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Abstract

In a winner-pay contest, contestants submit bids to influence the probabilistic award

of a prize, the highest bid does not necessarily win, and only the winner pays her bid.

This paper considers behavior in such a contest from an evolutionary perspective. I

show that a “Tullock” winner-pay contest’s unique evolutionarily stable strategy (ESS)

differs from its unique Nash equilibrium. For finite populations engaged in such winner-

pay contests, ESS behavior entails expenditures in excess of Nash equilibrium levels but

never over-dissipation of the prize value. Further, the ESS in such contests globally

stabile in that a population playing according to the ESS cannot be invaded by an

arbitrary number of mutants using some other strategy. I extend many of the paper’s

main results to more general contest success functions and to a more general model of

evolution.
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1 Introduction

Contests are important non-market forms of allocating valuable prizes or other resources.

Contest theory applies to many topics, including rent-seeking and lobbying for political

favors, conflict, litigation, R&D competition and patent races, sporting competition, and

charitable fundraising.1 The most-studied forms of contests are all-pay contests in which

players compete by making irrecoverable investments of expenditure or effort to influence

their probability of winning a prize. The most well-known specifications of contest winning

probabilities (also called contest success functions in the literature) are “Tullock” contests

where each player’s winning probability is her expenditure’s share of total expenditure (Tul-

lock, 1980) and all-pay auctions where the player making the largest expenditure wins for

certain (Baye et al., 1996).

Yates (2010) introduces into the contest theory literature a winner-pay contest in which

contestants submit bids to influence the probabilistic award of a prize, the highest bid does

not necessarily win, and only the winner pays her bid. He notes that contests and auctions

share the structure of having players compete to influence their probability of winning a prize

of some value, but distinguishes between the two mechanisms, reserving the term auction

for any competition where the highest bid wins for certain and reserving contest for any

competition where the highest bid does not win for certain, due perhaps to circumstances

exogenous to a contestant’s bid. Like auctions, then, contests can of course differ according

to their payment rules as all-pay, winner-pay (first-price), second-price, etc.

This paper provides an evolutionary analysis of the “Tullock” version of the winner-pay

contest introduced by Yates (2010). Understanding behavior in winner-pay contests from

an evolutionary perspective is important not only because of the many applications of con-

test theory outlined above. Expenditures often exceed risk-neutral Nash equilibrium levels

in experimental all-pay contests.2 Evolutionary analyses of all-pay contests from Leininger

(2003) and Hehenkamp et al. (2004) provide a rationalization for observed over-expenditure

1On these applications of contest theory, see Tullock (1980) and Baye et al. (1993) on rent-seeking and
lobbying, Hirshleifer (1995) and Garfinkel and Skaperdas (2007) and the references therein on conflict, Farmer
and Pecorino (1999) and Baye et al. (2005) on litigation, Baye and Hoppe (2003) on innovation tournaments
and patent races, Szymanski (2003) on sporting competition, and Morgan (2000) and Goeree et al. (2005) on
the use of contests for charitable fundraising. Nitzan (1994) and Corchón (2007) provide surveys of contest
theory more generally.

2See, for example, Öncüler and Croson (2005), Hörisch and Kirchkamp (2010), Morgan et al. (2010), and
the literature cited in these papers for an overview. Interestingly, even Potters et al. (1998), who correct for
design flaws in earlier contest experiments, find evidence of overexpenditure in their “Tullock” contests. To
my knowledge, there does not yet existence any experimental evidence on behavior in winner-pay contests,
but to the extent that they are very similar in structure to all-pay contests, I conjecture that one would
observe bids in excess of Nash equilibrium levels.
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(contest bids in excess of Nash equilibrium levels) and over-dissipation (aggregate expendi-

tures in excess of the value of the contest’s prize). To the extent that all-pay and winner-pay

contests share similar incentives as contests, players’ bids may exceed Nash equilibrium lev-

els in practice, and the analysis in this paper provides an evolutionary rationale for such an

