ε)m at both equilibrium and optimum.

Proof. Inserting the probability distribution function associated with (31) into both equalities

in (30) and computing the integrals yields:

µ(t) =
Λmtm(

m+ 1
γ−ε

)
ξ̃

1
γ−ε
[
1−

(
t/t
)m]

[
t−(m+ 1

γ−ε ) − t−(m+ 1
γ−ε )
]

and

c =
Λm

(
m+ 1

γ−ε

)(
ξ̃t
) 1
γ−ε [

1−
(
t/t
)m]

[
1−

(
t/t
)m+ 1

γ−ε
]
.

To get an expression for the size distribution of cities, GL(L) ≡ 1
c

∫ c(L)

0
dc, we use the assignment

function µ(·) and equation (26) (at the equilibrium) or (25) (at the optimum). This yields

GL(t) =
1− (t/t)m+ 1

γ−ε

1−
(
t/t
)m+ 1

γ−ε
⇒ GL(L) =

1− (L/L)1+(γ−ε)m

1−
(
L/L

)1+(γ−ε)m (32)

which is a truncated Pareto distribution with shape parameter 1 + (γ − ε)m over [L,L] where

L ≡ L(t) and L ≡ L(t).

It is easy to understand that if talent follows a Pareto distribution, the size distribution of cities

is also Pareto. This occurs because both optimal and equilibrium city sizes in (25) and (26) are
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power functions of talent in the city. Then, any power transformation of a Pareto distribution is also

a Pareto distribution and the result obtains. Beyond this, note that the first part of equation (32)

gives the distribution of city sizes by talent. Since city size is proportional to t1/(γ−ε), the ‘number’

of cities of talent t is given by the ‘number’ of individuals with this level of talent divided by the size

of those cities. This adds 1
γ−ε to the skew of the talent distribution and yields a Pareto distribution

of sizes by talent with shape m + 1
γ−ε . In turn, the size distribution of cities, is obtained from a

change of variable using the fact that Lγ−ε is proportional to t. This yields a shape parameter of

1 +m(γ − ε) for the size distribution of cities.

The fact that γ − ε is empirically small (as highlighted by the next section) has two interesting

implications. First, the equilibrium and optimum distributions for the size of cities are expected

to be close to a Pareto distribution with unitary shape parameter, a.k.a. Zipf’s law, which is a

reasonable first-order approximation for observed city size distributions (Gabaix and Ioannides,

2004; Soo, 2005). Second, even if the distribution of talents does not follow a power law, the fact

that γ − ε is small still implies that the size distribution of cities remains approximately Zipf.

Proposition 9 completes the characterisation of the equilibrium with talent-homogeneous cities.

This equilibrium is consistent with the stylised facts discussed above about agglomeration, sorting,

selection, and the size distribution of cities. In particular, if we take seriously the empirical result

of Combes, Duranton, Gobillon, Puga, and Roux (2009) that the intensity of selection is constant

across cities, one should look for equilibria with constant selection. The equilibrium with talent-

homogeneous cities is a particular case within this class of equilibria. In Appendix B, we explore

more fully equilibria with constant selection but imperfect sorting. We show that the key qualitative

properties of the equilibrium with talent-homogeneous cities continue to hold true.

There are two further reasons that justify our focus on the equilibrium with talent-homogeneous

cities. In section 6, we investigate an example of equilibrium with variable selection across cities. We

show that the key properties of the equilibrium with talent-homogeneous cities are also properties of

this equilibrium with variable selection. Finally, in Appendix C, we show that the socially optimal

solution in a simplified setting also allocates the most talented entrepreneurs to the largest cities

under the exact same conditions that are necessary for the second-order condition in Proposition

7 to hold. Strikingly, this condition ensures that EV (t, L) is log supermodular in its arguments, in

which case Proposition 3 holds irrespective of the composition of cities in terms of talent.

5 Quantitative implications

We now use our framework to revisit several well-known empirical results. Since the model is highly

stylised, this exercise should be viewed as ‘theory with numbers’, not empirical analysis. Taking

the log of average city earnings as given by the first term on the right hand side of equation (21),

we obtain

ln yc = [ln(φS) + ε ln (εφ)] + ln tc + ε lnLc . (33)
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This expression indicates that regressing log average earnings on log population while controlling

for talent yields an estimate of agglomeration economies, ε. Now, using equations (25) and (26) to

obtain a relation between talent and equilibrium size and substituting for tc into (33), we get:

ln yc = ln

(
1 + ε

1 + γ

γθ

ε

)
+ γ lnLc . (34)

Hence, regressing log average earnings on log population without controlling for talent yields an

estimate of the urban costs parameter, γ. To understand why this is so, note first that cities result

from a tradeoff between agglomeration benefits and urban costs. Cities can be of different sizes

either because they differ in how they benefit from agglomeration depending on their size or in how

urban costs are affected by size. In our model, urban costs are equal to θLγ in all cities. As made

clear by (33), expected earnings depend on the level of talent in the city. As a result, if we do not

control for talent, we look at a situation where all cities face the same urban cost function but differ

in how they benefit from agglomeration. Regressing log average earnings against log population

then estimates the elasticity of urban costs with respect to size.18

Let us illustrate this with standard data. We estimate equations (33) and (34) using us Census

data for 276 metropolitan statistical areas in 2000. We measure yc with city average earnings and

tc with the share of the population older than 18 years with at least an associate degree following

standard practice in labour economics. We obtain:19

ln yc = 8.59 + 0.082 lnLc , (35)

ln yc = 9.60 + 0.051 lnLc + 0.46 ln tc . (36)

These two regressions imply γ̂ = 0.082 and ε̂ = 0.051. These coefficients on log-population are

robust to alternative measures of yc and tc. For instance, if we take income per capita instead of

average earnings, we obtain estimates of 0.067 for γ and 0.050 for ε. Using the share of population

older than 18 years with a graduate or professional degree to measure tc in regression (36) yields a

coefficient of 0.058 on log population.

Our preferred estimate of the elasticity of earnings, ε̂ = 0.051, is within the usual range in

the literature. See Glaeser and Resseger (2010) for recent results on us data and Rosenthal and

Strange, (2004) or Melo, Graham, and Noland (2009) for broader reviews.20 The sizable drop in

18Matters are actually more complicated than that because expected indirect utility is not equalised across cities

as shown by Proposition 7. In larger cities where more talented individuals locate, expected indirect utility is higher.

Hence not only do cities differ in their production function but they also differ in how much they offer to individuals.

However, in equilibrium, the elasticity of expected indirect utility with respect to city size is the same as that of

urban costs, γ. Because of this, expected indirect utility varies across cities like urban costs and this creates no

further problem.
19All coefficients, including the constant terms, are significant at the 1% confidence level in all estimations.
20We use city aggregated data and few controls. Using micro-data and more controls typically results in slightly

lower estimates for the coefficient on city size (Combes, Duranton, and Gobillon, 2008; Glaeser and Resseger, 2010).

