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Abstract

This paper empirically studies the consequences of unobserved heterogeneity on auction

design. Unobserved heterogeneity in the objects for sale induces correlation among bidders’

valuations, which violates the standard modeling assumption of independence. We show that

standard data from ascending auctions partially identifies a model of correlated private values,

in a way that is useful for mechanism design purposes. In particular, if larger auctions are

ones where bidders on average have higher valuations (a condition which follows naturally

from models of endogenous entry), we get an upper bound on the seller’s expected profit

at a given reserve price. If bidders’ valuations are independent of auction size, a stronger

assumption, then we also get a lower bound. We then show that the stronger identifying

assumption of independence implies nonparametrically testable restrictions, and we develop

a precise asymptotic test of these restrictions. We apply both our identification and testing

results to data from the United States Forest Service. We fail to reject independence between

valuations and auction size in the data. Furthermore, we find that unobserved heterogeneity

has significant implications for USFS reserve price policy, suggesting substantially lower reserve

prices than standard analysis and rationalizing changes made to the selling mechanism in the

1990s.
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1 Introduction

Applying the insights from auction theory to real world settings requires knowledge of the primitives

that define the game being played by bidders. If bidders at an auction have private values, the key

primitive of interest is the latent distribution of these private values in the underlying population.

The distribution of bidder valuations represents the demand curve facing the seller; once it is known,

a seller can determine the optimal auction design parameters (such as the optimal reserve price),

forecast expected revenue, and so on. Thus, recovering this distribution is a crucial step in the

structural analysis of auction data.

Beginning with Paarsch (1997) and Laffont, Ossard, and Vuong (1995), a large literature has

developed on the identification and estimation of the distribution of private values using auction data.

(For a comprehensive synthesis, see Paarsch and Hong (2006).) In both first-price and ascending

auctions, the key challenge is that the mapping from valuations to bids is non-trivial. In first-

price auctions, this is because equilibrium bids are a complex, non-linear function of valuations.

Guerre, Perrigne, and Vuong (2000), however, show that this function can nonetheless be inverted

to nonparametrically identify the distribution of valuations. In ascending auctions, bids are more

transparently related to valuations, as bidders have a dominant strategy: to keep bidding until the

price reaches their willingness-to-pay, then stop. But in an ascending auction, a losing bidder may

not bid all the way up to his valuation if multiple other bidders are still active; and since the auction

ends when all but one bidder is unwilling to go higher, we never observe how much the winner

would have been willing to pay. Nonetheless, Athey and Haile (2002) and Haile and Tamer (2003)

show that under certain assumptions, the mapping from valuations to bids can still be inverted to

nonparametrically identify or bound the underlying distribution of valuations.

A critical assumption in the above literature is that bidders’ valuations are statistically

independent. Implicitly, independence requires that differences in bidders’ willingness-to-pay reflect

purely idiosyncratic differences in costs or preferences. The problem with this assumption is that

real-world auctions are often heterogeneous – rarely is the exact same good auctioned over and over.

In order for independence of valuations to be consistent with the presence of heterogenous goods for

sale, one must assume that this heterogeneity can be “conditioned out”; that is, that conditional on

a vector of observed covariates X characterizing the object for sale, bidder values are i.i.d. draws

from a conditional population distribution FV ( · |X), which can then be identified and estimated by

the above approaches.

Independence is a strong assumption, however, both empirically and theoretically. Empirically,

it rules out any unobserved heterogeneity shifting the demand curve across auctions. That is, if

there exist any unobserved factors θ that affect demand in addition to the observables X, then
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these unobservables would cause bidders’ valuations to be correlated when we condition only on

X. And theoretically, correlated valuations have very different implications for mechanism design

than independent valuations. For example, a strategic reserve price – a reserve price higher than

the seller’s own valuation for the unsold good – is always beneficial to a seller when valuations are

independent, but need not be when valuations are correlated.

The extent of correlation among valuations, and its exact implications for mechanism design,

are fundamentally empirical questions. In this paper, we address this problem by showing

identification of a model of correlated private values. Our model is a generalization of the traditional

IPV (independent private values) framework; in particular, we allow a vector of unobservable

characteristics θ ∈ Θ to affect the distribution of demand. We assume bidders have symmetric,

conditionally independent private values – private values which are i.i.d. draws from a distribution

which depends on both observable and unobservable covariates (X, θ). Since the unobservables

cannot be conditioned out, from the seller’s point of view, they induce correlation among bidders’

valuations.

We focus attention on one of the dominant auction formats used in practice, the English auction,

and show that enough features of demand are identified to inform the reserve price policy question

facing the seller. We apply our identification strategy to the sales of logging rights conducted by the

United States Forest Service (USFS), and find that correlation has significant implications for the

seller’s problem. In particular, we find that the reserve policy that would appear optimal under IPV

is too aggressive – when correlation is accounted for, these reserve prices yield much lower profits

than analysis under IPV would suggest, and may be worse than not using a strategic reserve at

all. We also find that the policy change that actually took place in the USFS during the 1990s –

the switch from the “residual method” of timber appraisal to the “transaction evidence appraisal”

method – was sufficiently conservative to yield profits even in light of the correlation we identify.

While our paper focuses on English auctions, two recent papers by Krasnokutskaya (2009) and

Hu, McAdams, and Shum (2009) (building on work by Li, Perrigne, and Vuong (2000)) have

addressed the issue of unobserved heterogeneity in first-price auctions.1 By restricting unobserved

heterogeneity to a scalar unobservable affecting private values in a parametric or monotonic way,

and by imposing regularity conditions on the distribution of the unobservable scalar, these authors

have shown that it is possible to use the statistics of measurement error to recover the distribution

of the unobservable, and hence the joint distribution of private values among bidders in a first-price

auction. The key to this identification strategy is that in a first-price auction, there exist multiple

1Guerre, Perrigne, and Vuong (2009) and Haile, Hong, and Shum (2003) also make some attempt to control for

unobserved heterogeneity in first-price auctions, under stronger assumptions.
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informative bids that are linked to the underlying valuations of bidders through the equilibrium of

the game. In ascending auctions, on the other hand, as we discuss further below, only one bidder’s

valuation in each auction can be tightly pinned down by equilibrium bidding. This makes it difficult

to detect and measure correlation among values using the joint distribution of bids;2 the issue of

unobserved heterogeneity in ascending auctions thus remains very much an open question.

Unlike the approach taken for first-price auctions, we place no restrictions on the dimensionality

or distribution of the unobserved auction characteristics. Not surprisingly, it will be impossible to

identify the full joint distribution of private values without restricting the nature of the unobservable.

However, we show that we can use variation in transaction prices across auctions with different

numbers of bidders to partially identify our model of correlated demand; and the features of demand

that we do identify are sufficient to inform the mechanism design problem. Whereas the information

revealed by auctions of different sizes is over-identifying under the assumption of independence, it

becomes just identifying in an environment with correlation.

In order to use auctions of different sizes as part of a single identification strategy, we require

a theory of how the valuations of bidders might change across auctions of different sizes. We

can proceed under either of two identifying assumptions. The weaker assumption is that bidder

valuations are stochastically higher in auctions with more bidders – roughly, the number of bidders

is positively correlated with each bidder’s valuation, or said another way, more people participate

in auctions for more valuable goods. Under this assumption, variation in transaction prices across

auctions of different sizes leads to an upper bound on the seller’s expected profit under different

reserve prices in auctions of a fixed size. The stronger assumption we can make is that the number

of bidders in each auction is independent of their valuations. Under independence, we get both

upper and lower bounds on expected profit, leading to tighter bounds on the profit-maximizing

reserve price.

The assumption that valuations are stochastically increasing in auction size is a natural one, and

(as we discuss later) is consistent under fairly general conditions with standard models of endogenous

participation. Independence between valuations and auction size is a stronger assumption, although

as we discuss below, it has been exploited in several recent papers on first-price auctions; one of

the contributions of our paper is to show that this assumption is nonparametrically testable against

the alternative that valuations are stochastically increasing with auction size. In particular, we

show that independence implies a testable restriction on bid data, which we show would typically

2In contrast with sealed-bid auctions, correlation among bids across ascending auctions need not indicate correlation

among values; even in an IPV setting, the winning bidder in each auction only has to bid high if another bidder bids

high as well.
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be violated if valuations were instead stochastically increasing. We introduce a test statistic that is

applicable to this inequality restriction, and show that it has a known asymptotic distribution that

forms the basis of an asymptotically valid test. The test generalizes tests of stochastic dominance

between distributions, which were recently explored by Lee, Linton, and Whang (2009), in a way

that allows the distributions to be transformed nonlinearly as required by auction theory, and can

be modified to apply to the equality and inequality tests suggested by Athey and Haile (2002) and

Haile and Tamer (2003). When we apply this test to the USFS timber auction data, we fail to reject

the hypothesis of independence between valuations and auction size, which is consistent with the

fact that auction size is also strikingly independent of observable auction covariates in this data.

The rest of the paper proceeds as follows. In section 2, we introduce our model of conditionally

independent private values, and show how identification is obtained using our two possible identifying

assumptions. In section 3, we show that independence between valuations and auction size implies

a nonparametrically testable restriction in the CIPV framework. The restriction generalizes the

equality test proposed by Athey and Haile (2002) for IPV ascending auctions, to an inequality test

applicable to auctions with unobserved heterogeneity. We show that this test has power against the

most likely violation, positive correlation between the number of bidders and auction primitives

favoring higher valuations. We then introduce nonparametric test statistics for the inequality

restrictions implied by the model, and derive their asymptotic properties. In section 4, we apply

this test to data from U.S. Forest Service timber auctions, and show that the data fails to reject

independence between valuations and auction size. We then apply our identification strategy to the

same data, and demonstrate the counterfactual expected revenue and optimal reserve implications,

contrasting them with the implications of “standard” analysis under the assumption of independent

values; our analysis supports the relatively cautious approach to reserve price policy that the Forest

Service historically has taken. Section 5 concludes. Appendix A demonstrates the implications of

two standard models of auctions with endogenous entry for our identification strategy and test.

(Under fairly general conditions, both models lead to valuations which are stochastically increasing

in auction size but not independent of auction size, and lead to violations of our test.) Proofs and

examples omitted from the text are in Appendix B; step-by-step proofs of the asymptotic properties

of the test statistics are in a separate Technical Supplement.
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2 Identification

2.1 Model of Correlated Demand

We use standard notation for private value auctions. N denotes the number of bidders in an auction,

with n and n′ denoting generic values it can take.3 Each bidder i has a valuation Vi which is his

or her private information, and gets payoff Vi − P from winning the auction (where P is the price

paid) and 0 from losing. If there are n bidders at the auction, let the joint distribution of their

valuations V = (V1, . . . , Vn) be given by FnV(v1, . . . , vn | X), where X is a vector of observables that

characterize demand (such as characteristics of the good being auctioned or local market conditions).

Under the standard assumption of independent private values, bidders’ valuations are modeled

as i.i.d. random variables, and hence

FnV(v1, . . . , vn | X) =

n∏
i=1

F (vi | X)

We generalize the independent private value framework and allow FnV to be correlated even after

controlling for X. A natural source of such correlation is unobserved heterogeneity (from the

perspective of the seller); thus, in addition to the observable covariates X, we assume there is a

vector of unobserved characteristics θ ∈ Θ that affect demand at the auction. Bidder valuations for

the object for sale in an auction with the complete vector of characteristics (X, θ) are i.i.d. draws

from a probability distribution F ( · |X, θ). Since θ ∈ Θ is a demand shifter that is unobserved by

the seller, the seller effectively faces the correlated demand environment given by

FnV(v1, . . . , vn | X) =

∫
θ∈Θ

n∏
i=1

F (vi | X, θ) dG(θ | X, n) (1)

where G( · |X, n) is the distribution of θ (conditional on X and n). Thus, heterogeneity in the

unobservable θ is the mechanism that induces correlation in bidders’ valuations, while any variation

not caused by θ is idiosyncratic and independent across bidders. Since bidders’ valuations are

assumed to be symmetrically distributed and independent conditional on (X, θ), we will refer to this

model as CIPV (conditionally independent private values), in contrast with the standard model of

IPV.

For the remainder of this section and the next, we will suppress the dependence on X for ease

of exposition, but our analysis is still implicitly being done conditional on X. For an auction with

n bidders, knowledge of the joint distribution FnV(v1, . . . , vn) allows the seller to anticipate the

3In principle, this should refer to the number of potential bidders, that is, the number of bidders who learned their

valuations and considered participating. This is often assumed to be observed in the data; in our application, as we

discuss later, there are specific institutional features that make this a reasonable assumption.
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revenue effects of changing auction design parameters. In the context of an ascending auction, the

main auction design parameter of interest is the reserve price, a central question being whether there

is any value in setting a strategic reserve price (i.e., a reserve price above the seller’s own value),

and if so what is the optimal amount of “markup” over opportunity cost that should be used to set

the reserve.

A key result in auction theory is the so-called “exclusion principle” (see Krishna (2002)): under

independent private values, it is always in the seller’s interest to potentially exclude bidders by

setting a reserve price strictly above his own valuation. The optimal markup for the seller is given

by

arg max
r>0

(r − v0)(1− FV (r))

where FV is the marginal distribution of a single bidder’s valuations and v0 the seller’s valuation for

the unsold good. If bidder values are correlated, however, neither result holds. In particular, the

gains from using a strategic reserve price, and the degree of the optimal markup, are likely much

smaller in the correlated demand environment as compared to IPV.4 This is because the optimal

reserve price trades off the decreased likelihood of a sale (due to the possibility that all bidders have

valuations below the reserve) against the increased revenue in the event the reserve binds (just one

bidder has a valuation above the reserve). Correlation among bidder valuations makes the former

more likely – when bidder values are correlated, they are more likely to all be low simultaneously –

while decreasing the value of the latter – when bidder values are correlated, the top two are likely

to be closer together, so the increase in revenue is smaller than under independence. (This intuition

is explained further in the next section.) The actual degree of correlation among values will dictate

the extent to which IPV over-estimates the gains from a reserve price, which is the main empirical

problem we now confront.