outcome. Understanding behavior in winner-pay contests from an evolutionary perspective

is important also because the incentives present in winner-pay contests emerge, for example,

when countries compete to host mega-events like the Olympics or the World Cup, when

states compete with tax incentives and other subsidies to attract on-location filming from

well-known film studios, or when firms compete for a worker with offers of salary among

other perquisites. Yates (2010) also notes that winner-pay contests emerge in inter-state

competition for the siting of manufacturing plants, in limited liability contests like Skaper-

das and Gan (1995) and Matros and Armanios (2009) when all contest losers are reimbursed

their expenditures, in rent-seeking with sunk lobbying effort and bids payable only by the

winner as in Haan and Schoonbeek (2003), and in litigation where parties to a dispute del-

egate litigation to lawyers who are paid only upon the event of winning as in Wärneryd

(2000). An evolutionary analysis of a winner-pay contest, then, provides a benchmark for

behavior of boundedly rational players in these environments and yields insights into the

behavior of players in winner-pay contests that either learn from observing the behavior of

more-successful others or who are concerned with relative and not absolute performance.

I derive the unique symmetric Nash equilibrium and unique finite population evolu-

tionarily stable strategy (ESS) in a “Tullock” winner-pay contest and obtain the following

results.3 In the “playing-the-field” model of evolution in which interaction among members

of a population is global, the ESS bid exceeds the bid a risk-neutral player would make in

Nash equilibrium. This is due to the negative externality that is a hallmark of contests,

each player’s winning probability is decreasing in rival bids and to the fact that evolution

operates on relative fitness in a finite population. In fact, the winner-pay contest ESS is

the limiting outcome of symmetric Nash equilibrium behavior as the number of players ap-

proaches infinity. While the winner-pay contest ESS features over-expenditure relative to

Nash equilibrium, over-dissipation of the prize value cannot be part of ESS behavior. This

result is in stark contrast to Hehenkamp et al. (2004), who derive the unique ESS for all-pay

“Tullock” contests and find the possibility for prize over-dissipation as part of ESS behavior.

Prize over-dissipation is not possible in a winner-pay contest’s ESS because an individual

bid is prize dissipation, so over-dissipation would imply bidding above the prize value, a

3An Appendix to the paper shows that many of the main results of the paper generalize either to a more
general contest success function than the Tullock (1980) contest success function or to a more general model
of evolution among members of a finite population.
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population behavior that a mutant bidding below the prize value could successfully invade.

The winner-pay contest ESS I derive is robust in the sense that it resists invasion by any

finite number of identical mutant strategies. Finally, I derive evolutionarily stable popula-

tion size in the evolutionary winner-pay contest and show that it increases in the contest’s

prize value and decreases in the population’s subsistence level of fitness and competitiveness

of the contest.

This paper contributes to a growing literature on evolutionary approaches to contest

theory. This literature divides into two branches, one concerned with the evolution of be-

havior in contests–direct evolution–and one concerned with the evolution of preferences in

contests–the indirect evolution approach pioneered by Güth and Yaari (1992). For direct

evolution, Leininger (2003) and Hehenkamp et al. (2004) study evolutionarily stable strate-

gies in all-pay contests and show that they exceed risk-neutral Nash equilibrium levels when

evolution occurs in finite populations. Importantly, Hehenkamp et al. (2004) provide an

evolutionary rationale for over-dissipation of the prize value, something that I demonstrate

is impossible in the ESS in a winner-pay contest, so while the nature of a contest creates

similar results for all-pay and winner-pay contests, the difference in payment rules create

some divergent results. For indirect evolution, among the papers studying the evolution of

preferences in all-pay contests are Wärneryd (2002) on risk attitudes, Eaton and Eswaran

(2003) and Leininger (2009) on interdependent preferences, Konrad (2004) and Schmidt

(2009) on altruism and envy, Mohlin (2010) on conflict-reducing norms, and Boudreau and

Shunda (2010) on the evolution of prize valuation perceptions.