These small differences are not important for our purpose here.
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the coefficient for log population after adding a measure of city education is also typical (Combes,

Duranton, and Gobillon, 2008; Glaeser and Resseger, 2010).

Our favourite estimate for the elasticity of urban costs is γ̂ = 0.082. A monocentric model

with linear commuting costs implies much higher elasticities: between 0.66 (for a two dimensional

city) and 1 (for a one dimensional city as we use here). However, recent work on us cities reports

estimates close to ours (Albouy, 2009; Baum-Snow and Pavan, 2009a). To corroborate our finding

further, we also estimate the elasticity of urban costs with respect to population size using housing

rents (rc) to measure urban costs directly:

ln rc = 5.19 + 0.085 lnLc .

This coefficient of 0.085 is remarkably close to the coefficient of 0.082 estimated in (35). Arguably,

renters differ from homeowners and their rents may not reflect typical urban costs. As a further

robustness test, assume that the price index for housing in city c is given by hc = vαcc r
1−αc
c , where

vc is the value of owner-occupied housing and rc the rents paid for renter occupied housing. We

measure αc by msa c’s share of owner-occupied housing. Regressing the log of this housing price

index, hc, on the log of population yields:

lnhc = 9.72 + 0.11 lnLc. (37)

This estimate of 0.11 for urban costs remains reasonably close to that in (35) despite relying on a

different estimating equation.

Equation (26) also implies that the elasticity of talent (measured by the share of university

graduates) to city size should be equal to γ − ε. We obtain γ̂ − ε̂ = 0.031 when using (35) and

(36) and γ̂− ε̂ = 0.059 when using (35) and (37). Regressing directly the log-share of graduates on

log-population yields

ln tc = −2.21 + 0.068 lnLc.

This elasticity 0.068 is statistically undistinguishable from 0.059 (though it differs from 0.031). At

first sight, small values for the elasticity of talent to city size appear to argue against the importance

of ability sorting across cities. Our model shows instead that a small value for the size elasticity of

talent corresponds in equilibrium to the small difference between the size elasticity of urban costs

and that of agglomeration economies. Put differently, city size is proportional to t
1/(γ−ε)
c . A small

difference between γ and ε, as seems to be the case empirically, is then enough for small differences

in talent to translate into large differences in city size. For instance, if the smallest city in the

economy has L = 10, 000 inhabitants and the largest has L = 10 million, then this corresponds to

the latter city being only about 24% more talented than the former given our estimates of γ and

of ε.

Next, using again ε̂ = 0.051 and γ̂ = 0.082, it is easy to compute how oversized cities are:

L̂∗c
Loc

=

(
1 + γ̂

1 + ε̂

) 1
γ̂−ε̂

= 2.55. (38)
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This suggests that us cities may be, on average, about 155% larger than their optimal size.21 To

check the robustness of this finding, figure 3 plots the oversize of cities as computed in equation (38)

for varying values of γ and three values of ε. Despite covering a broad range around our preferred

estimates, this plot indicates that an oversize of 145 to 165% is to be expected. Consistently with

the comparative statics of equation (38), the figure also shows that city oversize decreases in γ and

ε (< γ). Using a first-order linear approximation of equation (38) when γ − ε is small, we obtain

L∗c/L
o
c ≈ exp( 1

1+ε
) which tends to Euler’s number when ε and γ go to zero. Given that ε and γ are

empirically small, cities are ‘naturally’ oversized by a factor close to e ≈ 2.72.

This oversize may seem like a considerable inefficiency. However, the associated welfare loss in

consumption is tiny. To see this, we use equations (25), (26), and (38) to compute an estimate of

21In equation (24), δ the equilibrium size distortion is an alternative measure of oversize. Subtracting the constant

of equation (34) from that of (33) yields ln(δ) + ln(1 +γ). Using γ̂ = 0.082 and the constants estimated in equations

(35) and (36), we obtain δ̂ = 2.54.
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the indirect utility (consumption) loss:

∆̂EV ≡ EV (L̂∗)− EV (L̂o)

EV (L̂o)
= −1 +

γ̂

γ̂ − ε̂

(
L̂∗c
Loc

)ε̂

− ε̂

γ̂ − ε̂

(
L̂∗c
Loc

)γ̂

= −0.2%. (39)

This loss in consumption is economically small, about one-fifth of a percentage point. To confirm

the robustness of this magnitude, figure 4 plots the economic loss associated with this oversize for

the same parameter values as figure 3. It is less than half a percentage point.

The reason why losses from oversized cities are so small is the following. Recall first that cities

are oversized by a factor of at most e = 2.72. Imagine next that earnings are of the same magnitude

as urban costs. Then, the maximum loss from oversize would be 1− e−(γ−ε) or about 2.8% for our

preferred value of γ− ε = 0.031. However, equilibrium urban costs are much smaller than earnings

so that the actual loss is much smaller than that. These results are consistent with those of Au and

Henderson (2006) for Chinese city. Using the fact that Chinese migration policies have limited the

growth of Chinese cities, they estimate the shape of net benefits from cities as a function of their

size. Like us, they find a very flat curve past the optimum. This suggests that restricting the size

and growth of cities is unlikely to deliver substantial welfare improvements.22

6 Equilibria with varying selection: an example

Equilibria with constant selection across cities seem empirically relevant. They are however special

cases. While a general analysis of all equilibria is beyond the scope of this paper, we turn now to a

situation with varying selection across a discrete number of city-types. This situation is interesting

because it shows that many of the properties of the equilibrium with talent-homogeneous cities

remain true or approximately true in more general cases.

To keep things simple, we consider only three types of cities, type-1, type-2, and type-3 cities,

and subscript variables accordingly. We also specify the distributions of talent and luck to be

uniform over T = [t, t] and Σ = [s, s], respectively. Total population is fixed to Λ, and we denote

by ni the mass (the number) of type-i cities in the economy.

