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1 Introduction

Urbanization — the concentration of population in cities and towns — is one of the most

striking features of economic development.1 The share of the world’s population living in

cities grew from less than one tenth in 1300, to around one sixth in 1900 and to more than

one half today.2 In this paper, we examine urbanization using a new dataset that tracks,

for the first time, the evolution of population across both rural and urban areas and over

a long historical period of time. We show that incorporating information on the full range

of population densities considerably changes our understanding of the urbanization process.

We provide theory and evidence that structural transformation across sectors is central to

understanding the observed changes in the population distribution.

While most previous research on the population distribution has concentrated on cities,

rural areas accounted for a large share of the population in developed countries historically,

and they continue to account for large shares of the population in many developing countries

today. To provide evidence on both rural and urban areas, we construct a new dataset for

the United States from 1880 to 2000, which maps data on sub-county divisions — commonly

referred to as Minor Civil Divisions (MCDs) — to comparable spatial units over time.

Our main finding is that population growth over this time period is strongly increasing in

initial population density for the range of intermediate values of population density at which

the majority of the 1880 population lived. At higher values for initial population density,

population growth is largely uncorrelated with initial population density, which is consistent

with existing empirical findings for cities and metropolitan areas.

The upward-sloping relationship between population growth and initial population den-

sity at intermediate densities is closely related to another feature of our data, which is a

polarization of the distribution of U.S. population between 1880 and 2000. Despite the sub-

stantial increase in the overall U.S. population over this time period, there is an increase

in the mass of both sparsely and densely-populated areas. While some regions experienced

rapid urbanization, others experienced rural depopulation.

These substantial changes in the distribution of population have important implications

for the organization of economic activity and public policy. Urbanization and rural depop-

1The U.S. Census Bureau defines an urban area as territory consisting of core census blocks with a
population density of at least 1,000 people per square mile and surrounding census blocks with a population
density of at least 500 people per square mile (Census 2000d).

2The historical figures are from Bairoch (1988) and the present-day figures from United Nations (2008).
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ulation have starkly different effects on the incomes of immobile factors and the values of

immobile durable goods such as housing. Understanding the reasons for and predicting

the pattern of this population redistribution is central to the provision of public and pri-

vate infrastructure and to the expenditure demands and revenue base facing state and local

governments.

Incorporating information on rural areas into our analysis yields new insights for popu-

lation growth at the high population densities observed in urban areas. Existing research

on cities has had to take a stand on two related issues: entry into the city-size distribution

and the population threshold for a city. The treatment of both issues affects the city-size

distribution and the relationship between city population growth and size, against which

existing theories of city growth are compared (see, for example, Black and Henderson 1999,

Duranton 2007, Eeckhout 2004, Gabaix 1999, and Rossi-Hansberg and Wright 2007).3 Both

issues reflect the fact that cities, by construction, are a selected sample of locations that

have already become densely populated. In contrast, our analysis makes use of the entire

distribution of population densities to shed light on both the process through which locations

become densely populated and the evolution of population among densely populated loca-

tions. We use our data to determine empirically the threshold at which population growth

becomes largely uncorrelated with initial population density.

Our finding of an upward-sloping relationship between population growth and initial

population density suggests that comparatively small initial differences can have large fu-

ture effects, as growth rates compound over time, and can influence whether or not a loca-

tion makes the transition from rural to urban. While MCDs with seven people per square

kilometer barely grew between 1880 and 2000, those with fifty five people per square kilo-

meter more than tripled in population over the same time period. Even within relatively

densely-populated locations, we find variation in rates of population growth that is related

to differences in initial patterns of specialization across sectors.

We develop a body of evidence, which shows that the upward-sloping relationship be-

tween population growth and initial population density is driven by structural transformation

across sectors. We organize our empirical evidence around six stylized facts relating to the

distribution of employment and population. We show that non-agricultural employment

densities exhibit higher variance than agricultural employment densities, reflecting the fact

3For an analysis of the emergence of new cities as a source of growth in the urban population, see
Henderson and Wang (2007) and Henderson and Venables (2008).
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that employment is more spatially concentrated in non-agriculture than in agriculture. This

difference in employment densities is associated with an initial share of non-agriculture in

employment that is increasing in initial population density over a range of intermediate

values for population density. We show that this range coincides exactly with the range

of intermediate densities at which population growth between 1880 and 2000 is increasing

in initial population density. Therefore reallocation of employment away from agriculture,

combined with a non-agricultural employment share that increases with initial population

density, generates the upward-sloping relationship between population growth and initial

population density.

We demonstrate that these empirical findings are robust features of the U.S. data across

a wide range of specifications. As an additional robustness check, we also replicate our entire

analysis for Brazil for a period of substantial structural transformation from 1970-2000. Even

though Brazil differs from the U.S. along a number of dimensions, including institutions and

physical geography, and even though the data are collected at a different level of spatial

aggregation and for a different time period, we find a strikingly similar pattern of results.

This similarity of the results in a quite different context reassures us that our findings are

not driven by idiosyncratic features of the data or the institutional environment for the U.S.

In Brazil, like the U.S., the range over which there is an upward sloping relationship

between population growth and initial population density coincides exactly with the range

over which non-agriculture accounts for an increasing share of employment. While this close

relationship in both countries is strong evidence in support of our explanation based on

structural transformation, we consider other potential explanations for our findings. For

example, differences in locational fundamentals, such as physical geography or institutions,

could be correlated with population growth, initial population density and the initial share

of non-agriculture in employment. Or the upward-sloping relationship between population

growth and initial population density could be driven by commuting or suburbanization

around the fringes of densely-populated areas.

To rule out such alternative explanations, we include a wide range of additional con-

trols and estimate a number of different specifications. To control for physical geography,

we include measures of proximity to the coast, lakes and rivers and proximity to natural

resource endowments. To control for physical geography and institutions, we include state

fixed effects and even county fixed effects. In our cross-section specification, the state and
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county fixed effects control for any determinant of population growth or levels that is com-

mon across MCDs within states and counties. Examples include state and county policies,

but also climate, which in general varies little across MCDs within counties. To rule out

explanations based on commuting and suburbanization, we construct alternative samples

based on counties and aggregations of MCDs in the neighborhood of densely-populated ar-

eas. We also show that we observe a similar upward-sloping relationship even in a sample of

MCDs of above-median distance from existing population centers (more than 170 kilometers

away).

To interpret our empirical results, we develop a simple theoretical model, which shows

how structural transformation can generate the changes in the population distribution ob-

served in our data. Structural transformation arises from aggregate differences in produc-

tivity growth and inelastic demand across sectors. With inelastic demand, more rapid pro-

ductivity growth in agriculture than in non-agriculture leads to a more than proportionate

decline in the relative price of the agricultural good, and hence induces a reallocation of

employment from agriculture to non-agriculture.4

In the model, non-agriculture is less land intensive than agriculture and exhibits stronger

agglomeration forces, which generates an increasing relationship between the share of non-

agriculture in employment and population density. In each sector, productivity is influenced

by the aggregate trends noted above and by idiosyncratic shocks to productivity in each

location. In our empirical results, we find that non-agricultural employment growth is un-

correlated with initial population density, while agricultural employment growth is sharply

decreasing in initial population density. The model generates these different employment

dynamics if non-agricultural productivity displays constant proportional growth and agri-

cultural productivity exhibits mean reversion, which is consistent with non-agricultural pro-

ductivity being less tied to persistent characteristics of locations, such as climate and soil.

As the location-specific shocks to productivity have bounded support in each sector, these

differences in productivity dynamics imply that the agricultural productivity distribution is

bounded from above, whereas the non-agricultural productivity distribution is unbounded

from above. This difference between the two productivity distributions further reinforces the

4In emphasizing differences in productivity growth across sectors and inelastic demand, we follow a long
literature on structural transformation in macroeconomics, including Baumol (1967), Ngai and Pissarides
(2007) and Rogerson (2008). The main competing explanation in the macroeconomics literature is non-
homothetic preferences, as emphasized by Echevarria (1997), Gollin et al. (2002) and Matsuyama (2002),
which can also be incorporated into the theoretical model developed below.
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increasing relationship between the share of non-agriculture in employment and population

density in the model.

As aggregate differences in productivity growth between the two sectors induce a decline

in the relative price of agriculture, there is a reallocation of employment from agricultural

to non-agricultural locations, and within locations there is an endogenous change in land

use from agriculture to non-agriculture. Given the increasing relationship between the share

of non-agriculture in employment and population density noted above, this reallocation of

employment towards non-agriculture generates the upward-sloping relationship between pop-

ulation growth and density observed at intermediate densities. At low densities, agriculture

dominates, and mean reversion in agricultural productivity generates a downward-sloping

relationship between population growth and density. At high densities, non-agriculture dom-

inates, and constant proportional growth in non-agricultural productivity generates popula-

tion growth that is largely uncorrelated with population density.

To illustrate the quantitative relevance of structural transformation, we use relationships

suggested by the model to predict rates of population growth between 1880 and 2000 based

on economy-wide rates of employment growth in agriculture and non-agriculture combined

with each location’s initial share of employment in agriculture in 1880. Despite the parsi-

mony of this explanation based on structural transformation, we show that it can account

quantitatively for the upward-sloping relationship between population growth and density

observed at intermediate densities. In contrast, we find that our controls for geography can

account for little of the observed upward-sloping relationship.

Our paper is related to a large body of work in urban economics and economic geography.

Recent research on the relationship between population growth and size in the literature

on cities includes Duranton (2007), Eeckhout (2004), Gabaix (1999) and Rossi-Hansberg

and Wright (2007). While population growth is typically found to be uncorrelated with

population size in the cities literature (Gibrat’s Law), Black and Henderson (2003), González-

Val et al. (2008) and Soo (2007) find evidence of departures from Gibrat’s Law even for

cities.5 Dividing the surface of the continental U.S. into a uniform grid of six-by-six mile

squares, Holmes and Lee (2008) find that population growth from 1990-2000 is highest at

intermediate values of initial population density.

5Research on the empirical determinants of city growth includes among others Glaeser et al. (1992), da
Mata et al. (2007), Ioannides and Overman (2004), and is surveyed in Gabaix and Ioannides (2004). The
role of industrial specialization is emphasized in Henderson (1974).
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Our focus on the reallocation of economic activity from agriculture to non-agriculture also

connects with theories of new economic geography, including Fujita et al. (1999) and Krug-

man (1991). Although reductions in trade costs in these models can result in a polarization

of population across space, they do not provide natural explanations for why Gibrat’s Law is

a reasonable approximation for observed city population growth (see for example the discus-

sion in Davis and Weinstein 2002) or for why Gibrat’s Law is violated when both rural and

urban areas are considered. While an empirical literature has examined the determinants of

the distribution of economic activity across states and counties in the U.S., including Beeson

et al. (2001), Ellison and Glaeser (1999), Glaeser (2008), Kim (1995) and Rappaport and

Sachs (2003), this literature has typically not emphasized structural transformation. Closest

in spirit to our work is Caselli and Coleman (2001), who examine structural transformation

and the convergence of incomes between Southern and Northern U.S. states. Also related

is Desmet and Rossi-Hansberg (2007), who examine differences in patterns of employment

growth between the manufacturing and service sectors using U.S. county data, and relate

these differences to technological diffusion and the age of sectors. Neither paper examines

the relationship between structural transformation and urbanization — an analysis for which

our sub-county data are especially well suited.

Finally, our research is related to the development and economic history literatures. Early

work on structural change and economic development is surveyed in Syrquin (1988), while

more recent research on the interlinkages between industrial and agricultural development

is reviewed in Foster and Rosenzweig (2008). Influential work on the history of urban devel-

opment in the U.S. includes Kim (2000) and Kim and Margo (2004), although for reasons

of data availability this research has again largely concentrated on cities.