2.2 The Identification Problem

Let Vk:n denote the kth lowest bidder valuation in an auction with n bidders, and Fk:n its probability

distribution. Haile and Tamer (2003) show that under the assumption that bidders have private

values and play undominated strategies, the top two bids in an ascending auction lead to sharp

bounds on Vn−1:n. This is because Vn−1:n must be no less than the second-highest bid, or the

second-highest bidder would have risked overpaying for the object; and no more than the winning

bid plus one bid increment – the lowest bid still available when the auction ended – or the second-

4Quint (2008) shows this for valuations which are symmetric and affiliated : the expected gain from any reserve

price r > v0, and the profit-maximizing reserve, are bounded above by what they would be in the IPV model consistent

with the same observables.
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highest bidder would have preferred to raise his bid to that level rather than let the auction end.

Thus, observations of the top two bids lead to pointwise bounds on the distribution Fn−1:n, even in

an “incomplete” model where exact equilibrium strategies (which bidder bids at each stage) are not

specified.5 However, bid data and the restrictions implied by equilibrium bidding behavior provide

very little direct information about the distribution of the highest valuation Vn:n, or about the joint

distribution among values.6. We will therefore assume that what is directly identifiable in the data

are only the distributions Fn−1:n for various n.

As a simplification, rather than using the bounds on Fn−1:n established in Haile and Tamer

(2003), we will proceed under the stronger assumption that Vn−1:n is exactly equal to transaction

price, so that Fn−1:n is point-identified from the data. This would be true to within the minimum

bid increment under the assumptions of Haile and Tamer (2003) if there are no “jump bids” at the

end of an auction; in our data, the winning bid is on average just 2% higher than the second-highest,

so this is a reasonable approximation. Our results extend without difficulty when only pointwise

upper and lower bounds on Fn−1:n are known rather than its exact value.

In an IPV setting, the marginal distribution Fn−1:n for any one n is sufficient to identify the

parent distribution FV . In a correlated demand environment, however, the marginal distribution

Fn−1:n does not uniquely pin down the joint distribution FnV, and is insufficient for mechanism

design purposes. What we now show, however, is that the seller’s profit problem in an auction of

size n does not depend on the entire joint distribution FnV, but only on the marginal distributions

of the top two valuations, Fn−1:n and Fn:n.7 The fact that we do not need to identify the joint

distribution of these two order statistics, only their marginals, to describe the seller’s revenue curve

is a key simplification that will enable us to empirically study the model presented above.

Lemma 1 In an ascending auction with n bidders and reserve price r, the seller’s expected profit

and each bidder’s ex-ante expected surplus depend only on Fn−1:n and Fn:n.

Proof. Again, we assume that transaction price equals Vn−1:n, provided it exceeds the reserve

price; if not, then the winner pays r. We show in Appendix B.1 that expected profit πn(r), and each

5The data can also be used to provide upper and lower bounds on Fk:n for k < n − 1, but these bounds are

generally much wider and less informative.
6Unlike in first-price auctions with Bayes-Nash bidding behavior, correlation among values in an ascending auctions

cannot be inferred from correlation among bids.
7In a different but analogous setting, Athey and Haile (2007) point out that identification of the joint distribution

of (Vn−1:n, Vn:n) is sufficient for “evaluation of rent extraction by the seller, the effects of introducing a reserve price,

and the outcomes under a number of alternative selling mechanisms.”
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bidder’s ex-ante expected surplus un(r), can be written as

πn(r) = (Fn−1:n(r)− Fn:n(r)) (r − v0) +

∫ +∞

r

(v − v0)dFn−1:n(v) (2)

un(r) =
1

n
(E {max{Vn:n, r}} − E {max{Vn−1:n, r}}) (3)

where v0 is again the seller’s valuation for the unsold good.8 �

The expression (2) helps to clarify why the gains from using a reserve price are smaller in a

correlated demand environment. A reserve price is only beneficial when it binds, i.e., when it is

greater than Vn−1:n but less than Vn:n. The probability of this event is captured by the first term

(Fn−1:n(r)− Fn:n(r)) in (2). As Lemma 2 below will confirm, the distance between the top two

bidders at an auction, as measured by this difference, is smaller when values are correlated as

compared to when values are independent. For the purposes of identifying the revenue implications

of alternative reserve price policies, (Fn−1:n(r)− Fn:n(r)) is thus a sufficient measure of correlation

among values; so from the seller’s point of view, all payoff-relevant information in FnV, is contained in

the marginal distributions Fn−1:n and Fn:n. Once these distributions are known, Lemma 1 gives us

πn(r), and we can solve maxr πn(r) to find the optimal reserve price for an auction with n bidders.9

As we have already discussed, we assume Fn−1:n is directly revealed by the auction data; so

what remains to be identified is Fn:n. Of course, Vn:n is the key order statistic that is censored in

an ascending auction - we never observe what the winning bidder would have been willing to pay

since the auction ends before his reservation value is reached. What we will show, however, is that

we can use the distribution of transaction prices across different auction sizes to identify bounds on

Fn:n, which will lead via (2) to bounds on πn. To better understand our identification strategy, we

will first show that if we only have data from auctions of a fixed size n, the bounds we can identify

on Fn:n are too wide to be empirically useful. This then motivates our approach of using auctions

of different sizes to identify correlation in an empirically useful way.

8 Under two further assumptions – that bidders observe θ in addition to their own valuations, and that they

play Bayesian Nash equilibrium strategies – (2) and (3) holds exactly for any “standard” auction format, that is,

any mechanism satisfying the usual conditions for revenue equivalence. If bidders know θ, then conditioning on any

realization of θ, they are in a symmetric IPV setting; so for a given θ, any mechanism under which the object is always

allocated to the bidder with the highest valuation (provided it is greater than r), and a bidder with value less than

r gets expected payoff 0, would be revenue-equivalent to the second-price sealed-bid auction, which satisfies (2) and

(3) exactly. Averaging over θ, then, would complete the proof.
9Under independent private values, the optimal r does not depend on n, but with correlated values, it does. Levin

and Smith (1996) give conditions (Prop. 5) under which it is strictly decreasing. A seller who must select a reserve

price without knowing n would solve maxr
∑
n p(n)πn(r), where p(n) is the probability of n bidders participating; as

we discuss later, in our particular application, it is reasonable to assume the seller knows n when selecting a reserve

price.
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To show the bounds on Fn:n that can be obtained from auctions of a fixed size n, define a function

ψn−1:n : [0, 1]→ [0, 1] by

ψn−1:n(s) = nsn−1 − (n− 1)sn (4)

The function ψn−1:n has the property that if F ( · ) is any distribution function, the second-highest

of n independent draws from F has distribution ψn−1:n(F ( · )). It is straightforward to show that

ψn−1:n is strictly increasing, and therefore invertible.

Lemma 2 Under CIPV, Fn:n(v) ≥
(
ψ−1
n−1:n(Fn−1:n(v))

)n
and Fn:n(v) ≤ Fn−1:n(v). If no

information is available other than Fn−1:n, both these bounds are sharp.10

Proof. Since Vn:n ≥ Vn−1:n, Fn:n(v) ≤ Fn−1:n(v). Next, let ψn:n(s) = sn. The key step of the proof

is to note that ψn:n ◦ ψ−1
n−1:n is convex. Differentiating,

(
ψn:n ◦ ψ−1

n−1:n

)′
(s) =

ψ′n:n(t)
ψ′n−1:n(t) = ntn−1

n(n−1)tn−2(1−t) = t
(n−1)(1−t)

where t = ψ−1
n−1:n(s). t

(n−1)(1−t) is increasing in t, so
(
ψn:n ◦ ψ−1

n−1:n

)′
is increasing, establishing that

ψn:n ◦ψ−1
n−1:n is convex. For a given θ, the CDF of the greatest of n independent draws from F (v|θ)

is (F (v|θ))n; taking the expectation over θ implies Fn:n(v) = Eθ (F (v|θ))n, and applying Jensen’s

inequality gives

Fn:n(v) = Eθ {ψn:n (F (v|θ))}

= Eθ
{(
ψn:n ◦ ψ−1

n−1:n

)
(ψn−1:n (F (v|θ)))

}
≥

(
ψn:n ◦ ψ−1

n−1:n

)
(Eθ {ψn−1:n (F (v|θ))})

= ψn:n ◦ ψ−1
n−1:n (Fn−1:n(v))

As for sharpness, if values are i.i.d. ∼ ψ−1
n−1:n(Fn−1:n( · )), the lower bound is achieved; and if bidder

values are perfectly correlated (e.g., if θ ∼ Fn−1:n and Vi = θ), the upper bound is achieved. �

In essence, this result says we learn nothing about how correlated values are if we only observe

the distribution of transaction prices in auctions of a fixed size n – the lower bound is independence,

and the upper bound perfect correlation. But these have very different implications for the optimal

reserve price. In order to tighten the bounds on Fn:n, we need more information.

2.3 Identification Strategy

The additional information we will use is variation in transaction prices across auctions of different

sizes. Intuitively, the speed at which transaction prices increase with N contains information about

10Quint (2008) shows these same bounds hold for symmetric, affiliated private values, whether or not they are

conditionally independent.
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how correlated bidder values are. (The more highly correlated they are, the less impact an additional

bidder has on the distribution of the highest ones.) However, to interpret this information, we will

need to consider how individual bidders’ valuations might differ across auctions of different sizes.

To see how identification will be achieved, consider the following thought experiment. Start with

an n+ 1-bidder auction, and randomly remove one of the bidders. With probability n
n+1 , the bidder

with the highest valuation was not removed, and so the highest of the n remaining is the highest

of the original n + 1. With probability 1
n+1 , the bidder with the highest valuation was removed,

in which case the highest of the remaining n chosen is the second-highest of the original n + 1. If

we let Fn+1
n:n denote the marginal distribution of the highest of n bidders randomly chosen from an

n+ 1-bidder auction, then11

Fn+1
n:n (v) =

1

n+ 1
Fn:n+1(v) +

n

n+ 1
Fn+1:n+1(v) (5)

However, the distribution of Vn:n, which we want to identify, is not Fn+1
n:n but rather Fn:n. In

order to make useful inferences from (5), we need to be able to make comparisons between bidders

in auctions of different sizes. Next, we introduce two possible assumptions about how to make such

comparisons, either of which will lead to at least partial identification of our model.

Definition 1 Valuations are stochastically increasing in N if for any n, Fn+1
n:n %FOSD Fn:n.

That is, valuations are stochastically increasing in N if auctions with more bidders tend to

have bidders with weakly higher valuations – for example, three bidders chosen at random from a

four-bidder auction have a stochastically greater highest valuation than the three bidders in a three-

bidder auction. This is arguably a natural assumption, as we would intuitively expect auctions for

more valuable objects to attract more bidders. For example, we show in Appendix A that under

fairly general conditions, the well-known endogenous entry models of Levin and Smith (1994) and

Samuelson (1985) both yield valuations which are stochastically increasing in N .

When valuations are stochastically increasing, we get partial identification in the form of one-

sided bounds.

Lemma 3 If valuations are stochastically increasing in N , then

Fn:n(v) ≥
n̄∑

m=n+1

(
1

n− 1

m−1∏
i=n

i− 1

i+ 1

)
Fm−1:m(v) +

n

n̄
Fn̄:n̄(v) (6)

for any n̄ > n and any v.

11 This relationship among order statistics can be viewed as a generalization of Eq. 9 in Athey and Haile (2002).
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Proof. A full proof is given in Appendix B.2. By assumption, Fn+1
n:n %FOSD Fn:n, which implies

Fn:n(v) ≥ Fn+1
n:n (v) = 1

n+1Fn:n+1(v) + n
n+1Fn+1:n+1(v); iterating gives (6).12 �

In the limit as n̄ goes to infinity, the coefficient on the trailing term Fn̄:n̄ vanishes and we have

a lower bound on Fn:n, which leads in turn to an upper bound on the seller’s profit πn. Under a

stronger identifying assumption, we can get point identification in the limit.

Definition 2 Valuations are independent of N if for any n, Fn+1
n:n = Fn:n.

Under the CIPV model defined in (1), this can be interpreted simply as the distribution of θ,

G( · |N), being invariant across N , that is, θ being independent of N . Independence leads to the

following result:

Lemma 4 If valuations are independent of N , then

Fn:n(v) =

n̄∑
m=n+1

(
1

n− 1

m−1∏
i=n

i− 1

i+ 1

)
Fm−1:m(v) +

n

n̄
Fn̄:n̄(v) (7)

for any n̄ > n and any v.

Proof. Again, see Appendix B.2 for a full proof. If Fn:n = Fn+1
n:n , (5) becomes Fn:n(v) =

1
n+1Fn:n+1(v) + n

n+1Fn+1:n+1(v); iterating gives (7). �

As n̄ grows, the coefficient on the trailing term in (7) vanishes; so in the limit where every

{Fm−1:m}∞m=n+1 is learned, Fn:n is point-identified.13

In this paper, we remain agnostic as to the actual process determining bidder participation; we

simply show how different assumptions about the relationship between valuations and auction size

lead to identification, and test whether the stronger of these assumptions is supported by the data.

(Even if N is the endogenous outcome of an entry game such as the one described by Levin and Smith

(1994), it could still be independent of valuations if potential bidders had the same information as

the seller prior to entry – that is, if bidders only observed θ after deciding whether to participate in

12If valuations were stochastically decreasing in N , the right-hand side of (6) would be an upper bound on Fn:n,

and the bounds Fn:n, πn, and un defined below for Theorem 1 would hold. We do not think this case is likely or

particularly interesting.
13Note that Lemmas 1, 3, and 4 do not depend on the additional structure imposed by CIPV, and hold for arbitrary

joint distributions of private values. We maintain the assumption of CIPV throughout this paper, which yields both

bounds on the trailing term n
n̄
Fn̄:n̄ and a testable restriction implied by valuations being independent of N . Theorem

1 below would still hold if values were symmetric and affiliated but not conditionally independent; under a more

general model, a weaker lower bound on Fn̄:n̄ could be used to get analogous results.
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an auction.) We do not explicitly test whether valuations are stochastically increasing in N ; instead,

we see it as the natural alternative hypothesis to independence.

There are two remaining complications that we must address before we can translate Lemmas 3

and 4 into an identification of the seller’s profit. The first complication is that the maximal auction

size n̄ is not unbounded in actual data, but is finite. In this case, the coefficient on the trailing

term Fn̄:n̄ in equations (6) and (7) does not go to zero; so the term Fn̄:n̄, which is not observed in

the data, cannot be ignored. The second complication is that although we have proceeded under

the assumption that each distribution Fm−1:m is learned exactly, it is natural to ask what would

happen if Fm−1:m could only be pointwise bounded as in Haile and Tamer (2003). We now show

that both complications can be handled in a consistent way. Intuitively, using lower bounds for the

terms {Fm−1:m}n̄m=n and Fn̄:n̄ gives a lower bound on Fn:n under the assumption that valuations

are stochastically increasing in N . Likewise, using upper bounds for the terms {Fm−1:m}n̄m=n and

Fn̄:n̄ then allows us to add an upper bound on Fn:n under the stronger assumption that valuations

are independent of N .