2 Model

In a winner-pay contest, a set of n ≥ 2 players submit bids xi ≥ 0, i = 1, ..., n to influence the

probabilistic award of a prize of a common value v > 0. Unlike a (winner-pay) auction, the

highest bid does not necessarily win and unlike a standard all-pay contest, only the winner

pays her bid. For player i bidding xi, payoffs are given by

πi(x1, ..., xn) :=

v − xi if player i wins

0 otherwise.
(1)
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I assume that the prize is allocated by the familiar contest success function from Tullock

(1980), so the probability of winning for player i bidding xi is

pi(x1, ..., xn) :=


xri

xri+
∑

j 6=i x
r
j

if xri +
∑

j 6=i x
r
j 6= 0

1
n

otherwise,
(2)

where the exponent r ∈ (0,∞) measures the sensitivity of the probability of winning to

individual bids.4 Finally, I assume that players are risk-neutral, so given the bids of all

players j 6= i, player i’s expected payoff (fitness in the evolutionary analysis) is

E[πi(x1, ..., xn)] :=
xri

xri +
∑

j 6=i x
r
j

(v − xi). (3)

3 Results

This section derives results for both Nash equilibrium and evolutionarily stable behavior in

the winner-pay contest described by (1) and (2).

3.1 Nash Equilibrium Behavior in Winner-Pay Contests

As a benchmark to the evolutionary analysis below, consider first fully rational Nash equilib-

rium players. Players simultaneously submit bids to maximize their expected payoffs in (3).

All players bidding 0 cannot be a Nash equilibrium because any individual player could win

for certain by increasing her bid to some ε > 0. Similarly, bidding in excess of v cannot be

part of any Nash equilibrium because such a bid is dominated by a bid of 0. The first-order

condition to player i’s maximization problem is

rxr−1i

∑
j 6=i x

r
j

(xri +
∑

j 6=i x
r
j)

2
(v − xi)−

xri
xri +

∑
j 6=i x

r
j

= 0. (4)

At a symmetric Nash equilibrium, x1 = ... = xn = xNE, so (4) becomes

(n− 1)r

n2xNE
(v − xNE)− 1

n
= 0,

4See Skaperdas (1996) and Kooreman and Schoonbeek (1997) for axiomatizations of this well-known
contest success function. The Appendix includes analysis for a more general contest success function and
derives results showing that evolutionary stable behavior in a winner-pay contest is generally more aggressive
than Nash equilibrium behavior.
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with solution

xNE =
(n− 1)rv

(n− 1)r + n
. (5)

Bidding according to (5) is a symmetric Nash equilibrium provided that (5) actually

maximizes each player’s expected payoffs. The second-order condition to player i’s maxi-

mization problem is

(r − 1)(xri +
∑

j 6=i x
r
j)− 2rxri

xri +
∑

j 6=i x
r
j

(v − xi)− 2xi < 0. (6)

Substituting (5) into the second-order condition and simplifying reveals that it holds if and

only if −nr − n < 0 and therefore the second-order condition holds at the candidate for

symmetric Nash equilibrium bidding in (5) for all r ∈ (0,∞). From (3), each player’s

expected payoffs in equilibrium are

E[πi(xNE, ..., xNE)] =
1

n

(
v − (n− 1)rv

(n− 1)r + n

)
=

v

(n− 1)r + n
> 0

for all r ∈ (0,∞).

Proposition 1. In the unique symmetric pure strategy Nash equilibrium of a winner-pay

contest, each player bids an amount

xNE =
(n− 1)rv

(n− 1)r + n
.