We first derive the distribution of the productivity variable ϕ ≡ ts. Using theorem 1 of Glen,

Leemis, and Drew (2004) and assuming without loss of generality for our purpose that ts < ts, the

product of talent and luck is distributed as follows:

f(ϕ) =





1
(s−s)(t−t) ln

(
ϕ
st

)
if ts ≤ ϕ ≤ ts

1
(s−s)(t−t) ln

(
s
s

)
if ts ≤ ϕ ≤ ts

1
(s−s)(t−t) ln

(
st
ϕ

)
if ts ≤ ϕ ≤ ts

(40)

22Figure 4 also shows that the loss from oversize increases with agglomeration economies, ε. This is because a

higher ε (given γ) implies larger cities. In turn this magnifies the inefficiency from oversize (that the oversize becomes

relatively smaller with ε only partially offsets this).
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We first derive the distribution of the productivity variable ϕ ≡ ts. Using theorem 1 of Glen,

Leemis, and Drew (2004), and assuming without loss of generality for our examples that ts < ts,

the product of talent and luck is distributed as follows:

f(ϕ) =





1
(s−s)(t−t)

ln
(

ϕ
st

)
if ts ≤ ϕ ≤ ts

1
(s−s)(t−t)

ln
(

s
s

)
if ts ≤ ϕ ≤ ts

1
(s−s)(t−t)

ln
(

st
ϕ

)
if ts ≤ ϕ ≤ ts

(44)

A similar distribution can be derived for the case where ts ≥ ts. Using (44), we can easily derive

the cumulative productivity distribution F (·).
In what follows, we focus on equilibria with two talent thresholds t1 and t2 such that all agents

with talent t ∈ [t, t1] choose to locate in type-1 cities; all agents with talent t ∈ [t1, t2] choose to

locate in type-2 cities; and all agents with talent t ∈ [t2, t] choose to locate in type-3 cities. The

thresholds t1 and t2, the number of type-i cities, their sizes Li and thir productivity cutoffs ϕ
i
for

i = 1, 2, 3 are all endogenously determined.

Let ∆EVi(t) = EVi(t) − maxj 6=i EVj(t). A spatial equilibrium is such that every agent with

talent t picks the city that maximises her expected indirect utility. Formally, ∆EV1(t) ≥ 0 for all

t ∈ [t, t1]; ∆EV2(t) ≥ 0 for all t ∈ [t1, t2]; and ∆EV3(t) ≥ 0 for all t ∈ [t2, t]. Figure 6 depicts the

expected indirect utility differential for the three types of cities, as well as the two talent cutoffs.

We set the parameter values as follows: ε = 0.47, γ = 0.7, θ = 0.5, Λ = 5000, t = s = 1, t = 5

and s = 2.27 In figure 6 we also set the numbers of cities to n1 = 20, n2 = 6 and n3 = 2. Observe

27Observe that the values of ε and γ are larger than their empirical counterparts, but that their difference is small
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Using (40), we can easily derive the cumulative productivity distribution F (·).
In what follows, we focus on equilibria with two talent thresholds t1 and t2 such that all indi-

viduals with talent t ∈ [t, t1] choose to locate in type-1 cities; all individuals with talent t ∈ [t1, t2]

choose to locate in type-2 cities; and all individuals with talent t ∈ [t2, t] choose to locate in type-3

cities. The thresholds t1 and t2, the number of type-i cities, their sizes Li and their productivity

cutoffs ϕ
i

for i = 1, 2, 3 are all endogenously determined. Let ∆EVi(t) = EVi(t) − maxj 6=i EVj(t).
A spatial equilibrium is such that every individual with talent t picks the city that maximises

her expected indirect utility. Formally, ∆EV1(t) ≥ 0 for all t ∈ [t, t1] (and negative otherwise);

∆EV2(t) ≥ 0 for all t ∈ [t1, t2] (and negative otherwise); and ∆EV3(t) ≥ 0 for all t ∈ [t2, t] (and

negative otherwise).

Figure 5 depicts the expected indirect utility differential for the three types of cities, as well as

the two talent cutoffs for: ε = 0.47, γ = 0.5, θ = 0.5, Λ = 5000, t = s = 1, t = 5 and s = 2. In

figure 5 we also set the numbers of cities to n1 = 20, n2 = 6 and n3 = 2. This choice of parameter

values calls for two remarks. First, our values for agglomeration economies, ε, and urban costs,

γ are much larger than empirically reasonable for robustness purposes. Second, the mass of cities

of each type is not uniquely determined in equilibrium, as was the case with talent-homogeneous

cities. There exists instead a continuum of ni, i = 1, 2, 3 which can be in equilibrium.

The allocation we have chosen is in equilibrium for t1 and t2 as determined on figure 5 since all

individuals located in type-1 cities (i.e., left of t1) get an expected utility no smaller than in type-2

or type-3 cities; all individuals in type-2 cities (i.e., between t1 and t2) get an expected utility no

smaller than in type-1 or type-3 cities; and all individuals in type-3 cities (i.e., right of t2) get an

expected utility no smaller than in type-1 or type-2 cities.

In line with the results derived in the case of talent-homogeneous cities, more talented cities are

larger, more productive, and pay higher wages. We have L3 = 1660.42, ϕ
3

= 6.58 and w3 = 89.46,
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that the mass of cities of each type is not uniquely associated with an equilibrium, as was the case

with talent-homogenous cities. Indeed, for each equilibrium, there exists a range of cities masses

ni, i = 1, 2, 3 such that the new configuration is still an equilibrium.

As can be seen from figure 6, the allocation we have chosen is indeed a spatial equilibrium since

all agents located in type-1 cities (i.e., left of t1) get an expected utility level not smaller than if

they would choose a type-2 or type-3 city; all agents located in type-2 cities (i.e., between t1 and

t2) get an expected utility level not smaller than if they would choose a type-1 or type-3 city; and

all agents located in type-3 cities (i.e., right of t2) get an expected utility level not smaller than if

they would choose a type-1 or type-2 city.

In line with the results derived in the case with talent-homogeneous cities, we readily obtain the

following results. First, the more talented a city is, the larger it is, the more productive it is and

the higher are the wages it pays. More precisely, we have L3 = 1660.42, ϕ
3
= 6.58 and w3 = 89.46,

whereas the corresponding figures for type-2 cities are L2 = 240.38, ϕ
2
= 3.13 and w2 = 17.14

and for type-1 ‘cities’ are L1 = 11.84, ϕ
1
= 1.88 and w1 = 2.45. In words, type-3 cities are about

6.9 times larger that type-2 cities, which are themselves about 20.3 times larger than type-1 cities.

Furthermore, type-3 wages exceed type-2 wages by a factor of 5.2, and type-2 wages exceed type-1

wages by a factor of 7. Productivity cutoffs reflect a similar ranking. It is worth pointing out

that the strong right-skew in the size distribution of cities does not stem from the right-skew in

the distribution of talent. The latter is uniform, but there is nevertheless a large size asymmetry

between more and less talented cities that solely comes from sorting, agglomeration economies and

and in line with our estimates. As our model is highly stylised, we do not expect to match the values of the empirical

estimates for our ‘toy examples’.
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whereas the corresponding figures for type-2 cities are L2 = 240.38, ϕ
2

= 3.13 and w2 = 17.14

and for type-1 cities are L1 = 11.84, ϕ
1

= 1.88 and w1 = 2.45. In words, type-3 cities are about

7 times larger than type-2 cities, which are themselves about 20 times larger than type-1 cities.