To see precisely how this works, fix n and n̄ > n, and suppose that there are upper and lower

bounds
{
Fm−1:m, Fm−1:m

}n̄
m=n

, such that Fm−1:m(v) ∈
[
Fm−1:m(v), Fm−1:m(v)

]
for every v and

every m ∈ {n, n+ 1, . . . , n̄}.14 Plugging these bounds into the expressions in Lemmas 3 and 4, and

using Lemma 2 to bound the trailing terms, defines bounds on Fn:n,

Fn:n(v) ≡
∑n̄
m=n+1 α

n
mFm−1:m(v) + n

n̄F n̄−1:n̄(v)

Fn:n(v) ≡
∑n̄
m=n+1 α

n
mFm−1:m(v) + n

n̄

(
ψ−1
n̄−1:n̄

(
F n̄−1:n̄(v)

))n̄
where αnm ≡ 1

n−1

∏m−1
i=n

i−1
i+1 for m > n. We will define bounds on πn and un by plugging the bounds

on Fn−1:n and Fn:n into (2) and (3), giving

πn(r) ≡
(
Fn−1:n(r)− Fn:n(r)

)
(r − v0) +

∫∞
r

(v − v0)dFn−1:n(v)

πn(r) ≡
(
Fn−1:n(r)− Fn:n(r)

)
(r − v0) +

∫∞
r

(v − v0)dFn−1:n(v)

and

un(r) ≡ 1
n

(∫∞
0

max{r, v}dFn:n(v)−
∫∞

0
max{r, v}dFn−1:n(v)

)
un(r) ≡ 1

n

(∫∞
0

max{r, v}dFn:n(v)−
∫∞

0
max{r, v}dFn−1:n(v)

)
Finally, we will use πn and πn to bound the optimal reserve price; define

rn ≡ min {r ≥ v0 : πn(r) ≥ maxr′ πn(r′)}

rn ≡ max {r ≥ v0 : πn(r) ≥ maxr′ πn(r′)}

r̃n ≡ max {r ≥ v0 : πn(r) ≥ πn(v0)}

14 Under the model of Haile and Tamer (2003), Fn−1:n(v) = Gn−1:n(v) and Fn−1:n(v) = Gn:n(v− δ), where Gn:n

and Gn−1:n are the distributions of the highest and second-highest bids and δ the minimum bid increment.
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and let r∗n = arg maxr πn(r) be the true profit-maximizing reserve price.

Theorem 1 If Fm−1:m(v) ∈
[
Fm−1:m(v), Fm−1:m(v)

]
for every m ∈ {n, n+ 1, . . . , n̄} and every v,

then for any r ≥ v0,

1. If valuations are independent of N , then Fn:n(r) ∈
[
Fn:n(r), Fn:n(r)

]
, πn(r) ∈ [πn(r), πn(r)],

r∗n ∈ [rn, rn], and un(r) ∈ [un(r), un(r)]

2. If valuations are stochastically increasing in N , then Fn:n(r) ≥ Fn:n(r), πn(r) ≤ πn(r), r∗n ≤

r̃n, and un(r) ≤ un(r)

Proof. Fn:n and Fn:n follow immediately from Lemmas 2, 3, and 4.15 For bounds on πn, Quint

(2008) shows that (2) (the expression for πn(r)) is stochastically increasing in both Vn−1:n and Vn:n

(in the first-order stochastic dominance sense); so plugging the lower bounds Fn−1:n and Fn:n into

(2) gives the upper bound πn(r), and (when valuations are independent of N) the upper bounds

Fn−1:n and Fn:n give the lower bound πn(r). By (3), un is the expected value of a function which is

increasing in Vn:n and decreasing in Vn−1:n, so expected bidder surplus is stochastically increasing

in Vn:n and decreasing in Vn−1:n; plugging Fn:n and Fn−1:n into (3) gives the lower bound un(r),

and Fn:n and Fn−1:n yield the upper bound un.

When valuations are independent of N , both bounds πn and πn hold; as in Haile and Tamer

(2003), we can use them to bound the profit-maximizing reserve price for an auction of a given size.

Letting r∗ = arg maxr′ πn(r′),

πn(r∗n) ≥ πn(r∗n) ≥ πn(r∗) ≥ πn(r∗) = max
r′

πn(r′)

and so r∗n ∈ {r : πn(r) ≥ maxr′ πn(r′)}. When valuations are stochastically increasing in N , the

upper bound πn still holds. Although the lower bound πn need not hold generally, πn(v0) depends

only on Fn−1:n, not Fn:n, and therefore πn(v0) ≥ πn(v0) even when valuations are stochastically

increasing; πn(r∗n) ≥ πn(r∗n) ≥ πn(v0) ≥ πn(v0) gives the bound r̃n. �

When {Fm−1:m} are learned exactly, this is simply the special case Fm−1:m = Fm−1:m = Fm−1:m.

In this case, when valuations are independent of N , all uncertainty about Fn:n is due to uncertainty

about the trailing term n
n̄Fn̄:n̄. This means that bounds on Fn:n, and therefore bounds on πn and

r∗n, will be tighter when n is lower – which is exactly when setting the correct reserve price is most

important.16

15 The bounds placed on Fn̄:n̄ by Lemma 2 are the tightest available using only Fn̄−1:n̄, but could potentially be

tightened using {Fn−1:n}n 6=n̄; thus, the bounds on Fn:n, πn, r∗n, and un are not necessarily sharp.
16As n grows, the probabilities that a given reserve price r either binds or precludes a sale both go to 0.
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To summarize, then, we have identified two-sided bounds on expected profit when valuations

are independent of N , and shown that the upper bound is still valid when valuations are

stochastically increasing. (As it happens, in our application, the upper bound alone is enough

to reach economically interesting conclusions.) The next question, of course, is whether the stronger

identifying assumption, and hence the lower bound on expected profit, is empirically valid. To answer

this, we will show that the assumption that valuations are independent of N has nonparametrically

testable implications, and construct a test statistic which we argue has power against the alternative

that valuations are stochastically increasing.

3 Testing Independence Between Valuations and N

Independence of bidder valuations and N has been used as an identifying assumption in several

papers on first-price auctions with independent signals: by Guerre, Perrigne, and Vuong (2009) to

identify the coefficient of risk aversion; by Haile, Hong, and Shum (2003) to test between common

and private values; and by Gillen (2009) to identify the distribution of behavioral types in a “level-

k” model. We, on the other hand, work in a setting where private values are generally believed to

hold, and consider ascending auctions, in which strategic sophistication and risk preferences play

no role; thus, we are able to use this assumption to identify a complexity that these other papers

must assume away, correlation among values. In particular, the results of Section 2 established that

with conditionally independent private values, when valuations are independent of N , variation in

auction size allows for two-sided bounds on expected revenue (as a function of reserve price) and as

a result the optimal reserve. When valuations are stochastically increasing in auction size N , only

one side of these bounds holds.

We would therefore like a way to determine whether our stronger identifying assumption,

independence of valuations and N , is empirically valid in a particular data set. While this

assumption of independence has been used several times, it has never been formally tested. In our

context, independence between valuations and N imposes nonparametric restrictions on observable

distributions, which we argue would likely be violated if the assumption failed. We can therefore

use these restrictions to design a nonparametric test of this assumption.

3.1 Benchmark: Testing under IPV

Our test for independence between valuations and N under our model is most easily understood if

we first introduce an analogous test within the independent private values framework. Recall that

ψn−1:n was defined above by ψn−1:n(s) = nsn−1−(n−1)sn, and that the CDF of the second-highest
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of n independent draws from a probability distribution F ( · ) is ψn−1:n (F ( · )). In the symmetric IPV

model, valuations of participating bidders are independent draws from some probability distribution

FV , so Fn−1:n(v) = ψn−1:n (FV (v)), or ψ−1
n−1:n (Fn−1:n(v)) = FV (v).

Since we assume Fn−1:n is identified from bid data for each n, a test of the symmetric IPV model

with valuations independent of N is therefore whether

ψ−1
n−1:n (Fn−1:n(v)) = ψ−1

n′−1:n′ (Fn′−1:n′(v)) (8)

for each pair (n′, n). (This is the test considered in Theorem 1 of Athey and Haile (2002).)

It is useful to consider more carefully the underlying economics of this test. If valuations are

independent of auction size, then as n increases, the distribution of Vn−1:n shifts toward higher

values (increases in a first-order stochastic dominance sense), simply because Vn−1:n is the second-

highest of a larger sample; we refer to this effect as the competition effect. The significance of

(8) is that the IPV model exactly determines the magnitude of the competition effect, that is,

how “quickly” transaction prices rise as n increases: for n > n′, Fn−1:n(v) < Fn′−1:n′(v), but

Fn−1:n(v) = ψn−1:n ◦ ψ−1
n′−1:n′ (Fn′−1:n′(v)).

3.2 Testing under CIPV

We now generalize the test of independence between valuations and auction size to the case where

valuations are CIPV instead of IPV. We first observe that under CIPV, the test (8) is no longer valid.

To see why not, consider the extreme case of perfectly correlated values, where θ is one-dimensional

and each bidder’s valuation in an auction with characteristics θ is simply θ. In this case, Fn−1:n(v)

for n ≥ 2 is simply the ex-ante distribution of θ, and therefore does not vary with n. That is,

the competition effect has vanished, and hence the test (8) will over-predict its size: for n > n′,

Fn−1:n(v) ≤ Fn′−1:n′(v), but now Fn−1:n(v) > ψn−1:n ◦ ψ−1
n′−1:n′ (Fn′−1:n′(v)) instead of equality;

Fn−1:n has fallen less than IPV would have predicted.

We now show that the direction of this inequality is in fact a general feature of CIPV – if

valuations are independent of auction size, then conditional independence always slows down the

size of the competition effect relative to IPV.

Theorem 2 Under symmetric, conditionally independent private values, if valuations are indepen-

dent of N , then Fn−1:n(v) is decreasing in n and ψ−1
n−1:n (Fn−1:n(v)) is increasing in n for all v.
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Proof. For the first result, note that ψn−1:n(s) is decreasing in n.17 At a given realization of

θ, the distribution of Vn−1:n is ψn−1:n(F ( · |θ)); so the unconditional distribution Fn−1:n(v) =

Eθ {ψn−1:n (F (v|θ))} is decreasing in n as well.

For the second result, it suffices to show ψ−1
n:n+1 (Fn:n+1(v)) ≥ ψ−1

n−1:n (Fn−1:n(v)). First, we show

ψn−1:n ◦ ψ−1
n:n+1 : [0, 1]→ [0, 1] concave: differentiating,

(
ψn−1:n ◦ ψ−1

n:n+1

)′
(s) =

ψ′n−1:n(t)

ψ′n:n+1(t) = n(n−1)tn−2(1−t)
(n+1)ntn−1(1−t) = n−1

n+1 ·
1
t

where t = ψ−1
n:n+1(s). So

(
ψn−1:n ◦ ψ−1

n:n+1

)′
(s) = n−1

n+1

/
ψ−1
n:n+1(s) , which is decreasing in s. Jensen’s

inequality then yields(
ψn−1:n ◦ ψ−1

n:n+1

)
(Fn:n+1(v)) =

(
ψn−1:n ◦ ψ−1

n:n+1

)
Eθ {ψn:n+1(F (v|θ))}

≥ Eθ
{(
ψn−1:n ◦ ψ−1

n:n+1

)
(ψn:n+1(F (v|θ)))

}
= Eθ {ψn−1:n(F (v|θ))}

= Fn−1:n(v)

so ψ−1
n:n+1 (Fn:n+1(v)) ≥ ψ−1

n−1:n (Fn−1:n(v)). �

Again, since we assume Fn−1:n for each n can be inferred from bid data, Theorem 2 gives us two

testable inequality restrictions implied by independence between valuations and N under the model

of symmetric, conditionally independent private values: specifically, that

n > n′ −→ Fn−1:n(v) ≤ Fn′−1:n′(v) (9)

n > n′ −→ ψ−1
n−1:n (Fn−1:n(v)) ≥ ψ−1

n′−1:n′ (Fn′−1:n′(v)) (10)

for all v.18

17 For n > 2, algebra shows ψn−1:n(s)− ψn−2:n−1(s) = −(n− 1)sn−2(1− s)2 ≤ 0.
18 Under the assumptions of Haile and Tamer (2003), with Gn−1:n and Gn:n the (observable) distributions of the

second-highest and highest bids in n-bidder auctions, (9) and (10) would become Gn:n(v − δ) ≤ Gn′−1:n′ (v) and

ψ−1
n−1:n (Gn−1:n(v)) ≥ ψ−1

n′−1:n′ (Gn′:n′ (v − δ)), where δ is the minimum bid increment. With some modification, the

tests we describe below could be applied to these inequalities instead.

Also note that both proposed tests are sharp in one sense: under an IPV data-generating process, (10) would

hold everywhere with equality, and with perfectly correlated values which are independent of N , (9) would hold

everywhere with equality. However, if either inequality holds strictly for some (n, n′), it could potentially be tightened

for other pairs. For example, if Fn−4:n−3(v) > Fn−3:n−2(v) > Fn−2:n−1(v), (9) could be tightened to Fn−1:n(v) ≤

Fn−2:n−1(v)− (n−1)(n−3)

(n−2)2
(Fn−3:n−2(v)−Fn−2:n−1(v))2

Fn−4:n−3(v)−Fn−3:n−2(v)
– although due to the difference term in the denominator, this

stronger version of (9) is highly unstable when applied to a reasonably-sized dataset.
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3.3 Power Against Violations of Independence

Since we cannot directly test for independence, only for a consequence of it, it remains to argue why

we expect this test to have power; that is, why dependence between valuations and N would likely

lead to a violation of either (9) or (10). The logic is as follows.

The results of the last section state that if valuations are independent of auction size, then we

should see a smaller competition effect in the data under CIPV as compared to that predicted by

IPV. A violation of the test (10) would mean that the size of the competition effect in the data

was observed to be larger than that predicted under IPV. What would cause transaction prices

to increase with auction size at a rate faster than predicted by IPV? This would likely occur if

larger auctions tended to coincide with higher individual valuations. But this is exactly our weaker

assumption that valuations are stochastically increasing with auction size. Hence our test (10) of

independence between valuations and auction size under CIPV is likely to have power against our

weaker assumption that valuations are stochastically increasing with auction size.

