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Abstract 
 

Fuel economy standards change the composition of the vehicle fleet – typically increasing the 
number of small vehicles – potentially influencing the number of fatalities in car accidents.  
These changes can dramatically alter the optimal level of the standard due to the high value 
associated with risks to life.  I present a novel way to estimate the safety impacts of changes in 
vehicle class composition, correcting for a selection problem on driver safety that has long 
existed in the literature.  I demonstrate the importance of controlling for driver safety, showing 
that it can change even the sign of the effect on fatalities.  A policy application using my new 
estimates shows that the present distinction between light trucks and cars in fuel economy rules 
has very negative consequences for overall safety: Each MPG increment to the standard results in 
an additional 149 fatalities per year in expectation.  I then investigate two alternative regulatory 
provisions that can produce near-zero changes in accident fatalities. 
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1.  Introduction 
 

Fuel economy standards have long been a federal policy instrument to reduce 

gasoline use and are currently slated for an increase in stringency of 35 percent by 2020.1  

One effect of the standards is to alter the composition of the vehicle fleet toward smaller and 

lighter vehicles, potentially changing vehicle safety.  This link with vehicle safety has been 

the source of strident political debate and is the motivating question here.  I estimate how 

fatal accident risks change as the result of adjustments to fuel economy policy, correcting for 

the selection problem associated with driving safety behavior.  

This question has been the subject of considerable prior research, the early results of 

which are summarized by the National Research Council (2002):  They estimate that 2,000 

additional deaths annually are associated with changes in vehicle weight and dimensions to 

meet existing fuel economy standards.2  This is based primarily on engineering evidence, 

relating the safety of occupants in both vehicles to the weight difference between vehicles 

involved in an accident. 

A more recent set of studies emphasize a very different feature in the data:  White 

(2004) and Wenzel and Ross (2005) find that while the larger vehicles discouraged by fuel 

economy standards are safer for their own occupants, they are so much more dangerous for 

other vehicles in a collision that removing them from the road represents an improvement.3  

Wenzel and Ross estimate that the external safety costs imposed by large pickup trucks 

significantly outweigh the private safety benefits to their owners:  Thus the switching across 

vehicle classes that fuel economy standards induce may in fact reduce, rather than increase, 

accident risks.  Gayer (2004) reaches a similar conclusion, that pickups and SUV’s present 

so much risk to others on the road that we might reduce overall risk by switching those 

drivers into lighter vehicles. 

These two sets of results appear to have contradictory safety implications with 

respect to fuel economy standards:  The weight-based engineering studies tend to argue 

against fuel economy standards since the regulation encourages manufacturers to sell 
                                                
1 The Energy Independence and Security Act of 2007 and Environmental Protection Agency (2009). 
2 See Portney et al (2003) and Crandall and Graham (1989) for further discussion. 
3 Some of the estimates in Kahane (2003) also support this finding, though are not the main focus of 
the report. 



 2 

smaller vehicles that do more poorly in accidents.4  On the other hand, the literature 

emphasizing the danger large vehicles impose suggests just the opposite:  That fuel economy 

standards could improve overall safety by reducing the sales of large vehicles that are 

dangerous to everyone else on the road. 

I propose a novel method that reconciles the two findings by accounting for selection 

in driving safety behavior:  Some types of vehicles are chosen by safer drivers than others 

and I recover estimates of the direction and degree of this effect.  Using my results on 

driving safety, I can isolate the underlying “engineering” safety of vehicles (holding 

dangerous behavior of drivers fixed) and relate it to the earlier work on weight differences.  

At the same time, my estimates of driver safety behavior can explain the more recent 

findings that large trucks and SUV’s appear disproportionately often in fatal collisions. 

This selection effect constitutes the central empirical challenge in the paper:  I wish 

to separately identify in the data  i) the riskiness of driving behavior (which is determined 

mainly by unobserved factors), and ii) the physical “engineering” risks in collisions between 

different kinds of vehicles.5  I solve this problem by proxying for driving behavior using 

single-vehicle accidents and crash test results.  The equation for single-car accidents, which 

aids identification of driving behavior, is estimated simultaneously with multi-car accident 

risks across different combinations of vehicles. 

My estimation yields intuitive results:  Minivans and SUV’s are associated with 

safer-than-average driving, corresponding to the concentration of families, highly educated 

households, and urban drivers in these vehicle types.  Pickup trucks and large sedans are 

associated with higher risk driving, corresponding to the extremes in age distribution of their 

drivers.  In contrast to the literature, I am able to separate these effects from the physical 

safety properties of the vehicles themselves.  

The second key contribution of the paper involves returning to the motivating 

question:  I combine my empirical results with a simple model of the automobile industry to 
                                                
4 An effect known in the industry as “mix-shifting,” see Austin and Dinan (2005) and Jacobsen 
(2010) for a description of the incentives. 
5 Some of driving safety is well-known to be correlated with observables like age, gender, and 
income.  Important factors that are generally not observed include the tendency to drive drunk, the 
time of day driving occurs, types of roads used, disregard for traffic signals, or simply taste for 
safety.  Levitt and Porter (2001) estimate drunk driving rates using innocent vehicles in accidents as 
control, but in most cases the personal characteristics that go into driving safety are quite difficult to 
measure. 
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ask how changes in fleet composition affect total fatalities in traffic accidents.  Different fuel 

economy policies produce different types of changes in fleet composition, and I trace these 

effects through to vehicle accidents. 

After controlling for driving behavior, I find that fuel economy regulation that 

maintains the historical separation of light trucks and cars involves substantial deterioration 

in vehicle safety.  That is, the types of class-switching that are encouraged within passenger 

cars and within light duty trucks come with adverse safety consequences.  This is in support 

of the engineering literature on vehicle weight that has generally concluded that small 

vehicles are more dangerous overall.  In contrast, I find much better safety outcomes under a 

unified standard that encourages manufacturers to substitute away from light trucks and into 

cars. 

I show that both of these results hold within a single consistent framework.  I also 

demonstrate the importance of accounting for driver safety and selection: a restricted model 

where driver safety is held fixed yields very different, and in the case of existing CAFE 

regulation, opposite results to those I recover from my more flexible model. 

The rest of the paper is organized as follows:  Section 2 describes the role of safety 

in U.S. fuel economy policy and Section 3 presents my conceptual model.  Section 4 and 5 

respectively describe the data and empirical results.  Section 6 presents the policy 

experiments, combining my empirical results with a model of fuel economy regulation.  The 

final sections introduce alternative models, address robustness, and conclude. 

  
 
2.  Safety and Fuel Economy Regulation 
 
 
The importance of small changes to fleet safety 
 
 The importance of automobile safety is evident simply from the scale of injuries and 

fatalities each year.  In 2008 there were 37,261 fatalities in car accidents on U.S. roads and 

more than 2.3 million people injured.6  The National Highway Traffic Safety Administration 

(NHTSA) is tasked with monitoring and mitigating these risks and oversees numerous 

federal regulations that include both automobiles and the design of roads and signals. 

                                                
6 NHTSA (2009). 
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To further motivate the concern about fuel economy standards with respect to safety 

consider the (admittedly rough) estimate provided in NRC (2002):  Approximately 2,000 of 

the traffic fatalities each year can be attributed to changes in the composition of the vehicle 

fleet due to the Corporate Average Fuel Economy (CAFE) standards.  If I further assume 

that the standards are binding by about 2 miles per gallon, this translates to a savings of 7.5 

billion gallons of gasoline per year.  Valuing the accident risks according to the Department 

of Transportation’s methodology I arrive at a cost of $1.55 per gallon saved for increased 

fatalities alone.7  This does not consider injuries, or any of the other distortions associated 

with fuel economy rules, yet by itself exceeds many estimates of the externalities arising 

from the consumption of gasoline. 