Furthermore, type-3 wages exceed type-2 wages by a factor of about 5, and type-2 wages exceed

type-1 wages by a factor of 7. The productivity cutoffs reflect a similar ranking. Importantly,

the strong right-skew in the size distribution of cities does not stem from the right-skew in the

distribution of talent. The latter is uniform. Instead, sorting, agglomeration economies, and the

size-talent complementarity generate these asymmetries.

With talent-homogeneous cities, the degree of selection Fc(ϕc) is the same for all cities, a knife-

edge result. However, and quite remarkably, although larger cities may have tougher selection,

the differences in the degree of selection are small in our example. We find that F1(ϕ
1
) = 0.720,

whereas F2(ϕ
2
) = 0.746 and F3(ϕ

3
) = 0.749. Put differently, although the productivity cutoff in

type-3 cities is about 110% higher than in type-2 cities, itself 66% higher than in type-1 cities,

selection differs by barely 4% between the two extremes. The intuition is that larger cities provide

entrepreneurs with access to more and richer consumers. This almost fully offsets the tougher

environment.

Figure 6 depicts the distribution of entrepreneurial profits for type-2 and type-3 cities (a similar

figure can be drawn for type-1 and type-2 cities). The solid curve is for type-2 cities (i.e., medium-

sized cities) whereas the dashed curve is for type-3 cities (i.e., large cities). All individuals with

profit below the thresholds w2 and w3 choose to become workers instead of entrepreneurs. Hence,

entrepreneurs are to the right of w2 for type-2 cities and to the right of w3 for type-3 cities. Com-

paring the two curves, two features are immediately apparent. First, entrepreneurial profits in the

larger cities are significantly right-shifted relative to the ones in smaller cities. This is due to both

agglomeration and sorting. Second, there is substantial dilation of profits in large cities relative to
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small cities. Large cities host, on average, more productive individuals but the most productive of

them are benefiting disproportionately from being there. Large cities are thus more unequal than

small cities by most conventional measures of inequality. This is consistent with the findings of

the literature on inequalities in cities (Baum-Snow and Pavan, 2009b; Behrens and Robert-Nicoud,

2009; Glaeser, Tobio, and Resseger, 2009). Interestingly, to map the distribution of profits in

medium-sized cities into that of large cities, we need to apply a tiny truncation (small differences

in selection), a large right-shift (for agglomeration and sorting) and a significant dilation (the inter-

action between sorting and agglomeration). This is clearly reminiscent of the findings of Combes,

Duranton, Gobillon, Puga, and Roux (2009) regarding the distributions of firms’ productivities in

small and large French cities.

7 Conclusion

Although abundant empirical research in urban economics has substantiated a significant positive

correlation between skills and city size, theory had much less to say about the spatial sorting

of heterogeneous individuals across an urban hierarchy until now. This paper is an attempt to

make progress in this direction. We have shown that ex ante sorting along talent and ex post

selection along productivity, when coupled with an otherwise standard model of agglomeration

economies and monocentric cities, allow us to replicate key stylised facts: larger cities host more

talented individuals, have more productive (but not a greater proportion of) entrepreneurs, pay

higher wages, and have higher urban costs. Importantly, even though firms in larger cities are more

productive on average than in smaller cities, this is not true for all firms. Finally, the distribution

of talent maps into the distribution of city sizes and this provides a simple static explanation for

why cities’ size distribution is approximately a Pareto with a shape parameter close to minus one.

In addition to our theoretical contribution, we believe that our model may be useful to make

progress in various directions. First, our framework goes beyond the analysis of the interactions

between sorting, selection and agglomeration. It also provides a setting within which to interpret

quantitative evidence obtained from standard regressions. It suggests, in particular, how various

regressions of measures of productivity, of skills and of urban costs on log population can be

consistently interpreted and how they relate quite naturally to each other. We believe that such

an interpretative framework may be useful for guiding future empirical analysis.

Second, our concept of spatial equilibrium may be useful to shed new light on spatial arbitrage

when static utility levels are not equalised across locations at equilibrium. Most of the literature

in urban economics focuses on situations where all individuals are indifferent across all cities (e.g.,

Glaeser and Gottlieb, 2009). But there may be no one at the margin between two very different

cities when different types of individuals locate in different subsets of the urban hierarchy. This

fact may have numerous implications on how changes in various economic variables affect the urban

landscape: when some individuals strictly prefer larger cities, local policy makers have an additional
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degree of freedom since their ‘tax base’ becomes less mobile. Our model may thus be especially

useful for addressing local policy issues.

Finally, cities are essentially passive in our model. In reality, cities, especially the most talented

ones, actively limit their population growth and this may foster sorting even further (Gyourko,

Mayer, and Sinai, 2006). Allowing cities to play a more active role within our framework figures

prominently on our research agenda.

Acknowledgements. We thank Arnaud Costinot, Xavier Gabaix, Ed Glaeser, Laurent Gobillon, Tom

Holmes, Yannis Ioannides, Sanghoon Lee, Diego Puga, Jacques Thisse, Jonathan Vogel, and especially

Vernon Henderson and Esteban Rossi-Hansberg for very helpful discussions and comments. Conference

and seminar participants at Berkeley, Chicago Fed, Columbia, Louvain-la-Neuve, Milan, mit, Philadelphia

Fed, Princeton, Rennes, Rimini, San Francisco, and University of Virginia provided valuable feedback.

Behrens is holder of the Canada Research Chair in Regional Impacts of Globalization. Financial support

from the crc Program of the Social Sciences and Humanities Research Council (sshrc) of Canada is

gratefully acknowledged. Behrens further gratefully acknowledges financial support from fqrsc Québec
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Appendix A. Second-order conditions for the equilibrium

with talent-homogeneous cities

Let EV (tc, t) ≡ EVc(t) and have ξ̃ such that ξ̃ = ξ at the optimum and ξ̃ = 1+γ
1+ε

ξ at the equilibrium.

Using L = (ξ̃tc)
1

γ−ε , which holds both at the equilibrium and at the optimum by definition of ξ̃,

the consumption of the numéraire with talent-homogeneous cities is given by:

EVc(tc) ≡ θ

(
γξ

εξ̃
− 1

)
(ξ̃tc)

γ
γ−ε .

This expression is positive if and only if ε < γ, which we assume to hold true for cities to be of

finite size. Furthermore, since the elasticities γ and ε are empirically much smaller than unity (see

section 5), we impose the additional restriction γ < 1.