The remainder of the paper is organized as follows. Section 2 discusses our main dataset

for the U.S., outlines our empirical strategy, presents our main empirical findings, and reports

the results of a number of robustness checks. Section 3 presents the results of an additional

robustness check using Brazilian data. Section 4 outlines our theoretical model and Section

5 shows that structural transformation can account quantitatively for our empirical findings.

Section 6 concludes.
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2 U.S. Data and Stylized Facts

2.1 Data and Samples

This section begins by introducing the U.S. data that we use in this paper and the samples

that we construct. We then document a set of stylized facts that shed light on the dynamics

of urban and rural population growth from 1880-2000.6

In order to analyze these dynamics, we require data on land area, population, and sectoral

employment for geographic units that are consistent over time. Since we are interested in

both rural and urban areas, we also require that these geographic units partition the land

area that we analyze. In other words, we want a dataset that covers the entire population

and all the land - from the largest cities to the smallest farms. And since we are interested

in examining rural and urban population dynamics, we prefer that our geographic units be

fine enough to separate urban areas from rural ones.

While these criteria may seem natural, it is not easy to find an existing dataset that

satisfies them all. The literature on urban growth in the U.S. has often analyzed counties or

Metropolitan Statistical Areas (MSAs), which are groups of counties. And although counties

satisfy most of our requirements, they often pool together urban centers with their surround-

ing countryside. So while we include counties in our analysis, we are also interested in data

that provide finer spatial aggregation. One dataset that is less aggregated than the county

dataset includes incorporated places - this is the dataset used by Eeckhout (2004). But while

this data is useful for studying urban growth dynamics, it does not contain information on

many rural areas, where the majority of the U.S. population lived before the 20th century.

Since existing datasets are not fully satisfactory for our purposes, we construct a new

dataset using minor civil divisions (MCDs). MCDs have been used to report population

in parts of the U.S., especially in the Northeast, since the first census in 1790 (see Census

2000c). But as we discuss below, we are interested not only in population but also in sectoral

employment. And since the earliest available digitized employment data for MCDs comes

from the 1880 Census, we chose 1880 as the starting year for our analysis. Over time, MCDs

became a standard tool for partitioning counties throughout (almost) the entire U.S.7 It is

6For further discussion of the U.S. data and the samples discussed below, see the web-based technical
appendix.

7In many western states sub-county units were initially called MCDs but were reclassified as census
county divisions (CCDs) in 1950, when the map of sub-county units in many of these states was redrawn.
For simplicity, we refer to both MCDs and CCDs as MCDs (see chapter 8, Census 2000c) and discuss in
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this feature of MCDs that makes them so suitable for our analysis: they provide the finest

level of geographical disaggregation for which we can analyze urbanization and structural

transformation over more than a century.8

The most common types of MCDs are towns and townships, but in some areas election

precincts, magisterial districts, parishes, election districts, plantations, reservations, bor-

oughs or other categories were used as MCDs. As some of these names suggest, in many

states MCD boundaries coincide with those of local government bodies. In New England

in particular, MCDs correspond to townships that are actively functioning units of local

government, in many cases since the 17th Century. But in other states MCDs are often

statistical entities with few (or no) other functions (see Chapter 8 Census 2000c). Given

the variation in their functions, it is not surprising that the size and shape of MCDs also

vary from state to state. For example, in the Midwest MCDs often follow a chessboard pat-

terns with squares of 6 miles per side; this design dates back to the Land Ordinance of 1785

and the Northwest Ordinance of 1787 (see Prescott 2003). As one travels West or South,

the size of MCDs tends to grow, and they tend to become less regular and less stable over

time. To address concerns that differences in the geographical and institutional organization

of MCDs could affect population growth and employment structure, we report robustness

checks where we consider states with similar geographical and institutional organizations of

MCDs, and where we consider more aggregated spatial units such as counties.

To overcome changes in MCD boundaries over time, we aggregate some MCDs to create

geographic units that are stable over time. This aggregation process involved considerable

work using historical maps and gazetteers, and it is described in further detail in the web-

based technical appendix. To provide a brief idea of the aggregation process, we matched

the approximate centroid of each 1880 and 1940 MCD to the 2000 MCD in which it fell. We

then aggregated any 2000 MCD that did not contain at least one 1880 MCD and one 1940

MCD to the nearest 2000 MCD that did. This aggregation process enables us to track the

evolution of population at a fine level of spatial detail over 60-year intervals.9 One reason

further detail in the web-based technical appendix how we link MCDs over time.
8We exclude Alaska, Hawaii, Oklahoma, North Dakota, and South Dakota, which had not attained

statehood in 1880, and therefore are either not included in the 1880 census or did not have stable county
boundaries at that time. Additionally, we use county data for some states where sub-county units are not
comparable over time. We discuss in further detail below the robustness of our results across a wide range
of samples and specifications.

9All MCDs in our baseline sample, which consists of the "A and B" states defined below, have non-zero
population in all three years of our sample. But there are 7 MCDs in the "C" states, as defined below, that
have zero population in 1880. These 7 MCDs are dropped when we construct population growth rates.
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for restricting ourselves to these years is that adding more years would have forced us to

aggregate further. But perhaps more importantly, we only know the employment structure of

MCDs for 1880 (using the individual-level census records from the North Atlantic Population

Project) and for the very recent censuses, such as 2000 (using data from the U.S. census

American Factfinder tool, see Census 2000b). Since our analysis uses both population and

employment data, adding more years for which we don’t have employment data would have

not contributed much. Finally, we used the 2000 census to calculate the land area in each

geographic unit.

The extent of aggregation required to construct time-consistent units varies across states.

In some states, especially in the Northeast and the Midwest, MCDs corresponded to local

administrative units that were very stable over time, so little aggregation was required. We

therefore divided states into samples: little aggregation was required in A states, more was

needed in B states, and more still in C states. The geographic distribution of states across

these three groups is shown in Map 1. In choosing our baseline sample, we sought to include

as many states as possible while limiting the extent of aggregation, since the aggregation

process might entail some imprecision. We therefore choose as our baseline sample the A

and B states, for which 1 − 1 matches between the 1880 and 2000 censuses involving no
aggregation exceeded 70 percent.10 But as we discuss below, we also construct alternative

samples that either include more states (in some cases using county-level data) or restrict

our sample to A states, where very little aggregation was required. In our baseline sample

there are, on average, 13 units ("MCDs") per county. The average unit spans 115km2, with

a population of 2,400 in 1880 and 8,800 in 2000.

2.2 Empirical Strategy

We are interested in characterizing the population density distribution and the relationship

between population growth and the initial population density distribution. In both cases,

we adopt a nonparametric approach that imposes minimal structure on the data.

To characterize the population density distribution, we divide the range of values for log

population density, x, into discrete bins of equal size δ. We index MCDs by m and bins by

b ∈ {1, ..., B}. Denoting the set of MCDs with log population density in bin b by Φb and

denoting the number of MCDs within this set by nb, we estimate the population density

10Since in most cases our geographic units consist of a single MCD, we refer for simplicity to these units
as "MCDs", even though they are sometimes aggregations of MCDs.
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distribution, ĝ (xm), as follows:

ĝ (xm) =
nb
n
, n =

BX
b=1

nb, for xm ∈ Φb. (1)

Thus the estimated probability of observing a population density within the range of values

included in bin b equals the fraction of MCDs with population densities in this range. This

corresponds to a simple histogram, which yields a consistent estimate of the true underlying

probability density function (Scott 1979). We choose bin sizes of δ = 0.1 log points, which

provide a fine discretization of the space of values for log population density, while in general

preserving a relatively large number of MCDs within bins. Although this approach provides

a simple and flexible characterization of the population density distribution, which connects

closely with the other components of our analysis below, we also find similar results using

related non-parametric approaches such as kernel density estimation (Silverman 1986).

To characterize the relationship between population growth and the initial population

density distribution, we follow a similar approach. We approximate the continuous func-

tion relating population growth to initial population density using a discrete-step function

consisting of mean population growth within each initial population density bin:

ymt = f (xmt−T ) =
BX
b=1

Ibφb, φb =
1

nb

X
m∈Φb

ymt, for xm ∈ Φb, (2)

where t indexes time. In this specification, bins are defined over initial population density,

xmt−T ; ymt is average population growth from t−T to t; and Ib is an indicator variable equal
to one if xmt−T ∈ Φb and zero otherwise.

This specification corresponds to a regression of population growth on a full set of fixed

effects for initial population density bins. We report both mean population growth and the

95 percent confidence intervals around mean population growth for each initial population

density bin. The confidence intervals are based on heteroscedasticity robust standard errors

adjusted for clustering by county, which allows the errors to be correlated across MCDs within

counties.11 While this non-parametric specification allows for a flexible relationship between

population growth and initial population density, we again find similar results using other

related non-parametric approaches, such as locally weighted linear least squares regression
11When displaying the results of the specification (2) graphically, we remove the top and bottom one

percent of the observations from the graphical representation, but not from the regressions. The bins at
these extremes of the distribution contain few observations and have correspondingly large standard errors.
Hence they tend to cloud rather than to illuminate the true picture.
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(Cleveland 1979) and kernel regression (Härdle 1990). A key advantage of the specifications

in (1) and (2) is that we can preserve the same discrete bins when analyzing the population

density distribution, the relationship between population growth and the initial population

density distribution, and analogous specifications for employment in the agricultural and

non-agricultural sectors.

As our model yields predictions for the functional form of the relationship between pop-

ulation growth and initial population density, we also estimate parametric versions of speci-

fication (2) of the form:

ymt = ρxmt−T + umt, (3)

where ρ is a parameter to be estimated, umt is a stochastic error, and we again report

standard errors clustered by county.

Finally, to examine the relationship between employment structure and the population

distribution, we estimate specifications analogous to (1)-(3) for employment in the agricul-

tural and non-agricultural sectors.

2.3 Stylized Facts

To better understand the process of urbanization and structural transformation in the U.S.

from 1880-2000, we organize our empirical findings around 6 stylized facts. These facts

highlight the instability of the spatial distribution of economic activity over this time period

when urban areas are analyzed together with rural areas — a pattern of results that lies in

stark contrast to the stability documented within the sample of cities in the literature on

urban growth. These facts also suggest that this instability is closely related to structural

transformation away from agriculture.

We begin by reporting a number of descriptive statistics for our baseline sample of "A

and B" states in Column (1) of Table 1. Figures 1-6 then display the results of the non-

parametric specifications (1) and (2) for population and for employment in the agricultural

and non-agricultural sectors. Our first stylized fact is that the distribution of log popula-

tion density across MCDs has become more dispersed from 1880-2000. As shown in Panel

A of Column (1) in Table 1, the standard deviation of the distribution of log population

density increased over this period from 0.97 to 1.56. This increase in the standard deviation

is statistically significant and is larger than the increase in mean log population density.

Figure 1 confirms this increase in dispersion by displaying the results from specification (1).
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Although the U.S. population increased substantially from 1880-2000, as reflected in Figure

1 in an increased mass of densely-populated areas, the figure also shows an increased mass

of sparsely-populated areas. The population density distribution therefore exhibits polar-

ization, with some low-density areas depopulating as other higher-density areas experience

rapid population growth. This instability of the overall distribution of population stands in

sharp contrast to the stability of the distribution of city sizes (e.g. Duranton 2007). Existing

research for cities finds that the population size distribution is approximated by a (stable)

Pareto distribution in the upper tail (e.g. Gabaix 1999) or a lognormal distribution for a

wider range of city sizes (Eeckhout 2004).