 Conversely, a finding that accident risks improve with stricter fuel economy 

regulation (along the lines of the work mentioned above that stresses the dangers of large 

vehicles) would present an equally strong argument in favor of stringent fuel economy rules.  

The magnitude of the implicit costs involved in vehicle safety argue for careful analysis of 

the risks, and mean that even small changes in the anticipated number of fatalities will carry 

great weight in determining the optimal level of fuel economy policy.   

 
Current regulation  
 

The state of U.S. fuel economy regulation is in flux and I offer an analysis of a 

variety of possible directions it might take.  Each of the 3 regulatory regimes below 

produces a unique effect on the composition of the fleet.  The resulting impacts on the 

frequency of fatal accidents are similarly diverse: 

 
1)  The current Corporate Average Fuel Economy (CAFE) rules:  Light trucks and 

cars are separated into two fleets, which must individually meet average fuel economy 

targets.  No direct incentive exists for manufacturers to produce more vehicles in one fleet 

than the other.  Rather, the incentives to change composition occur inside each fleet:  selling 

more small trucks and fewer large trucks improves the fuel economy and compliance of the 

truck fleet.  The same is true inside the car fleet.  This produces a distinctive pattern of shifts 

                                                
7 The Department of Transportation currently incorporates a value of statistical life of $5.8 million in 
their estimates.  This is conservative relative to the $6.9 million used by EPA. 
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to smaller vehicles within each fleet, but without substitution between cars and trucks 

overall. 

 
2)  A unified standard:  This type of standard has been introduced in California as 

Assembly Bill 1493, and is under consideration federally.8  It regulates all vehicles together 

based only on fuel economy.  This has the effect of encouraging more small vehicles, 

broadly shifting the fleet away from trucks and SUV’s and into cars.  

 
3)  A “footprint” standard:  This type of rule is in place federally for the years 2012 - 

2016 and is presently being debated for the years 2017 through 2020.  It assigns target fuel 

economies to each size of vehicle (as determined by width and wheelbase), severely limiting 

the incentives for any change in fleet composition.  As such it increases the technology costs 

of meeting a given target, but was required in the hopes of mitigating the costly safety 

consequences discussed above.9 

 
 
 
3.  A Model of Accident Counts 
 

I model the count of fatal accidents between each combination of vehicle classes as a 

Poisson random variable.  Vehicle classes in the data represent various sizes and types of 

cars, trucks, SUV’s and minivans; covering all passenger vehicles in the U.S. 

Define Zij as the count of fatal accidents where vehicles of class i and j have collided 

and a fatality occurs in the vehicle of class i.  The data will be asymmetric, that is Zij ! Z ji , 

to the degree that some vehicle classes impose a greater external risk on others.  In the 

relatively unusual cases where a fatality occurs in both vehicles in an accident then both Zij 

and Zji would be incremented.   

 

                                                
8 Strictly speaking the California bill preserves the fleet definition, but allows manufacturers 
to “trade” compliance obligations between fleets in order to achieve a single average target.  
The trading between fleets aligns incentives for all vehicles, making the rule act like a single 
standard. 
9 NHTSA (2008b) discusses the rationale for the footprint rule.  Technology costs are higher because 
all improvement must be achieved through technology; the other rules allow some of the 
improvement to come from technology and some to come via fleet composition. 
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We can write the total count of fatalities in vehicles of class i as: 

 
(fatalities in class i) = Zij

j!J
"  (3.1) 

 
Where J represents the set of all vehicle classes.  By changing the order of subscripts 

we can similarly write the count of fatalities that are imposed on other vehicles by vehicles 

of class i: 
 

(fatalities imposed on others by class i) = Z ji
j!J
"  (3.2) 

 
Counts of accidents of each type will reflect numerous factors influencing risk and 

exposure.  I categorize these factors into three multiplicative components for the purpose of 

the model:  1) The "engineering" safety risk that results when two vehicles from the 

specified classes collide in a standardized setting, 2) the level of risk with which vehicles in 

each class are driven, and 3) the number of vehicles in each class present on the road at any 

given time and place.  The combination of these three elements determines the number of 

fatal accidents in each combination of classes:  Intuitively the greater the engineering risk, 

driver recklessness , or number of vehicles, the more fatal accidents we should expect. 
 
Define the three components using: 

 
!ij  The risk of a fatality in vehicle i when vehicles from class i and class j collide (i.e. 

fixed effects for every possible combination of vehicles) 

! i  The riskiness of drivers owning vehicles of class i  (i.e. a separate fixed effect on 

driver safety behavior for each class) 

nis  The number of vehicles of class i that are present at time and place s 

 
I normalize the measure of driver riskiness such that it multiplies the fatality risk.  

For example, a value of ! i = 2  will correspond to a doubling of risk.  High values of ! i  

come from a tendency of class i owners to disobey traffic signals, drive when distracted or 

drunk, drive recklessly, or take any other action (observable or unobservable) that increases 

the risk of a fatal accident.  
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Combining the definition of dangerous driving behavior with the engineering fatality 

risk results in: 

 
Probability of a fatal accident | i, j  present = ! i! j"ij  (3.3) 

 
The probability of a fatal accident (conditioned on vehicles i and j being present at a 

particular time and place) is modeled as the product of the engineering risk in a collision of 

that type, !ij , and the parameters representing bad driving, ! i . 

This form contains an important implicit restriction:  Behaviors that increase risk are 

assumed to have the same influence in the presence of different classes and driver types.  I 

argue that this is a reasonable approximation given that most fatal accidents result from 

inattention, drunk driving, and signal violations;10 such accidents give drivers little time to 

alter behavior based on attributes of the other vehicle or driver. 

 Finally I add in the effect of the number of vehicles of each class present in time and 

place s.  If pickup trucks are less common on urban roads, or minivans tend to be parked at 

night, there should be differences in the number of accidents involving these vehicles across 

time and space.  In the estimation below I bin the data according to time-of-day, geography, 

demographics, and urban density – factors that appear to significantly influence both the 

composition of the fleet and the probability of fatal accidents.  In my notation s will 

correspond to bins. 

The effect of the quantity of vehicles present in bin s on the number fatalities 

expected again takes a natural multiplicative form: If there are twice as many cars of a 

certain class on the road then we expect twice as many cars of that class to be involved in an 

accident: 

 
E(Zijs ) = nisnjs! i! j"ij  (3.4) 
 

For this final step we add a bin s subscript to the counts Zijs , keeping track of fatal accidents 

both by vehicle type and by bin. 

 Given that the ! i  terms include unobservable driving behaviors it is impossible to 

estimate equation (3.4) alone; it can’t be separately determined if a vehicle class is 

                                                
10 NHTSA (2008a). 
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dangerous in an engineering sense or if the drivers who select it just happen to drive 

particularly badly.   

To address this problem I add an equation modeling single-car accidents.  I define 

the count of fatal single-car accidents in vehicle class i in location s as Yis  where: 

 
E(Yis ) = nis! i"sxi  (3.5) 

 
The four parameters are: 

 
nis  (As above) The number of vehicles of class i present in bin s 

! i  (As above) The riskiness of drivers owning vehicles of class i  

!s  A bin-specific fixed effect allowing the overall frequency of fatal single-car 

accidents to vary across time and space. 

xi  The fatality risk to occupants of class i in a standardized collision with a fixed object 

(to be measured using government crash tests). 