34



Letting s′ ≡ min
{
s,max{Stc/t, s}

}
and using (20), a sufficient condition for the talent-homogeneous

case to be an equilibrium is that

EVc(t) =
1

1 + ε

[
εφ
(
ξ̃tc

) 1
γ−ε
]ε
Stc

[
Gs (s′) +

(
t

tc

) 1
ε
∫ s

s′

( s
S

) 1
ε

dGs(s)

]
− θ(ξ̃tc)

γ
γ−ε

=
θγ
(
ξ̃
) γ
γ−ε

ξ

φε(1 + ε)ξ̃

{
1− φε(1 + ε)ξ̃

γξ
+

(
t

tc

) 1
ε
∫ s

s′

( s
S

) 1
ε

dGs(s)−
∫ s

s′
dGs(s)

}
t

γ
γ−ε
c (A.1)

be quasi-concave in tc for all (t, tc) ∈ T × T . Imposing quasi-concavity on (A.1) yields, however,

an expression that is so unwieldy that it is impossible to see how restrictive this condition would

be. We follow an alternative route by imposing a more stringent sufficient condition than quasi-

concavity. As will be shown, the resulting set of parameter values that satisfy this overly strong

condition is non-empty, thereby implying that the set of parameters that satisfy quasi-concavity is

non-empty too.

We first derive conditions under which EVc(t) is concave in tc for all (t, tc) ∈ T ×T . Taking the

first derivative of (A.1) with respect to tc (and disregarding the multiplicative constant in front of

the curly bracket) yields

∂EVc
∂tc

=
γ

γ − εt
γ
γ−ε−1
c

{
1− φε(1 + ε)ξ̃

γξ
+

(
t

tc

) 1
ε
∫ s

s′

( s
S

) 1
ε

dGs(s)−
∫ s

s′
dGs(s)

}

+ t
γ
γ−ε
c

{
− 1

εtc

(
t

tc

) 1
ε
∫ s

s′

( s
S

) 1
ε

dGs(s)−
(
ts′

tcS

) 1
ε

gs(s
′)
∂s′

∂tc
+ gs(s

′)
∂s′

∂tc

}
.

Tedious computations show that the second derivative is given by

∂2EVc
∂t2c

=
γε

(γ − ε)2
t

γ
γ−ε−2
c

{
1− φε(1 + ε)ξ̃

γξ
+

(
t

tc

) 1
ε
∫ s

s′

( s
S

) 1
ε

dGs(s)−
∫ s

s′
dGs(s)

}
(A.2)

+
2γ

γ − εt
γ
γ−ε−1
c

{
− 1

εtc

(
t

tc

) 1
ε
∫ s

s′

( s
S
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ε

dGs(s)−
(
ts′

tcS
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ε
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∂tc
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∂tc
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(A.3)

+ t
γ
γ−ε
c

{
1 + ε

ε2t2c
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tc

) 1
ε
∫ s

s′

( s
S

) 1
ε
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εtc
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∂tc
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gs(s
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}
,

where (A.2), (A.3) and (A.4) denote the first, the second, and the third term of this second

derivative, respectively. To simplify this derivative, note first that (A.2) can be rewritten as:

γε

(γ − ε)2
t

γ
γ−ε−2
c

{
Gs(s

′)− φε(1 + ε)ξ̃

γξ
+

(
t

tc

) 1
ε
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( s
S

) 1
ε
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}
. (A.5)
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Observe next that in (A.3), the second and third term inside the curly bracket are such that:

−
(
ts′

tcS

) 1
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′)
∂s′

∂tc
+ gs(s

′)
∂s′

∂tc
= −gs(s′)
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∂tc
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1−

(
ts′

tcS

) 1
ε

]
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where the last equality follows from the definition of s′. Hence, (A.3) boils down to:

− 2γ

ε(γ − ε)t
γ
γ−ε−2
c

∫ s

s′

(
ts

tcS

) 1
ε

dGs(s). (A.6)

Last, some straightforward rearrangements allow us to make the following terms appear in (A.4):

g′s(s
′)

(
∂s′

∂tc

)2
[

1−
(
ts′

tcS

) 1
ε

]
= 0 and gs(s

′)
∂2s′

∂t2c

[
1−

(
ts′

tcS

) 1
ε

]
= 0

where the equalities again follow from the definition of s′. Hence, the last four terms in (A.4) cancel

out. Regrouping, we then can re-express (A.4) as follows:

t
γ
γ−ε−2
c
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ε2
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ts

tcS
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tc
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∂tc
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. (A.7)

Adding expressions (A.6), (A.5) and (A.7), and rearranging, we then finally obtain:

∂2EVc
∂t2c

= −
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ε
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1
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) 1
ε tc
s′
∂s′

∂tc
.

The necessary second-order condition (nsoc) requires this second derivative to be negative at

t = tc. Evaluating the nsoc at equilibrium, using φ = Gs(S), and simplifying, we obtain:

∂2EVc
∂t2c

∣∣∣∣
t=tc

= −t
γ
γ−ε−2
c

ε

[
φ
ε− γ(1− ε)

γ − ε − gs(s)S
]
.

Thus, the nsoc may be expressed as

gs(s)S

Gs(S)
<
ε− γ(1− ε)

γ − ε , (A.9)

This implies that ε < γ < ε
1−ε . Note next that φ and S are two endogenous variables linked by (19).

Thus, it is easy to find distributions of luck s that satisfy (A.9) in general. As most distributions

are characterised by at least two parameters, the choice of the support gives us an additional degree

of freedom.
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Since general sufficient second-order conditions for arbitrary distributions of luck and talent

are too unwieldy to be revealing, we establish the generic existence of a non-zero measure set of

parameter values supporting talent-homogeneous cities as an equilibrium for the special case of

Pareto distributions.

Proposition 10 (Equilibrium existence with Pareto distributions) Assume that s follows

a Pareto distribution with shape parameter k > 1/ε on the support Σ ≡ [s,∞), with s > 0. Then

there generically exists a non-empty set of parameter values such that the talent-homogeneous case

of Proposition 7 is an equilibrium.

Proof. If Gs(s) = 1− (s/s)k for s ∈ Σ ≡ [s,∞) with s > 0 and k > 1/ε, then sgs(s)
1−Gs = k for all

s ∈ Σ. Then, the solution for φ and S yields

φ ≡ Gs (S) =
1

ε

∫ ∞

S

( s
S

) 1
ε

dGs(s) =
k

kε− 1

( s
S

)k
and

( s
S

)k
= 1− φ. (A.10)

Together, these two expressions imply φ
1−φ = k

kε−1
> 1

ε
. Plugging this result into (A.9) implies that

∂2EVc/∂t2c |t=tc < 0 if and only if

k <
γ

γ − ε. (A.11)

This simple condition is the nsoc when s is Pareto distributed. Turning now to the sufficient

second-order condition (ssoc), let us rewrite (A.8) as

∂2EVc
∂t2c

= −t
γ
γ−ε−2
c Z (t, tc) .

Then a ssoc is that Z (t, tc) > 0 for all (t, tc) ∈ T × T . With s being Pareto distributed, Z (t, tc)

is equal to

Z (t, tc) =
1

(γ − ε)2

{
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[
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( s
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ε
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ε2

k
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(
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tcS

) 1
ε ( s

s′

)k
}
− 1− φ

ε
k,

where the first term makes use of the definition of Gs and the second term follows from

∫ ∞

s′

(
ts

tcS

) 1
ε

dGs(s) =
k

k − 1
ε

(
ts′

tcS

) 1
ε ( s

s′

)k
.