Before moving on to the evolutionary analysis, a few properties of symmetric Nash

equilibrium behavior in the winner-pay contest are worth remarking upon. First, equilibrium

bidding has expected comparative static properties. Equilibrium bids increase in v since

players bid more aggressively for more valuable prizes. Increases in r and n lead to increased

equilibrium bids since players respond to a more competitive environment by bidding more

competitively. Equilibrium bids increasing in n is in contrast to what one would find in an

all-pay contest where players’ bids are sunk expenditures and losing is therefore costly; see,

e.g., Tullock (1980) and Pérez-Castrillo and Verdier (1992). Because players do not forfeit

their bids in the event of losing in a winner-pay contest, losing is not costly and players

can respond to increased competition by bidding more aggressively. Second, the limiting
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behavior of equilibrium bidding behavior is such that

lim
n→∞

xNE →
rv

1 + r
,

which I show below to be evolutionarily stable behavior in a “playing-the-field” model of

evolution in a finite population interacting in a winner-pay contest. Finally, in contrast

to the case of an all-pay contest where aggregate expenditure measures prize dissipation,

individual expenditure and prize dissipation are identical in a winner-pay contest, so prize

dissipation inherits the comparative static properties of individual expenditure.

3.2 Evolutionarily Stable Behavior in Winner-Pay Contests

Members of a finite population of size n ≥ 2 match to interact in an n-player winner-pay

contest described by (1) and (2). Players differ from one another by the strategy they play,

that is, by the bids they make in the contest. Since interaction among the population’s

players is global, the model of evolution I develop in this subsection is often referred to as

“playing-the-field.” Each time players match, they play the contest once and this determines

each strategy’s fitness level. The matching to play a winner-pay contest occurs indefinitely,

and the population evolves in such a way that strategies earning higher fitness levels prolif-

erate while strategies earning lower fitness levels eventually die off. What behavior emerges

as evolutionarily stable in winner-pay contests in finite populations?

I follow the literature on evolutionary behavior in contests and equate evolutionary

fitness with the expected payoffs a strategy generates.5 The fitness of a player i bidding

according to xi is then given by

Fi(x1, ..., xn) :=
xri

xri +
∑

j 6=i x
r
j

(v − xi). (7)

I forgo modeling explicitly the dynamics of evolution and selection and instead apply a static

definition of evolutionary stability for finite populations from Schaffer (1988) to characterize

evolutionarily stable strategies (ESS) in the population, the stable limit points of evolution

and selection. Loosely speaking, an ESS is a strategy that when it predominates the popu-

lation there exists no other (mutant) strategy that yields higher fitness. In other words, an

ESS cannot be successfully invaded by a small number of mutants playing some other strat-

egy when it predominates the population. Without loss of generality, suppose that player 1

5This is a reasonable assumption to make if one thinks of this model of evolution as a metaphor for
boundedly rational play, learning, and imitation of more successful others in contests.

7



is a mutant and bids according to x1 = x. Then, from Schaffer (1988), a strategy xESS is a

finite population ESS if and only if

xESS ∈ arg max
x

F1(x, xESS, ..., xESS)− Fj(x, xESS, ..., xESS), (8)

for j = 2, ..., n. In other words, a finite population ESS maximizes relative fitness.

All players bidding 0 cannot be an ESS because mutants bidding a small positive

amount could successfully invade such a population. Similarly, bidding in excess of v cannot

be an ESS because mutants bidding below v could successfully invade such a population.

Making use of (7), the first-order condition to the relative fitness maximization problem in

(8) is

(n− 1)rxr−1xrESS
(xr + (n− 1)xrESS)2

(v − x)− xr

xr + (n− 1)xrESS
+

rxr−1xrESS
(xr + (n− 1)xrESS)2

(v − xESS) = 0. (9)

At an ESS, x = xESS, so (9) becomes

r

nxESS
(v − xESS)− 1

n
= 0,

with solution

xESS =
rv

1 + r
. (10)

Bidding according to (10) is an ESS provided that (10) actually maximizes relative

fitness. The second-order condition to the relative fitness maximization problem is

(n− 1)(r − 1)xrESS − (1 + r)xr

xr + (n− 1)xrESS
(v−x)−2x+

(n− 1)(r − 1)xrESS − (1 + r)xr

(n− 1)(xr + (n− 1)xrESS)
(v−xESS) < 0.