To formalize this intuition, let Eθ|n denote an expectation taken over the distribution of θ among

auctions with exactly n bidders. Independence requires θ to be independent of N , so this expectation

would be the same for every n. Below, we show that if θ 6⊥ N and auctions with more bidders have

characteristics which put more weight (on average) in the upper tail of bidders’ values, this will

always lead to a violation of (10).

Theorem 3 Suppose that for each θ, F ( · |θ) is continuous and twice differentiable, with derivative

f( · |θ), and has the same bounded support [v, v]. If n > n′ implies

Eθ|n (f(v|θ))2
> Eθ|n′ (f(v|θ))2

then (10) will be violated for v sufficiently close to v.

The proof is in Appendix B.3. Under the same smoothness and bounded-support assumptions,

we can also show that if valuations are stochastically increasing in N , Eθ|nf(v|θ) must be weakly

increasing in n. While this latter condition is not enough to guarantee a violation of (10) under

Theorem 3, the conditions are obviously very similar – both indicate a positive relationship between

auction size and high bidder valuations. Thus, economic forces that give rise to valuations which are

strictly stochastically increasing in N , will also likely lead to valuations satisfying the conditions for

Theorem 3. For example, in Appendix A, we show general conditions under which the endogenous

entry models of Levin and Smith (1994) and Samuelson (1985) would both lead to violations of (10)

via Theorem 3. Thus, informally, we see (10) as a test of independence between valuations and N ,

against the alternative that valuations are stochastically increasing.
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A negative relationship between auction size and valuations – valuations which are stochastically

decreasing in auction size – would not lead to a violation of (10); but if it were a strong enough

effect, it would lead to a violation of (9).19 Thus, together, we feel (9) and (10) give a reasonable

test of the combined assumptions of conditionally independent private values which are independent

of auction size.

3.4 Econometric Test

Next, we introduce formal econometric tests for the inequalities (9) and (10). We construct a test

statistic for each inequality which is calculated from observed auction data; asymptotically, each one

will diverge to +∞ if the corresponding inequality is violated anywhere; converge to 0 in probability

if it holds everywhere as a strict inequality; and converge to a normal distribution with mean 0 and

bounded variance if it holds everywhere, and holds with equality on a positive measure of v. We

choose to test (9) and (10) individually (rather than jointly) because knowing which – if either – is

rejected will be suggestive of whether larger auctions are associated with higher or lower individual

valuations.20

Lee, Linton, and Whang (2009) have recently described a test for stochastic monotonicity; their

test follows a Kolmogorov-Smirnov (K-S) type of approach, based on the supremum of a properly

normalized statistic. This approach could be used for our test of (9), a comparison of two distribution

functions; however, it is not designed to test (10), which involves a nonlinear transformation of one

of the distributions. By its nature, it seems unavoidable that any test of (10) must rely on an explicit

estimation of a distribution function. A K-S approach in this setting would have the drawback of

leading to a nonpivotal asymptotic distribution (see Remark 2.1 in Lee, Linton, and Whang (2009)).

Consequently, critical values for the resulting test would have to rely on simulation or resampling.

Rather than relying on this approach, our test is based on the expected value of a properly-designed

19 In settings where independence is taken for granted, a violation of (9) (a stochastic decrease in transaction price

as N increases) is interpreted as evidence of common values, since bidders shade their bids more as N increases due to a

stronger winner’s curse. (See, for example, Hong and Shum (2002), and the discussion in Bajari and Hortacsu (2003).)

Here, we take private values as given, and argue that such a left-shift must therefore indicate negative correlation

between valuations and N . While counterintuitive, with private values, this could occur naturally if more valuable

objects also tend to be valued more consistently by different buyers. This could be the case, for example, if the most

valuable objects tended to be purchased by professional dealers, who were fairly unanimous in their assessments, while

lower-value objects appealed to individual collectors, whose tastes were more idiosyncratic. Still, we feel intuitively

that a positive relationship between valuations and N is the more likely type of dependence; thus, we expect (10) to

be the more meaningful test.
20These two possibilities have very different implications for the validity of our bounds; contrast Lemma 3 (and

part 2 of Theorem 1) with footnote 12.
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functional. The key advantage of our approach is that the critical values come from a known

distribution. The asymptotic analysis of our test statistic is also simpler than the one that would

follow from a K-S approach.

Our test is based on functionals whose expected values are zero if and only if (9) and (10) are

satisfied with probability 1. Similar functionals were also used by Khan and Tamer (2009) in a

setting of censored regression. As in their case, the sample analogs of the functionals we use take the

form of U-statistics. The rejection rules that we recommend are based on the asymptotic properties

of these U-statistics. The presence of U-statistics in econometrics is extensive, both for estimation

and inference. Examples of M-estimators where the objective function is written explicitly as a

U-statistic include the maximum rank correlation estimator studied by Han (1987) and Sherman

(1993), as well as the estimation procedures in Dominguez and Lobato (2004) and Khan and Tamer

(2009). U-statistics have also been used to construct consistent specification tests. Some examples

include Fan and Li (1996), Zheng (1998), Chen and Fan (1999). Even though our goal is to devise

a specification test (as opposed to the estimation of an unknown parameter), Khan and Tamer

(2009) is perhaps the closest to the spirit of our test, which relies on transforming functional (e.g,

conditional moment) inequalities into moment equalities. The goal in Khan and Tamer (2009) is to

estimate a finite-dimensional parameter that is point-identified by conditional moment inequalities

that must hold with probability one. They propose an M-estimation procedure based on a U-statistic

objective function whose probability limit is uniquely minimized at the true parameter value. The

general idea of transforming moment inequalities into equalities has also been recently studied by

Andrews and Shi (2009) and Kim (2009), who propose inferential methods for finite-dimensional

parameters partially identified by conditional moment inequalities. The approach in Andrews and

Shi (2009) relies on the use of properly chosen “instruments”, while Kim (2009) employs U-statistics

of the type used in Khan and Tamer (2009).

For clarity, we first present the test without conditioning on any auction-specific covariates. After

that, we will extend the test to be run conditional on observable covariates; in our application, we

run both the unconditional and conditional tests.

Assume we have observations from L ascending auctions, indexed by i ∈ {1, 2, . . . , L}. For each

auction i, we observe the winning bid (transaction price), Wi, and the number of bidders Ni. We

assume these observations Zi = (Wi, Ni) are i.i.d. draws from some ex-ante distribution of auctions.

Let

p
N

(n) = Pr(N = n), FW |N (w|n) = Pr(W ≤ w|N = n), and FW (w) = Pr(W ≤ w)

be the unconditional distribution of N , the conditional distribution of W given N , and the

unconditional distribution of W under the true data-generating process. Let SZ denote the joint
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support of (W,N), and SW and SN the marginal supports of W and N , respectively. We assume

that FW |N ( · |n) is continuous for each n in SN .

The function ψn−1:n(·) was defined in (4). For any pair n, n′ ∈ SN and any s and w, define

Ω(s, n, n′) = ψn−1:n ◦ ψ−1
n′−1:n′(s)

∆W |N (w, n, n′) = FW |N (w|n)− FW |N (w|n′)

ΦW |N (w, n, n′) = Ω
(
FW |N (w|n′), n, n′

)
− FW |N (w|n)

so (9) and (10) are exactly the conditions that ∆W |N (w, n, n′) ≤ 0 and ΦW |N (w, n, n′) ≤ 0 for

n > n′.

We will test (9) and (10) over a pre-specified subset of SW and SN . Let N ⊆ SN be a compact,

pre-specified set. For each n, n′ ∈ N with n 6= n′, let Wn,n′ ⊆ SW be any compact subset on which

both FW |N ( · |n) and FW |N ( · |n′) are strictly bounded away from 0 and 1. We will test whether

∆W |N (w, n, n′) ≤ 0 and ΦW |N (w, n, n′) ≤ 0 for almost all w ∈ Wn,n′ , for all n, n′ ∈ N with n > n′.

Take any distinct i, j ∈ {1, . . . , L}. For any n, n′ ∈ N , consider the two functions

TFn,n′(Zi, Zj) =
(
1{Wi ≤Wj} − FW |N (Wj |n′)

)
· 1{Ni = n}

·1
{

∆W |N (Wj , n, n
′) ≥ 0

}
· 1{Wj ∈ Wn,n′}

TΩ
n,n′(Zi, Zj) =

(
Ω
(
FW |N (Wj |n′), n, n′

)
− 1{Wi ≤Wj}

)
· 1{Ni = n}

·1
{

ΦW |N (Wj , n, n
′) ≥ 0

}
· 1{Wj ∈ Wn,n′}

(11)

and let

µFn,n′ ≡ E
[
TFn,n′(Zi, Zj)

]
and µΩ

n,n′ ≡ E
[
TΩ
n,n′(Zi, Zj)

]
(12)

Theorem 4 If Zi and Zj are i.i.d., then for any n, n′ ∈ N , µFn,n′ ≥ 0 and µΩ
n,n′ ≥ 0. Further,

(i) µFn,n′ = 0 if and only if FW |N (w|n) ≤ FW |N (w|n′) for almost all w ∈ Wn,n′

(ii) µΩ
n,n′ = 0 if and only if ψ−1

n−1:n

(
FW |N (w|n)

)
≥ ψ−1

n′−1:n′

(
FW |N (w|n′)

)
for almost all w ∈ Wn,n′

Proof. To prove part (ii), fix (Ni, Zj), and define

T
Ω
n,n′(Ni, Zj) ≡ EWi|Ni,Zj

[
TΩ
n,n′(Zi, Zj)

]
= EWi|Ni

[(
Ω
(
FW |N (Wj |n′), n, n′

)
− 1{Wi ≤Wj}

)
· 1{Ni = n} · 1

{
ΦW |N (Wj , n, n

′) ≥ 0
}
· 1{Wj ∈ Wn,n′}

]
=

(
Ω
(
FW |N (Wj |n′), n, n′

)
− FW |N (Wj |Ni)

)
· 1{Ni = n} · 1

{
ΦW |N (Wj , n, n

′) ≥ 0
}
· 1{Wj ∈ Wn,n′}

= 1{Ni = n} · 1{Wj ∈ Wn,n′} ·max
{

0,ΦW |N (Wj , n, n
′)
}

so T
Ω

n,n′(Ni, Zj) ≥ 0, and T
Ω

n,n′(Ni, Zj) > 0 if and only if Ni = n, Wj ∈ Wn,n′ , and

ΦW |N (Wj , n, n
′) > 0. By iterated expectations,

µΩ
n,n′ = p

N
(n) · E

[
max

{
0 , ΦW |N (Wj , n, n

′)
}
· 1
{
Wj ∈ Wn,n′

}]
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which is therefore weakly positive, and strictly positive if and only if ΦW |N (Wj , n, n
′) > 0 occurs

with positive probability on Wn,n′ . The analogous result holds for µFn,n′ and ∆W |N (Wj , n, n
′). �

Thus, we have established the equivalence between a set of inequality constraints and a moment

equality condition. TΩ
n,n′(Zi, Zj) is a function whose expected value is 0 if (10) holds almost

everywhere in Wn,n′ and is strictly positive otherwise; and likewise TFn,n′(Zi, Zj) with (9). We

can use Theorem 4 to test (9) and (10) in our testing range by focusing on all pairs n > n′ in N . By

Theorem 4, the sums
∑
n,n′∈N ,n>n′ T

Ω
n,n′(Zi, Zj) and

∑
n,n′∈N ,n>n′ T

F
n,n′(Zi, Zj) will have expected

value 0 if (9) and (10) hold almost everywhere in Wn,n′ for each n > n′ in N , and each will have

strictly positive expected value if the corresponding inequality is violated with positive probability.

In broad terms, then, we will calculate sample averages of these sums over the pairs (Zi, Zj) in

our data, and test whether the resulting averages are significantly different from 0. Sample analog

estimators would take the form of (second order) U-statistics. U-statistics arise as generalizations

of sample averages. They were introduced by Hoeffding (1948) and Halmos (1946); for a detailed

overview of their general properties, see Chapter 5 in Serfling (1980). In many instances (but not

always), statistics of this class have an asymptotically normal behavior.

However, we cannot directly calculate TΩ
n,n′(Zi, Zj) and TFn,n′(Zi, Zj), since the distributions

FW |N , and therefore the functions ∆W |N and ΦW |N , are not known; we therefore replace them with

nonparametric estimates. To facilitate the asymptotic analysis of our test statistics, we exclude

observations i and j from the estimates of FW |N that are used in TΩ
n,n′(Zi, Zj) and TFn,n′(Zi, Zj).