Using (A.10), Z can then be rewritten as

Z (t, tc) =
ε

(γ − ε)2

{
φε (1 + γ)− γ

[
1−

( s
s′

)k]}

+ φ
[ε− γ(1− ε)] [γ − ε (1 + ε)]

ε (γ − ε)2

(
ts′

tcS

) 1
ε
(
S

s′

)k
− 1

ε
(1− φ) k, (A.12)
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which is clearly decreasing in s′ by k > 1/ε. Hence, the term in curly brackets is positive for all

(t, tc) ∈ T × T if it is positive at (t, tc) =
(
t, t
)
. Let κ ≡

(
t/t
)k
> 1. Then for the case St/t > s,

which always holds by κ > 1 and φ ∈ (0, 1), we have

( s
s′

)k
=

1

κ

( s
S

)k
=

1− φ
κ

and

(
ts′

tcS

) 1
ε
(
S

s′

)k
=

1

κ
.

Plugging these expressions into (A.12) provides us with the following ssoc:

Z (κ) ≡ ε

(γ − ε)2

{
φε (1 + γ)− γ

[
1− 1− φ

κ

]}
+ φ

[ε− γ(1− ε)] [γ − ε (1 + ε)]
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1

κ
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ε
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]
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γε (kε− 1) + [ε− γ(1− ε)] [γ − ε (1 + ε)]

k

ε

}

≡ 1

(γ − ε)2 [k (ε+ 1)− 1]

(
A+

1

κ
B

)
> 0,

Three properties of Z (κ) are noteworthy. First,

Z (1) =
k

k (ε+ 1)− 1

(
γ

γ − ε − k
)
> 0.

This inequality holds by (A.11). It is nothing but the nsoc and so was to be expected. Second,

B > 0 by ε < γ < ε/(1 − ε) and thus Z (κ) is continuously decreasing in κ. Finally, Z (κ) is

continuous in ε, γ and k. Together, these properties imply that the ssoc holds around κ = 1 for

all triples (ε, γ, k) that belong to some set ψnsoc ⊂ R∗+ × R∗+ × (1,∞), where

ψnsoc ≡
{

(ε, γ, k) :
1

ε
< k <

γ

γ − ε and ε < γ <
ε

1− ε

}

is non-empty. By continuity, for any κ arbitrarily close to unity we can find a non-zero measure

set of parameters (ε, γ, k) such that Z (κ) is positive. Specifically, either of the following two cases

applies: (i) if

A ≡ ε [γ − (γ − ε) k]− (γ − ε)2 (kε− 1) k

ε
> 0,

then Z (κ) > 0 for all κ ≥ 1; otherwise, (ii) if A < 0 there exists a κ > 1 such that Z (κ) > 0 for

all κ ∈ [1, κ) and limκ→κ Z (κ) = 0. Hence, there generically exists a non-empty set of parameter

values

ψssoc ≡ {(ε, γ, k, s, κ) : (ε, γ, k) ∈ ψnsoc, s > 1 and 1 < κ < κ}

such that all combinations of parameters in ψssoc ensure that the equilibrium characterised by

Proposition 6 is a global maximum for all t ∈ T when luck is distributed as a Pareto with shape k

over the set Σ ≡ [s,∞).
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Appendix B. Partition equilibria with constant selection

In this appendix, we consider equilibria with constant selection (Fc(ϕc) = φ for all cities c) and

imperfect talent sorting. Observe that Proposition 3 is a true single-crossing condition when selec-

tion is constant across cities, thereby ensuring the existence of a separating equilibrium. In what

follows, we focus on partition equilibria only, i.e., equilibria where talent is allocated such that

[t, t1]∪ [t1, t2]∪ . . .∪ [tc−1, tc]∪ [tc, tc+1]∪ . . .∪ [t|C|−1, t] = T and tc+1 > tc for all c = 1, ..., |C|− 1. tc

is the talent indifferent across cities c and c+1. Because individuals optimally choose their city, tc is

such that EVc(tc) = EVc+1(tc) > EVj(tc), for all j 6= c, c+ 1. We now establish the basic properties

of partition equilibria with constant selection when productivity distributions are homogeneous of

degree zero (which for instance occurs when Gs and Gt are both Pareto).

Proposition 11 (Partition equilibria with constant selection) Consider a partition of tal-

ent and assume that Fc(ϕc) ≡ F (ϕ
c
, tc−1, tc) is homogeneous of degree zero in all its arguments. A

partition of talent such that

∀c ∈ C : (i) φc = φ, (ii)
tc+1

tc
= κ, (iii) ϕ

c
= Stc and, (iv)

(
Lc+1

Lc

)γ−ε
= κ,

with φ ∈ (0, 1), S ∈ (s, s) and κ > 1, is an equilibrium candidate. In such an equilibrium, aggregate

productivities are linked by Φc+1 = κ
γ
γ−εΦc.

Proof. Consider cities c and c + 1. The equilibrium productivity cutoffs are determined by

(13). In city c, with talent support [tc−1, tc], it must hence be that

F (ϕ
c
, tc−1, tc) =

1

ε

∫ tcs

ϕ
c

(
ϕ

ϕ
c

) 1
ε

dF (ϕ, tc−1, tc).

Let tc = κtc−1 and tc+1 = κtc. Then ϕ
c+1

= κϕ
c

is the equilibrium productivity cutoff in city c+ 1.

To see this note that

F (ϕ
c+1
, tc, tc+1) = F (κϕ

c
, κtc−1, κtc) = F (ϕ

c
, tc−1, tc) =

1

εκ

∫ κtcs

κϕ
c

(
ϕ/κ

ϕ
c

) 1
ε

dF (ϕ/κ, tc−1, tc),

where the second equality is due to F being homogeneous of degree zero, and the last equality

because dF is homogeneous of degree −1. It is then readily apparent that, using the change in

variables ρ = ϕ/κ, that

F (ϕ
c+1
, tc, tc+1) = F (ϕ

c
, tc−1, tc) =

1

ε

∫ tcs

ϕ
c

(
ρ

ϕ
c

) 1
ε

dF (ρ, tc−1, tc),

thus establishing that ϕ
c+1

= κϕ
c
. It then follows immediately that selection is constant across

cities, i.e., F (ϕ
c
, tc−1, tc) = φ for all c ∈ C. This establishes (i)–(iii). To prove (iv), note first
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that by definition of tc, we have EV (tc, ϕc) = EV (tc, ϕc+1
). A substitution using equation (16) and

Fc(ϕc) = φ implies

θLγc





1

θ (1 + ε)
(εφ)ε Lε−γc ϕ

c


Gs

(
ϕ
c

tc

)
+

∫ s

ϕ
c
/tc

(
stc
ϕ
c

) 1
ε

dGs(s)


− 1





= θLγc+1





1

θ (1 + ε)
(εφ)ε Lε−γc+1ϕc+1


Gs

(
ϕ
c+1

tc

)
+

∫ s

ϕ
c+1

/tc

(
stc
ϕ
c+1

) 1
ε

dGs(s)


− 1



 .