(11)

Substituting (10) into the second-order condition and simplifying reveals that it holds if and

only if −nr−n < 0 and therefore the second-order condition holds at the candidate for ESS

bidding in (10) for all r ∈ (0,∞). Clearly, relative fitness is 0 at the candidate ESS in (10)

and the relative fitness of making a bid of 0 against the candidate ESS played by players

i = 2, ..., n is

F1(0, xESS, ..., xESS)− Fi(0, xESS, ..., xESS) = 0− 1

n− 1

(
v − rv

1 + r

)
= − 1

n− 1

v

1 + r
< 0

for all r ∈ (0,∞).
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Proposition 2. At the unique evolutionarily stable strategy (ESS) of a winner-pay contest

among members of a finite population, each player bids an amount

xESS =
rv

1 + r
.

The finite population ESS is the limiting outcome of Nash equilibrium bidding among rational

players in a winner-pay contest when n→∞.

ESS bidding has expected comparative static properties. ESS bids increase in v since

more valuable prizes increase the fitness available for the evolution of relatively more aggres-

sive bidding strategies. An increases in r increases the decisiveness of an individual bid for

winning, and therefore leads to the evolution of relatively more aggressive bidding strategies.

From (7), the individual fitness of an ESS player is

Fi(xESS, ..., xESS) =
1

n

(
v − rv

1 + r

)
(12)

=
1

n

v

1 + r
≥ 0

for all r ∈ (0,∞), i = 1, ..., n. As expected, the fitness of an ESS player increases in v and

decreases in n and in r.

Over-dissipation of the prize value does not emerge in winner-pay contest ESS for

any r ∈ (0,∞). This is in sharp contrast to what Hehenkamp et al. (2004) find for ESS

in all-pay contests, where over-dissipation of the prize value exists for r > 1. In the all-

pay contest Hehenkamp et al. (2004) study, over-dissipation is consistent with ESS despite

creating negative individual fitness because, starting from a population playing according to

the ESS, a mutant bidding less aggressively would in fact experience lower fitness than each

member of the ESS population (that is, experience negative relative fitness)and therefore

could not successfully invade the ESS population. By contrast, in a winner-pay contest,

an individual player’s ESS bid is prize dissipation. Thus, over-dissipation of the prize in

a winner-pay contest is equivalent to an individual bid above the prize value, a strategy

that mutants bidding below v could successfully invade because such mutants would earn

strictly positive fitness while members of a population over-dissipating the prize continue to

experience negative fitness.

While over-dissipation of the prize value is impossible in both Nash equilibrium and

ESS behavior, it is the case that ESS behavior involves over-expenditure relative to Nash

equilibrium behavior from inspection of (5) and (10).

Proposition 3. Bidding according to the evolutionarily stable strategy (ESS) in a winner-pay
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contest involves over-expenditure relative to Nash equilibrium bidding behavior since

xESS =
rv

1 + r
> xNE =

(n− 1)rv

(n− 1)r + n
.

Since individual bidding is prize dissipation in a winner-pay contest, prize dissipation under

ESS bidding exceeds prize dissipation under Nash equilibrium bidding, though in neither case

can there exist over-dissipation of the prize value.

Proposition 3 coincides with what Leininger (2003) and Hehenkamp et al. (2004) find

when comparing finite population ESS and Nash equilibrium behavior in an all-pay contest.

That finite population ESS bidding exceeds Nash equilibrium bidding in a winner-pay contest

follows directly from the negative externality in the contest success function in (2). Namely,

the hallmark of a contest (all-pay or winner-pay) is that each (active) player’s probability of

winning the contest decreases in each rival player’s effort. Starting from a population bidding

in Nash equilibrium as per (5), a mutant bidding (slightly) more aggressively will decrease

its own fitness, but will decrease even more the fitness of a member of the population bidding

according to the Nash equilibrium. In other words, such a mutant would experience higher

relative fitness than a member of the Nash equilibrium population and successfully invade it.