That is, for each i 6= j, we define

R̂−i,jW |N (w|n) ≡ 1
L−2

∑
` 6=i,j 1{W` ≤ w} · 1{N` = n}

p̂−i,j
N

(n) ≡ 1
L−2

∑
` 6=i,j 1{N` = n}

F̂−i,jW |N (w|n) ≡ R̂−i,jW |N (w|n)
/
p̂−i,j
N

(n)

(and F̂−i,jW |N (w|n) = 0 if p̂−i,j
N

(n) = 0), and calculate corresponding estimates for ∆W |N and ΦW |N

∆̂−i,jW |N (w, n, n′) = F̂−i,jW |N (w|n)− F̂−i,jW |N (w|n′)

Φ̂−i,jW |N (w, n, n′) = Ω
(
F̂−i,jW |N (w|n′), n, n′

)
− F̂−i,jW |N (w|n)

In addition to replacing FW |N , ∆W |N , and ΦW |N with estimates, we make one other modification

to (11). Our null hypothesis allows for both (9) and (10) to hold strictly or with equality. To

deal with the possibility that either holds with equality with positive probability, we introduce a
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nonzero bandwidth b
L

, which disappears at a rate slower than
√
L, so that we can characterize

exponential bounds for the probability that ∆̂−i,jW |N (Wj , n, n
′) < −b

L
and ∆W |N (Wj , n, n

′) ≥ 0 (or

that Φ̂−i,jW |N (Wj , n, n
′) < −b

L
and ΦW |N (Wj , n, n

′) ≥ 0). Thus, our estimators are of the form21

T̂Fn,n′(Zi, Zj) =
(
1{Wi ≤Wj} − F̂−i,jW |N (Wj |n′)

)
· 1{Ni = n}

·1
{

∆̂−i,jW |N (Wj , n, n
′) ≥ −b

L

}
· 1{Wj ∈ Wn,n′}

T̂Ω
n,n′(Zi, Zj) =

(
Ω
(
F̂−i,jW |N (Wj |n′), n, n′

)
− 1{Wi ≤Wj}

)
· 1{Ni = n}

·1
{

Φ̂−i,jW |N (Wj , n, n
′) ≥ −b

L

}
· 1{Wj ∈ Wn,n′}

(13)

Our test statistics are then the sample averages of T̂Fn,n′ and T̂Ω
n,n′ , summed over the different (n, n′)

combinations where n > n′:

U T̂
F

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i6=j

 ∑∑
n,n′∈N ,n>n′

T̂Fn,n′(Zi, Zj)


U T̂

Ω

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i6=j

 ∑∑
n,n′∈N ,n>n′

T̂Ω
n,n′(Zi, Zj)

 (14)

Appendix B.4 provides regularity conditions involving the distributions FW |N under which we

can fully characterize the asymptotic distribution of these test statistics. The results are given in

Theorem 5; the proof is contained in a separate Technical Supplement. In brief, we first show that

under these regularity assumptions, we can express our test statistics as
√
L · U T̂F

L(2) =
√
L · UTF

L(2) +
√
L · U ĜF

L(3) + op(1) and
√
L · U T̂Ω

L(2) =
√
L · UTΩ

L(2) +
√
L · U ĜΩ

L(3) + op(1), where UT
F

L(2) and UT
Ω

L(2) are

the second order U-statistics that would result if we replaced T̂Fn,n′ and T̂Ω
n,n′ with TFn,n′ and TΩ

n,n′

in (14). U Ĝ
F

L(3) and U Ĝ
Ω

L(3) are third-order U-statistics whose asymptotic presence reflects our use of

nonparametric estimators in the construction of U T̂
F

L(2) and U T̂
Ω

L(2) . We then characterize the Hoeffding

decomposition (see Hoeffding (1961) and Serfling (1980), Chapter 5) of each of these U-statistics.

From here, we obtain linear representations of the form

√
L · U T̂

F

L(2)=
√
L ·

 ∑∑
n,n′∈N ,n>n′

µFn,n′

+
1√
L

L∑
i=1

ηFN (Zi) + op(1)

√
L · U T̂

Ω

L(2)=
√
L ·

 ∑∑
n,n′∈N ,n>n′

µΩ
n,n′

+
1√
L

L∑
i=1

ηΩ
N (Zi) + op(1)

(15)

with E[ηFN (Zi)] = E[ηΩ
N (Zi)] = 0. The function ηFN (Zi) arises from the conditional expectations

which appear as leading terms of the Hoeffding decompositions of the U-statistics UT
F

L(2) and U Ĝ
F

L(3) .

21Kim (2009) used a bandwidth sequence serving the same purpose as ours. Our asymptotic results are valid for any

bandwidth sequence satisfying the convergence rate requirements discussed in Appendix B.4. Choosing bandwidths

for optimal finite-sample properties is an open question, and one we hope to address in future work.
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The remaining terms of these decompositions are of order op(L
−1/2). The function ηΩ

N (Zi) arises

analogously. We discuss the structure of these functions in Appendix B.4 and in the separate

Technical Supplement. The following asymptotic results, then, follow directly from Theorem 5:22

Summary of Asymptotic Results. Let Σ̂FW |N be a consistent estimator of Var
(
ηFN (Zi)

)
.23 Let

c1 > 0 be any positive number, and D̂FW |N = Σ̂
1/2
FW |N

+ c1. Under appropriate regularity conditions

(described in Appendix B.4), as L→∞,

1a.
√
L · U T̂F

L(2)

/
D̂FW |N

p−→ +∞ if (9) is violated with positive probability

1b.
√
L · U T̂F

L(2)

/
D̂FW |N

d−→ N(0, σ2) with σ2 ∈ (0, 1) if (9) holds almost everywhere, and holds

with equality with positive probability

1c.
√
L · U T̂F

L(2)

/
D̂FW |N

p−→ 0 if (9) holds strictly almost everywhere

Similarly, let Σ̂ΩW |N be a consistent estimator of Var
(
ηΩ

N (Zi)
)
, c2 > 0 any positive number, and

D̂ΩW |N = Σ̂
1/2
ΩW |N

+ c2; under appropriate regularity conditions, as L→∞,

2a.
√
L · U T̂Ω

L(2)

/
D̂ΩW |N

p−→ +∞ if (10) is violated with positive probability

2b.
√
L · U T̂Ω

L(2)

/
D̂ΩW |N

d−→ N(0, σ2) with σ2 ∈ (0, 1) if (10) holds almost everywhere, and holds

with equality with positive probability

2c.
√
L · U T̂Ω

L(2)

/
D̂ΩW |N

p−→ 0 if (10) holds strictly almost everywhere

Based on these results, we can apply rejection rules based on the standard normal distribution.

Consider the null hypothesis HF
0 :(9) is satisfied at almost all w ∈ Wn,n′ , for every n, n′ ∈ N with

n > n′. Let α ∈ (0, 1) denote a pre-specified significance level and let z
α

satisfy Pr(Z ≥ zα) = α,

where Z ∼ N (0, 1). Consider the rule

Reject HF
0 if

√
L · U T̂F

L(2)

D̂FW |N

≥ z
α

(16A)

This decision rule has the following asymptotic properties:

limL−→∞

{
Pr
[
HF

0 is rejected when it is true
]}

≤ α

limL−→∞

{
Pr
[
HF

0 is rejected when it is false
]}

= 1
(17)

22 Note that “positive probability” refers to non-zero probability over Wn,n′ for some n, n′ ∈ N with n > n′, and

“almost everywhere” refers to probability 1 over Wn,n′ for every n, n′ ∈ N with n > n′.
23Analytic expressions leading to consistent estimators for Var

(
ηFN (Zi)

)
and Var

(
ηΩ

N (Zi)
)

are described in (31)

and (32), in Appendix B.4.
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The equivalent result holds for HΩ
0 :(10) is satisfied at almost all w ∈ Wn,n′ , for every n, n′ ∈ N

with n > n′, and a decision rule of the form

Reject HΩ
0 if

√
L · U T̂Ω

L(2)

D̂ΩW |N

≥ z
α

(16B)

Rejecting (9) or (10) would imply the rejection not only of CIPV, but also of IPV.24 On the

other hand, failing to reject (9) and (10) could be attributed to the data being consistent with IPV.

To check whether this is the case, we can test whether the reverse inequality in (10) holds: namely,

whether

ψ−1
n−1:n (Fn−1:n(v)) ≤ ψ−1

n′−1:n′ (Fn′−1:n′(v)) (10’)

for every n, n′ ∈ N with n > n′ and almost all v ∈ Wn,n′ . If the data supports (10), then rejecting

(10’) implies that the inequalities in (10) are strict with positive probability, which rules out IPV as

the true model. A test of (10’) would replace TΩ
n,n′(Zi, Zj) with

T−Ω
n,n′(Zi, Zj) =

(
1{Wi ≤Wj} − Ω

(
FW |N (Wj |n′), n, n′

))
· 1{Ni = n} (11′)

·1
{
−ΦW |N (Wj , n, n

′) ≥ 0
}
· 1{Wj ∈ Wn,n′}

The estimator T̂−Ω
n,n′(Zi, Zj) is constructed accordingly. The resulting U-statistic will have asymptotic

properties analogous to the other test statistics, under similar regularity conditions – see Appendix

B.4.4 for details.

3.5 Monte Carlo Simulations

To illuminate its small-sample properties, we perform our test of (10) on simulated data. For three

different data-generating processes, we generated 1, 000 data sets of sizes L = 200, L = 400 and

L = 800, and calculated the test-statistic for each simulated data set. The three data-generating

processes were:

Valuations dependent on N : we used an example of the entry game from Levin and Smith (1994)

to jointly generate N and W . (This example is solved in Appendix B.3; theoretical graphs of

ψ−1
n−1:n (Fn−1:n(v)), showing a violation of (10), are shown in Figure 4.)

Valuations independent of N (A): we used the same data-generating process for valuations as the

previous case, but chose N independently of θ; this led to (10) holding strictly everywhere.

24That is, it would reject the notion that valuations are independent of N and independent across bidders.
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Valuations independent of N (B): we used a different data-generating process for valuations, chosen

so that (10) would hold with equality with positive probability.

The details of the simulations – the exact data-generating processes, the bandwidths b
L

used, and

so on – are described in Appendix A.

Table 1 gives the empirical rejection rates observed from applying the test above to the simulated

data, with a target significance level of 5%. These results exactly reflect the asymptotic predictions

described above. As L grows, the probability of rejecting independence between valuations and N

goes to 1 when there is dependence. The probably of rejecting independence goes to 0 when the

true data-generating process has independence and (10) holds as a strict inequality with probability

one; and if (10) holds with equality with nonzero probability, the empirical rejection probabilities

are close to the target significance level of 5%. (These results are particularly encouraging since in

our application, the sample size is over 2, 000.)

Table 1: Empirical rejection rates at target significance level of 5%

L = 200 L = 400 L = 800

Valuations dependent on N 58.4% 82.4% 98.3%

Valuations independent of N (A) 3.1% 1.2% 1.1%

Valuations independent of N (B) 7.0% 4.7% 5.2%

3.6 Testing Conditional on Observable Covariates

In Appendix B.5, we show how the test above can be modified to condition nonparametrically

on observable covariates. We test whether the conditional analogs of (9) and (10) hold at each

realization of X – that is, whether

n > n′ −→ Fn−1:n(v|X) ≤ Fn′−1:n′(v|X) (18)

n > n′ −→ ψ−1
n−1:n (Fn−1:n(v|X)) ≥ ψ−1

n′−1:n′ (Fn′−1:n′(v|X)) (19)

for almost all v and X in a pre-specified testing range Cn,n′ (as in the unconditional case). For

clarity, in Appendix B.5 we present the test conditional on a one-dimensional covariate X which is

continuously distributed; as we discuss below, we will apply the test conditional only on appraisal

value. The test extends naturally to cases where X is multi-dimensional and includes both discrete

and continuous covariates. As is usually the case in nonparametric procedures, preserving the

asymptotic features of our test when X includes multidimensional continuously distributed covariates
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comes at a computational cost brought about by the need to use so-called “bias-reducing kernels” of

higher order. The degree of smoothness required from the various functionals involved also increases

more than proportionately with the dimension of the continuously distributed elements in X.

Our conditional tests are based on third-order U-statistics (regardless of the dimension of X).

A consistent test of (18) and (19) requires matching X across pairs of observations in our sample.

If X contains continuously distributed covariates, the probability of having two (or more) identical

realizations of X in our sample is zero. Since we focus on the case where X is continuous, in our

proposed test this matching is achieved through the use of kernel-based weights and a bandwidth

sequence converging to zero. With the proper kernel and bandwidth, our methodology ensures the

type of asymptotic matching of X needed to test (18) and (19) consistently. Weighting methods

with these types of asymptotic properties are referred to as pairwise differencing and have been

studied, for example, in Honoré and Powell (1994), Honoré and Powell (2005), Aradillas-Lopez,

Honoré, and Powell (2007) and Hong and Shum (2009). Under appropriate regularity conditions

(given in Appendix B.6), the conditional test has asymptotic properties exactly analogous to the

unconditional test; these properties are summarized in Theorem 7.

4 Application to USFS Timber Auctions

4.1 Description of Data

We apply our test to data from timber auctions run by the Unites States Forest Service. A number

of other papers have considered Forest Service auctions. Baldwin, Marshall, and Richard (1997)

provide much institutional background. Their focus is to test for collusion. Haile (2001) considers

the effects of resale on valuations. Haile, Hong, and Shum (2003) develop and apply a test for

common values against private values, assuming away (for the most part) unobserved heterogeneity.

Lu and Perrigne (2008) use the USFS data to estimate risk aversion among bidders, using the fact

that the service conducts both first price sealed bid auctions and open ascending auctions. Finally,

Athey and Levin (2001), Athey, Levin, and Seira (2008), and Haile and Tamer (2003) analyze the

data to empirically study mechanism design issues.25 All papers besides a few elements of Haile,

Hong, and Shum (2003) do not consider the effects of unobserved heterogeneity in drawing inferences

25 One of the key insights of Athey, Levin, and Seira (2008) is that there are ex-ante asymmetries between two

types of bidders: millers and loggers. This does not preclude the use of our model. Suppose bidders of each type have

private values drawn from the distributions Fm(vi | X, θ) and Fl(vi | X, θ), respectively, and that a fraction q(X, θ)

of bidders are expected to be millers. As long as each bidder is imagined to be randomly (independently) either a

miller or a logger, each bidder’s valuation can still be seen as an independent draw from F (vi | X, θ) = q(X, θ)Fm(vi |

X, θ) + (1− q(X, θ))Fl(vi | X, θ). Since beliefs about other bidders’ valuations do not affect bidding in a private-value
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from the data, which is our current concern. Thus we hope this application to be fruitful, as we

analyze widely-studied auctions in which the role of heterogeneity has not been thoroughly addressed.

These auctions proceed as follows. The Forest Service first conducts a “cruise” of the tract and

publishes detailed information on the tract for potential bidders. It also announces an appraisal

value for the tract, which serves as a reserve price for the qualifying round of bids: bidders must

submit sealed bids of at least that reserve price to be eligible to participate. The oral round of the

auction then begins at the highest of these sealed bids.

Data on these auctions comes to us from Phil Haile, who has posted timber auction data from

1978 to 1996. In addition to each bidder’s highest bid in the oral round of the auction, we have

data on the size of the tract, the estimated volumes of the various timber species, estimated costs

of harvesting and delivering the timber to mills, and estimated revenue from such sales, in addition

to other measures. Potential bidders can also conduct their own cruises (though this is rarely done

for the subset of auctions we consider). It is generally recognized that the reserve prices set by the

Forest Service are too low and do not bind.26 A particular empirical question of interest for us is

whether the Forest Service should be setting a higher reserve to extract greater rents, which has

been a subject of ongoing debate within the timber service.