Second, Gibrat’s law, which states that population growth and population size are un-

correlated, is clearly violated when cities are considered together with rural areas. While

the relationship between population growth and population size is typically estimated for

shorter time horizons than available in our data, if Gibrat’s Law holds for shorter time hori-

zons, population growth should remain uncorrelated with population size over these longer

time horizons. In Figure 2, we display the results from our population growth specification

(2), where the dark solid line denotes mean population growth within each initial population

density bin and the lighter dashed lines denote the 95 percent confidence intervals. As shown

in the figure, log population density in 1880 is strongly predictive of population growth from

1880-2000. A similar relationship is found if we replace initial population density with initial

population, as discussed further below.12

As Figure 2 shows, for low population densities, there is a negative correlation between

population density in 1880 and subsequent population growth. But approximately between

log population densities 2 and 4,13 a range where more than half of the population in our

sample resided in 1880, population density in 1880 is positively correlated with subsequent

population growth.14 The magnitudes of these departures from Gibrat’s Law are substantial:

12While the existing literature on cities concentrates on the relationship between population growth and
population size, we focus on the relationship between population growth and population density to control
for differences in land area across sub-county units. Although our results are qualitatively the same if we
instead use population size, the population density specification is more appropriate if land area varies
across sub-county units and is derived directly from our theoretical model. In our data, there is a strong and
approximately log linear relationship between population density and population size, which is consistent
with the theoretical model developed below.
13Population densities in logs (levels) compare approximately as follows: 2 (7), 4 (55) and 6 (403), where

these figures are expressed as the log number (number) of people per square kilometer.
14While classical measurement error in 1880 population could induce a negative correlation between pop-

ulation growth and 1880 population density, this does not account for the positive correlation between these
variables observed above a log population density of around 2, and our use of individual-level records from
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MCDs with log density of about 0 or 4 in 1880 experienced population growth at a rate of

about 1 percent from 1880-2000. By contrast, MCDs with a log population density around

2 barely grew on average. As shown in Panel B of Column (1) in Table 1, these differences

are statistically significant. We also note that at levels of log population density above 4

population density seems to be largely uncorrelated with population growth; this is the range

that typically includes urbanized areas. Hence this finding is broadly consistent with the

literature that finds Gibrat’s law is a reasonable approximation for city population growth.

Third, the share of agriculture in employment drops steeply in the range where population

density in 1880 and subsequent growth are positively correlated. Figure 3 presents the

results from specification (2) using the share of agriculture in employment in 1880 as the

left-hand side variable rather than population growth. As the figure shows, the agricultural

employment share in 1880 drops from about 0.8 for MCDs with log density of 2 to about 0.2

for MCDs with log density of 4. Panel C of Column (1) in Table 1 shows that this difference

is statistically significant. For denser MCDs the share continues to decline, but at a much

slower rate.15

Fourth, the distribution of employment per square kilometer across MCDs has a lower

standard deviation in agriculture than in non-agriculture in both 1880 and 2000. As shown

in Panel D of Column (1) in Table 1, this difference is statistically significant at conven-

tional critical values. Figure 4 presents the results from specification (1) for employment in

agriculture and non-agriculture in 1880 and 2000. As shown in the figure, the employment

density distribution in agriculture has thinner tails than its non-agricultural counterpart.16

Therefore, there are more observations with extreme low and high values of employment

density for non-agriculture than for agriculture, reflecting the greater spatial concentration

of non-agricultural employment. Furthermore, a comparison of Figures 1 and 4 suggests that

the 1880 population was distributed in a similar way to the 1880 agricultural employment,

while the 2000 population was more spatially concentrated and distributed in a similar way

to the 2000 non-agricultural employment. This reflects the substantial decline in agricul-

Census data mitigates measurement error concerns.
15The share of employment in total population was about 0.33 in 1880 and 0.48 in 2000. In both years, it

was relatively stable across the population density distribution, suggesting that labor force participation is
not strongly related to population density and hence that employment dynamics are a reasonable predictor
of population dynamics.
16We also find that non-agricultural employment per square kilometer is more unequally distributed than

agricultural employment in both 1880 and 2000 using standard measures of inequality such as the Gini
Coefficient, the Theil Index, the difference between the 90th and 10th percentiles, and the difference between
the 99th and 1st percentiles.
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ture’s share of employment, which fell from 35 percent to 1 percent of total employment in

our baseline sample of "A and B" states.

Fifth, agricultural employment growth appears to follow a mean-reverting process. To

document this stylized fact, we consider the subsample of MCDs for which agriculture ac-

counted for more than 80 percent of 1880 employment. Although the share of agricultural

employment in this subsample was over 88 percent in 1880, it fell to below 10 percent in

2000, and hence this subsample does not entirely capture agricultural dynamics alone. Nev-

ertheless, since this subsample was at least initially mostly agricultural, it is likely to capture

the main features of agricultural growth.17 Figure 5 displays the results from non-parametric

specification (2) for this subsample using agricultural employment growth as the left-hand

side variable. As apparent from the figure, densely-populated MCDs in this subsample exhib-

ited much slower growth of agricultural employment from 1880-2000 than sparsely populated

MCDs. Panel E of Column (1) in Table 1 reports the results from parametric specification

(3) for this subsample, again using agricultural employment growth as the left-hand side

variable. This confirms our finding of mean reversion: the coefficient on log population den-

sity in 1880 in the parametric specification is −0.006 and significant (p-value < 0.001). From
the size of this coefficient, each additional log point of population density in 1880 is associ-

ated on average with just over half a percentage point lower rate of agricultural employment

growth. We find very similar results if we instead relate agricultural employment growth

to log agricultural employment density in 1880: the coefficient on initial log agricultural

employment density is −0.006 and statistically significant.
Sixth, in contrast to the results for the agricultural sector, non-agricultural employment

growth is uncorrelated with 1880 population density. To demonstrate this, we consider

the subsample of MCDs for which agriculture accounted for less than 20 percent of 1880

employment. In this subsample the share of non-agricultural employment was higher than

90 percent in 1880 and higher than 98 percent in 2000. Figure 6 displays the results from

non-parametric specification (2) using non-agricultural employment growth as the left-hand

side variable, while Panel F of Column (1) in Table 1 reports the results from the analogous

parametric specification (3). As apparent from the figure, non-agricultural employment

grew at about 1.2 percent per year. This positive growth rate is very different from the

17We also find mean reverting processes when we consider population growth (rather than employment
growth) for both 1880-2000 and 1880-1940 for the same agricultural subsample. During the 1880-1940 period,
agriculture remained an important employer in much of the U.S. at both the beginning and end of the period.
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(mostly) negative growth rates of agricultural employment shown in Figure 5. Moreover, in

sharp contrast to the results for the agricultural sector, non-agricultural employment growth

is uncorrelated with 1880 population density. As reported in Panel F of Column (1) in

Table 1, the coefficient on log population density in 1880 in the parametric specification is

−0.0002 and statistically insignificant (p-value = 0.515). We also find very similar results if
we instead relate non-agricultural employment growth to log non-agricultural employment

density in 1880. The coefficient on log non-agricultural employment density is −0.00021,
which is more than an order of magnitude smaller than the corresponding coefficient for the

agricultural sector, and statistically insignificant.

2.4 Robustness of the Stylized Facts

Having documented the 6 stylized facts for our preferred sample of MCDs, we now examine

their robustness to different samples and specifications. The results of these robustness checks

are summarized in Columns (2) to (8) of Table 1, while Figure 7 replicates the non-parametric

population growth specification (2) displayed in Figure 2 for each of the robustness checks.

One potential concern about our preferred sample is that imperfect matching of MCDs

across censuses could have affected our estimates. For example, some of the population and

employment of MCDs with intermediate densities could have been assigned to MCDs with

either higher or lower densities, which would affect relative population growth at different

densities. To address this concern, the second column of Table 1 shows that all of our stylized

facts remain intact when we restrict the sample to MCDs in the "A states" (to which we

also refer as the restricted sample). In this restricted sample match rates are well over 90

percent, so imperfect matching is unlikely to be the cause of our finding. Figure 7 also shows

non-parametrically that the U-shape we document in the second stylized fact is still strongly

apparent in this sample.

Another possible concern is that we use a level of aggregation that is too fine. For

example, people could live in one MCD and commute to work in another MCD, which could

in turn influence the correlation between population growth and population density. As a

first step to address this concern, we replicate our analysis using county-level data, since fewer

people commute across county boundaries than across MCD boundaries. In the third column

of Table 1, we report results using county-level data for 45 states and Washington DC.18 As

18As noted in footnote 8, we exclude Alaska, Hawaii, Oklahoma, North Dakota and South Dakota, which
had not attained statehood in 1880, and therefore are either not included in the 1880 census or did not have
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this robustness check includes a more comprehensive set of states than our baseline "A and

B" sample, it ensures that our findings are not being driven by the particular geographic

distribution of states in the baseline "A and B" sample. To provide a comparison, the fourth

column restricts the county sample to the baseline "A and B" states. And the fifth column

reports results using a hybrid sample of MCDs for states where matching was possible and

counties for other states.

Our results are robust across all three specifications with two exceptions. The first styl-

ized fact does not hold in Column (3), where the standard deviation of log population in

1880 is higher than in 2000, though the difference is not statistically significant at conven-

tional critical values. The sixth stylized fact does not hold in Columns (3) and (5), where

we find some evidence of mean reversion in both agriculture and non-agriculture, though

the estimated rate of mean reversion in non-agriculture is substantially lower than that in

agriculture. These exceptions are perhaps not surprising because the samples in Columns

(3) and (5) include western states that were not yet fully settled in 1880. Early settlement

dynamics in these states, around the time of the "Closing of the frontier" (identified in the

1890 Census), are likely to be quite different from those elsewhere. As the western states

include areas that were largely uninhabited in 1880, they have correspondingly high stan-

dard deviations of log population in 1880, accounting for the exception to stylized fact 3.19

Relatedly, the future settlement of areas that were largely uninhabited in 1880 provides a

natural explanation for mean reversion that is unrelated to employment structure, consistent

with the exception to stylized fact 6. Despite these caveats, the remainder of the stylized

facts hold in these specifications, and in areas that were well-settled by 1880 all of our results

are robust to aggregating MCDs up to the county level.20

stable county boundaries at that time.
19Consistent with this, we find that the higher standard deviation of log population in 1880 than in 2000 is

driven by a tail of very sparsely populated counties in 1880. Indeed, the interquartile range of the population
distribution is greater in 2000 than in 1880, so that stylized fact 3 is confirmed using measures of dispersion
that are less sensitive to the tails of the distribution.
20To further test whether our results are affected by the U.S.’s Westward expansion, we restricted our

baseline "A and B" sample to states that were part of the original 13 colonies. All the stylized facts are
robust to this restriction, except part of stylized fact 3 (the downward slope of the u-shape). We do not find
that population growth for log density 0 is significantly larger than for log density 2. But this finding is not
surprising, since only two MCDs fall in the category of log population density 0 in this restricted sample.
When we further restrict our sample to A states within the 13 colonies (New York and New England,
except Maine), the remaining stylized facts all hold, except that we find no significant mean reversion in
the agricultural subsample (stylized fact 5). But this is probably again due to small sample size. There are
only 78 observations (in 48 counties) in the agricultural subsample for A states that were part of the original
colonies (out of 4439 observations for this sample), reflecting the relatively urban character of these states.
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While results using county-level data are consistent with our previous results, a further

concern is that the aggregation they provide is insufficient around large cities. Metropolitan

Statistical Areas (MSAs) span multiple counties and may be characterized by commuting

across county boundaries. Additionally, the suburbanization that took place during the sec-

ond half of the twentieth century could have influenced population dynamics in the neighbor-

hood of large cities even beyond county boundaries. To address these concerns, we undertake

further aggregation. One possibility is to aggregate counties based on 20th-century defini-

tions of MSAs, but MSA definitions are themselves endogenous to population growth during

our sample period. Therefore we instead aggregate MCDs based on 1880 characteristics

using a flexible approach that allows us to consider various levels of aggregation. Starting

with our baseline sample, we identify as "cities" MCDs that had a log population per square

kilometer larger than 6. To each of these cities we add the land area, population, and em-

ployment of any MCD whose geographic centroid lies within 25 kilometers of each city.21

We label the resulting sample a suburban sample, since it pools together large urban centers

with their surrounding areas. As shown in Column (6) of Table 1 and Panel D of Figure 7,

all of our stylized facts hold in this suburban sample. We also experimented with other ways

of aggregating the areas surrounding cities, including defining "cities" as MCDs with 50,000

or 100,000 or more inhabitants in 1880 and using a distance threshold of 50 kilometers, and

again found a similar pattern of results.