Analysis in the Appendix to this paper generalizes this result and shows that ESS bidding is

more aggressive than Nash equilibrium bidding for a contest success function more general

than (2) and for a more general model of evolution in which players of a finite population of

size N ≥ 2 match at random to interact in n-player winner pay contests, n ≤ N .

The ESS bidding I derive in Proposition 2 makes use of the definition of a finite popu-

lation ESS from Schaffer (1988) in which an ESS is evolutionarily stable against the invasion

of one mutant. In the interest of robustness, however, one might demand that an ESS be

evolutionarily stable against the invasion of a finite number of identical mutants, or at least

wish to know the maximum number of identical mutants against which an ESS is evolution-

arily stable. The definition of a generalized ESS from Schaffer (1988) accounts for invasion

by a finite number of identical mutants as follows: A strategy xESS is M -stable if m identical

mutants playing any strategy x̂ 6= xESS cannot successfully invade (i.e., earns lower relative

fitness) a population of n − m players playing according to xESS with 1 ≤ m ≤ M and

M ≤ n− 1. A strategy xESS is globally stable if it is (n− 1)-stable.

The finite population ESS bidding I derive in Proposition 2 is highly robust in that it

is globally stable.
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Proposition 4. The unique finite population evolutionarily stable strategy

xESS =
rv

1 + r

for a winner-pay contest is globally stable.

Proof. The proof is by induction. The argument deriving Proposition 2 demonstrates that

xESS = vr/(1+r) is 1-stable. The induction hypothesis is that xESS = vr/(1+r) is m-stable,

so that the relative fitness of one of m identical mutants playing x̂ when facing a population

playing the ESS is

x̂r

mx̂r + (n−m)
(
rv
1+r

)r (v − x̂)−
(
rv
1+r

)r
mx̂r + (n−m)

(
rv
1+r

)r (v − rv

1 + r

)
< 0 (13)

for all x̂ 6= rv/(1 + r).

To establish that xESS = vr/(1 + r) is (m+ 1)-stable, note that the the relative fitness

of one of m+ 1 identical mutants playing x̂ when facing a population playing the ESS is

x̂r

(m+ 1)x̂r + (n−m− 1)
(
rv
1+r

)r (v − x̂)−
(
rv
1+r

)r
(m+ 1)x̂r + (n−m− 1)

(
rv
1+r

)r (v − rv

1 + r

)
.

(14)

By the induction hypothesis in (13), the relative fitness of one of these identical m + 1

mutants is in fact negative for all x̂ 6= rv/(1 + r) since (14) is simply (13) multiplied by

mx̂r + (n−m)
(
rv
1+r

)r
(m+ 1)x̂r + (n−m− 1)

(
rv
1+r

)r > 0.

By induction, then, xESS = rv/(1 + r) is globally stable.

The global stability of ESS bidding in a winner-pay contest complements the result

from Hehenkamp et al. (2004) which establishes the global stability of the ESS of an all-pay

contest. More generally, it is well-known from Leininger (2006) that the ESS of quasi-

submodular symmetric aggregative games are globally stable. The winner-pay contest I

study in this paper is a symmetric aggregative game but, unfortunately, the result from

Leininger (2006) does not apply in this case because (it can be shown that) players’ expected

payoffs (fitness) do not exhibit decreasing differences in individual strategy and aggregate

everywhere in the strategy space.

Since, from (12), individual fitness of an ESS player in a winner-pay contest is non-

negative, it would be interesting to endogenize the population and consider how the popula-
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tion size reacts to changes in the contest’s parameters. The evolutionarily stable population

size (nESS) in a winner-pay contest is the population size that, subject to ESS bidding be-

havior it induces, generates individual fitness no less than some given subsistence level. Let

F > 0 denote the subsistence level of fitness for each player in the population. Populations

that generate fitness below F will shrink and populations that generate fitness above F will

grow. Treating population size as a continuous variable, the evolutionarily stable population

size then satisfies
1

nESS

v

1 + r
= F

and is therefore given by

nESS =
1

F

v

1 + r
, (15)

provided that the parameters F , r, and v are in a configuration such that nESS ≥ 2; for

example, a sufficiently large v or sufficiently small F would ensure a minimally competitive

evolutionarily stable population size. Upon inspection of (15), the comparative static prop-

erties of evolutionarily stable population size in a winner-pay contest are immediate and as

expected.