We use the cleaning conventions of Haile and Tamer (2003) to select auctions which are most

likely to satisfy the assumption of private values. We focus on sales in Region 6 (which encompasses

mostly Oregon) and select sales whose contracts expire within a year, to shut down the effect of

resale possibilities on valuations. We focus on scaled sales, where bids are per unit of timber actually

harvested, and therefore common-value uncertainty about the total amount of timber should not

affect valuations. We consider only auctions held between 1982 and 1990, as the reserve price policy

within this period was stable. What is left is a sample of 2, 181 auctions with N between 2 and

12, in which the private values assumption is thought best to hold.27 A unique feature of the data

is that we have clean observations on the number of bidders in the room when the bidding begins,

which is crucial to both our test and our identification strategy. We drop those observations with

N = 12, because auctions with more than twelve bidders are listed as N = 12; this leaves us with

an actual sample size of L = 2, 036.

ascending auction, our model still applies, although our stronger identifying assumption now requires that conditional

on observables, q is independent of N .
26 Campo, Guerre, Perrigne, and Vuong (2002) write, “It is well known that this reserve price does not act as a

screening device to participating,” and perform analysis that confirms that “the possible screening effect of the reserve

price is negligible” (p. 33). See also Haile (2001), Froeb and McAfee (1988), and Haile and Tamer (2003).
27Like Haile and Tamer (2003), we drop auctions with one bidder from the analysis, because without binding reserve

prices, they give us no information about the distribution of valuations. F1:1 can still be identified from {Fm−1:m}m≥2

via (6) or (7), and maxr(r − v0)(1− F1(r)) can then be solved to find the optimal reserve price when N = 1.
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An interesting feature of the data is that the observable auction characteristics broadly appear

to be independent of the number of bidders. As we discuss below, the government’s appraisal value

is the most significant covariate in explaining transaction price; but it has almost no relation to

N . (The distribution of appraisal values is nearly the same across different values of N ; if we

regress logN on the log of appraisal value, we get a statistically insignificant relationship and an

R2 of 0.001.) Other auction-specific covariates also do not appear to be meaningfully related to N .

Since bidders do not appear to be selectively participating in auctions based on their observable

characteristics, it might be reasonable to think that they are also not selectively participating based

on unobservable characteristics, and so independence between valuations and N seems plausible.

Next, we move on to testing this possibility.

4.2 Conditioning on Observable Covariates

Since our methods explicitly allow for unmodeled heterogeneity, they can in principle be applied

either unconditionally or conditional on observed covariates. If we apply our test of independence

between valuations and auction size unconditionally, it becomes a test of whether valuations are

i.i.d. draws from a distribution F ( · |X, θ), with “independence” now meaning that N is independent

of (X, θ). If this is true, then conditional on a realization of X, N is still independent of θ; and so

if our “unconditional” model is valid, there is no need to worry about it becoming invalid when we

condition on any subset of the covariates.

However, conditioning on observable covariates is potentially appealing for several reasons.

First, if N is independent of θ but not of X, then our hypothesis of independence (and thus our

identification strategy) is invalid when we do not condition, but valid when we condition on X.

Second, we pointed out above that positive correlation between N and valuations would speed up

the rate at which Fn−1:n shifts to the right as n increases, while correlation among valuations slows

it down; thus, heterogeneity can in a sense “conceal” some degree of dependence between valuations

and N . By conditioning on X, we remove some of the heterogeneity that could do this, giving us a

more powerful test. So conditioning on available covariates makes our identifying assumption more

likely to be valid, and more likely to be rejected if it is not. It would also be useful to know whether

our model is in some sense “necessary” – that is, whether there truly is unobservable heterogeneity

inducing correlation, or whether the data could be well described by the standard (IPV) model when

observable covariates were controlled for. And finally, when we move on from testing to applying our

identification results and analyzing counterfactuals, conditioning on observables will give us tighter

results.
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As discussed above, our data includes a rich set of auction-specific covariates, including the Forest

Service’s appraisal value for each tract. These appraisal values were constructed using the “residual”

method, which takes the estimated revenue from the downstream sales of the lumber derived from the

timber and subtracts off the estimated costs of cutting, transporting, and processing the timber, and

an additional amount designed to serve as a “reasonable” profit for lumber supply. Thus, by design,

the appraisal value is meant to contain all profit-relevant information contained in the auction-tract

covariates; it therefore might plausibly play the role of a sufficient statistic for all observable auction

heterogeneity.

For this reason, several papers on timber auctions use the empirical strategy of conditioning

only on appraisal value. Campo, Guerre, Perrigne, and Vuong (2002), analyzing first-price auctions

with risk-averse bidders and independent private values, condition only on appraisal value, writing,

“When regressing the logarithm of bids per mbf [thousand board-feet] on a complete set of variables

characterizing the auctioned lot... only two variables are strongly significant, namely the number

of bidders and the appraisal value.... Thus, the appraisal value seems to be the best candidate to

capture the heteregoneity across auctioned objects.” Perrigne (2003) similarly notes, “Because the

appraisal value is the most accurate variable capturing the different species and their calibers, we

ignore other characteristics in the empirical analysis.” Lu and Perrigne (2008) find both appraisal

value and volume of timber to have explantory power; but we focus only on scaled sales, where

volume does not play a signifcant role.

We therefore will perform both our conditional test and counterfactual analyses conditional only

on appraisal value, which we label X. We think of appraisal value as being an “almost-sufficient

statistic” for observable covariates. Our methods do not depend on appraisal value actually capturing

all observable heterogeneity, as whatever observable heterogeneity remains is simply picked up as

part of the unobserved θ; but at the same time, following the literature, we believe appraisal value

to capture most of the observable variation, and therefore think of θ as, for the most part, reflecting

truly unobserved heterogeneity.

4.3 Application of the Test

Recall that Theorem 2 gives two strings of inequalities which must hold if valuations are independent

of N :

F1:2(v) ≥ F2:3(v) ≥ F3:4(v) ≥ · · ·

ψ−1
1:2 (F1:2(v)) ≤ ψ−1

2:3 (F2:3(v)) ≤ ψ−1
3:4 (F3:4(v)) ≤ · · ·

(20)

As discussed above, we assume that the transaction price in each auction in the data was exactly

equal to the second-highest valuation Vn−1:n. As a first check, then, we can simply construct
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empirical analogs of the distribution functions Fn−1:n(v) directly from bid data, plot F̂n−1:n(v) and

ψ−1
n−1:n

(
F̂n−1:n(v)

)
against v for various n, and check whether these distributions satisfy (20). Even

without formalizing this into a proper test, this should give some intuition for whether independence

between valuations and auction size is a plausible hypothesis given our data.

For a first pass, we let θ capture all auction heterogeneity, that is, we make no attempt to control

for observable covariates. Figure 1 shows F̂n−1:n(v) and ψ−1
n−1:n

(
F̂n−1:n(v)

)
as n varies from 2 to 8.

(For visual ease, colors go in rainbow order – red, orange, yellow, green, blue, indigo, violet – as n

increases from 2 to 8.) Visual inspection shows that these curves do indeed shift nearly monotonically

in the predicted direction as n changes. Thus, without controlling for any observed heterogeneity,

the bid data seems to be consistent with our model and the assumption of independence between

valuations and auction size.

Figure 1: The “eyeball test” for independence between valuations and auction size

F̂n−1:n(v) ψ−1
n−1:n

(
F̂n−1:n(v)

)
(should shift right as n increases) (should shift left as n increases)

Next, we perform the same visual test conditional on appraisal value – that is, based on

nonparametric estimates of the distributions of transaction prices for each N , conditional on

appraisal value X. Letting (Wi, Ni, Xi)
L
i=1 denote the transaction price, number of bidders, and

appraisal value observed in the ith auction in the data, we construct a Nadaraya-Watson kernel

estimate for each distribution Fn−1:n(v|X) as

F̂n−1:n(v|X) =

∑L
i=1 1{Ni = n}Kb(X −Xi)1{Wi ≤ v}∑L

i=1 1{Ni = n}Kb(X −Xi)

31



Figure 2: The same “eyeball test,” using estimates of Fn−1:n conditional on appraisal value

F̂n−1:n(v|X), X = 26 ψ−1
n−1:n

(
F̂n−1:n(v|X)

)
, X = 26

F̂n−1:n(v|X), X = 56 ψ−1
n−1:n

(
F̂n−1:n(v|X)

)
, X = 56

F̂n−1:n(v|X), X = 92 ψ−1
n−1:n

(
F̂n−1:n(v|X)

)
, X = 92
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where Kb is the Gaussian kernel with bandwidth b. We use a bandwidth based on the rule of thumb

used by Haile and Tamer (2003) for the same data. We can then apply the same visual test as before,

to these conditional CDFs. Figure 2 shows graphs of F̂n−1:n( · |X) and ψ−1
n−1:n

(
F̂n−1:n( · |X)

)
for

three representative appraisal values, 26, 56, and 92 – the 25th, 50th, and 75th percentiles of appraisal

values in the data. Our test is again the claim that in each row, the curves in the first column shift

to the right as n increases, while the curves in the second column shift to the left.

Examining Figure 2, there are two main features to notice. The first is that by controlling for the

observable auction heterogeneity through appraisal value, there is less heterogeneity in the residual

θ to slow down the effect of n on transaction prices; the curves in the right column are therefore

much closer together than in the unconditional case. Second, the data seems to fit the hypothesis

of independence of valuations and N fairly well. All three plots of F̂n−1:n(v|X) show a clear shift to

the right as n increases, although there is some crossing of curves in a few spots. As for the plots of

ψ−1
n−1:n

(
F̂n−1:n(v|X)

)
, for X = 56 and 92, these are also for the most part ordered correctly (shifting

to the left as n increases); at X = 26, for v above about 75, the curves are virtually indistinguishable

from each other. These “eyeball” tests suggest that either unconditionally or conditional on appraisal

value, our data appear to be broadly consistent with our model and independence of valuations and

N .

Next, we apply the formal test of (9) and (10) introduced above, to see whether the occasional

apparent violations of these inequalities are explained by sampling variability or refute the model.

In addition, the assumption of IPV implies the added restriction that (10) holds everywhere with

equality, which appears not to hold in Figures 1 and 2; we naturally would like to ask whether the

curves represent real econometric rejections of the equality test proposed in Athey and Haile (2002).

Table 2 shows the results of all three unconditional tests.28

Table 2: Unconditional Test Results

Eq. (9) Eq. (10) IPV†

-2.0209 -4.4134 19.2590

(†) Test-statistic for (10’), using (11’).

28 We applied the test on the range N = {2, 3, 4, . . . , 11} and Wn,n′ =
{
w : 0.02 ≤ FW |N (w|m) ≤

0.98 for m = n, n′
}

, and used 1
{

0.02 ≤ F̂−i,j
W |N (Wj |n) ≤ 0.98

}
· 1
{

0.02 ≤ F̂−i,j
W |N (Wj |n′) ≤ 0.98

}
to estimate

1{Wj ∈ Wn,n′} in the calculation of T̂F
n,n′ (Zi, Zj), T̂

Ω
n,n′ (Zi, Zj), and T̂−Ω

n,n′ (Zi, Zj). For all three tests, we used

bL = 0.001 and the additive constants c = 10−6. For estimating variances, we used the analytic expressions given in

(31) and (32) of Appendix B.4.3 and (37) and (38) in Appendix B.4.4. The sample size is L = 2036.
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These results strongly suggest a data-generating process satisfying (9) and (10). (Their

magnitude could be the result of both holding as strict inequalities with probability one, in which

case the variance estimators used in the denominator might be quite small. Asymptotically, the

variance estimators would be dominated by c1 = c2 = 10−6, causing both test statistics to converge

to 0 in probability; but at our sample size, this may not yet be happening. Nonetheless, we see

strong support for (9) and (10); since both test statistics are negative, we could not reject either (9)

or (10) regardless of the normalizing variance.)

Our results also reflect strong evidence against (10’). Thus, if we do not condition on

any covariates, our data are consistent with conditionally independent private values which are

independent of N , but not consistent with independent private values, confirming the visual intuition

in Section 4.3. All of our qualitative results were found to be robust to moderate changes in b
L

which

led, in turn, to moderate fluctuations in the values of all three statistics, but the qualitative rejection

results remained intact for a 5% significance level.

Finally, we apply the formal test conditional on appraisal value. The details of the implementa-

tion are given in Appendix B.6.5. Table 3 shows the results of the three conditional tests:

Table 3: Conditional Test Results

Eq. (18) Eq. (19) IPV

-1.2648 -1.3407 11.8961

As in the unconditional case, these show that, conditional on appraisal value, our data is

consistent with conditionally independent private values which are independent of N , but not

consistent with independent private values. These conclusions were again robust to moderate changes

in our bandwidths, and in the support of the kernels used.

4.4 Application of the Identification Strategy

Next, we apply the identification results from Section 2 to the timber auction data. The main goal

is to better understand the consequences of a strategic reserve policy when there is unobserved

heterogeneity affecting demand. As discussed above, we condition only on appraisal value, which

we believe accounts for most of the heterogeneity contained in observable covariates, and allow

remaining observables to be picked up in θ.

In the counterfactuals we consider, we exploit the fact that the Forest Service holds timber

auctions in two rounds. In the first round, bidders must submit bids of at least the reserve price

(equal to the appraisal value) in order to qualify for the oral auction round of bidding. The oral
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auction then starts at the highest of the sealed bids. The first round of bidding thus reveals to both

the seller and the other bidders the number of potential bidders in the ascending auction. The seller

can thus use the number of potential bidders to design an alternative reserve price policy for the

oral round of bidding, which would mean beginning the oral auction at some strategic level above

the highest of the sealed bids.

The number of bidders who show up for the sealed bidding round is not observed in our data.

However, as discussed above (footnote 26), it is widely known that the posted reserve price rarely if

ever deters a potential bidder from participating in an auction; as a result, we can use the the number

of bidders participating in the ascending auction (which is observed in the data) as a reasonable

measure of the number of potential bidders in that auction.

Since both the eyeball test and formal econometric test above failed to reject the assumption of

independence between valuations and auction size, we will present both the upper and lower bounds

on seller’s profit for the counterfactuals we consider in this section. If valuations are instead assumed

to be stochastically increasing in N , the upper bounds πn on expected profit are still valid, but the

lower bounds πn no longer apply.

