
Blinder-Oaxaca as a Reweighting Estimator

By Patrick Kline�

A large literature focuses on the use of
propensity score methods as a semi-parametric
alternative to regression for estimation of aver-
age treatments e¤ects.1 We show here that the
classic regression based estimator of counterfac-
tual means studied by Alan Blinder (1973) and
Ronald Oaxaca (1973) constitutes a propensity
score reweighting estimator based upon a linear
model for the conditional odds of being treated
� a functional form which emerges, for exam-
ple, from an assignment model with a latent log-
logistic error.2

As such it enjoys the status of a �doubly ro-
bust�estimator of counterfactuals as in Robins,
Rotnitzky, and Zhao (1994) �estimation is con-
sistent if either the propensity score assumption
or the model for outcomes is correct. To illus-
trate the method, the Blinder-Oaxaca estima-
tor is applied to LaLonde�s (1986) study of the
National Supported Work program where it is
found to compare favorably with competing ap-
proaches.

I. The Blinder-Oaxaca Estimator

Consider a population of individuals falling
into two groups indexed by Di 2 f0; 1g. We
will refer to observations with Di = 1 as the
treatment group and those with Di = 0 as the
controls. Let Xi be a K�1 vector of random co-
variates (which we assume includes an intercept)
and Yi some outcome of interest. We begin by
indexing the potential outcomes associated with
treatment as follows:

Yi = DiY
1
i + (1�Di)Y

0
i
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1 Imbens (2004) provides a review.
2Dinardo (2002) shows the equivalence of non-

parametric Blinder-Oaxaca and propensity score
methods in the special case of discrete covariates.

where Y 1
i is the outcome individual i would ex-

perience if treated and Y 0
i the outcome that

would obtain in the absence of treatment.

The Blinder-Oaxaca (B-O) approach is pred-
icated upon a model for the potential outcomes
of the form:

Y d
i = X

0
i�

d + "di(1)

E
h
"di jXi; Di

i
= 0 for d 2 f0; 1g(2)

Hence, knowledge of
�
�1; �0

�
is su¢ cient to

compute counterfactual means for either group.
Natural estimators of these parameters come
from linear regression in the two populations in-
dexed by Di.

Suppose in particular that we are interested in
the counterfactual mean outcomes the treatment
group would have experienced in the absence of
treatment, a quantity we denote as:

�10 � E
�
Y 0
i jDi = 1

�
We assume throughout that E [XiX

0
ijDi = 0] is

�nite and invertible so that a regression among
the controls identi�es �0. According to the
model in (1) and (2):

�10 = E [XijDi = 1]
0 �0

= E [XijDi = 1]
0

� E
�
XiX

0
ijDi = 0

��1
E [XiYijDi = 0]

� �BO

When each of the moments in �BO is replaced
by its sample analogue one obtains the B-O esti-
mate of the counterfactual mean, which, by stan-
dard arguments, can be shown to be consistent
for the parameter of interest. This estimator
may be particularly convenient in settings where
K is large and few treated observations are avail-
able as estimation only requires that collinearity
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problems be absent among the controls.3

II. Reweighting Estimators

A popular alternative to regression based
methods is to use propensity score weighted av-
erages of outcomes as estimates of counterfac-
tual means. This approach is typically moti-
vated by the following conditional independence
assumption:

(3)
�
Y 1
i ; Y

0
i

�
?? DijXi

This restriction, termed �unconfoundedness�by
Rosenbaum and Rubin (1983), amounts to as-
suming that treatment status was assigned ran-
domly conditional on covariates. Note that the
parametric B-O model would satisfy this condi-
tion were we to strengthen the mean indepen-
dence assumption (2) to encompass full condi-
tional independence of the errors.4 However (3)
is usually considered less restrictive than the B-
O assumptions since it is agnostic about the de-
pendence of the potential outcomes on the co-
variates. It is instructive then to consider the
population moments that identify �10 using only
the nonparametric restrictions inherent in (3).
We must �rst make the following �common

support�assumption ensuring identi�cation:

(4) e (Xi) < 1

where e (Xi) � P (Di = 1jXi) is the propen-
sity score. This condition, which guarantees
that suitable controls can be found for every
treated unit, allows us to derive the following
well-known result justifying the use of propen-
sity score reweighting estimators:

PROPOSITION 1: If (3) and (4) hold then:

�10 = E

�
e (Xi)

�

1�Di

1� e (Xi)
Yi

�
(5)

= E [w (Xi)YijDi = 0]

3See Busso, Gregory, and Kline (2010) for a re-
cent application

4This would be equivalent to assuming in addi-
tion to (2) that E

�
g
�
"di
�
jXi; Di

�
= E

�
g
�
"di
�
jXi

�
for any continuous function g (:) vanishing outside a
�nite interval and for d 2 f0; 1g. See e.g. Theorem
1.17 in Chapter V of Feller (1966).

where w (Xi) � 1��
�

e(Xi)
1�e(Xi)

and � �
P (Di = 1).

PROOF:

E [w (Xi)YijDi = 0] = E
�
w (Xi)Y

0
i jDi = 0

�
= E

�
w (Xi)E

�
Y 0
i jXi

�
jDi = 0

�
=

Z
E
�
Y 0
i jXi = x

�
w (x) dFXjD=0 (x)

=

Z
E
�
Y 0
i jXi = x

�
dFXjD=1 (x)

= E
�
Y 0
i jDi = 1

�
The second line follows from (3) and the

fourth from the fact that by Bayes� rule
dFXjD=1(x)

dFXjD=0(x)
= w (x).

Thus, a weighted average of the control out-
comes, with weights proportional to the condi-
tional odds of treatment, identi�es the counter-
factual mean of the treated population. A large
literature considers using sample analogues of
(5) for estimation of �10, where e (Xi) is replaced
by some parametric or nonparametric estima-
tor.5 A di¢ culty with such approaches often
arises in settings with few treated observations
where simple propensity score models may per-
fectly predict treatment even if (4) holds in the
population. Even when prediction is not perfect,
recent studies suggests propensity score estima-
tors which assign disproportionate weight to a
few observations often exhibit poor �nite sam-
ple performance.6

III. Equivalence

Let us now return to the parametric B-O es-
timand �BO. That this quantity has an inter-
pretation as a weighted average of the control
outcomes is self-evident. The following proposi-
tion shows that these weights have a propensity

5See Rosenbaum and Rubin (1983), Rosenbaum
(1987), Dinardo, Fortin, and Lemieux (1996), Hi-
rano, Imbens, and Ridder (2003), and Imbens
(2004).

6See Kang and Schafer (2007), Robins, Sued, Lei-
Gomez, and Rotnitzky (2007), and Huber, Lechner,
and Wunsch (2010).
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score based interpretation given only the com-
mon support assumption (4).

PROPOSITION 2: If (4) holds then:

�BO = E [ ew (Xi)YijDi = 0]ew (Xi) = X
0
iE
�
XiX

0
ijDi = 0

��1
� E

�
Xi
1� �
�

e (Xi)

1� e (Xi)
jDi = 0

�
PROOF:
Bayes� rule and (4) imply E [XijDi = 1] =

E
h
Xi

1��
�

e(Xi)
1�e(Xi)

jDi = 0
i
. Plugging this into

the de�nition of �BO yields the result.

Note that the B-O weights ew (Xi) are sim-
ply the normalized projection of the true treat-
ment odds e(Xi)

1�e(Xi)
onto the column space of Xi

�i.e. they are the predicted values from an (in-
feasible) population regression of w (Xi) on Xi.
Hence, the B-O speci�cation provides a mini-
mum mean squared error approximation to the
true nonparametric weights w (Xi).
Of course if the true odds of treatment are

actually linear in Xi then ew (Xi) = w (Xi) and
Proposition 1 implies the B-O estimand will
identify �10 even if the model for the outcomes is
misspeci�ed provided that (3) and (4) hold. A
linear model for the treatment odds arises nat-
urally from an assignment model of the form:

Di = 1
�
X 0
i� + vi > 0

�
where 1 [:] is an indicator for whether the condi-
tion in brackets is true and the assignment error
vi is an iid draw from a standardized log-logistic
distribution with CDF F (z) = z

1+z
.7

Conversely, if the model for the outcomes in
(1) and (2) is correct, the B-O estimand will
identify �10 even if the common support condi-
tion (4) fails and/or the implicit model for the

7This is to be contrasted with the standard lo-
gistic assignment model which assumes the odds of
treatment take the form exp

�
X0
i

�
for some coe¢ -

cient vector 
. The log-logistic distribution is similar
to a log-normal but with heavier tails (the mean of
the distribution does not exist). The fact that the
support of the distribution is nonnegative is not re-
strictive as Xi will usually include an intercept.

propensity score is incorrect. Hence the esti-
mator is �doubly robust� (Robins, Rotnitzky,
and Zhao, 1994) as it identi�es the parameter of
interest under two independent sets of assump-
tions.