Proposition 5. The evolutionarily stable population size (nESS) in a winner-pay contest

decreases in the subsistence level of fitness (F ), decreases in the contest success function’s

sensitivity to an individual bid (r), and increases in the contest’s prize value (v).

For the case of r < 1 in the all-pay contest in Hehenkamp et al. (2004), one obtains

results analogous to Proposition 5 for the evolutionarily stable population size defined as

above. For the case of r ∈ (1, n/(n− 1)], however, there is over-dissipation of the prize value

in the ESS and individual fitness is negative. In this case, then, the evolutionarily stable

population size is zero unless one is willing to posit a negative subsistence level of fitness.

4 Conclusion

In this paper, I provide an evolutionary analysis of a winner-pay contest where contestants

submit bids to influence the probabilistic award of a prize, the highest bid does not necessar-

ily win, and only the winner pays her bid. As in all-pay contests, evolutionarily stable (ESS)

bidding in winner-pay contests exceeds risk-neutral Nash equilibrium levels but, in contrast

to the ESS of all-pay contests, can never involve over-dissipation of the contest’s prize value.

The ESS of winner-pay contests is globally stable in that it resists invasion of an arbitrary

number of identical mutants playing according to some other strategy. When endogenizing
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population size in evolutionary winner-pay contests, I find that the evolutionarily stable

population size increases in the contest’s prize value and decreases in the population’s sub-

sistence level of fitness and competitiveness of the contest. Many of these results continue to

hold for either a more general contest success function or a more general model of evolution

of a finite population.

Potentially interesting future lines of research include experimental work on winner-pay

contests to see whether Nash equilibrium or ESS better explain behavior in this environ-

ment. Extending the analysis in this paper to analyze the evolution of multiple populations

in asymmetric (in, for example, prize valuation, cost, or contest success function productiv-

ity) winner-pay contests could provide further insights into the relationship between Nash

equilibrium and ESS behavior in contests and how behavioral differences relate to structural

differences among contests. Finally, exploring the relation of ESS to behavior induced by

evolutionarily stable preferences as in Leininger (2009) and Boudreau and Shunda (2010)

could provide insights into conditions under which these forms of behavior are or are not

equivalent in contests that are all-pay, winner-pay, or otherwise.

Appendix

This Appendix contains an analysis which generalizes some results from the body of the

paper to a contest success function more general than (2) and for a model of evolution more

general than the “playing-the-field” model I develop and study in Section 3 of the paper.

A More General Contest Success Function

The analysis of this section demonstrates the symmetric Nash equilibrium to a winner-

pay contest is not evolutionarily stable and that the finite population ESS of a winner-pay

contest involves relatively more aggressive bidding than Nash equilibrium behavior. This

follows from the negative externality the contest success function generates, a hallmark of

contests. Evolutionarily, a player bidding (slightly) more aggressively than Nash equilibrium

levels decreases their own fitness but decreases even more the fitness of rival players, resulting

in an increase in relative fitness. The analysis below follows Leininger (2003), who obtains

an analogous result for all-pay contests.

Suppose a set of n ≥ 2 players in a winner-pay contest with payoffs described by (1)

each face a contest success function pi(x1, ..., xn), i = 1, ..., n with the following properties:

1. Probability : For i = 1, ..., n, pi : R+
n → [0, 1] and

∑n
i=1 pi = 1.

13



2. Differentiability : The contest success function is differentiable in own and rival bids

with
∂pi
∂xi

> 0

for i = 1, ..., n and xi > 0, and
∂pi
∂xj

< 0

for j = 1, ..., n, j 6= i, and xj > 0.