 
The key restriction across equations (3.4) and (3.5) is that the dangerous behaviors 

contained in ! i  multiply both the risk of single-car accidents and the risk of accidents with 

other vehicles.  This may be a better assumption for some behaviors (drunk driving, 

recklessness) than others (falling asleep) but I will show below that it appears to fit the data 

well. 

 
 

Comparison with other models in the literature 
 

Much of the previous work focusing on the influence of weight of vehicles (see 

Kahane (2003)) has parameterized the risks in collisions according to weight differences.  

By assigning a complete set of fixed effects for all possible interactions, !ij , I can still 

recover this information while also adding considerable flexibility in form.  The cost to my 

approach with this parameter comes in terms of demands on the data and the degree of 

aggregation (I will aggregate to 10 distinct classes, or 100 !ij  fixed effects). 

Wenzel and Ross (2005) estimate risks using a similarly flexible approach for 

vehicle interactions but importantly do not include driving safety behavior.  For purpose of 
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comparison I provide estimates of a restricted version of my model where I set all the ! i ’s 

to be equal.  The parameter estimates turn out to be quite different, so much so in fact that 

the primary policy implication is reversed in sign. 

 
 
4.  Data 
 
 Three key components of the model above are available as data: 
 

• Fatal accident counts, Zijs and Yis  

• The quantity (number of vehicle miles) in each class, ni 

• Crash test data to describe risks in single-car accidents with fixed objects, xi 

 
This section describes my data sources for each. 

 
Fatal accident counts 
 

The count data on fatal accidents represent the core information needed to estimate 

my model.  I rely on the comprehensive Fatal Accident Reporting System (FARS), which 

records each fatal automobile accident in the United States.  The dataset is complete and of 

high quality, due in part to the importance of accurate reporting of fatal accidents for use in 

legal proceedings.  If such complete data were available for accidents involving injuries or 

damage to vehicles it could be used in a similar framework to the one I propose, but 

reporting bias and a lack of redundancy checking in police reports for minor accidents make 

those data less reliable. 

The FARS data include not only the vehicle class and information about where and 

when the accident took place (which I use to define bin s in the model), but a host of other 

factors like weather, and distance to the hospital.  While the additional data isn’t needed in 

my main specification (which captures both observed and unobserved driver choices in fixed 

effects) I will make use of a number of these other values to check the robustness of my 

estimates. 

I bin the data using three times of day (day, evening, night), two levels of urban 

density, and three levels of income in the area of the accident.  For the latter two items I use 

census data on the zip codes where the accidents take place.  This creates 18 bins s in my 
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central specification.  I experiment with adding more bins using other demographics and 

geography and find that additional detail neither influences the estimates nor adds precision.  

The robustness of my results to alternative bin structures is included in the sensitivity 

analysis. 

For my main specification I pool data for the three years 2006-2008.  I experiment 

with month fixed effects and a non-overlapping sample of data from 1999-2001 and find no 

important differences in results.  The persistence in the vehicle fleet due to the relatively 

long life-spans of cars is likely an important factor in the stability of accident rates over 

time. 

 
Quantity of vehicles present 
 

I use the total vehicle miles traveled (VMT) in each class as a measure of the 

quantity of vehicles of that class present on the road.  This data is available from the 

National Household Transportation Survey (NHTS), which is a detailed survey of more than 

20,000 U.S. households conducted in 2008.  While I do have some information about the 

location of the VMT (for example the home state of the driver) I can’t observe other 

important aspects like the time of day or type of road where the miles are driven. 

Fortunately, as demonstrated in Section 5, the key safety parameters can be recovered using 

only the total VMT for each class: bin s level VMT is absorbed in fixed effects. 

 
Crash test data 
 

NHTSA has performed safety tests of vehicles using crash-test dummies since the 

1970’s, with recent tests involving thousands of sensors and computer-aided models to 

determine the extent of life-threatening injuries likely to be received.  The head-injury 

criterion (HIC) is a summary index available from the crash tests and reflects the probability 

of a fatality very close to linearly (Herman (2007)).  The linearity is important for my 

application, as I need a measure that reflects the relative risk across vehicle types.   
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I have assembled the average HIC by vehicle class for high-speed frontal crash tests 

conducted by NHTSA over the period 1992-2008.11  These tests are meant to simulate 

typical high-speed collisions with fixed objects (such as concrete barriers, posts, guardrails, 

and trees) that are common in many fatal single-car accidents.  The values for each class are 

included in Table 4.1.  Single-vehicle accidents in small pickup trucks, the most dangerous 

class, are nearly twice as likely to result in a fatality as those occurring in large sedans, the 

safest class. 

The crash test data is more difficult to defend than my other sources since it relies on 

the ability of laboratory tests to reproduce typical crashes and measure injury risks.  I 

therefore offer an alternative specification in the sensitivity analysis that abstracts altogether 

from crash-test data.  It produces quite similar results but offers less precision since it places 

more burden on cross-equation restrictions. 

 
Summary statistics 
 

I define 10 vehicle types (classes) spanning the range of the U.S. passenger fleet, 

including various sizes of cars, trucks, SUV’s, and minivans.  Table 4.1 provides a list and a 

summary of the accident counts, reflecting fatalities both in the vehicle and those of other 

drivers in accidents.  The quantity data is summarized in column 3, displaying the total 

annual miles traveled in each class.  Finally, I include the HIC data for each class, 

representing the relative risks of a fatality in single-car crashes.  A further summary of the 

accident rates in all 100 possible combinations of classes is provided in Table 5.1, discussed 

below. 

 
 
 
 
 
 
 
 
 

                                                
11 Specifically, I include all NHTSA frontal crash tests involving fixed barriers (rigid, pole, and 
deformable) and a test speed of at least 50 miles per hour.  This filter includes the results from 945 
tests. 



 12 

5.  Estimation 
 

The equations from Section 3 representing single and multi-car accidents 

respectively are: 

 
E(Yis ) = nis! i"sxi  (5.1)

  
E(Zijs ) = nisnjs! i! j"ij  (5.2) 

 
Since the parameters for driving behavior and quantity are only relevant up to a constant 

(they expresses relative riskiness and vehicle density, respectively) I combine them into a 

single term for estimation: ! is " nis# i  and normalize the first ! is  to unity.  The average risks 

by class ! i  can be recovered after estimation using the aggregate data on miles traveled.12 

  
The transformed model for estimation is: 

 
Yis ! Poisson(! is )
E(Yis ) =! is = " is#sxi

 (5.3) 

 
Zijs ! Poisson(µijs )
E(Zijs ) = µijs = ! is! js"ij

 (5.4) 

 
Where xi and the realizations of Yis  and Zijs  are data.  All remaining parameters are to be 

estimated and require simultaneous estimation of the two equations for identification.  For 

convenience in programming, the data is transformed by natural logs and fit using the 

maximum likelihood command in the Stata 10 package.  All coefficients and standard errors 

in the tables below are reported in exponentiated form, such that they can be interpreted 

directly as the multiplicative terms appearing in my model. 