As a further robustness check, we examined whether the upward-sloping relationship

between population growth and initial population density observed in Figure 2 for log den-

sities in between 2 and 4 is robust to restricting the sample to MCDs with an above median

distance to one of our "cities." Re-estimating our non-parametric specification (2) for this

subsample, in which the distance to a "city" is greater than 170 kilometers, we continue to

find a strong upward-sloping and highly statistically significant relationship between popu-

lation growth and initial population density for log densities in between 2 and 4. Taking

these results together, commuting and suburbanization in the neighborhood of large cities

do not appear to be driving the upward-sloping relationship between population growth and

initial population density observed in our data.22

Although we examine the relationship between population growth and initial population

21When two or more cities and their surrounding areas overlapped, we merged them together.
22While suburbanization is primarily associated with the use of the automobile as a form of mass transit,

we also note that we find a very similar pattern of empirical results for the period 1880-1940, prior to the
large-scale dissemination of the automobile after the end of the Second World War.
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density to control for variation in land area across MCDs, existing research concentrates

on the relationship between population growth and initial population size. Therefore, while

initial population density and size are strongly and approximately log linearly related in our

data, another concern is that the violation of Gibrat’s Law is driven by the use of initial

population density rather than initial population size. To address this concern, Column (7)

of Table 1 and Panel E of Figure 7 display results using log initial population size. Given

that log population is measured in different units from log population density, we do not

expect the inflection point at which the population growth relationship switches from being

downward-sloping to upward-sloping relationship to occur at the same numerical values, and

therefore the statistical tests based on values of 0, 2 and 4 in Table 1 do not apply to this

specification and are not reported. Nonetheless, we observe the same qualitative pattern,

and each of our stylized facts holds if we use initial log population size instead of initial log

population density.

Another alternative hypothesis is that the observed relationship between population

growth and initial population density could be influenced by omitted institutions or nat-

ural endowments. While institutions and natural endowments are captured in the model

developed below in so far as they influence location-specific productivities in the agricultural

and non-agricultural sector, the empirical concern is that these variables have a direct effect

on population growth and are correlated with initial population density. To explain our

results, these omitted variables would need to have a non-linear relationship with population

growth and initial population density, to have the same non-linear relationship with the share

of agricultural employment and initial population density, and to have differential effects on

the correlation between employment growth and initial employment in the agricultural and

non-agricultural sectors.23

To provide evidence that such a direct effect of institutions or natural endowments is

not driving our results, we first regress each of our left-hand side variables (population

growth, the share of agriculture in employment, and employment growth in agriculture and

non-agriculture) on state fixed effects (to control for state policies and institutions) and

on measures of proximity to natural endowments (rivers, lakes and coastlines, and mineral

endowments). We next take the residuals from these regressions and implement our tests

23As a first robustness check to address the concern about institutional differences, we also re-estimated
our baseline specification for the subset of the A states that were part of the original 13 colonies. Within this
subset of the A states, MCDs are towns and townships with similar administrative functions. Once again,
we find a similar pattern of results, as discussed in footnote 20 above.
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for Gibrat’s Law (stylized fact 2), the share of agriculture in employment (stylized fact 3)

and the relationship between employment growth and initial employment in agriculture and

non-agriculture (stylized facts 5 and 6). As shown in Column (8) of Table 1 and Panel F

of Figure 7, we continue to find a similar pattern of results after controlling for institutions

and natural endowments.24

Finally, the population of urban locations can grow through a number of channels, in-

cluding migration from rural areas, international migration or differences in fertility. While

the model developed below abstracts from international migration and fertility, it could be

extended to include them, and the assumption of population mobility implies that people

are indifferent across locations. As a result of this indifference condition, the populations of

all locations are linked together in the model. Although the U.S. has relatively high levels of

population mobility, the presence of barriers to mobility could in principle break this link be-

tween locations’ populations, with the result that local variation in international migration,

fertility and mortality could directly affect local population. As a final robustness check,

we therefore include a number of controls for initial demography, including international mi-

gration, fertility, education and race, using the same methodology as for Column (8) above.

While these controls are likely to be themselves endogenous to employment structure, and

are therefore not included in our baseline specification, we continue to find a similar pattern

of results when they are included.25

Taken together, the evidence presented in this section shows that our stylized facts are

robust characteristics of the U.S. growth experience in the 20th Century. But are they also

relevant for more recent experiences of structural transformation in other countries? To

shed more light on this issue, we next examine urbanization and structural transformation

in Brazil.
24As the relationship between population and locational fundamentals can change over time, and as the

relationship between employment and location fundamentals can differ between the agricultural and non-
agricultural sectors, we do report standard deviations for log population and employment after controlling
for locational fundamentals (stylized facts 1 and 4).
25All of the stylized facts are robust to the joint inclusion of the following four demographic control

variables: the initial share of the population that is white, the share of the population aged 14-18 in education
(as a measure of human capital), the share of the population that was born outside the U.S. (as a measure
of international migration), and the share of the population aged less than six (as a measure of fertility).
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3 Brazilian Data and Stylized Facts

3.1 Data and Samples

The most populous country in theWestern Hemisphere after the U.S. is Brazil. Like the U.S.,

Brazil is divided into states, and just as U.S. states are divided into counties, Brazilian states

are divided into municipalities. Since municipality boundaries have changed over time, the

Instituto de Pesquisa Econômica Aplicada (IPEA) has created "áreas mínimas comparáveis"

(AMCs), geographic units that are more stable over time. The 5,507 municipalities that

existed in 1997 were pooled into 3,659 AMCs, which allow us to consistently analyze data

from 1970-2000.26 Although we could analyze Brazilian data before 1970, this would entail

considerable further aggregation of municipalities, which would make it harder to distinguish

urban from rural areas. Therefore we choose 1970 as the starting point for our analysis. It

is worth noting that agriculture’s share in employment in the average AMC declined from

71 percent to 43 percent from 1970-2000, and its share in overall employment fell from 46

percent to 20 percent. Therefore the period we analyze involved considerable structural

transformation.

The average Brazilian AMC spans 2,323km2, with a population of 25,817 in 1970 and

46,421 in 2000. While AMCs are on average larger than the units that we analyze in our U.S.

sample, the difference is due in part to the fact that the interior regions of Brazil have larger

and more sparsely populated AMCs. Therefore, while our baseline sample uses all of Brazil,

we also demonstrate the robustness of our results to using a restricted sample that includes

the Northeast, Southeast and South regions in Brazil only. In these areas, the average AMC

spans 923km2, and had a population of 26,013 in 1970 and 44,125 in 2000.

3.2 Stylized Facts

Having described Brazilian AMCs, we now examine whether their population dynamics are

characterized (at least qualitatively) by the same stylized facts as for U.S. MCDs. Panel A

in Figure 8 and Table 2 shows that the standard deviation of log population density across

Brazilian AMCs increased from 1970-2000, confirming our first stylized fact. Additionally,

Panel B in the same Figure and Table shows that low density areas and high density areas

26New municipalities were created after 2000, but the 1997 municipalities were used in the 2000 Census,
the latest Census that we analyze in this paper. For further discussion of the Brazilian data and the samples
discussed below, see the web-based technical appendix.
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grew faster than areas of intermediate density. Therefore the U-shaped relationship between

population growth and initial population density, characterized in stylized fact 2, also holds

for Brazil. One quantitative difference between Brazil and the U.S. is, however, that the

increasing segment of this U-shape is not 2-4 (as in the U.S.), but rather 4-6. This difference

partly reflects differences in the relative distribution of agricultural and non-agricultural

employment in Brazil and the U.S., as evident in Figures 4 and 8 (Panel D).

Furthermore, Panel C in Figure 8 and Table 2 shows that the increasing segment of the

U-shaped population growth relationship is located in the same range of initial population

densities where a sharp decline in agriculture’s share of employment is observed, as in the

U.S. (stylized fact 3). This provides further corroborating evidence that the U-shape is in-

deed related to employment structure. Panel D in Figure 8 and Table 2 also confirms that

agricultural employment has a lower standard deviation than non-agricultural employment

(stylized fact 4). Finally, the last two stylized facts - that agricultural employment is mean

reverting and non-agricultural employment is uncorrelated with initial density, are also con-

firmed for Brazil, as shown most clearly in the final two panels of Table 2 and also in Figure

8.27

In summary, we find a striking similarity in the relationship between population growth

and employment structure in Brazil and the U.S. This similarity of the results in two quite

different contexts and time periods suggests that our results are unlikely to be driven by

idiosyncratic features of the data or institutional environment for an individual country,

but rather capture more systematic features of the relationship between urbanization and

structural transformation.

4 The Model

To interpret our empirical results, this section develops a simple theoretical model that shows

how structural transformation can account for the six stylized facts.28 To isolate the role

played by structural transformation, the model abstracts from a number of other potential

determinants of population growth, such as physical geography and institutions. While the

27For Brazil, to ensure a sufficient sample size, we construct the non-agricultural subsample using AMCs
that have an agricultural employment share in 1970 of less than less than 0.4 (instead of less than 0.2 for the
U.S.). Nonetheless, if we also use a threshold of less than 0.2 for Brazil, we continue to find no statistically
significant relationship between non-agricultural employment growth and initial population density.
28A more detailed exposition of the model is contained in a web-based technical appendix.
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introduction of these additional elements would complicate the model, it would not negate

the basic mechanism of structural transformation. In our empirical work, we carefully control

for these other potential determinants of population growth, as discussed above.

The distribution of employment across locations in the model is determined by productiv-

ity in the agricultural and non-agricultural sectors. While agglomeration economies provide

a force for the concentration of employment and hence population, an inelastic supply of

land for commercial and residential use provides a force for the dispersion of employment

and population.

As non-agriculture has stronger agglomeration economies and is less land-intensive than

agriculture, the share of non-agriculture in employment is increasing in population density.

Structural transformation occurs as a result of more rapid productivity growth in agriculture

than in non-agriculture, which with inelastic demand reallocates employment towards non-

agriculture. Structural transformation away from agriculture, combined with an increasing

relationship between the share of non-agriculture in employment and population density,

generates the upward-sloping relationship between population growth and density observed

at intermediate densities.

4.1 Endowments, Preferences and Technology

Time is discrete and is indexed by t. The economy consists of a fixed number of loca-

tions i ∈ {1, ..., I}, which are grouped in our data into larger statistical units called MCDs.
Each location is endowed with a quantity of land Hi, which can be used residentially or

commercially. Land allocated to commercial use in each location can be employed in ei-

ther agricultural or non-agricultural production, but cannot be simultaneously employed in

both. Therefore each location specializes completely in either the agricultural or the non-

agricultural good.29 Furthermore, as the model abstracts from labor force participation,

employment in a location’s sector of specialization equals its population.30 The economy as

a whole is endowed with St workers, who are mobile across locations, and are each endowed

with one unit of labor that is supplied inelastically with zero disutility.