We begin by visually demonstrating the effect of correlation on the distribution Fn:n of the highest

valuation. As a representative example, we consider a timber tract with the median appraisal value

in the data (X = 55.9) and N = 3 bidders. The first graph in Figure 3 shows three different ways

to calculate Fn:n. “Upper bound” and “lower bound” refer to the bounds Fn:n and Fn:n defined

in section 2. (These are calculated using nonparametric estimates of the distributions Fm−1:m

conditional on appraisal value.) “IPV” is the standard calculation of Fn:n under the assumption that,

conditional on appraisal value, bidder valuations are independent; this calculation is Fn:n(v|X) =(
ψ−1
n−1:n (Fn−1:n(v|X))

)n
.29

Examining Figure 3, we see that even though we do not achieve point-identification of F3:3, our

bounds are nonetheless informative. Even the lower bound Fn:n lies above the distribution implied

by IPV, giving confirmation that there is indeed correlation among valuations in the data. This

lower bound Fn:n remains valid when the assumption of independence between valuations and N

is replaced with the weaker assumption of stochastic monotonicity; so the observation that F3:3 lies

above the IPV calculation still holds under our weaker identifying assumption. Also, relative to

IPV, our upper and lower bounds are reasonably close together, so under independence between

valuations and auction size, the true value of F3:3 is fairly narrowly pinned down.

29In all three calculations of Fn:n, and in our calculations of bounds on πn below, we smooth the nonparametric

estimates of the conditional CDFs Fm−1:m( · |X) using the procedures suggested by Hansen (2004).
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Figure 3: Analyzing a “Typical” Auction with n = 3 and X = 56

Fn:n(v|X), calculated three ways
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Next, we examine the effect that these different estimates of Fn:n have on the seller’s expected

profit. Starting with non-parametric estimates of F2:3, and then calculating bounds F 3:3 and F 3:3

(all conditional on the median appraisal value X = 56), Theorem 1 defines upper and lower bounds

on the seller’s expected profit at various reserve prices. The only missing piece is the seller’s own

valuation for the good, denoted v0. We begin with the assumption that v0 = 0, i.e., that the

government has no private value for the unsold timber tract. In this case, expected profit to the

seller is identical to expected revenue. The second graph in Figure 3 shows the bounds on expected

revenue when we account for correlation among bidder valuations, alongside the expected revenue

implied by the assumption that bidder valuations are independent (IPV).

As Figure 3 shows, the standard IPV model suggests there is a small but noticeable increase in

revenue from using a reserve price around 100 (nearly double the appraisal value). Our bounds on

expected revenue, accounting for unobserved heterogeneity, suggest there is no such increase, and

that expected revenue begins to decrease in reserve price much sooner. As discussed above, a reserve

price is only beneficial when just one bidder’s value exceeds the reserve. When bidder values are

positively correlated, then when n− 1 bidders have values below r, the last bidder is more likely to

have a low value as well, as compared to the case where bidders are independent; so the benefit of

a reserve price is smaller when bidder have correlated valuations as compared to IPV. These effects

of correlation are exactly what is being captured in Figure 3, by the fact that both our upper and

lower bounds on expected revenue lie below the IPV curve and peak at a lower reserve price.

As the seller’s own valuation v0 increases, the value to setting a reserve price increases (since

the cost of not selling is reduced). We now make the more natural assumption that the value to

the seller is equal to the appraisal value. (Since appraisal value is meant as a conservative estimate

of the profitability of logging the land, this seems appropriate.) The third graph in Figure 3 shows

expected profit under this assumption, calculated under IPV and under our bounds. We think of a

“nonstrategic reserve price” as a reserve price equal to the seller’s valuation, and a “strategic reserve

price” as a reserve higher than that. Both standard IPV analysis and our analysis show that there

are gains to using a strategic reserve; but the magnitude of the gains, as well as the reserve that

maximizes them, are once again much smaller under our analysis than under IPV.

To better understand the implications of the the last graph in Figure 3, Table 4 shows, under

each of the three estimates above, the reserve price r∗ that maximizes expected profit; the ratio of

that optimal reserve to the seller’s valuation; the expected profit under a nonstrategic reserve price;

the expected profit at the optimal reserve price; and the increase in profits that this represents. As

discussed above, our analysis shows that there is indeed a gain to using a strategic reserve price, but

that this gain is much smaller than the gain suggested by IPV. From Theorem 1, when valuations are
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Table 4: Optimal Reserve and Effect on Profits, Calculated Three Ways

r∗ r∗

v0
πn(r = v0) πn(r = r∗) %∆

IPV 131.4 2.35 47.1 60.7 22.4%

Upper 99.9 1.79 47.1 50.8 7.2%

Lower 86.0 1.54 47.1 49.2 4.2%

independent of N , bounds on the optimal reserve price are given by πn(r∗n) ≥ maxr′ πn(r′) = 49.2;

this constrains r∗n to lie within the interval [73.7, 122.8]. While this is a wide range, it is still

informative, as the optimal reserve is sure to be below the value of 131.4 implied by IPV. Further, at

the IPV-implied optimal reserve of 131.4, the upper and lower bound on expected profit accounting

for unobserved heterogeneity are 47.8 and 41.1, respectively, implying anything from a negligible

gain to a non-negligible loss relative to a non-strategic reserve. We emphasize once again that when

valuations are stochastically increasing in N , the upper bounds on expected revenue and profit

still hold. This means that the qualitative takeaway – that both the optimal reserve price and the

increase in profits are substantially lower than IPV would suggest – still holds when our stronger

identifying assumption fails.

While these results illustrate the effects of reserve on one particular auction, they are fairly

representative. Maintaining the assumption that the seller’s value v0 in each auction is equal to

the appraisal value, we can consider the aggregate effect of different reserve price policies applied

to all the auctions in the data set. We consider two main counterfactual exercises. In the first

exercise, we consider the policy of setting each auction’s reserve price such that the probability of

no sale (i.e., no bidder having a value above the reserve) is 15%. The 15% number comes from the

mandate of the Forest Service to sell at least 85 percent of timber tracts. Relative to the reserve

prices that appear optimal under IPV, this is a more conservative policy, implying a smaller markup

over cost; thus, when we consider profit maximization based on IPV analysis, the 15% mandate

is a binding constraint. As pointed out by Haile and Tamer (2003), the IPV model predicts that

the government could nearly double the reserve price in most auctions without threatening the 15%

no-sale benchmark; we find that when we condition only on appraisal value and raise each reserve to

the level predicting a 15% chance of no-sale under IPV, the average ratio of reserve price to appraisal

value is 3.1 (and the median is 2).

However, when unobserved heterogeneity is accounted for, the probability of no-sale at these

new reserve prices is substantially higher, since correlation implies a less optimistic distribution Fn:n

(and the probability of no-sale at a reserve price r is simply Fn:n(r)). As Table 5 shows, averaging
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across the auctions in our data, the upper and lower bounds on the probability of no-sale are 36.7%

and 24.2%, respectively. That is, at the reserve prices which IPV predicts give a 15% chance of

no-sale, we calculate the actual chance of no-sale (averaged across auctions) to instead be between

24.2% and 36.7%. Table 5 also shows the impact this reserve price policy would have on expected

profits πn, again assuming that v0 = X. Bids and valuations are all stated in dollars per unit of

timber, but our data also contains the volume of timber in each tract, so we can calculate the gain or

loss per auction in dollars as well. The major take-away message is that when we allow for bidders’

valuations being correlated, the gains to profits from the 15 percent reserve price policy are at best

about half what they would appear to be under IPV, and at worst significantly negative.

Table 5: Change in Expected Profit from 15 Percent “No Sale” Policy

πn πn IPV

Average probability of no sale 36.7% 24.2% 15.0%

Average change in expected profit (relative to r = v0 = X) −3.9% 7.4% 16.0%

Average change in expected profit, dollars −$9, 269 $3, 447 $7, 896

While this “15 percent” policy is not one that was seriously considered by the USFS, there

has been a long debate about the appropriate way to set reserves for timber auctions. In the

1990s, the USFS made an effort to move toward a market-based method of appraising timber, the

Transaction Evidence Appraisal (TEA) method, which was a change from the “residual method”

that was operational during the period of our data. Athey, Crampton, and Ingraham (2003) give

more detail on the TEA method. The idea was that rather than relying on accounting information

on cost and revenue, timber could be appraised using data on transaction prices from past sales

of similar tracts. The actual appraisal value (and reserve price) would be the predicted value of

the high bid in a given auction, discounted by some “rollback” factor to encourage competition.

USFS policy requires rollback rates to be no more than 30% of the predicted transaction price;

Athey, Crampton, and Ingraham (2003) report discount rates actually employed in various locations

ranging from 5% to 30%, with the vast majority between 10% and 30%. We can now examine the

sensibility of this policy. We mimic the TEA approach by regressing transaction price on appraisal

value in our data, and then applying a discount rate to that predicted value. Table 6 shows the

average effect (across the different auctions in our data set) of the change in expected profits from

moving from a non-strategic reserve price to this transactions-based approach with various discount

rates.
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Table 6: Change in Expected Profit from TEA Policy at Various Discount (“Rollback”) Rates

Discount Average r
v0

πn πn IPV πn πn IPV

0% 2.50 −0.8% 7.3% 17.1% −$3, 076 $3, 774 $7, 427

10% 2.25 1.7% 6.7% 13.7% −$898 $3, 386 $5, 940

20% 2.00 2.5% 5.3% 9.8% $252 $2, 654 $4, 274

30% 1.75 2.0% 3.4% 5.9% $567 $1, 737 $2, 645

As Table 6 shows, with a discount rate of 20% or more, the transactions-based approach

unambiguously increases expected profits relative to a nonstrategic reserve policy, and mitigates

the downside risk of the more aggressive “15% policy” discussed earlier. Even with a discount rate

of 10%, the lowest discount rate commonly used, the “worst-case” reduction in expected profits is

not that significant, and the “best-case” profits are substantially higher. Thus, the TEA policy is

fairly robust: even allowing for unobserved heterogeneity in the data and the possibility of correlated

values, the TEA policy, as typically implemented, appears to be profit-enhancing.

5 Conclusion

In this paper, we have introduced new empirical methods for identification and counterfactual

analysis in ascending auctions, which are robust to correlation in values induced by unobserved

heterogeneity. Applying them to timber data, we find that analysis accounting for unobserved

heterogeneity rationalizes a much more cautious reserve price policy than traditional analysis, at

least when appraisal value is taken to be a sufficient statistic for observable covariates. We have

made use of two potential identifying assumptions: the stronger of these, independence between

valuations and auction size, may not be valid for all applications, but it seems to fit well in the

timber auction setting, and it lends itself to formal testing; and the qualitative conclusions of our

analysis are the same under the weaker assumption that valuations are stochastically increasing in

auction size.

More generally, we believe the methods presented above to be applicable in three types of

situations:

1. Bidder valuations are correlated, but this correlation cannot be linked to any observable

auction-specific covariates

2. Covariates known to shift bidders’ valuations are missing from the data
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3. Conditioning nonparametrically on all relevant covariates is unappealing due to sample size

and the “curse of dimensionality”30

Depending on the inferential setting, any one of these issues could be a significant concern for

the researcher. While the first two are self-explanatory and are likely to characterize many empirical

applications, let us elaborate briefly on the third. Even if bidder values are indeed independent

conditional on all relevant observables, use of the IPV framework constrains the analyst to be fully

nonparametric and to condition on “everything,” since any misspecification or omitted variable

would lead to correlated residuals and invalidate the theoretical model. Our techniques, on the

other hand, allow for more flexibility.

To illustrate this flexibility, consider the following avenue for future research. Suppose N ⊥ (X, θ)

and Vi
iid∼ F ( · |X, θ); let g : supp(X)→ <k be any function of X on which we might wish to condition

our analysis.31 Conditional on a realization of g(X), Vi are still i.i.d. draws from F ( · |X, θ), just

with a different (posterior) distribution of (X, θ) for each value of g(X).32 Regardless of the choice

of g, our model (and identifying assumption) still hold, and we can get valid estimates of expected

revenue and do valid counterfactuals from estimates F̂n−1:n( · |g(X)) – even if g does not accurately

model the effect of X on Vi in the data-generating process and is therefore “misspecified.”33

Applied researchers often face a dilemma. Asymptotically, including as many observable covari-

ates X as possible will help control unmodelled heterogeneity across auctions; but nonparametric

methods with a high-dimensional X may yield estimators for F̂n−1:n( · |X) that are imprecise in small,

or even moderately large, samples. Such imprecision would permeate to the resulting estimates of

πn and πn and, consequently, to any policy conclusions derived from them. To counteract these

finite-sample issues, the researcher may want to condition only on a subset of elements in X or,

more generally, on a lower-dimensional transformation g(X). The methods and results in this paper

allow the researcher to conduct robust estimation and inference whose validity does not hinge on

whether the chosen function g entirely controls the unmodelled heterogeneity across auctions.

30This curse of dimensionality results from the number of continuously distributed elements in X.
31If g is a constant, we are conditioning on nothing, and letting all of (X, θ) be picked up as unobserved heterogeneity.

If k = dim(X) and g is the identity map, we are conditioning on all of X. If k < dim(X) and g(X) = (X1, X2, . . . , Xk),

then (as in this paper) we are conditioning on a subset of X. If k = 1, g is a one-dimensional index constructed from

X. And so on. For any given choice of g(·), the methodology presented here allows us to test whether values are

independent of N conditional on g(·).
32Specifically, if ρ(X, θ) is the prior distribution of (X, θ), then ρ(X, θ|g(X) = g) =

ρ(X,θ)1{g(X)=g}∫
X×Θ ρ(X′,θ′)1{g(X′)=g}dX′dθ′ .

33Another alternative would be to model valuations parametrically, for example, as Vi = βX + εi. Even if the true

effect of X on Vi is not linear, the residuals εi = Vi−βX are still i.i.d. conditional on (X, θ); so our techniques would

still pin down the distribution of εn:n from the distributions of εm−1:m, giving us the “average” expected revenue

across all sets of covariates X with the same value of βX.
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A Appendix – Implications of Standard Entry Models

In this appendix, we consider two well-known models of auctions with endogenous entry. We give

conditions under which both of them generate valuations which are stochastically increasing in N

but not independent of N , and conditions under which both are guaranteed to lead to violations

of the test (10). We then solve numerical examples of both, and show that the violations of (10)

are substantial; and use one of these examples as the basis for Monte Carlo simulations of our test

statistic.

In the main body of the paper, we allow θ to have arbitrary dimension and arbitrary effect on

the distribution of valuations F ( · |θ). Throughout this appendix, however, we will restrict θ to be

one-dimensional and assume F ( · |θ) is stochastically increasing in θ, that is, θ ⊆ <, and θ > θ′

implies F ( · |θ) �
FOSD

F ( · |θ′).