 Overdispersion in count data is often present, and can be captured by modeling the 

negative binomial generalization of the Poisson distribution.  The negative binomial 

distribution includes one additional parameter, similar to estimating the variance of an error 

                                                
12 In particular, define ni as the aggregate quantity (miles) for class i such that ni = nis

s
! .  Then 

! is
s
" ni = nis# i

s
" ni = # i . 
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term in a linear model, and reduces to the Poisson distribution as overdispersion falls to 

zero.  My point estimates remain virtually unchanged relative to the simple Poisson model, 

with a slight increase in standard errors.  In all results below I report estimates from the 

more general negative binomial version of the model. 

 
Identification 
 

The separate identification of ! i  and !ij comes from the cross equation restrictions 

above, but it may be useful to provide some additional intuition: 

 Consider a simplified version of (5.3) abstracting from the !s  fixed effects:  We 

would have simply ! is = " isxi .  The unknown parameters here are just the ! is ’s which can 

be exactly identified using the counts of single-vehicle accidents and crash test data. 

Effectively, I measure the quantity of dangerously driven vehicles of each class by seeing 

how many single-car fatalities occur and adjusting for the riskiness of the vehicle involved.  

Once the ! is ’s are known the remaining parameters in (5.4) are just the !ij ’s, which are now 

straightforward to recover separately. 

 In practice of course the fixed effects for single-car accidents are also very important 

(certain types of roads and times of day are much more conducive to single-car accidents).  

Intuitively, these can be identified using the additional observations in the second equation 

(since there are s pieces of data over-identifying each !ij  parameter). 

 
Results from a restricted model 
 

For purpose of comparison I first estimate a restricted model where I hold driving 

safety behavior fixed across all vehicle classes.  The next subsection will add in my 

correction for driver safety and demonstrate the differences.   

For the restricted model I retain the full set of fixed effects on bins s and vehicle 

interactions !ij , making the model: 

 

 

Zijs ! Poisson( "µijs )

E(Zijs ) = "µijs = "nis "njs "!ij
 (5.5) 
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Where the parameters are defined as before, and the ~ modifier indicates the restricted 

model.  Notice that all the ! i  parameters have been set to unity and so drop out. 

Table 5.1 presents the restricted estimates of  
!!ij .  These parameters have a simple 

interpretation:  they are the total fatality rates in interactions between each pair of classes.  

The most dangerous interaction in the table occurs when a compact car collides with a large 

pickup truck, resulting in 38.1 fatalities in the compact car per billion miles that the two 

vehicles are driven.  The chance of a fatality in the compact in this case is about 3 times 

greater than if it had collided with another compact, and twice as large as if it collided with a 

full-size sedan.  What is omitted from this table is the possibility that some classes cause 

more fatalities due to dangerous driving, rather than because of any inherent risk.   

Biases of this sort are particularly evident when examining minivans in Table 5.1.  

Minivans are much larger and heavier than the average car yet appear to impose very few 

fatalities on any other vehicle type, even compacts.  This is noted as a puzzle in the 

engineering literature (Kahane (2003)) since simple physics suggests minivans will cause 

considerable damage in collisions.  I find below that this is resolved by allowing flexibility 

in driving behavior; minivans simply tend to be driven much more safely. 

 
 

Results from the full model 
 

With the basic accident rates identified in Table 5.1, I now move on to the full model 

where driver safety is allowed to vary by class.  I find that allowing these effects 

dramatically alters the core pattern of safety interactions, !ij .  The complete set of !ij  

estimates and standard errors appear in Table 5.2. 

A number of key differences appear in the more flexible estimates:  Before 

controlling for heterogeneity in driving behavior large pickup trucks appeared much more 

dangerous to other drivers than large SUV’s (compare columns 7 and 9 of Table 5.1).  After 

correcting for driving safety, the two classes of vehicles now look much more similar 

(columns 7 and 9 of Table 5.2).  This is an intuitive result in terms of physical attributes:  

Large SUV’s and large pickups have similar weight and size, often being built on an 

identical light truck platform. 
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Minivans also look like the light trucks that they are based on (in fact becoming 

statistically indistinguishable from them in most accident combinations) after controlling for 

driving behavior.  This validates engineering predictions based on weight and size, resolving 

the puzzle of why they appear in so few fatal accidents. 

My estimates of the ! i  parameters mirror the changes in !ij  and are plotted along 

with confidence intervals in Figure 5.1.13  As indicated minivan drivers are estimated to be 

the safest among all classes.  The dashed line at 1.0 indicates (normalized) average driving 

safety, meaning small SUV drivers also have very low risk for fatal accidents, about half of 

the average.  Small SUV’s tend to be driven in urban areas (which are much safer than rural 

areas in terms of fatal car accidents) and are among the more expensive vehicles.  Pickup 

trucks are driven significantly more dangerously than SUV’s of similar sizes, also intuitive 

given their prevalence in rural areas and younger drivers.   

Among passenger cars, large sedans are driven somewhat more dangerously than 

other car types.  Again the urban-rural divide may explain some of this (there are more 

compacts in cities) as well as the higher average age of large sedan drivers. 

 
 
6.  Policy Simulation 
 

Returning to the motivating policy question, I provide estimates of the influence of 

fleet composition on total fatalities.  The changes in fleet composition I examine correspond 

to three types of fuel economy rules. 

As always, the farther out of sample we wish to look (i.e. very extreme changes to 

the fleet) the more strain is placed on the structure of the model.  Fortunately, there is a 

substantial amount of variation in the fleet already included in the data:  For example the 

fraction of the fleet that are large pickup trucks varies by more than factor of two across bins 

s.14  The changes as the result of fuel economy rules span only a small piece of this 

variation. 

 
 

                                                
13 This is partly by construction:  To fit the data, improvements in driving safety will generally be 
reflected by declines in engineering safety. 
14 It ranges from 10% (high-income, urban, daytime) to 22% (low-income, rural, night). 
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Method 
 

I begin with a set of estimates for own and cross-price elasticities of demand among 

the 10 vehicle classes.  The central-case elasticities I use are shown in Table 6.1 and come 

from Bento et al (2009).  To determine the change in fleet composition I combine the matrix 

of elasticities with the shadow tax implicit in fuel economy regulation.15  The shadow taxes 

are displayed in Table 6.2 for each of the three policies I consider: 

 

1)  Extension of the current CAFE rule 

 The shadow tax in this case is proportional to fuel economy within the light truck 

fleet and within the car fleet.  This means that large pickups receive a shadow tax while 

small pickups receive a shadow subsidy.  Similarly large cars receive a shadow tax while 

compacts receive a shadow subsidy.  There is no incentive to switch from trucks and SUV’s 

into cars with this policy, since they are regulated by separate average requirements. 

 
2)  Single standard 

Here the shadow tax is very simple:  The least efficient vehicles receive the highest 

tax and the most efficient ones the highest subsidy.  All are in proportion to fuel economy.  

In general trucks receive a shadow tax (the worse their fuel economy the more so) and cars 

receive a shadow subsidy. 

 

3)  Footprint-based CAFE standard 

This more complicated policy targets fuel economy for vehicles based on their 

wheelbase and width.  Large footprint vehicles are given a more lenient target, leaving little 

or no incentive for manufacturers to change the composition of vehicle types they produce.  

The only residual effect on fleet composition will be for classes that are either particularly 

efficient relative to their footprint (non-luxury cars) or particularly inefficient relative to 

their footprint (SUV’s). 

 

                                                
15 Average fuel economy regulation places a shadow tax on vehicles that fall below the average 
requirement and a shadow subsidy on vehicles that are more efficient than the requirement. 
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 Combining the matrix of elasticities with the regulatory shadow taxes allows me to 

both calculate the new composition of the fleet and also track the types of drivers as they 

switch across vehicles.  Being able to track drivers as they move from one vehicle to another 

allows me to properly incorporate my estimates of ! i . 