Each worker has the same Cobb-Douglas preferences and allocates a constant share of

29The assumption that locations are completely specialized in agriculture or non-agriculture simplifies the
characterization of the model’s dynamics. MCDs are in general incompletely specialized, as they can contain
both agricultural and non-agricultural locations.
30The model’s abstraction from labor force participation is motivated by the empirical finding noted above

that labor force participation is not strongly related to population density in our data.
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expenditure (α) to a consumption index of tradeable goods and the remaining share (1−α)

to the consumption of residential land.31 The tradeable goods consumption index (Cit) is

defined over consumption of agriculture (cAit) and non-agriculture (cNit) and is assumed to

take the constant elasticity of substitution (CES) form:

Cit = [ψAtc
ρ
Ait + ψNtc

ρ
Nit]

1/ρ , 0 < κ =
1

1− ρ
< 1, ψAt, ψNt > 0, (4)

where ψAt and ψNt are preference parameters that capture the relative strength of con-

sumer preferences for the agricultural and non-agricultural goods. Consistent with empirical

evidence and a large literature in macroeconomics, we assume that agricultural and non-

agricultural consumption are complements, so that the elasticity of substitution between the

two goods (κ) is strictly less than one.32

The non-agricultural and agricultural goods are produced under conditions of perfect

competition and are costlessly tradeable across locations. Output in each sector (Yjit) de-

pends on labor input (Ljit), land input (Hjit), a productivity parameter (θjit) and a local

externality in the size of the sector (S
ηj
jt ):

Yjit = S
ηj
it θjitL

μj
jitH

1−μj
jit , 0 < μj < 1, 0 ≤ ηj < 1. (5)

where j ∈ {A,N} indexes agriculture (A) and non-agriculture (N). While we allow for

positive externalities in non-agriculture (0 < ηN < 1), we assume for simplicity that there

are no externalities in agriculture (ηA = 0), although all we require is that externalities in

agriculture are less strong than those in non-agriculture, which is consistent with the much

greater spatial concentration of employment in non-agriculture discussed above.

Productivity in each sector is assumed to have an aggregate component (Γjt), which

is common across locations but changes over time, and an idiosyncratic component (σjit),

which varies across locations and over time:

θjit = Γjt (1 + σjit) θ
νj
jit−1, 0 < νj ≤ 1, (6)

where νj captures the degree of mean reversion in productivity over time, and the idiosyn-

cratic component of productivity is assumed to be independently and identically distributed

with mean zero, and bounded support satisfying 1 + σjit > 0.

31For empirical evidence using U.S. data in support of the constant housing expenditure share implied by
the Cobb-Douglas functional form, see Davis and Ortalo-Magne (2008).
32The assumption of an elasticity of substitution between agriculture and non-agriculture of less than one

is consistent with empirical findings of larger changes over time in nominal consumption shares than in real
consumption shares (see for example Kravis et al. 1983).

24



4.2 Equilibrium Land Use and Population

After observing the vector of agricultural and non-agricultural productivity shocks in each

period, each worker chooses location, consumption of the agricultural good, consumption

of the non-agricultural good, and residential land use to maximize their utility, taking the

population distribution as given. Since relocation is assumed to be costless, the worker’s

optimization problem reduces to choosing these variables to maximize their instantaneous

flow of utility. The distribution of population across locations is therefore determined by

the requirement that real wages are equalized across all the locations that are populated in

equilibrium.

With perfectly competitive goods and factor markets, labor and land are paid their

value marginal product. Equilibrium commercial land use in each location is determined

by whichever sector offers the higher value marginal product for land. In general, the equi-

librium rental rate for land varies across locations and is determined by the requirement

that residential and commercial land use sum to the location’s endowment of land. With

a Cobb-Douglas production technology and upper tier of utility, firms expend a constant

share of their revenue on payments to labor and commercial land use, and workers allocate

a constant share of their income to goods consumption and residential land use. As a result,

the equilibrium fraction of land allocated to residential and commercial use in each loca-

tion depends solely on parameters of demand and technology. Since the factor intensity of

production differs between agriculture and non-agriculture, the equilibrium fraction of land

allocated to residential and commercial use varies across locations depending on which good

is produced.

Combining real wage equalization and equilibrium land use, the equilibrium population

density in each location can be determined as a function of its productivity in its sector of

specialization and its land endowment:

Sjit
Hi

= Λ
ξj
jtθ

ξj
jitH

ηjξj
i , ξj ≡

1¡
1− μj

¢
+ 1−α

α
− ηj

> 0, (7)

where Λjt is constant across locations specialized in the same good j at a given point in time

t and is defined in the web-based technical appendix.

Combining equilibrium population density (7) and productivity dynamics (6), we ob-

tain the following relationship between population growth and initial population density for

locations that remain specialized in the same sector over time:

25



ln

µ
Sjit
Sjit−1

¶
= ϑjt + ξj ln (1 + σjit)− (1− νj) ln

µ
Sjit−1
Hi

¶
, (8)

where ϑjt is constant across locations that specialize in the same good j in both t and t− 1
and is defined in the web-based technical appendix.

Therefore, for locations that remain specialized in the same sector over time, the cor-

relation between population growth and initial population density depends on the extent

of mean reversion in productivity shocks over time. The model allows for differences in

productivity dynamics between the two sectors and hence the extent of mean reversion in

productivity shocks in each sector becomes an empirical question. As we find empirically

that non-agricultural employment growth is largely uncorrelated with initial population den-

sity, we assume that νN = 1, which implies constant proportional growth in non-agricultural

productivity and the population of non-agricultural locations (Gibrat’s Law). Similarly, as

we find empirically that agricultural employment growth is negatively correlated with pop-

ulation density, we assume that 0 < νA < 1, which implies mean reversion in agricultural

productivity and the population of agricultural locations.

These differences in productivity dynamics between the two sectors provide a further

reason for why the share of non-agriculture in employment is ultimately increasing in pop-

ulation density. While mean reversion in agricultural productivity implies a productivity

distribution that is bounded from above, constant proportional growth in non-agricultural

productivity implies a productivity distribution that is unbounded from above. Therefore the

very highest values of productivity that support the densest population concentrations are

only observed in the non-agricultural sector. Mean reversion in agricultural productivity also

explains the downward-sloping relationship between population growth and initial popula-

tion density observed at low densities, since these locations are almost entirely specialized in

the agricultural sector. Similarly, constant proportional growth in non-agricultural produc-

tivity also explains why population growth is largely uncorrelated with population density

at high densities, since these locations are almost entirely specialized in the non-agricultural

sector.33

With inelastic demand between the two tradeable consumption goods in (4), more rapid

technological progress in the agricultural sector than in the non-agricultural sector leads to a

more than proportionate fall in the relative price of the agricultural good and a reallocation of
33For empirical evidence of stronger mean reversion in agricultural productivity than in non-agricultural

productivity, see for example Martin and Mitra (2001).
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employment from agriculture to non-agriculture over time.34 As this change in employment

structure proceeds, population is reallocated away from locations with relatively high produc-

tivity in agriculture towards locations with relatively high productivity in non-agriculture.

Additionally, the more than proportionate fall in the relative price of the agricultural good

reduces the value marginal product of land in agriculture relative to that in non-agriculture,

which results in endogenous switches in land use from agriculture to non-agriculture that

are in general associated with violations of Gibrat’s Law. Structural transformation away

from agriculture, combined with the increasing relationship between the non-agricultural em-

ployment share and population density, generates the upward-sloping relationship between

population growth and population density observed at intermediate densities, where MCDs

are incompletely specialized in agriculture and non-agriculture.

5 Quantitative Predictions

In this section, we examine the quantitative relevance of structural transformation for ac-

counting for observed patterns of population growth. We build on four key components

of the model. First, as MCDs comprise multiple locations that specialize completely in ei-

ther agriculture or non-agriculture, MCD population growth can be written as a weighted

average of employment growth in agriculture and non-agriculture.35 Second, the share of

non-agriculture in employment is increasing in population density. Third, the relationship

between employment growth and population density can differ between the agricultural and

non-agricultural sectors. Fourth, the relationship between employment growth and initial

population density depends on whether a location continues to specialize in the same sector

in both time periods or whether it endogenously switches between sectors.

To illustrate the explanatory power of each of these components, we generate a sequence

of predictions for MCD population growth, each of which uses progressively more compo-

nents. We next compare the predicted relationship between population growth and initial

34See the web-based technical appendix for further discussion. While there is substantial empirical evi-
dence of more rapid technological progress in agriculture than in agriculture (see again Martin and Mitra
2001) and inelastic demand between these broad categories of goods (see for example the discussion in Ngai
and Pissarides 2007), structural transformation away from the agricultural sector could be also generated
by labor-augmenting technological change and complementarity between labor and land in agriculture. Sim-
ilarly, common technological progress in both sectors combined with non-homothetic preferences can also
generate structural transformation, as discussed further in the web-based technical appendix.
35Consistent with the model’s abstraction from labor force participation, we predict population growth

using employment data, and compare the results to observed population growth.
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population density to the actual relationship observed in the data. We undertake this com-

parison in two ways. First, we estimate our non-parametric specification (2) and display

the results for predicted and actual population growth graphically in Figure 9. Second,

to provide further evidence on the quantitative relevance of structural transformation, we

regress actual population growth on predicted population growth and include a number of

control variables.36 We first undertake the analysis using our U.S. data before examining

whether the model can also quantitatively account for our results using the Brazilian data.

For brevity, we concentrate on results for the U.S. data with our baseline sample of "A

and B" states. However, we find a qualitatively similar pattern with the other samples, as

expected from the robustness checks above, and as discussed further below.

As a first step, Prediction 1 uses the property that MCD population growth is a weighted

average of employment growth in agriculture and non-agriculture and makes the assumptions

of (a) a common rate of employment growth within each sector across all MCDs and (b)

no switching between agriculture and non-agriculture. In this prediction, the cross-section

variation in population growth is predicted solely from the cross-section variation in the

initial agricultural employment shares combined with common values of average employment

growth within each sector for all MCDs. As evident from Figure 9, the employment share of

an MCD in agriculture in 1880 goes a good way towards explaining its population growth

from 1880-2000, providing strong evidence for the importance of structural transformation

in shaping observed population dynamics.

Prediction 2 is the same as Prediction 1, except that it allows for mean reversion in agri-

culture. Whereas Prediction 1 regresses employment growth for each sector on a constant

using the agricultural and non-agricultural samples from Table 1, Prediction 2 allows for

agricultural mean reversion by augmenting the regression for agriculture with initial popula-

tion density. The results of the regressions for agriculture and non-agriculture are reported

in Columns (1) and (2) of Table 3. As shown in Figure 9, enriching the model in this way

makes the downward-sloping relationship between population growth and initial population

density observed at low densities more pronounced.37

36For each prediction, we also evaluate the implied population in 2000 and characterize the population
distribution using the same methodology as used in Figure 2.
37As a robustness check, we also augmented the non-agricultural employment growth regression with initial

population density, which although not shown in Figure 9 had no visible effect, since from Table 1 employment
growth is largely uncorrelated with initial population density in non-agriculture. Finally, we experimented
with allowing for richer forms of scale dependence within each sector by introducing polynomials in initial
population density, which also had little effect on the relationship between predicted population growth and
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In Predictions 1 and 2, we measured the common value of employment growth within

each sector using employment growth in the most and least agricultural MCDs, which con-

tain locations least likely to switch between sectors. In contrast, Prediction 3 takes into

account the possibility of switching between sectors by allowing for a more flexible rela-

tionship between population growth and initial patterns of specialization in agriculture and

non-agriculture.

Specifically, in Prediction 3, we regress total employment growth in each MCD on the

1880 agricultural employment share, the 1880 log population density, and the interaction

term between these two variables. The inclusion of the initial agricultural employment

share captures the role of structural transformation in shaping population growth, while

the inclusion of initial log population density allows for the possibility of mean reversion in

non-agriculture, and the inclusion of the interaction term between the two variables captures

the extent to which mean reversion in agriculture differs from that in non-agriculture.