Using (ii) and (iii), it must also be true that EV (tc, ϕc) = EV (κtc−1, κϕc−1
) and EV (tc, ϕc+1

) =

EV (κtc−1, κϕc), which implies that

θLγc





1

θ(1 + ε)
(εφ)ε Lε−γc κϕ

c−1


Gs

(
ϕ
c−1

tc−1

)
+

∫ s

ϕ
c−1

/tc−1

(
stc−1

ϕ
c−1

) 1
ε

dGs(s)


− 1





= θLγc+1





1

θ (1 + ε)
(εφ)ε Lε−γc+1κϕc


Gs

(
ϕ
c

tc−1

)
+

∫ s

ϕ
c
/tc−1

(
stc−1

ϕ
c

) 1
ε

dGs(s)


− 1



 .

By definition, tc−1 must also obey EV (tc−1, ϕc−1
) = EV (tc−1, ϕc), thus implying that

θLγc−1





1

θ(1 + ε)
(εφ)ε Lε−γc−1ϕc−1


Gs

(
ϕ
c−1

tc−1

)
+

∫ s

ϕ
c−1

/tc−1

(
stc−1

ϕ
c−1

) 1
ε

dGs(s)


− 1





= θLγc





1

θ (1 + ε)
(εφ)ε Lε−γc ϕ

c


Gs

(
ϕ
c

tc−1

)
+

∫ s

ϕ
c
/tc−1

(
stc−1

ϕ
c

) 1
ε

dGs(s)


− 1



 .

The two expressions are compatible if Lc+1/Lc = Lc/Lc−1 and (Lc/Lc−1)γ−ε= κ, that is, if condition

(iv) holds.

Several comments are in order. First, observe that in a partition equilibrium, we have ϕ
c+1

> ϕ
c

for all c ∈ C by Proposition 11. Furthermore, using (16) and because selection is constant, more

talented individuals prefer city c+ 1 to city c if and only if:

(
Lc+1

Lc

)ε(ϕ
c+1

ϕ
c

)1− 1
ε

∫∞
ϕ
c+1

/tc
s

1
εdGs

∫∞
ϕ
c
/tc
s

1
εdGs

> 1. (B.1)

Since (Lc+1/Lc)
ε = κε/(γ−ε) and ϕ

c+1
/ϕ

c
= κ for some κ > 1 by Proposition 11, (B.1) reduces to

1 < κ
ε(γ−1)−γ
ε(γ−ε) , thus requiring that γ < ε

1−ε as in the necessary second-order condition derived in

Appendix 7. When this condition is violated, partition equilibria with constant selection cannot

occur. This leaves us either with: (i) symmetry; or (ii) a partition with different selection rates

(i.e., a different φc for each c). We discuss the former in section 4.1 and the latter case in section 6.

40



Second, what is the distribution of population across cities and does the rank-size rule hold?

Starting with the full population condition, let |C| denote the equilibrium total number of city types

(the cardinal of C), and let nc denote the equilibrium number of cities of type c. By definition, we

have ncLc
Λ

= Gt(tc)−Gt(tc−1), with Λ the total population. Assume that both talent and luck follow

truncated power laws with shape parameters m and k and with supports T = [t, t] and S = [s, s],

respectively. In that case,
nc+1Lc+1

ncLc
=
t−mc − t−mc+1

t−mc−1 − t−mc
.

Using (ii) and (iv) and rearranging yields nc+1/nc = κ−( 1
γ−ε+m) or nc = n|C|κ

( 1
γ−ε+m)(|C|−c), where

n|C| is the number of the most talented cities which we normalise to unity without loss of generality.

Observe that the number of cities naturally decreases as we move up in the distribution of talent.

We may express the size of type-c cities as

Lc = L|C|κ
− 1
γ−ε (|C|−c). (B.2)

The rank rc of a type-c city is the number of cities larger than cities of type c plus one, i.e.,

rc ≡





1 +

|C|∑

i=c+1

ni if c = 1, 2, . . . , |C| − 1

1 if c = |C|.

For c 6= |C|, and since κ−( 1
γ−ε+m) < 1, this may be rewritten as

rc = 1 + κ( 1
γ−ε+m)|C|

|C|∑

i=c+1

κ−( 1
γ−ε+m)i = 1 +

1

κ
1

γ−ε+m − 1

[(
Lc
L|C|

)−[1+m(γ−ε)]
− 1

]
,

where the last equality follows from (B.2). Rearranging and taking logarithms yields ln (rc − 1) ≈
α0 + β0 lnLc, where α0 ≡ ln(L

1+m(γ−ε)
|C| )− ln(κ

1
γ−ε+m − 1) and β0 ≡ −1−m(γ − ε). The coefficient

β0 is again approximatively Zipf’s law, as in the case with perfect sorting developed in Section 4.

Appendix C. Optimal talent allocation without selection

In this appendix, we solve for the optimal allocation of talent across cities. Specifically, there is no

random and heterogeneous luck, that is, normalising s = 1, talent and productivity as entrepreneur

are the same thing: ϕ = t. Despite this simplification, note that the selection problem is not trivial:

the planner still need to allocate individuals across occupations (worker or entrepreneur). The only

difference with the framework in the text is that selection and sorting (the allocation of individuals

across space) occur simultaneously.

Another difference (and this one not substantial) is that we work here with a discrete space and

a discrete set of talents. To simplify the expressions below, we introduce a bit of extra notation.
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Let Lt denote the stock of people with talent t in the economy; htc the mass of individuals with

talent t allocated to city c as entrepreneurs ; lc the mass of workers in city c; and Lc ≡ lc + Σthtc,

the number of people in city c. Also, φc ≡ lc/Lc and αtc ≡ htc/Lc denote the fractions of workers

and entrepreneurs with talent t in city c, respectively. We use ϕc ≡
[
(1− φc)

∑
t αtct

1/ε
]ε

for the

average productivity in city c and nc for the number of cities of type c.

Planner’s problem. The planner seeks to maximise output net of urban cost, in that aim

creating cities of different types and allocating individuals among those cities (’sorting’) as well as

across occupations (’selection’). Obviously, output is maximised if the most talented individuals

become entrepreneurs. Thus, the planner chooses a τ such that individuals with talent t < τ are

workers and individuals with t ≥ τ are entrepreneurs.