  It may help to illustrate with an example:  If the policy causes a lot of large-pickup 

drivers to buy small SUV’s instead, I would predict that the average driving safety behavior 

in small SUV’s worsens: The small SUV class will now contain the relatively safe, urban 

drivers it originally included, and now also add some drivers from the more dangerous 

category that formerly owned large pickups.16 

To compute the new driving safety parameters, !̂ i , I take a quantity weighted 

average of the safety characteristics of drivers from all the other classes who have switched 

into class i, combined with those who choose class i both before and after the regulation.  

The predicted number of fatalities under the new policy scenarios is given by: 

 
Ẑijs = n̂isn̂ js!̂ i!̂ j"ij  (6.1) 

Ŷis = n̂is!̂ i"sxi  (6.2) 
 
where !̂ i  is the new driver safety value as above and n̂i  reflects the new fleet composition 
induced by the policy. 
 
 
Simplifying assumptions 
 

In order to keep the analysis tractable I restrict my study to the 10 classes above, 

which include all passenger vehicles regulated by CAFE.  I abstract from issues of scale and 

accidents outside the passenger fleet as follows: 

 
i)  Commercial vehicles:  I assume that the fleet of commercial vehicles (mainly heavy 

trucks for which a commercial driver’s license is required) remains fixed.  I leave the 

number of fatalities occurring in commercial vehicles unchanged, and adjust the fatalities in 

                                                
16 I acknowledge that some dangerous driving behaviors may disappear when drivers switch 
vehicles, but argue that the most important ones like driving at night, in rural areas, under the 
influence, or without paying proper attention will tend to remain even after drivers switch vehicles. 
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passenger vehicles that collide with commercial vehicles using the same risk factors I 

estimate for single-car accidents.17 

 
ii)  The scale of the fleet and miles driven:  It may be that fuel economy rules will change the 

total number of cars sold (likely decreasing it) or the number of miles driven (perhaps 

increasing that).18  I abstract from these effects altogether, holding the total number of 

vehicles and miles driven constant.  This allows me to focus on the influence of composition 

alone. 

 
iii)  Pedestrians and cyclists:  About 12% of fatalities involving passenger vehicles are 

pedestrians, bicyclists, and motorcyclists.  Pedestrian and cyclist fatality rates (uncorrected 

for driver behavior) are nearly identical among cars and light trucks, consistent with the 

observation that the mass of the passenger vehicle is many times larger regardless of its 

class.19  I therefore assume a constant rate of fatal accidents involving pedestrians.  To the 

extent that smaller vehicles could reduce pedestrian fatalities – for example because of better 

visibility when reversing – both the uncorrected and corrected results in my model would 

change by the same amount: The divergence in estimates I find when correcting for driver 

behavior would be unaffected. 

 
 
Results of policy  
 
 The results of the three policy simulations are contained in Tables 6.3 through 6.5.  I 

provide standard errors for the total change in fatalities in each case by applying the delta 

method.  The standard errors reflect the estimates of the safety parameters made in this 

paper; the hypothetical changes in fleet composition are treated as deterministic. 

 
 

                                                
17 This is a reasonable approximation since the size of commercial trucks means collisions with 
passenger vehicles resemble collisions with fixed objects. 
18 A decrease in quantity might come from cost increases as fuel-saving technologies are introduced.  
An increase in miles is known as the rebound-effect; better fuel economy means driving becomes 
cheaper at the margin. 
19 Pedestrian and cyclist fatalities in my data are 2.82 per billion miles for cars and 2.81 per billion 
miles for light trucks.  Within trucks, fatality rates are higher for larger vehicles.  Surprisingly, the 
opposite effect holds within cars: larger vehicles have lower pedestrian fatality rates. 
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1)  Increment of 1.0 MPG to the current CAFE rules: 
 

The left panel of Table 6.3 displays the change in total traffic deaths that are 

predicted using the restricted model.  Driving behavior is not taken into account.  The 

restricted model suggests that CAFE offers an improvement in safety: 135 lives would be 

saved.   

 A very different picture emerges when I use the full model, allowing for selection on 

driving behavior at the class level.  My central estimate is that the increment to CAFE will 

result in 149 additional traffic-related fatalities per year. 

 It is straightforward to see the intuition behind the reversal in sign:  Large SUV’s and 

pickups (and large sedans) cause and experience a lot of fatal accidents in the data.  The 

naive restricted model assumes that when you take away these large (and seemingly 

dangerous) vehicles an improvement in safety results.  Unfortunately I must argue that the 

picture is not so favorable:  Much of the danger in the larger vehicle classes appears to be 

due to their drivers, not the cars themselves.  When we move those people into smaller 

vehicles it does not diminish the risk, and in some cases can even magnify it since smaller 

vehicles do more poorly in most accidents. 

 It is important to point out that the effects I’m finding are not all habits that we 

would fault the drivers themselves for (like alcohol or running through traffic signals).  A 

significant portion is simply the urban-rural divide:  Drivers who currently choose large 

vehicles tend to live in rural areas, where accident fatality rates are very high.  As rural 

drivers change to smaller vehicles the dangers of accidents on rural highways remain.  These 

are very often single-car accidents, as reflected in the additional fatalities I predict. 

 
 
2)  Unified standard achieving a 1.0 MPG improvement 
 
 Table 6.4 presents results under a unified standard, which has a strikingly different 

effect from an increment to current CAFE rules.  My full model shows an increase of only 8 

fatalities per year under a unified standard.  A zero change lies within the confidence 

bounds.  This represents a highly statistically significant improvement over an increment to 

current CAFE and comes as the result of two effects canceling each other out in the fleet: 
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 The first effect is just a repeat of the undesirable outcome in the first experiment, that 

is, changes within the car fleet and within the truck fleet lead to smaller and lighter vehicles 

and increase the number of fatalities. 

 Recall though that the unified standard adds a second incentive:  It encourages 

switching away from light trucks and SUV’s and into cars.  I estimate that this second effect 

improves overall safety substantially.  There appears to be something about light trucks 

(likely the height of their center of mass) that makes them more dangerous vehicles than 

cars, even after controlling for their drivers.  Exchanging an average truck for an average car 

confers a large safety benefit to the fleet.  It just so happens that this improvement almost 

exactly offsets the deterioration of safety within the car and truck fleets due to the down-

sizing of vehicles. 

 
 
3)  Footprint-based standard 
 
 Table 6.5 presents results under the footprint-based standard that is in effect until 

2016.  The footprint-based standard discourages most types of composition changes by 

shutting down switching both within and across the car and truck fleets.  The most 

significant changes that remain are movement away from SUV’s and into pickup trucks and 

cars; this is due to the relatively small footprint of SUV’s relative to their fuel consumption.  

My full model shows a very small deterioration in safety from the footprint standard, with 

an increase of only 6 fatalities per year. 

 It is important to point out that these small safety effects come paired with large 

efficiency costs:  Fuel savings under the footprint standard must be accomplished almost 

exclusively through engine technology, when movement to a smaller and lighter fleet is 

likely to be a much cheaper way to save gasoline. 