As column (3) of Table 4 shows, the agricultural employment share in 1880 is negatively

correlated with subsequent population growth, reflecting structural transformation away

from agriculture. Additionally, from the negative coefficient on the interaction term, the

share of agriculture in 1880 employment has an even more negative effect on subsequent

population growth in areas that were initially denser, reflecting mean reversion in agriculture.

After controlling for these two terms, 1880 log population density is not significant, consistent

with an absence of mean reversion in non-agriculture. We therefore use the coefficients from

Column (4), which excludes initial log population density, to construct Prediction 3 shown

in Figure 9.

As apparent from the figure, actual population growth rates are substantially more vari-

able than predicted population growth rates and the actual data exhibit a sharper change in

slope than the predicted values. Nonetheless, population growth in Prediction 3 closely repli-

cates the observed pattern of violations of Gibrat’s Law: the downward sloping relationship

between population growth and initial population density at low densities, the upward slop-

ing relationship at intermediate densities, and the largely flat relationship at high densities.

The mean reversion in population growth rates at low initial population densities evident in

Prediction 2 is further enhanced in Prediction 3, consistent with the idea that some of the

mean reversion is the result of switches from agriculture to non-agriculture. Additionally,

initial population density.
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mean population growth in Prediction 3 is closer to mean actual population growth, because

some of the higher employment growth in non-agriculture is associated with these switches

in land use, which are allowed for in Prediction 3.

To compare the quantitative relevance of structural transformation to that of other po-

tential explanations for our findings, we also generate a Geographic Prediction, in which

population growth is predicted solely from our set of geographic control variables. Except

in the case where these geographic controls are orthogonal to population growth, the Ge-

ographic Prediction will typically capture some of the observed U-shaped relationship for

population growth. However, the extent of the variation captured in the Geographic Predic-

tion is substantially less than that explained by our structural transformation specifications.

While each of Predictions 1-3 features a statistically significant difference in mean popula-

tion growth between log population densities 2 and 4, the corresponding difference in mean

population growth for the Geographic Prediction is statistically insignificant.

To provide further evidence on the quantitative relevance of structural transformation

relative to alternative potential explanations, Table 4 reports regressions of actual against

predicted population growth using our preferred specification of Prediction 3 and including

a number of control variables. As a benchmark, we begin in Column (1) by regressing actual

population growth rates on a constant. In Column (2), we augment that regression with the

predicted population growth rates. Clearly there are many idiosyncratic factors affecting the

population growth of individual MCDs that are not captured by our model, which results in

a much larger variance of actual than of predicted population growth rates, as reflected in the

regression R2. Nonetheless, the coefficient on predicted population growth is positive, highly

statistically significant and statistically indistinguishable from one.38 Therefore, despite the

much greater variance in the actual population growth rates, there is a close correspondence

between actual and predicted population growth.

In Columns (3) to (5) of Table 4, we report a number of robustness checks for our

baseline sample of "A and B" states, in which we show that the explanatory power of the

model is robust to the inclusion of a number of control variables. After including measures

of proximity to natural endowments, state fixed effects and county fixed effects, we continue

to find a positive coefficient on predicted population growth that is large in magnitude and

statistically significant. Columns (6) to (8) show that the same pattern of results holds for

38The standard errors in Table 4 are adjusted for predicted population growth being generated in a prior
regression (Pagan 1984) and clustered on county.
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the more restrictive sample of A states, the county sample and the suburban sample.

As the regressions in Columns (1) through (8) of Table 4 are estimated across MCDs,

they exploit both variation across population density bins and variation across MCDs within

population density bins. Similarly, the non-parametric estimates of specification (2) shown

in Figure 9 exploited variation across population size bins. As a final step, we now examine

whether structural transformation can explain variation in population growth within popu-

lation density bins. In Column (9) of Table 4, we augment the baseline specification from

Column (2) with a full set of fixed effects for initial population density bins. Even focusing

solely on variation within population density bins, we continue to find a positive coefficient on

predicted population growth that is large in magnitude and statistically significant. Column

(10) of Table 4 shows that we continue to find the same pattern of results if we further aug-

ment this specification with our measures of proximity to natural endowments, and county

fixed effects.

As an robustness check, the remainder of this section shows that we also find a very

similar pattern of results for Brazil. Predictions 1-3 and the geography prediction are con-

structed in the same way for Brazil as for the U.S.39 The employment growth regressions

used in Predictions 2-3 for Brazil are reported in Table 5 (analogous to Table 3 for the U.S.).

Having constructed these predictions, Figure 10 displays the results of estimating our non-

parametric specification (2) for Brazil using actual and predicted population growth. As for

the U.S., controlling simply for the initial agricultural employment share has considerable

explanatory power for population growth (Prediction 1). Controlling for mean reversion in

agriculture generates the downward-sloping relationship between population growth and ini-

tial population density at low densities (Prediction 2). A more flexible relationship between

population growth and initial patterns of specialization to allow for switches from agriculture

to non-agriculture again enhances the explanatory power of the model (Prediction 3). Fi-

nally, considering an alternative explanation, in which population growth is predicted based

on our geographic control variables, fails to generate the upward—sloping relationship be-

tween population growth and initial population density observed at intermediate densities

(Geographic Prediction).

Following the same structure as for the U.S., Table 6 reports the results of regressions of

39As noted above, to ensure a sufficient sample size, we construct the non-agricultural subsample for Brazil
using AMCs that have an agricultural employment share in 1970 of less than less than 0.4 (instead of less
than 0.2 for the U.S.).
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actual against predicted population growth from the model using our preferred Prediction

3. While actual population growth again has a much higher variance than predicted popu-

lation growth, the coefficient on predicted population growth is positive, highly statistically

significant and statistically indistinguishable from one.40 Therefore we again find a close

correspondence between actual and predicted population growth. While Columns (1)-(4)

include all AMCs, we find a similar pattern of results in Column (5), where we restrict

attention to AMCs in the Northeast, Southeast and South of Brazil, which are smaller in

geographic scope and are therefore likely to permit a finer discrimination between rural and

urban areas. In Columns (6) and (7), we show that the model has explanatory power within

as well as across population density bins by including a full set of fixed effects for population

density bins.

Overall, there is considerable evidence that structural transformation can account for the

quantitative as well as the qualitative patterns of observed population growth. Given the

many differences between the U.S. and Brazil, and between the time periods considered, the

similarity of the results in these two different contexts provides strong evidence in support

of an explanation based on structural transformation.

6 Conclusion

While as recently as the nineteenth century less than one tenth of the world’s population

lived in cities, urban residents now account for a growing majority of the world’s population.

Arguably few other economic changes have involved as dramatic a transformation in the

organization of society. In this paper, we provide theory and evidence on urbanization

using a new dataset that enables us to trace the transformation of the U.S. economy from a

predominantly rural to largely urban society.

There are two main contributions of our analysis. First, we provide evidence of six

stylized facts that are robust features of the urbanization process. These stylized facts

encompass empirical regularities from existing research for densely-populated locations, but

also introduce hitherto-neglected features of the data, such as an increasing relationship

between population growth and density observed at the intermediate densities where most

of the population historically lived. In the same way that existing empirical regularities for

40Again the standard errors are adjusted for predicted population growth being generated in a prior
regression (Pagan 1984).
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densely-populated locations have proved fruitful in shaping theoretical models of cities, our

new empirical regularities provide additional guidance for future theoretical research. A key

challenge in modeling cities is arguably both explaining population growth among existing

urban areas and accounting for the process through which urban areas are formed.

Second, we propose a simple theoretical explanation for our empirical findings based on

structural transformation across sectors. Non-agriculture has stronger agglomeration forces

and is less land-intensive than agriculture, which generates an increasing relationship be-

tween the share of non-agriculture in employment and population density. This increasing

relationship is further reinforced in the model by mean reversion in agricultural productiv-

ity and constant proportional growth in non-agricultural productivity, which generates a

non-agricultural productivity distribution that is unbounded from above. Structural trans-

formation away from agriculture, combined with a non-agricultural employment share that

increases with initial population density, generates the upward-sloping relationship between

population growth and initial population density observed at intermediate densities.

While our explanation based on structural transformation abstracts from a number of

other factors that are likely to influence population growth, the close connection between

employment structure and population growth in our data, and the explanatory power of

structural transformation, suggest that it is a key part of the urbanization process.
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Table 1: US – Robustness of stylized facts 
 (1) 

 
Baseline: 
A and B 

states 

(2) 
 
 

Only 
A states 

(3) 
 

Counties, 
45 states 
and DC1 

(4) 
 

Counties, 
A and B 
sample 

(5) 
Hybrid 
Sample, 
45 states 
and DC2 

(6) 
 

Suburban 
A and B 
states3 

(7) 
 

Log pop, 
not log 
density 

(8) 
 

Baseline, 
geo 

controls4 
Panel A Standard deviation of log population density in 1880 (σ1) 0.967 1.025 1.757 0.963 1.272 0.904 0.833 . 
 Standard deviation of log population density in 2000 (σ2) 1.556 1.631 1.450 1.303 1.687 1.436 1.475 . 
 H0: σ1= σ2, vs. H1: σ1< σ2, p-value <0.001 <0.001 1.000 <0.001 <0.001 <0.001 <0.001 . 
 Stylized Fact 1: Distribution of log population density across geographic units became 

more dispersed from 1880-2000 (population became more concentrated) 
Yes Yes No5 Yes Yes Yes Yes .4 

Panel B 
 
Mean population growth at log population density 0 (βg(0)) 0.013 0.012 0.016 0.019 0.010 0.013 . 0.013 

 Mean population growth at log population density 2 (βg(2)) 0.001 -0.001 0.007 0.007 0.002 0.001 . 0.005 
 Mean population growth at log population density 4 (βg(4)) 0.009 0.010 0.014 0.014 0.011 0.008 . 0.011 
 H0: βg(0)= βg(2), H1: βg(0)> βg(2), p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 . <0.001 
 H0: βg(2)= βg(4), H1: βg(2)< βg(4), p-value <0.001 <0.001 0.001 0.011 <0.001 <0.001 . <0.001 
 Stylized Fact 2: U-shaped relationship between population growth from 1880-2000 and 

log population density in 1880 
Yes Yes Yes Yes Yes Yes .6 Yes 

 
Panel C 

 
Percent of agricultural in total employment at log population density 2 (βsa(2)) 0.767 0.762 0.691 0.618 0.738 0.769 . 0.743 

 Percent of agricultural in total employment at log population density 4 (βsa(4)) 0.227 0.189 0.195 0.185 0.228 0.221 . 0.235 
 H0: βsa(2)= βsa(4), H1: βsa(2)> βsa(4), p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 . <0.001 
 Stylized Fact 3: Share of agriculture in employment falls in the range where population 

density distribution in 1880 is positively correlated with population growth 1880-2000 
Yes Yes Yes Yes Yes Yes .6 Yes 

 
Panel D 

 
Standard deviation of agricultural employment in 1880 (σ1a) 

 
0.820 

 
0.722 

 
1.677 

 
0.810 

 
1.084 

 
0.820 

 
0.820 

 
. 