3. Anonymity : For any permutation π of the set of players

pπ(i)(x1, ..., xn) = pi(xπ(1), ..., xπ(n))

so that each player’s probability of winning depends upon their bid and not upon their

identity.

To derive the symmetric Nash equilibrium of this winner-pay contest, each player solves

the maximization problem

max
xi

pi(xNE, ..., xi, xNE, ..., xNE)(v − xi)

with first-order condition
∂pi
∂xi

(v − xi)− pi = 0

satisfied at xi = xNE.

On the other hand, an ESS maximizes relative fitness. Suppose then, without loss of

generality, that player 1 is a mutant playing according to x1 6= xNE against a population

playing according to xNE. To find an ESS in this case, evolution solves the relative fitness

maximization problem

max
x1

p1(x1, xNE, ..., xNE)(v − x1)− pj(x1, xNE, ..., xNE)(v − xNE)

for j = 2, ..., n. Differentiating relative fitness with respect to x1 and evaluating the differ-

ential at x1 = xNE reveals that

∂p1
∂x1

(v − x1)− p1︸ ︷︷ ︸
=0 at x1=xNE

−∂pj
∂x1

(v − xNE)︸ ︷︷ ︸
>0 because

∂pj
∂x1

<0 and xNE<v

> 0.

Proposition 6. The symmetric interior Nash equilibrium in a winner-pay contest is not

14



evolutionarily stable. The evolutionarily stable strategy in a winner-pay contest involves

relatively more aggressive bidding than does Nash equilibrium behavior.

A More General Model of Evolution

In the “playing-the-field” model of evolution I develop and study in Section 3 of this paper,

the forces of evolution and selection are at their strongest since interaction among members

of the population is global. That is, since the entire population plays itself, it is certain

that each member will meet a mutant. Suppose now, instead, that members of a finite

population of size N ≥ 2 match at random to interact in an n-player winner-pay contest

described by (1) and (2) with n ≤ N . Each time players match, they play the contest once

and this determines each strategy’s fitness level. The random matching in groups of n to

play a winner-pay contest occurs indefinitely, and the population evolves in such a way that

strategies earning higher fitness levels proliferate while strategies earning lower fitness levels

eventually die off.

Suppose, without loss of generality, that player 1 playing according to x1 = x is a single

mutant in the population, the rest of which is playing according to an ESS, xESS,N . Player

1, then, will meet members of the ESS population with certainty and therefore player 1’s

fitness is given by

F1(x, xESS,N , ..., xESS,N) :=
xr

xr + (n− 1)xESS,N
(v − x).

On the other hand, the probability that a member of the ESS population present in a contest

will meet a mutant among the other n− 1 players in the contest is (n− 1)/(N − 1) so that

the expected fitness of a member of the ESS population is given by

n− 1

N − 1
Fj(x, xESS,N , ..., xESS,N) +

(
1− n− 1

N − 1

)
Fj(xESS,N , ..., xESS,N),

j = 2, ..., n. Ignoring the part of relative fitness that does not depend upon x, a strategy

xESS,N is a finite population ESS if and only if

xESS,N ∈ arg max
x

F1(x, xESS,N , ..., xESS,N)− n− 1

N − 1
Fj(x, xESS,N , ..., xESS,N),

for j = 2, ..., n.

Arguments analogous to those in the proof of Proposition 2 derive the following result.

Proposition 7. At the unique evolutionarily stable strategy among members of a finite pop-
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ulation N ≥ 2 matching at random to play an n-player winner-pay contest with n ≤ N , each

player bids an amount

xESS,N =
N(n− 1)rv

N(n− 1)r + (N − 1)n
. (16)

Comparison of Nash equlibrium bidding in (5), “playing-the-field” ESS bidding in (10),

and ESS bidding in (16) yields the following corollary.

Corollary 1. Winner-pay contest bidding is weakly most-aggressive in the “playing-the-field”

evolutionarily stable strategy and least-aggressive in Nash equilibrium so that

xESS ≥ xESS,N > xNE,

with a strict first inequality for n < N .
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