 My results on the unified standard are encouraging in this regard:  I show that 

savings in gasoline from movement to a smaller fleet can come with the same minimal effect 

on safety that appears under the footprint standard.  As the U.S. presses toward even more 

fuel efficiency after 2016, changes in fleet composition will prove valuable and can be made 

with safety consequences fully in mind. 
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7.  Alternative Models 
 
Identifying driver behavior without using crash test data 
  
 It is possible to identify the main model (including fixed effects for driver behavior 

by class) without the use of crash test data, relying instead on the physical properties of 

accidents: Accidents between two vehicles of similar mass and speed closely resemble 

accidents with fixed objects since both crashes result in rapid deceleration to a stationary 

position.20  When vehicles of different mass collide, the heavier vehicle will decelerate more 

slowly (pushing the smaller vehicle back) which creates asymmetry in the degree of injuries. 

 My alternative identification strategy makes use of this property, setting risk in 

single car accidents proportional to the risk in accidents between cars of the same class, !ii .  

The model described in Section 5 becomes: 

 
E(Yis ) = nis! i"s#ii  (7.1)

  
E(Zijs ) = nisnjs! i! j"ij  (7.2) 

 
The restriction on the diagonal elements of !  is sufficient for identification. 

 The first two columns of Table 7.1 provide a summary of results from my preferred 

specification in Section 5.  The third column shows the results from estimating (7.1) and 

(7.2) above, providing a confirmation of the central findings even under very different 

identifying assumptions.  The standard errors are much larger in this specification, reflecting 

the reduction in data available to the model. 

 
Alternative demand elasticities  
 
 The general pattern in the simulation, that fewer large vehicles and more small ones 

will be sold, is fundamental to a reduction in fuel economy.  However, my simulation also 

embeds more subtle changes in substitution across classes.  For example: Is a driver giving 

up a large SUV more likely to buy a small SUV or switch to a small pickup truck? 

                                                
20 See Greene (2009).  Each vehicle’s change in velocity raised to the 4th power closely 
predicts injury severity.   
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 I investigate the robustness of my simulation results by introducing an entirely 

separate set of substitution elasticities, shown in Table 7.2.  These are reported in Kleit 

(2004) and are also employed by Austin and Dinan in their 2007 work.  The elasticities 

derive mainly from survey data on second-choices of new car owners, providing a different 

view than the cross-sectional variation used to generate the elasticities in my main 

simulation. 

 The fourth column of Table 7.1 summarizes the results under the alternative 

elasticities.  My main findings remain intact, though the effectiveness of a single fuel 

economy standard at mitigating safety consequences is somewhat muted relative to my 

preferred model. 

 
Additional robustness checks 
 
 Finally, I investigate the robustness of my findings in a number of subsamples of the 

data.  Columns 3 through 5 of Table 7.3 summarize my main results in various subsamples, 

with total fatalities scaled by the number of observations used so that the columns are 

comparable. 

 
1998 and newer model years 
 
 1998 was the first model year where both passenger and driver airbags were required 

in all new vehicles.  Airbags dramatically alter safety risks, and if their presence also 

influences driving behavior or changes relative risks across classes we might expect a 

different set of results to emerge.  My estimates, however, appear robust in this dimension. 

 

Drivers under 55 
 
 There is evidence that elderly drivers may more often be the subjects of fatal traffic 

accidents due to their relative frailty.21  This introduces a potential asymmetry in my model: 

Older drivers may place themselves at greater risk but don’t necessarily impose this risk on 

those around them.  I restrict my sample to driver fatalities among those less than 55 years 

                                                
21 Loughran and Seabury (2007) investigate this issue. 
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old and find similar results, suggesting that the frailty effect is not large relative to the 

variation in driver behavior overall. 

 
Clear weather 
 
 My simulations assume that the locational or behavioral factors influencing driver 

safety remain with the driver after the change in composition.  A potentially important 

caveat has to do with weather: If a driver switches away from an SUV, for example, they 

may be less likely to drive in the rain or snow.  I therefore experiment with a sample limited 

to fatalities that occur in clear weather (any weather condition, even fog or mist, is 

excluded).  Notably, this only removes 10% of observations; 90% of fatal accidents occur in 

clear conditions.  My results are again unchanged, suggesting that even if there is substantial 

behavioral response to weather conditions it would not be relevant to most accident 

fatalities.  

 
 
8.  Conclusion 
 
 I introduce a new model of vehicle accidents that accounts for selection and driving 

safety behavior across classes.  This problem has presented a challenge in numerous prior 

studies, and I show that correcting for it significantly alters conclusions about fleet 

composition and safety. 

 The underlying empirical model offers two key results:  First, there is considerable 

diversity in driving behavior across vehicle classes: The most dangerous drivers (pickup 

truck owners) are three times as likely to be involved in fatal accidents as the safest drivers 

(minivan owners) after controlling for the physical safety attributes of their vehicles.  

Second, controlling for driver safety produces estimates of the physical safety of interactions 

between vehicles that closely mirrors theoretical engineering results.  Large and heavy 

vehicles are the safest to be in during an accident but also impart the most damage to others. 

 To address the motivating policy question about safety and fuel economy regulation, 

I experiment with three policy simulations.  The results provide a new understanding of how 

fleet composition changes associated with fuel economy influence overall safety: 

 I find that the provision in existing CAFE regulation to separate light trucks and 
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SUVs from passenger cars is harmful to safety.  Incrementing the standards by 1.0 mile per 

gallon causes an additional 149 fatalities per year in expectation.  The increase in statistical 

risk would be valued at 33 cents per gallon of gasoline saved, with any additional injuries or 

property damage (assuming they are correlated with fatalities) only further increasing the 

cost of this type of regulation.22 

 In contrast, I find that a unified fuel economy standard has almost no harmful effect 

on safety.  The additional fatalities incurred by switching to smaller and lighter cars and 

trucks are offset almost exactly by switches between the two categories:  Moving people out 

of light trucks and into passenger cars confers an overall safety benefit. 

 Further analysis using the model developed here could uncover additional effects of 

interest.  For example, a more detailed disaggregation of car classes by manufacturer, fuel 

economy, or other attribute could uncover additional ways to adjust fuel economy rules to 

protect or even improve safety.  The policy simulations might similarly be explored in more 

depth, with attention given to inter-firm dynamics or the credit-trading provisions in 

upcoming federal regulation.

                                                
22 The gasoline savings here reflect only fleet composition changes, holding miles driven fixed.  To 
the extent that a “rebound effect” increases miles driven, the safety cost per gallon saved would be 
even larger. 
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Table 4.1:  Summary Statistics 
 
 

Count of Accident Fatalities1

Class Own Vehicle Other Vehicle

Compact 2812 1068 247.7 528.7
Midsize 2155 1280 249.7 491.4
Fullsize 733 507 83.2 353.9
Small Luxury 317 236 54.5 424.3
Large Luxury 364 307 50.8 469.3

Small SUV 719 1129 216.0 626.3
Large SUV 477 1379 148.9 531.2
Small Pickup 594 624 87.1 666.2
Large Pickup 716 2293 159.5 585.9
Minivan 469 532 126.7 577.9

Total Miles 

Driven2

Crash Test 

HIC3

 
 

1 Two-car accidents, annual average 2005-2008. 
2 In billions of miles per year (2008 National Household Transportation Survey). 
3 Results from NHTSA testing 1992-2008. 
 
 
 
 



Table 5.1: Estimates of  
!!ij  in Restricted Model (No class-level driver safety effects)1 

 
 

 
 

1 Standard errors are shown in parentheses, estimates are from Poisson estimation of the multi-car 
accident equation alone, with all class-level safety effects restricted to unity. 
 