 Standard deviation of non-agricultural employment in 1880 (σ1na) 1.520 1.631 1.784 1.272 1.779 1.440 1.520 . 
 H0: σ1a= σ1na, vs. H1: σ1a< σ1na, p-value <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 . 
 Standard deviation of agricultural employment in 2000 (σ2a) 0.858 0.853 0.806 0.617 0.936 0.851 0.858 . 
 Standard deviation of non-agricultural employment in 2000 (σ2na) 1.623 1.689 1.530 1.359 1.767 1.503 1.623 . 
 H0: σ2a= σ2na, vs. H1: σ2a< σ2na, p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 . 
 Stylized Fact 4: Standard deviation of non-agricultural employment is larger than 

standard deviation of agricultural employment in both years 
Yes Yes Yes Yes Yes Yes Yes .4 

 
Panel E 

 
Regress agricultural employment growth on log population density and intercept in 
subsample of units with agricultural employment share > 0.8 in 1880, report slope 
coefficient (βa) -0.0060 -0.0077 -0.0067 -0.0054 -0.0066 -0.0060 -0.0056 -0.0055 

 H0: βa=0, H1: βa≠0, p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 Stylized Fact 5: Agricultural employment growth is negatively correlated with 

population density 
Yes Yes Yes Yes Yes Yes Yes Yes 

 
Panel F 

 
Regress non agricultural employment growth on log population density and intercept in 
subsample of units with non-agricultural employment share < 0.2 in 1880, report slope 
coefficient (βna) -0.0002 -0.0006 -0.0016 -0.0006 -0.0010 -0.0001 -0.0002 -0.0005 

 H0: βna=0, H1: βna≠0, p-value 0.515 0.287 <0.001 0.096 <0.001 0.745 0.515 0.0991 
 Stylized Fact 6: Non-agricultural employment is uncorrelated with population density Yes Yes No7 Yes No7 Yes Yes Yes 

 Number of observations 10,864 4,439 2,496 819 19,229 10,159 10,864 10,864 
Note: This table reports robustness tests of the 6 stylized facts using US data. All the regressions and tests reported in the table use robust standard errors clustered by county. 
1 The county sample includes all US states except Alaska, Hawaii, North Dakota, Oklahoma, and South Dakota, which had not attained statehood in 1880 and did not have stable county boundaries at that time. 
2 The hybrid sample uses the smallest geographical units available for each state. We use MCDs for the states in samples A, B, and C, and counties elsewhere. This sample excludes the 5 states mentioned in footnote 1. 
3 In the Suburban Sample we merge any MCD with more than 100,000 inhabitants in 1880 to all the MCDs whose centroids lie within 25 kilometers of its centroid.  
4 The geographic control variables are state fixed effects, an indicator for the presence of coal, and indicators for the unit bordering on the ocean and for its centroid being within 50 kilometers from a lake or a river. As these 
specifications include controls, we do not test stylized facts 1 and 4. 
5 Since this sample includes many states that were not fully settled in 1880, many near-empty areas increase the standard deviation of the population density distribution in that year. When we restrict the analysis to counties 
in states A and B only, the stylized fact does hold (see column 4). 
6 In this sample we do not expect the turning point of the U and the fall of the agriculture share at coefficient 2, and hence do not report these coefficients. The figures qualitatively show that there is a U-shape whose 
minimum coincides with the drop in agricultural employment. 
7 Since this sample includes many states that were not fully settled in 1880, many near-empty areas increase the standard deviation of the population density distribution in that year. The future settlement of areas that were 
near empty in 1880 is also likely to cause mean reversion that is unrelated to employment structure. 



 
Table 2: Brazil – Robustness of stylized facts 

 

Note: This table reports robustness tests of the 6 stylized facts using data on Brazilian municipalities (Áreas Mínimas Comparáveis (AMCs)). All the regressions and tests reported in the table use robust standard errors. 
1 The geographic controls are twelve dummy variables indicating the presence of oil, nickel, manganese, iron, gold, copper, cobalt, and aluminum, whether the AMC borders the ocean, lies within 50 kilometers of a river, has 
its centroid covered with tropical or subtropical moist broadleaf forest, or is contained in the Amazonas Area. 

2 This subsample uses only AMCs in the states of the Northeast, Southeast, and South official regions of Brazil, since AMCs in these regions are relatively small, allowing a clearer distinction between rural and urban areas. 
The three regions in this subsample cover about 90 percent of Brazil’s AMCs, 36 percent of its land area and 91 percent of its population in 1970. 
3 As these specifications include controls, we do not test stylized facts 1 and 4, which involve measuring standard deviations. 
 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

All of 
Brazil 

(AMCs) 

As (1) but 
with state 

fixed 
effects 

As (1) but 
with geo 
controls1 

As (2) but 
with geo 
controls 

Brazil sub-
sample2 

As (5) but
with state 

fixed 
effects 

As (5) but 

with geo   
controls 

As (6) but 

with geo 
controls 

Panel A Standard deviation of log population density in 1970 (σ1) 1.222 .3 1.222 .3 1.009 .3 1.009 .3 
 Standard deviation of log population density in 2000 (σ2) 1.323 . 1.323 . 1.197 . 1.197 . 
 H0: σ1= σ2, vs. H1: σ1< σ2, p-value <0.001 . <0.001 . <0.001 . <0.001 . 
 Stylized Fact 1: Distribution of log population density across geographic units became more 

dispersed from 1970-2000 (population became more concentrated) Yes . Yes . Yes . Yes . 

Panel B 
 
Mean population growth at log population density 0 (βg(0)) 0.0239 0.0239 0.0239 0.0239 0.0146 0.0146 0.0146 0.0146 

 Mean population growth at log population density 4 (βg(4)) 0.0079 0.0134 0.0116 0.0146 0.0079 0.0053 0.0090 0.0100 
 Mean population growth at log population density 6 (βg(6)) 0.0214 0.0271 0.0265 0.0305 0.0214 0.0190 0.0240 0.0258 
 H0: βg(0)= βg(4), H1: βg(0)> βg(4), p-value <0.001 0.015 0.002 0.016 <0.001 <0.001 0.001 0.006 
 H0: βg(4)= βg(6), H1: βg(4)< βg(6), p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 Stylized Fact 2: U-shaped relationship between population growth from 1970-2000 and log 

population density in 1970 Yes Yes Yes Yes Yes Yes Yes Yes 
 
Panel C 

 
Percent of agricultural in total employment in 1970 at log population density 4 (βsa(4)) 0.6710 0.6710 0.6710 0.6710 0.6710 0.6710 0.6710 0.6710 

 Percent of agricultural in total employment in 1970 at log population density 6 (βsa(6)) 0.1677 0.1933 0.1459 0.1689 0.1677 0.1933 0.1447 0.1686 
 H0: βsa(4)= βsa(6), H1: βsa(4)> βsa(6), p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 Stylized Fact 3: Share of agriculture in employment falls in the range where population density 

distribution in 1970 is positively correlated with population growth 1970-2000 Yes Yes Yes Yes Yes Yes Yes Yes 
 
Panel D 

 
Standard deviation of agricultural employment in 1970 (σ1a) 0.8933 .3 0.8933 .3 0.8869 .3 0.8869 .3 

 Standard deviation of non-agricultural employment in 1970 (σ1na) 1.4157 . 1.4157 . 1.4287 . 1.4287 . 
 H0: σ1a= σ1na, vs. H1: σ1a< σ1na, p-value <0.001 . <0.001 . <0.001 . <0.001 . 
 Standard deviation of agricultural employment in 2000 (σ2a) 1.0176 . 1.0176 . 0.9954 . 0.9954 . 
 Standard deviation of non-agricultural employment in 2000 (σ2na) 1.3754 . 1.3754 . 1.3642 . 1.3642 . 
 H0: σ2a= σ2na, vs. H1: σ2a< σ2na, p-value <0.001 . <0.001 . <0.001 . <0.001 . 
 Stylized Fact 4: Standard deviation of non-agricultural employment is larger than standard deviation 

of agricultural employment in both years Yes . Yes . Yes . Yes . 
 
Panel E 

 
Regress agricultural employment growth on log population density and intercept in subsample of 
units with agricultural employment share > 0.8 in 1970, report slope coefficient (βa) -0.0038 -0.0036 -0.0022 -0.0037 -0.0042 -0.0031 -0.0028 -0.0031 

 H0: βa=0, H1: βa≠0, p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 Stylized Fact 5: Agricultural employment growth is negatively correlated with population density Yes Yes Yes Yes Yes Yes Yes Yes 
 
Panel F 

 
Regress non agricultural employment growth on log population density and intercept in subsample 
of units with agricultural employment share < 0.4 in 1970, report slope coefficient (βna) 0.00126 0.00176 0.00027 0.00090 0.0013 0.00156 0.00030 0.00059 

 H0: βna=0, H1: βna≠0, p-value 0.124 0.0503 0.758 0.342 0.108 0.074 0.729 0.521 
 Stylized Fact 6: Non-agricultural employment is uncorrelated with population density Yes Yes Yes Yes Yes Yes Yes Yes 
 

Number of observations 3.659 3.659 3.659 3.659 3,293 3,293 3,293 3,293 
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Table 3: US – Generate predictions 
 

Employment growth rate, 1880-2000 

(1) (2) (3) (4) 

For prediction 2 For prediction 3 
Non-agric. Agric. Total Total 

     

Constant 0.011 -0.005 0.014 0.014 
 (0.001) (0.001) (0.001) (0.001) 

Log population density in 1880  -0.006 -0.0002  
 (0.000) (0.0003)  

Share of agriculture 1880   -0.008 -0.007 
   (0.002) (0.001) 

(Share of agriculture in 1880) x (log population 
density in 1880) 

  -0.0010 -0.0013 
  (0.0005) (0.0004) 

Number of observations 755 3,074 10,856 10,856 
R2 0 0.31 0.063 0.063 
Sample: A and B,  

non-agric 
A and B,  

agric 
A and B A and B 

 

Note: This table reports the regressions used to generate predictions 2 and 3 for the US data. We construct prediction 2 using the predicted values of sectoral 
employment growth from the regressions reported in columns (1) and (2), as described in the text of the paper. We construct prediction 3 using the predicted values of 
employment growth from the regression reported in column (4), as described in the text. The non-agricultural subsample used in column (1) includes MCDs from our 
baseline A and B Sample for which agriculture’s share of 1880 employment was less than 0.2. The agricultural subsample used in column (2) includes MCDs from our 
baseline A and B Sample for which agriculture’s share of 1880 employment exceeded 0.8. Robust standard errors in parentheses are clustered by county. 

 

 Table 4: US – Quantifying the explanatory power of prediction 3 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 

Inter-
cept 
only 

As (1) 
but with 
predicted 
growth 

As (2) 
but with 

geo 
controls1 

As (3) 
with state 

fixed 
effects 

As (4) but 
with county 

fixed 
effects 

As (2) 
with A 
Sample 

only 

As (2) 
but with 
county 
sample 

As (2) 
but with 
suburban 
sample 

As (2) with 
log pop 
density 
bins2 

As (5) with 
log pop 
density 
bins2 

 
Actual population growth regression 

 
Predicted population 
growth 

 1.041 0.798 0.629 0.633 1.221 1.011 1.057 0.648 0.674 
 (0.06) (0.055) (0.067) (0.047) (0.078) (0.057) (0.062) (0.079) (0.047) 

Intercept 
0.475 -0.026         

(0.034) (0.045)         

R2 0 0.098 0.183 0.303 0.617 0.173 0.433 0.098 0.151 0.64 
Number of observations 10,864 10,864 10,864 10,864 10,864 4,439 2,496 10,159 10,864 10,864 

           
Regression used to generate predicted population growth  

 
Share of agriculture in 
1880 

 -1.05 -1.039 -0.982 -0.871 -1.075 -0.428 -0.74 -1.217 -0.913 
 (0.017) (0.017) (0.016) (0.014) (0.021) (0.051) (0.016) (0.046) (0.023) 

(Share of agriculture  
in1880) x (log 
population density in 
1880) 

 -0.162 -0.157 -0.147 -0.151 -0.171 -0.797 -0.245 -0.077 -0.119 

 

(0.006) (0.006) (0.006) (0.005) (0.008) (0.019) (0.006) (0.017) (0.009) 

F – statistic3  5,243 4,876 6,657 7,211 4,548 1,194 5,886 3,268 8,061 
Note: This table shows the predictive power of prediction 3 for various specifications using US data. The upper panel of the table reports the regressions of actual 
population growth on predicted population growth. The lower panel of the table reports the regression whose fitted values are used for predicted population growth. The 
left-hand side variable in the lower panel of the table is total employment growth. Robust standard errors clustered by county are in parentheses. The standard errors in 
the upper panel of the table have been adjusted for the fact that predicted population growth is generated using a prior regression (Pagan 1984). 
1 The geographic control variables are an indicator for the presence of coal, and indicators for observations bordering on the ocean and for observations whose centroid 
lies within 50 kilometers of a lake or a river. 
2 The log population density bin fixed effects included in these regressions are a full set of dummy variables for MCDs having population densities within intervals of 
0.1 log points. For example, all MCDs with log population density from 0.1 to 0.2 are grouped together in bin 0.1.  
3 The F-statistic reported is for an F-test that the coefficients on the share of agriculture and the interaction term are jointly equal to zero in the prior regression used to 
generate predicted population growth. 
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Table 5: Brazil – Generating the predictions 

Employment growth rate 1970-2000 

(1) (2) (3) (4) 
For prediction 2 For prediction 3 

Non-agric. Agric. Total Total 
     

Constant 0.039 0.00216 0.045 0.043 
 (0.001) (0.00111) (0.004) (0.001) 

Log population density in 1970  -0.0038 -0.0005  
 (0.0004) (0.0008)  

Share of agriculture 1970   -0.0317 -0.0291 
   (0.0044)  (0.0016) 

(Share of agriculture in 1970) x (log 
population density in 1970) 

  -0.0037 -0.0043 
  (0.0009) (0.0004) 

Number of observations 384 1,651 3,659 3,659 
R2 0 0.059 0.262 0.262 

Sample: AMCs 
non-agric. 