A Remark on Misspeci�cation

The double robustness property o¤ers little
comfort to the applied econometrician who sus-
pects any propensity score model, like any model
for the conditional mean, to provide only a rough
approximation to the data generating process.
Note from Propositions 1 and 2 that the pop-
ulation bias in the B-O approximation may be
written:

�10 � �
BO = E [(w (Xi)� ew (Xi))YijDi = 0]

Though the B-O weights may yield speci�cation
errors at particular values ofXi, those errors will
only induce bias if they are correlated with out-
comes in the control sample.8 If, for instance,ew (Xi) = w (Xi)+ �i where �i is a random spec-
i�cation error obeying E [�iYijDi = 0] = 0 then
the B-O estimator will retain consistency.
An important question then is whether, in

the absence of prior knowledge of the propensity
score, approximations ought to be sought with
respect to the propensity score or the weights
themselves.9 The B-O approach follows the
latter approach, conventional propensity score
methods the former. Which approach removes
more bias in a misspeci�ed environment will de-
pend on the speci�cs of the true data generating
process.

IV. Sample Properties

Thus far we have focused on the proper-
ties of the population moments de�ning the
Blinder-Oaxaca estimator. It turns out that
the sample moments have some interesting prop-
erties as well. De�ne N1 =

X
i

Di, and

8Both sets of weights can be shown to have mean
one which implies E [w (Xi)� ew (Xi) jDi = 0] = 0.

9See Robins, Sued, Lei-Gomez, and Rotnitzky
(2007) and Chen, Hong, and Tarozzi (2008) for fur-
ther discussion of this issue.



4 PAPERS AND PROCEEDINGS MONTH YEAR

X = [1; x2; :::; xK ] where 1 is an N � 1 vec-
tor of ones, and the elements of fx2; :::; xKg
are N � 1 covariate vectors. Then we may write
the B-O estimate of the counterfactual mean in
matrix notation as:

�̂10 =
1

N1
D0X

�
X0WX

��1
X0WY(6)

=
1

N1
D0HY

where Y is the N�1 vector of outcomes,D is an
N � 1 vector whose elements consist of Di, and
W is a diagonal N �N weighting matrix taking
values of one for control observations and zeros
otherwise. The N�N matrixH is a generaliza-
tion of the conventional �hat�matrix associated
with OLS (Hoaglin and Welch, 1978). Averag-
ing the rows of the hat matrix over the treated
observations yields the 1�N vector of B-O sam-
ple weights b! = 1

N1
D0H used to form an esti-

mate b�10 of the average counterfactual outcome
in the treated sample. A few properties of these
weights are notable:

1) The weights are zero for treated observa-
tions.

2) The weights sum to one.10

3) Some of the weights may be negative. This
occurs when the treatment odds implied by
the linear model are negative.

Like conventional propensity score weights, B-
O weights can be thought of as reweighting the
controls to match the covariate distribution of
the treated units. Note that for any covariate
xj in X we have by the properties of projection
matrices that:

1

N1
D0Hxj =

1

N1
D0xj

In words, the reweighted mean of every control
covariate exactly equals its mean value among
the treated sample. Hence the weights embod-
ied in the Blinder-Oaxaca approach ensure exact
balance of moments included in the regression

10Though seemingly mundane, this property may
be important in practice. See for example Busso,
Dinardo, and McCrary (2009).

model, a property shared by the recently pro-
posed doubly robust estimator of Egel, Graham,
and Pinto (2009).