 

Compact Midsize Fullsize
Small 
Luxury

Large 
Luxury

Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact 12.4        
(0.4)

14.9        
(0.5)

17.7        
(0.9)

12.6        
(1.0)

17.2        
(1.2)

16.2        
(0.5)

26.4        
(0.8)

20.2        
(1.0)

38.1        
(1.0)

12.1        
(0.6)

Midsize 8.8        
(0.4)

11.8        
(0.4)

12.9        
(0.8)

9.2        
(0.8)

12.8        
(1.0)

11.2        
(0.5)

20.4        
(0.7)

16.5        
(0.9)

30.5        
(0.9)

8.9        
(0.5)

Fullsize 8.7        
(0.6)

11.9        
(0.8)

16.0        
(1.5)

8.8        
(1.4)

14.9        
(1.9)

11.6        
(0.8)

19.0        
(1.2)

17.4        
(1.5)

30.6        
(1.5)

9.8        
(1.0)

Small Luxury 8.5        
(0.8)

6.5        
(0.7)

11.2        
(1.6)

11.8        
(2.0)

10.8        
(2.0)

9.6        
(0.9)

12.1        
(1.2)

6.9        
(1.2)

16.6        
(1.4)

5.1        
(0.9)

Large Luxury 6.6        
(0.7)

8.7        
(0.8)

11.6        
(1.7)

6.1        
(1.5)

11.2        
(2.1)

10.3        
(1.0)

20.4        
(1.6)

13.3        
(1.7)

22.9        
(1.7)

8.2        
(1.1)

Small SUV 3.6        
(0.3)

4.2        
(0.3)

4.6        
(0.5)

4.2        
(0.6)

6.8        
(0.8)

4.3        
(0.3)

7.9        
(0.5)

4.9        
(0.5)

12.2        
(0.6)

3.4        
(0.4)

Large SUV 4.2        
(0.3)

4.2        
(0.3)

3.8        
(0.6)

3.7        
(0.7)

5.2        
(0.8)

3.5        
(0.3)

7.9        
(0.6)

5.4        
(0.6)

11.1        
(0.7)

3.7        
(0.4)

Small Pickup 8.2        
(0.6)

8.4        
(0.6)

10.1        
(1.2)

4.6        
(1.0)

6.6        
(1.2)

7.4        
(0.6)

14.0        
(1.0)

13.0        
(1.3)

29.1        
(1.4)

7.7        
(0.8)

Large Pickup 4.8        
(0.3)

5.2        
(0.4)

5.9        
(0.7)

4.5        
(0.7)

6.3        
(0.9)

4.4        
(0.4)

10.1        
(0.7)

7.4        
(0.7)

21.5        
(0.9)

3.6        
(0.4)

Minivan 3.5        
(0.3)

3.8        
(0.3)

6.1        
(0.8)

3.5        
(0.7)

3.9        
(0.8)

5.0        
(0.4)

8.9        
(0.7)

7.7        
(0.8)

14.4        
(0.8)

4.7        
(0.5)



 Table 5.2: Estimates of !ij  in Full Model1 

 

 
Poisson regression 
Number of obs: 308880 
Log likelihood:  -89320.9 
Wald chi2(297): 233211.7 
 
297 total parameters estimated.  100 displayed, remaining 197 fixed effects 
summarized in Figure 5.1 and also available on request. 

 
 

 

 

 

1 Standard errors are shown in parentheses, estimates are from simultaneous Poisson estimation of 
the multi-car and single-car accident equations, with the inclusion of class-level safety effects. 

Compact Midsize Fullsize
Small 
Luxury

Large 
Luxury

Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact 5.8        
(0.7)

8.1        
(1.0)

7.7        
(1.0)

5.1        
(0.7)

8.3        
(1.1)

13.3        
(1.6)

13.3        
(1.6)

10.9        
(1.4)

16.3        
(1.9)

16.7        
(2.1)

Midsize 4.8        
(0.6)

7.4        
(0.9)

6.5        
(0.9)

4.4        
(0.7)

7.2        
(1.0)

10.6        
(1.3)

11.8        
(1.4)

10.1        
(1.3)

14.9        
(1.8)

14.1        
(1.9)

Fullsize 3.8        
(0.5)

5.9        
(0.8)

6.3        
(1.0)

3.5        
(0.7)

6.7        
(1.2)

8.7        
(1.2)

8.7        
(1.2)

8.4        
(1.2)

11.7        
(1.5)

12.2        
(1.9)

Small Luxury 3.4        
(0.5)

3.1        
(0.5)

4.4        
(0.8)

3.8        
(0.8)

4.5        
(1.0)

7.1        
(1.1)

5.5        
(0.9)

3.5        
(0.7)

6.8        
(1.0)

6.4        
(1.3)

Large Luxury 3.2        
(0.5)

4.9        
(0.7)

5.2        
(1.0)

2.5        
(0.7)

5.6        
(1.3)

8.7        
(1.3)

10.7        
(1.5)

7.5        
(1.3)

10.4        
(1.4)

11.7        
(2.2)

Small SUV 2.9        
(0.4)

4.0        
(0.5)

3.4        
(0.6)

3.1        
(0.6)

5.8        
(1.0)

6.1        
(0.8)

6.8        
(0.9)

4.5        
(0.7)

8.9        
(1.1)

7.9        
(1.3)

Large SUV 2.1        
(0.3)

2.4        
(0.3)

1.7        
(0.3)

1.7        
(0.4)

2.7        
(0.5)

3.1        
(0.5)

4.2        
(0.6)

3.0        
(0.5)

4.9        
(0.6)

5.3        
(0.9)

Small Pickup 4.4        
(0.6)

5.2        
(0.7)

4.8        
(0.8)

2.4        
(0.6)

3.7        
(0.8)

6.8        
(1.0)

7.8        
(1.1)

7.4        
(1.2)

13.0        
(1.6)

11.6        
(1.9)

Large Pickup 2.1        
(0.3)

2.6        
(0.3)

2.2        
(0.4)

1.8        
(0.4)

2.8        
(0.5)

3.2        
(0.5)

4.4        
(0.6)

3.3        
(0.5)

7.4        
(0.9)

4.3        
(0.7)

Minivan 4.9        
(0.7)

6.0        
(0.9)

7.6        
(1.3)

4.4        
(1.0)

5.5        
(1.3)

11.8        
(1.7)

12.7        
(1.8)

11.6        
(1.9)

17.3        
(2.3)

18.2        
(3.1)



Figure 5.1: Estimates of ! i  in Full Model1 
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1 The bars indicate 95% confidence intervals.  Estimates are from simultaneous 
Poisson estimation of the multi-car and single-car accident equations.  The 
average driving safety behavior is normalized to 1. 