AMCs 
agric. 

AMCs AMCs 

 

Note: This table reports the regressions we used to construct predictions 2 and 3 for the Brazilian municipalities (Áreas Mínimas Comparáveis (AMCs)) data. We 
construct prediction 2 using the predicted values of sectoral employment growth from the regressions reported in columns (1) and (2), as described in the text of the 
paper. We construct prediction 3 using the predicted values of employment growth from the regression reported in column (4), as described in the text of the paper. The 
non-agricultural subsample used in column (1) includes AMCs for which agriculture’s share of 1970 employment was less than 0.4 due to the small sample size using a 
threshold of 0.2 (but results are similar using a 0.2 threshold). The agricultural subsample used in column (2) includes AMCs for which agriculture’s share of 1970 
employment exceeded 0.8. Robust standard errors are in parentheses. 

Table 6: Brazil – Quantifying the explanatory power of prediction 3 
 (1) (2) (3) (4) (5) (6) (7) 

 Intercept only 
As (1) but with 

predicted growth 
As (2) but with 
geo controls1 

As (3) but with 
state fixed 

effects 
As (4) but with 
subsample4 only 

As (2) but with 
log pop density 

bins2 

As (4) but with 
log pop density 

bins 
 
 
Actual population growth 
        
Predicted population 
growth 

 1.024 0.968 1.112 1.122 0.909 0.915 
 (0.035) (0.035) (0.040) (0.042) (0.036) (0.036) 

Intercept 
0.269 0.010      

(0.009) (0.010)      

R2 0 0.196 0.315 0.378 0.350 0.287 0.385 
Number of observations 3,659 3,659 3,659 3,659 3,659 3,659 3,659 

 
  

     
 
Regression used to generate predicted population growth 

 
Share of agriculture in 
1970 

 -0.810 -0.821 -0.755 -0.885 -0.693 -0.708 
 (0.013) (0.015) (0.015) (0.017) (0.044) (0.045) 

(Share of agriculture in 
1970) x (log population 
density in 1970) 

 -0.122 -0.125 -0.129 -0.073 -0.158 -0.159 
 (0.003) (0.003) (0.004) (0.005) (0.012) (0.012) 

F – statistic3  
5,460 5,651 4,728 4,088 4,042 4,212 

Note: This table shows the predictive power of prediction 3 for various specifications using the Brazilian municipalities (Áreas Mínimas Comparáveis (AMCs)) data. 
The upper panel of the table reports the regression of actual population growth on predicted population growth. The lower panel of the table reports the regression 
whose fitted values are used for predicted population growth. The left-hand side variable in the lower panel of the table is total employment growth. Robust standard 
errors are in parentheses. The standard errors in the upper panel of the table have been adjusted for the fact that predicted population growth is generated using a prior 
regression (Pagan 1984). 
1 The geographic controls are twelve dummy variables indicating the presence of oil, nickel, manganese, iron, gold, copper, cobalt, and aluminum, whether the AMC 
borders the ocean, lies within 50 kilometers of a river, has its centroid covered with tropical or subtropical moist broadleaf forest, or is contained in the Amazonas Area. 

2 The log population density bin fixed effects included in these regressions are a full set of dummy variables for MCDs having population densities within intervals of 
0.1 log points. For example, all AMCs with log population density from 0.1 to 0.2 are grouped together in bin 0.1.  
3 The F-statistic reported is for an F-test that the coefficients on the share of agriculture and the interaction term are jointly equal to zero in the prior regression used to 
generate predicted population growth. 
4 This subsample uses only AMCs in the states of Northeast, Southeast, and South macro regions of Brazil, since AMCs in these regions are relatively small, allowing a 
clearer distinction between rural and urban areas. These three macro regions in this subsample cover about 90 percent of Brazil’s AMCs, 36 percent of its land area and 
91 percent of its population in 1970. 
 
 
 
 

42



 
 

Map 1: US MCD data by state and county 

 

 

Note: This map shows the states used for our various samples. Our baseline sample consists of A and B states. The classification A, B and C corresponds to the quality 
of the match rate between 1880 and 2000 MCDs. In states classified as A (Connecticut, DC, Indiana, Iowa, Massachusetts, New Hampshire, New York, Rhode Island, 
Vermont), the 1-1 match rate between 1880 and 2000 MCDs is larger than 0.9. In states classified as B (Illinois, Maine, Maryland, Michigan, Missouri, North Carolina, 
Ohio), the match rate is larger than 0.7. In states classified as C (Arkansas, California, Delaware, Georgia, Kansas, Minnesota, Nebraska, New Jersey, Pennsylvania, 
South Carolina, Utah, Virginia, West Virginia, Wisconsin), 1880 MCD data are available but the match rate is lower than 0.7. For states in the counties sample 
(Alabama, Arizona, Colorado, Florida, Idaho, Kentucky, Louisiana, Mississippi, Montana, Nevada, New Mexico, Oregon, Tennessee Texas, Washington, Wyoming), 
1880 MCD data are not available. We exclude Alaska, Hawaii, Oklahoma, North Dakota, and South Dakota, which had not attained statehood in 1880, and therefore are 
either not included in the 1880 census or did not have stable county boundaries at that time. 
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Figure 1: Distribution of population densities

 
Note: This figure shows the distribution of log population per square kilometer in 1880 and 2000 estimated using non-
parametric specification (1) for the sample of "A and B" states. Population density bins are defined by rounding down log 
population density for each MCD to the nearest single digit after the decimal point. For example, all MCDs with log population 
density ≥ 0.1 and < 0.2 are grouped together in bin 0.1. See the web-based technical appendix for further details on data. 
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Figure 2: Population growth and density, 1880-2000

 
Note: The solid line shows mean population growth rate from 1880-2000 within each population density bin based on 
estimating non-parametric specification (2) for the sample of "A and B" states. Population density bins are defined by 
rounding down log population density for each MCD to the nearest single digit after the decimal point. The dashed lines show 
95 percent confidence intervals based on robust standard errors clustered by county. Since population density bins at the 
extreme ends of the distribution typically contain at most one observation, the figure (but not the estimation) omits the 1 
percent most and least dense MCDs in 1880. See the web-based technical appendix for further details on data.  
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Figure 3: Share of agriculture and population density in 1880

 
 

Note: The solid line shows the mean share of agriculture in 1880 employment within each population density bin based on 
estimating non-parametric specification (2) for the sample of "A and B" states. Population density bins are defined by 
rounding down log population density for each MCD to the nearest single digit after the decimal point. The dashed lines show 
95 percent confidence intervals based on robust standard errors clustered by county. Since population density bins at the 
extreme ends of the distribution typically contain at most one observation, the figure (but not the estimation) omits the 1 
percent most and least dense MCDs in 1880. See the web-based technical appendix for further details on data. 
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Figure 4: Density of log employment

 
Note: This figure shows the distribution of log agricultural employment and log non-agricultural employment (employment in 
industry and services) per square kilometer in 1880 and 2000 estimated using non-parametric specification (1) for the sample 
of "A and B" states. Employment density bins are defined by rounding down log employment density for each MCD to the 
nearest single digit after the decimal point. Since population density bins at the extreme ends of the distribution typically 
contain at most one observation, the figure (but not the estimation) omits the 1 percent most and least dense MCDs in 1880. 
See the web-based technical appendix for further details on data. 
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Figure 5: Agricultural growth and population density

 
Note: The solid line shows the mean growth rate of agricultural employment from 1880-2000 within each population density 
bin based on estimating non-parametric specification (2) for the agricultural subsample (an agricultural share in 1880 
employment of greater than 0.8) within "A and B" states. Population density bins are defined by rounding down log population 
density for each MCD to the nearest single digit after the decimal point. The dashed lines show 95 percent confidence 
intervals based on robust standard errors clustered by county. Since population density bins at the extreme ends of the 
distribution typically contain at most one observation, the figure (but not the estimation) omits the 1 percent most and least 
dense MCDs in 1880. See the web-based technical appendix for further details on data. 
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Figure 6: Non agricultural growth and population density

 
Note: The solid line shows the mean growth rate of non-agricultural employment (employment in industry and services) from 
1880-2000 within each population density bin based on estimating non-parametric specification (2) for the non-agricultural 
subsample (an agricultural share in 1880 employment of less than 0.2) within "A and B" states. Population density bins are 
defined by rounding down log population density for each MCD to the nearest single digit after the decimal point. The dashed 
lines show the 95 percent confidence intervals based on robust standard errors clustered by county. Since population density 
bins at the extreme ends of the distribution typically contain at most one observation, the figure (but not the estimation) omits 
the 1 percent most and least dense MCDs in 1880. See the web-based technical appendix for further details on data. 
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Figure 7: Robustness of U-shaped population growth relationship 
 

Panel A:  A states sample Panel B:  Counties sample Panel C:  Hybrid sample

Panel D:  Suburban sample Panel E:  A  and B, population not densities Panel F:  A and B sample, state controls
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Note: This figure shows the robustness of the U-shaped relationship for population growth (Figure 2) by reproducing it for other samples. The various samples 
used here are described in the web-based technical appendix. Since population density bins at the extreme ends of the distribution typically contain at most one 
observation, the figure (but not the estimation) omits the 1 percent most and least dense MCDs in 1880. 
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Figure 8: Brazilian results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Note: This figure reproduces Figures 1 to 6 but uses Brazilian instead of US data. 
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Figure 9: Population growth and density

 
Note: Mean actual and predicted population growth from 1880-2000 within population density bins based on 
estimating non-parametric specification (2) for the sample of "A and B" states. Population density bins are 
defined by rounding down log population density for each MCD to the nearest single digit after the decimal 
point. The figure (but not the estimation) omits the 1 percent densest and sparsest MCDs in 1880. 
Predictions 1-3 use progressively more components of the model to generate predicted population growth: 
Prediction 1 allows initial employment shares to vary by MCD. Prediction 2 allows for mean reversion in 
agriculture and Prediction 3 allows for switching of sectors within MCD. The geographical prediction predicts 
population growth using dummies indicating proximity to lakes, rivers, the sea and coal as discussed in the 
paper.  
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Figure 10: Brazilian population growth and density

 
Note: This figure reproduces Figure 9 but uses Brazilian instead of US data. Predictions 1-3 and the 
Geographic Prediction are constructed in a similar way as for the U.S. as discussed in the paper.  
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