We may thus write the planer’s program as

max
τ,{lc}c,{ht,c}tc

Ω ≡
∑

c

(
Yc − θLγ+1

c

)
nc (C.1)

subject to: Yc = lc

(∑

t

htct
1/ε

)ε

= φc(1− φc)εLcϕc (C.2)

Lc = lc +
∑

t

ht,c (C.3)

ht =
∑

c

htcnc (C.4)

ΛGt(τ) =
∑

c

lcnc. (C.5)

The constraints are as follow. Equation (C.2) is the value of city output once the local markets

clear (the second equality follows from the definitions above). Equation (C.3) is the composition

of city population. Equation (C.4) is the full-employment condition for entrepreneurs. Finally,

equation (C.5) is the full-employment condition for workers (and the full population is redundant).

Planner’s solution. We may substitute (C.2) and (C.3) directly into the objective function;

let ηt denote the Lagrange multiplier associated with (C.4) and let ω denote the Lagrange multiplier

associated with (C.5). The first order conditions (focs) of this program are, for all cities of type c

such that nc, lc > 0 and all t ∈ T (the socs are satisfied under positive assortative matching; more

on this below):

∂Ω

∂lc
=

[
−ω +

Yc
lc
− (1 + γ)θLγc

]
nc = 0

∂Ω

∂htc
=


−ηt + εlc


∑

t̃

ht̃ct̃
1/ε



ε−1

t1/ε − (1 + γ)θLγc


nc ≤ 0, htc ≥ 0,

∂Ω

∂htc
htc = 0

∂Ω

∂nc
=

(
Yc − θLγ+1

c

)
−
(
ωlc +

∑

t

htcηt

)
= 0. (C.6)
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Multiplying the first foc by lc, the second by htc, summing and using the third implies εYc/Lc =

γθLγc so that net city output is Yc − θLγ+1
c = γ−ε

ε
θLγ+1

c = γ−ε
γ
Yc (the first right-hand side gives

net income as a function of city size; the second one, as a function of gross income). Using the

expressions for city income (C.2) and the composition of city population (C.3) yields the optimal

relationship between city composition and city size: εφc(1 − φc)
εϕc = γθLγ−εc . In words, larger

cities have more productive entrepreneurs on average.

Now, as may be clear from the first two focs, ω and ηt are the shadow ‘real prices’ of labour and

entrepreneurial talent (in the sense that they are net of urban costs). Starting with the second foc

in order to derive the real rewards of talent t in any city where such talent settle, total entrepren-

eurial profit net of urban costs are equal to
∑

t htηt = θLγ+1
c [φc(1 + γ)− 1]. Labour is homogenous;

using the expression above to solve for ω in the first foc yields ω = 1
φc
θLγc

[
γ
ε
− φc(1 + γ)

]
. A nat-

ural solution to the expression for ω is ω = 0. As is standard in assignment problems, individuals at

the bottom of the (talent) distribution get their outside option, which is zero consumption. Using

the expression for ω above, this pins down φc and τ . For all cities we have then φc = φ, where

φ ≡ 1

1 + γ

γ

ε
≡ Gt(τ). (C.7)

That is, the share of workers is the same across cities (and thus the same as in the economy as a

whole).23 Loosely speaking, ‘selection’ is constant at the optimum. Being a share, φ must belong

to the unit interval. This is the case iff

γ <
ε

1− ε. (C.8)

We characterise below the optimal allocation when this condition fails. Substituting the common

φ into the productivity-size relationship, we find

ϕc = (1 + γ)1+ε

[
ε

(1 + γ)ε− γ

]ε
θLγ−εc . (C.9)

This implies that the elasticity of city size with respect to productivity is 1
γ−ε .

Substituting the common φ into the expression for total net profit, we get
∑

t htηt = γ−ε
ε
θLγ+1 =

Yc − θLγ+1
c . This confirms that workers get zero consumption. Thus, the nominal wage is a

simple function of city size: wc = θLγc . We may also write each talent’s net reward as ηt =

(1 + γ)θLγc

[
εγ

(1+γ)ε−γ

(
t
ϕc

)1/ε

− 1

]
so that only the people with a talent

t ≥ ϕc

(
1− γ − ε

εγ

)ε
(C.10)

make non-negative profit in city c. This establishes that the qualitative relationship between average

productivity and city size also holds for individual productivity/talent. In entrepreneurial-talent-

homogenous cities (so that ϕc = t), this is equal to ηt =
[
1− 1

1+γ
γ
ε

] ε
γ−ε

[(1 + γ)θ]−
1

γ−ε+1 γ−ε
(1+γ)ε−γ t

1
γ−ε .

23The factor real rewards
∑

t htηt and ω are both non-negative in this case, as they should be.
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Positive assortative matching (soc). There is positive assortative matching between talent

and city productivity (i.e., η(t, ϕ) is log supermodular in t and ϕ) iff

∂2η(t, ϕ)

∂t∂ϕ
> 0. (C.11)

This single-crossing condition corresponds to the condition in Proposition 3 in the text. Here, it

is unconditional. Thus, if satisfied, this is a sufficient condition for the solution to (C.6) to be a

maximum to the problem in (C.1). Using the expression for ηt above, we get ∂ ln η
∂t

= t−1+1/εϕ
γ
γ−ε−

1
ε

so that the single-crossing condition above holds iff the exponent of ϕ is positive, that is, iff (C.8)

holds, which is also the condition that ensures that φ belongs to the unit interval.

Symmetric allocation. To complete the analysis, we now show that the optimal allocation

when (C.8) fails involves identical cities, all endowed with the same composition of individuals and

all of the same size. To see this, note that the non-negative profit condition (C.10) is violated iff

(C.8) fails. Could negative assortative matching be a solution? In that case, only the individuals

with a talent less than the the city average should join that city. But not everybody can have a

productivity below the average. Thus, negative assortative matching would yield a contradiction.

To understand why, note that in our case, unlike in traditional assignment problems, ϕc is an

endogenous variable. So, when the inequality above holds, the symmetric configuration is optimal.

Summarising, we have shown:

Proposition 12 (Optimal allocation in the absence of random and heterogeneous luck)

If (C.8) holds, then at the optimal allocation (i) all cities have the same fraction of workers φ given

by (C.7); (ii) larger cities have more talented entrepreneurs by (C.9) and (C.11); (iii) the elasticity

of city productivity with respect to city size is γ − ε by (C.9). If (C.8) fails, then the optimal

allocation is a system of symmetric cities.

By implication of (ii), at the limit of a continuum of cities, there is only one type of entrepren-

eurial talent per city and this is strictly increasing in city size; thus the relationship illustrated by

figure 2 also holds at the optimal allocation. More generally, the qualitative properties of the op-

timal allocation of this simplified model (as summarised in the proposition above) and those of the

talent-homogeneous equilibrium described in the text are identical. As to the central quantitative

implications, the elasticity of Lc with respect to tc is the same: it is equal to 1
γ−ε in both cases.

The same key condition (C.8) also needs to hold in both cases.

44