 
 

Table 6.1:  Matrix of Demand Elasticities by Class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.2:  Average Fuel Economies and Shadow Taxes by Class 
 
 

Shadow Tax of Policy Increment

Class
Fuel Economy 

(MPG)
Increase 

current CAFE
Unified 

standard
Footprint 

CAFE

Compact 31.0 0.28 0.22 0.06
Midsize 27.7 -0.09 0.12 0.05
Fullsize 25.5 -0.31 0.06 0.06
Small Luxury 25.9 -0.22 0.08 -0.02
Large Luxury 23.8 -0.56 -0.01 0.00

Small SUV 24.9 0.37 0.01 -0.11
Large SUV 19.5 -0.44 -0.28 -0.14
Small Pickup 22.6 0.16 -0.07 0.02
Large Pickup 18.6 -0.41 -0.27 0.01
Minivan 23.5 0.29 -0.02 0.06

Compact Midsize Fullsize
Small 
Luxury

Large 
Luxury

Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact -3.51 0.97 0.42 0.32 0.21 0.67 0.49 0.41 0.51 0.52
Midsize 0.80 -3.01 0.31 0.16 0.15 0.41 0.31 0.32 0.32 0.29
Fullsize 0.79 0.73 -4.94 0.14 0.21 0.31 0.44 0.30 0.45 0.30
Small Luxury 0.59 0.35 0.14 -5.15 0.15 0.46 0.16 0.13 0.24 0.16
Large Luxury 0.42 0.36 0.22 0.16 -4.18 0.24 0.22 0.10 0.21 0.12
Small SUV 0.76 0.54 0.19 0.28 0.14 -2.39 0.25 0.19 0.30 0.29
Large SUV 0.62 0.48 0.31 0.11 0.15 0.27 -2.95 0.19 0.37 0.21
Small Pickup 0.68 0.66 0.26 0.12 0.08 0.29 0.24 -3.96 0.23 0.18
Large Pickup 0.92 0.68 0.44 0.24 0.19 0.48 0.51 0.25 -2.81 0.43
Minivan 0.69 0.47 0.23 0.12 0.08 0.34 0.23 0.15 0.32 -3.31



Table 6.3: Effect of an Increase in Current CAFE Rules on Total Traffic Deaths 
 

No driver effects1 Full model2

One car Two car Total One car Two car Total

Compact 226.3 142.4 368.6 236.1 177.6 413.6
Midsize -60.1 -75.4 -135.5 -51.3 -50.6 -101.9
Fullsize -55.0 -57.0 -112.0 -55.1 -51.0 -106.1
Small Luxury -30.8 -16.1 -46.8 -30.9 -13.4 -44.2
Large Luxury -34.6 -25.6 -60.2 -34.6 -22.3 -57.0

Small SUV 78.4 16.4 94.8 142.4 45.3 187.7
Large SUV -85.9 -27.1 -113.0 -85.8 -23.2 -109.0
Small Pickup 47.8 11.9 59.7 50.9 18.4 69.3
Large Pickup -168.7 -54.6 -223.2 -171.4 -50.8 -222.3
Minivan 22.4 10.2 32.6 69.1 50.2 119.3

Total -60.0 -75.0 -135.0 69.3 80.2 149.5
Standard error (6.1) (9.4)

 
 

1 This case reflects the restricted model, where driving safety behavior is assumed 
constant across all classes.  Only the quantity of cars of each class changes. 
2 Here the full model is used to predict changes in safety, including the parameters that 
account for differences in driving safety behavior across classes. 
 
 
 
 
Table 6.4:  Effect of a Unified Fuel Economy Standard on Total Traffic Deaths 

 

No driver effects Full model

One car Two car Total One car Two car Total

Compact 167.8 105.7 273.5 153.3 97.7 251.0
Midsize 39.4 7.5 47.0 44.7 13.9 58.6
Fullsize 6.7 -1.5 5.2 5.6 -1.6 4.0
Small Luxury 5.7 0.8 6.5 4.9 0.7 5.6
Large Luxury -2.6 -5.6 -8.1 -2.1 -4.8 -6.9

Small SUV -12.5 -11.8 -24.3 -0.3 -6.7 -7.0
Large SUV -62.1 -19.6 -81.7 -62.1 -19.1 -81.2
Small Pickup -32.6 -20.4 -53.0 -32.3 -19.7 -52.0
Large Pickup -122.4 -39.2 -161.6 -122.9 -38.9 -161.8
Minivan -5.6 -10.0 -15.6 2.0 -3.8 -1.8

Total -18.0 5.9 -12.1 -9.3 17.8 8.5
Standard error (3.8) (4.3)

 



Table 6.5:  Effect of a Footprint Fuel Economy Standard on Total Traffic Deaths 
 

No driver effects Full model

One car Two car Total One car Two car Total

Compact 45.6 31.4 77.0 38.0 24.4 62.4
Midsize 15.9 8.5 24.4 15.0 6.9 21.9
Fullsize 8.9 6.7 15.6 7.3 5.0 12.3
Small Luxury -3.4 -1.9 -5.3 -3.9 -2.3 -6.2
Large Luxury -0.5 -1.2 -1.7 -0.8 -1.5 -2.2

Small SUV -31.6 -12.5 -44.1 -31.3 -12.7 -44.0
Large SUV -32.6 -8.7 -41.3 -32.6 -8.9 -41.5
Small Pickup 1.8 0.3 2.1 0.9 -0.4 0.5
Large Pickup -4.1 -2.0 -6.2 -10.0 -4.0 -14.0
Minivan 4.1 2.2 6.4 10.3 6.8 17.1

Total 4.2 22.7 26.9 -7.1 13.4 6.3
Standard error (1.3) (1.5)

 
 
 
 
 

Table 7.1:  Alternative Identification Strategy and Alternative Simulation Elasticities 
 

No driver 
effects

Full model 
(central)

Alternative 
identification

Alternative 
elasticities

Current CAFE 
within fleet

-135.02             
(6.15)

149.47             
(9.36)

222.00             
(53.97)

156.15             
(10.38)

Trading between 
cars and trucks

-12.14             
(3.81)

8.50             
(4.35)

7.31             
(21.11)

32.97             
(2.85)

Footprint fleet 
effects

26.88             
(1.28)

6.27             
(1.52)

-47.55             
(5.72)

8.18             
(1.27)

 
 



Table 7.2:  Alternative Demand Elasticities by Class1 

 

Compact Midsize Fullsize
Small 

Luxury
Large 

Luxury
Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact -3.12 0.94 0.06 0.10 0.00 0.10 0.01 0.12 0.03 0.03
Midsize 1.64 -3.92 1.10 0.15 0.06 0.39 0.07 0.06 0.02 0.19
Fullsize 0.65 4.28 -5.00 0.15 0.75 0.20 0.09 0.03 0.07 0.19
Small Luxury 1.32 0.94 0.32 -2.50 0.03 0.49 0.12 0.31 0.25 0.06
Large Luxury 0.11 0.90 1.06 0.05 -1.93 0.49 0.23 0.00 0.03 0.25
Small SUV 0.52 0.62 0.10 0.15 0.03 -4.05 0.96 0.31 0.44 0.38
Large SUV 0.24 0.45 0.14 0.09 0.05 3.73 -2.29 0.16 0.40 0.93
Small Pickup 0.39 0.22 0.00 0.05 0.00 0.49 0.08 -3.32 0.88 0.03
Large Pickup 0.15 0.16 0.02 0.05 0.00 0.30 0.16 0.81 -1.72 0.06
Minivan 0.19 0.38 0.06 0.00 0.03 0.30 0.46 0.03 0.06 -2.54

 
 

1Elasticities from Kleit (2004) aggregated to match the ten class definitions in my model.  In 
order to isolate the effects of fleet composition I also proportionally adjust the cross-price 
elasticities such that fleet size is exactly maintained. 

 
 
 
 
 
 
 

Table 7.3:  Additional Robustness Checks 
 

No driver 
effects

Full model 
(central)

1998 and 
newer

Drivers 
under 55

Clear 
weather

Current CAFE 
within fleet

-135.02 149.47 142.15 132.82 148.52

Trading between 
cars and trucks

-12.14 8.50 6.27 -2.47 8.26

Footprint fleet 
effects

26.88 6.27 0.56 3.36 6.99

Fraction of accidents 1.00 0.52 0.77 0.90
 