V. Application

To illustrate use of the Blinder-Oaxaca esti-
mator we revisit LaLonde�s (1986) classic analy-
sis of the National Supported Work (NSW) pro-
gram using observational controls from the Cur-
rent Population Survey. Attention is con�ned to
a sample of men studied by Dehejia and Wahba
(1999) with valid earnings data in both 1974 and
1975 who were present either in the NSW exper-
imental sample or in Lalonde�s �CPS-3�control
group which consists of the poor and recently
unemployed.11 Because these data have been
studied many times, I omit summary statistics
which are reported elsewhere.12 Three estima-
tors: OLS, B-O, and reweighting based upon a
logistic propensity score are contrasted; each us-
ing the set of demographic controls considered in
Dehejia and Wahba (1999) along with 1974 and
1975 earnings.
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Figure 1: Blinder­Oaxaca vs. Logit Weights

Figure 1 plots a scatter of the renormalized
B-O weights (the elements of D0H) against the
weights be(Xi)

1�be(Xi)
1�b�b� derived from a propensity

11See Smith and Todd (2005) for a detailed discus-
sion of the implications of these sample restrictions.

12See for example Dehejia and Wahba (1999),
Smith and Todd (2005), and Angrist and Pischke
(2009).
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score reweighting estimator where be (Xi) are pre-
dicted probabilities from a logit model estimated
by Maximum Likelihood and b� is the fraction
of treated observations. Unsurprisingly, the re-
lationship between the two sets of weights is
approximately logarithmic. However the B-O
weights are often negative, a sign the implicit
log-logistic propensity score model is likely mis-
speci�ed. Of course the logistic model, despite
yielding predictions in the unit interval, may
also be misspeci�ed. Ultimately, interest centers
not on whether a propensity score model is lit-
erally correct, but the quality of approximation
that can be provided to the true counterfactual
�10.
Table 1 assesses this question empirically by

comparing treatment e¤ect estimates generated
by each estimator using the observational CPS-3
controls and the experimental NSW controls.13

Table 1 - Estimated Impact of NSW
on Men�s 1978 Earnings

Estimator/Control Group CPS-3 NSW
Raw Di¤erence �$635 $1794

(677) (671)

OLS $1369 $1676

(739) (677)

Logistic Reweighting� $1440 $1808

(863) (705)

Blinder-Oaxaca $1701 $1785

(841) (677)

Sample Size 614 445

Note: Heteroscedasticity robust standard
errors in parentheses.
�Reweighting standard errors computed
from 1,000 bootstrap replications.

Clearly covariate adjustments of virtually any
sort help to remove bias in the observational
sample. However, the B-O estimator yields ob-
servational impacts closest to those found in the
experimental sample, suggesting the assumption
of near linearity of untreated earnings in covari-
ates provides no worse an approximation to the
data generating process than the implicit as-
sumptions of the workhorse logistic reweighting

13The Blinder-Oaxaca treatment e¤ect estimate
simply subtracts �̂10 from the mean sample outcome
of treated units.

estimator. Also of note is that the B-O estimator
yields slightly smaller standard error estimates
than logistic reweighting, even in the experimen-
tal sample.

VI. Conclusion

The regression based Blinder-Oaxaca estima-
tor of counterfactual means is equivalent to a
propensity score reweighting estimator model-
ing the odds of treatment as a linear function
of the covariates. This is be to contrasted with
the standard practice in the applied literature
of modeling the propensity score via a logit or
probit and using the estimated parameters to
form estimates of the odds of treatment. The
latter approach can be thought of as indirectly
approximating the unknown odds via a di¤erent
set of basis functions, albeit a set that imposes
the side constraint that the odds are nonnega-
tive. Whether, in the presence of misspeci�ca-
tion, the imposition of this side constraint yields
a better approximation to the counterfactual of
interest is an empirical question and will depend
on the data generating process.
Despite its allowance of negative weights, the

Blinder-Oaxaca estimator has several features to
commend it. It is easily implemented in unbal-
anced designs with few treated units and many
controls and allows for straightforward computa-
tion of standard errors and regression diagnos-
tics. It is consistent if either the linear model
for the potential outcomes or the implicit log-
logistic model for the propensity score is correct.
And unlike standard reweighting estimators, the
B-O weights yield exact covariate balance and
are �nite sample unbiased for the counterfactual
under proper speci�cation of the outcome equa-
tion.
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