Models

The first model we consider is that of Levin and Smith (1994), modified to condition on θ. There are

n identical potential bidders, with identical entry costs c. Bidders observe the realization of θ but

not their valuations, and then decide simultaneously whether to enter. Those who enter pay their

entry costs, learn their valuations, and participate in an ascending auction. (Since entry decisions

are made prior to learning valuations, Levin and Smith interpret c as the cost of actually discovering

one’s valuation of the object.) Those who do not enter get payoff 0.

The Levin-Smith model has a unique symmetric equilibrium. Let un(θ) denote the expected

payoff to each bidder from participating in an n-bidder auction given a realization of θ. We focus

on the nondegenerate case where u1(θ) > c > un̄(θ), so the symmetric equilibrium is in mixed

strategies: for each realization of θ, potential bidders each enter with probability qθ, where qθ solves

c =

n−1∑
n=0

[(
n− 1

n

)
(qθ)

n(1− qθ)n−1−n
]
un+1(θ)

(The term in square brackets is the probability that exactly n of a bidder’s opponents enter, so the

right-hand side is a bidder’s expected payoff after entering.)

The second model we consider is that of Samuelson (1985). Bidders again have homogeneous

entry costs c, but learn both θ and their valuation before deciding whether to pay c and participate

in the auction. In this model, for each realized θ, potential bidders play a cutoff strategy, entering

if and only if their valuation is at least v∗(θ), where v∗(θ) solves c = (v − r) (F (v|θ))n̄−1
.

If θ > θ′ implies F ( · |θ) �
FOSD

F ( · |θ′), it is straightforward to show that v∗(θ) is increasing

in θ and F (v∗(θ)|θ) is decreasing in θ – for higher θ, bidders require a higher valuation to enter,
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but still enter with greater probability. Note that conditional on entering, bidders have valuations

drawn from the truncated distribution F (v|θ, v > v∗(θ)) = F (v|θ)−F (v∗(θ)|θ)
1−F (v∗(θ)|θ) .

Results

First, we show conditions under which either entry model is consistent with our weaker identifying

assumption:

Proposition 1 Suppose θ ⊆ <, and θ > θ′ implies F ( · |θ) �
FOSD

F ( · |θ′).

1. If qθ (the expected participation rate) is increasing in θ, the Levin-Smith entry model leads to

valuations which are stochastically increasing in N

2. If the truncated distribution F (v|θ, v > v∗(θ)) is stochastically increasing in θ, the Samuelson

entry model leads to valuations which are stochastically increasing in N

Proof. We first show that in either model, the conditional distribution of θ is stochastically

increasing in N , that is, G( · |n) �
FOSD

G( · |n′) for n > n′. We show this for discrete θ; the

proof is the same for continuous θ, with integrals replacing sums. For the Levin-Smith case, letting

P (θ) denote the prior probability distribution of θ,

G(θ̃|n) =

∑
θ≤θ̃ P (θ)nCnq

n
θ (1− qθ)n−n∑

θ∈Θ P (θ)nCnqnθ (1− qθ)n−n

=

∑
θ≤θ̃ P (θ)nCnq

n
θ (1− qθ)n−n∑

θ≤θ̃ P (θ)nCnqnθ (1− qθ)n−n +
∑
θ>θ̃ P (θ)nCnqnθ (1− qθ)n−n

= R

(∑
θ>θ̃ P (θ)qnθ (1− qθ)n−n∑
θ≤θ̃ P (θ)qnθ (1− qθ)n−n

)

where R(x) = 1
1+x . As n increases, each term in the numerator gets multiplied by qθ

1−qθ >
qθ̃

1−qθ̃
,

while each term in the denominator gets multiplied by qθ
1−qθ ≤

qθ̃
1−qθ̃

, so the argument of R increases;

since R is decreasing, this means G(θ̃|n) is decreasing in n, meaning G( · |n) �
FOSD

G( · |n′) for

n > n′. For the Samuelson model, the same logic holds, but with 1 − F (v∗(θ)|θ) (each potential

bidder’s probability of entry) replacing qθ.

For the Levin-Smith case, since F ( · |θ) is stochastically increasing in θ,

Fn+1
n:n (v) =

∫
θ∈Θ

(F (v|θ))n dG(θ|n+ 1) ≤
∫
θ∈Θ

(F (v|θ))n dG(θ|n) = Fn:n(v)

because G( · |n + 1) �
FOSD

G( · |n) and (F (v|θ))n is decreasing in θ. Under the Samuelson model,

the same logic holds, but with the truncated distribution F (v|θ, v > v∗(θ)) replacing F (v|θ). �
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(Note that qθ increasing in θ is by no means guaranteed in the Levin-Smith model. If, for

example, higher θ were associated with higher average valuations but lower variance, un(θ) could

be decreasing in θ for n > 1, in which case qθ could be decreasing for some levels of entry costs. A

sufficient condition for qθ to be increasing would be un(θ) increasing in θ for each n, which would

tend to hold, for example, if higher θ implied both higher mean and higher variance.)

Next, we show that under similar conditions, either entry model will generate a violation of (10),

meaning our test of independence between valuations and N will have power against the dependence

introduced by either of these models:

Proposition 2 Suppose θ ⊆ <, and θ > θ′ implies F ( · |θ) �
FOSD

F ( · |θ′). Suppose also that F ( · |θ)

is continuous and twice differentiable, with derivative f( · |θ), and has the same bounded support [v, v]

for all θ.

1. If qθ and f(v|θ) are both increasing in θ, the Levin-Smith entry model leads to a violation of

(10).

2. If f(v|θ, v > v∗(θ)) = f(v|θ)
1−F (v∗(θ)|θ) is increasing in θ, the Samuelson entry model leads to a

violation of (10).

Proof. We’ve already showed that under either model, G( · |n) is stochastically increasing in n. If

f(v|θ) is increasing in θ, then, Eθ|n (f(v|θ))2
is increasing in n, so the Levin-Smith model generates a

violation by Theorem 3. The same logic holds for the Samuelson model, using the density conditional

on entry in place of the unconditional density f(v|θ). �

Numerical Examples

Next, we give numerical examples of these two entry models. Let θ take two values, H and L, with

equal probabilities, and F ( · |θ) be log-normal distributions: when θ = H, ln(Vi) ∼ N(2.5, 0.5), and

when θ = L, ln(Vi) ∼ N(2.0, 0.5). Vi has mean 13.8 and median 12.2 when θ = H, and mean 8.4

and median 7.4 when θ = L.

Consider the Levin-Smith entry game, with 12 potential bidders and entry costs of $1.50. This

causes bidders to each enter with probability qH = 0.3884 when θ = H, and probability qL = 0.2597

when θ = L. Given qθ, we can then calculate the distribution of N , conditional on θ:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Pr(N = n|θ = H) 0.3% 2.1% 7.3% 15.4% 22.1% 22.4% 16.6% 9.0% 3.6% 1.0% 0.2% 0.0% 0.0%

Pr(N = n|θ = L) 2.7% 11.4% 22.0% 25.7% 20.3% 11.4% 4.7% 1.4% 0.3% 0.0% 0.0% 0.0% 0.0%
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And likewise, assuming the prior probability of θ = H is 1
2 , the conditional probability distribution

of θ given a value of N :

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Pr(θ = H|N = n) 9% 15% 25% 37% 52% 66% 78% 87% 92% 95% 97% 99% 99%

Next, consider the Samuelson entry game, with 8 potential bidders and the same entry costs

of $1.50. This leads to cutoff values v∗(H) = $16.12 and v∗(L) = $10.48; each bidder enters with

probability 1 − F (v∗(H)|H) = 0.288 when θ = H, and probability 1 − F (v∗(L)|L) = 0.242 when

θ = L. Again, we can calculate the distribution of N conditional on θ, and the distribution of θ

conditional on N :

n 0 1 2 3 4 5 6 7 8

Pr(N = n|θ = H) 6.6% 21.4% 30.3% 24.5% 12.3% 4.0% 0.8% 0.1% 0.0%

Pr(N = n|θ = L) 10.8% 27.8% 31.1% 19.9% 8.0% 2.0% 0.3% 0.0% 0.0%

Pr(θ = H|N = n) 38% 44% 49% 55% 61% 66% 71% 76% 80%

Figure 4 shows ψ−1
n−1:n (Fn−1:n(v)) for n = 2, 3, 4, 5, 6, 7, 8. If ψ−1

n−1:n (Fn−1:n(v)) is increasing

in n everywhere, we would fail to reject (10). If it is decreasing in n at any v, we would reject

independence of valuations and N given enough data. Both of these entry models would clearly lead

to rejection given enough data.

Figure 4: ψ−1
n−1:n (Fn−1:n(v)) under two entry models. (Recall that we reject independence if

ψ−1
n−1:n (Fn−1:n(v)) is decreasing in n for some v.)

Levin-Smith Samuelson
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Monte Carlo Simulations

For three different data-generating processes (described below), we generated 1000 data sets of sizes

L = 200, L = 400 and L = 800 and calculated the test-statistic of (10) for each simulated data set.

In every instance we constructed the statistic exactly as described in the unconditional-test results

for the timber data application (see footnote 28). We used b
L

= 0.001 for L = 800, b
L

= 0.0012

for L = 400 and b
L

= 0.0015 for L = 200. These satisfy the convergence rate conditions34 of b
L

in

Theorem 5. The data-generating processes were:

1. The above example of the entry game from Levin and Smith (1994), discarding observations

with N < 2

2. Valuations independent of N (A) – the distributions of θ and Vi|θ were the same as in case

1, but N was chosen independently of θ, to match the distribution of N in case 1. (So for

example, in case 1, Pr(N = 5|N ≥ 2) = 22.9% when θ = H and 13.3% when θ = L; so in this

case, each observation had probability 22.9%+13.3%
2 = 18.1% of having N = 5, independent of

θ.) Under this data-generating process, (10) holds as a strict inequality with probability 1.

3. Valuations independent of N (B) – the distributions of θ and N were the same as in the first

two cases, but the distributions F ( · |θ) were as follows:

F (v|L) = Φ

(
ln(v)− 2

3/4

)
and F (v|H) =

 Φ
(

ln(v)−2.5
1/3

)
if ln(v) < 2.9

Φ
(

ln(v)−2
3/4

)
if ln(v) ≥ 2.9

where Φ is the CDF of the standard normal distribution. This led to (10) holding with

equality at v ≥ exp(2.9), which occurs for about 11.5% of valuations, and therefore about 8%

of transaction prices in our simulated data.

Figure 5 shows graphs of ψ−1
n−1:n (Fn−1:n(v)) for various values of n for each of these three data-

generating processes. The three examples represent the three relevant asymptotic scenarios: (10)

is violated in case 1, holds strictly everywhere in case 2, and holds everywhere but sometimes with

equality in case 3.

Our rejection rule used a 5% target significance level. The results of the simulations are given in

the text, in section 3.5.

34Using the same bandwidth bL for the three sample sizes would also have been a valid and meaningful exercise,

since our focus here is on the finite-sample properties of our test.
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Figure 5: ψ−1
n−1:n (Fn−1:n(v)) under the three scenarios used in Monte Carlo simulations

Case 1 Case 2 Case 3

B Appendix – Omitted Proofs

B.1 Proof of Lemma 1

By assumption, the transaction price is max{r, Vn−1:n}, provided Vn:n ≥ r. We can therefore write

expected profits as

πn(r) = EVn−1:n,Vn:n

{
1Vn:n≥r≥Vn−1:n

(r − v0) + 1Vn:n≥Vn−1:n>r (Vn−1:n − v0)
}

Since the first event happens with probability Fn−1:n(r)−Fn:n(r), and the second happens whenever

Vn−1:n > r, we can rewrite this as

πn(r) = (Fn−1:n(r)− Fn:n(r)) (r − v0) +
∫ +∞
r

(v − v0)dFn−1:n(v)

As for bidder surplus, each bidder has ex-ante probability 1
n of having the highest value, which earns

a surplus of 0 when Vn:n ≤ r and Vn:n −max{Vn−1:n, r} when Vn:n > r (where V0:1 is understood

to be 0). So

un(r) = 1
nEVn−1:n,Vn:n

{1Vn:n>r (Vn:n −max{Vn−1:n, r})}

= 1
nE
{
1r≥Vn:n≥Vn−1:n (r − r) + 1Vn:n>r≥Vn−1:n (Vn:n − r) + 1Vn:n≥Vn−1:n>r (Vn:n − Vn−1:n)

}
= 1

nE
{
1Vn:n≤rr + 1Vn:n>rVn:n − 1Vn−1:n≤rr − 1Vn−1:n>rVn−1:n

}
= 1

n (E {max{Vn:n, r}} − E {max{Vn−1:n, r}})
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B.2 Proof of Lemmas 3 and 4

We begin with Lemma 4. As noted in the text, valuations independent of N implies Fn:n(v) =

1
n+1Fn:n+1(v) + n

n+1Fn+1:n+1(v). Fixing n, we will use induction on n̄ to show (7),

Fn:n(v) =
1

n− 1

n̄∑
m=n+1

(
m−1∏
i=n

i− 1

i+ 1

)
Fm−1:m(v) +

n

n̄
Fn̄:n̄(v)

for any n̄ > n. For the base case, n̄ = n+ 1, the right-hand side is 1
n+1Fn:n+1(v) + n

n+1Fn+1:n+1(v),

which as noted is equal to Fn:n(v). For the inductive step, if (7) holds for n̄ = K, then

1
n−1

∑K+1
m=n+1

(∏m−1
i=n

i−1
i+1

)
Fm−1:m(v) + n

K+1FK+1:K+1(v)

= 1
n−1

∑K
m=n+1

(∏m−1
i=n

i−1
i+1

)
Fm−1:m(v) + 1

n−1

(∏K
i=n

i−1
i+1

)
FK:K+1(v) + n

K+1FK+1:K+1(v)

= Fn:n(v)− n
KFK:K(v) + 1

n−1
(n−1)n
K(K+1)FK:K+1(v) + n

K+1FK+1:K+1(v)

= Fn:n(v) + n
K

(
−FK:K(v) + 1

K+1FK:K+1(v) + K
K+1FK+1:K+1(v)

)
which is again equal to Fn:n(v) since by (5), the terms in parentheses sum to 0; so (7) holds for

n̄ = K + 1. To show (6) holds when valuations are stochastically increasing in N , the steps are

identical, only starting with the weak inequality Fn:n(v) ≥ 1
n+1Fn:n+1(v) + n

n+1Fn+1:n+1(v).

B.3 Proof of Theorem 3

The proof is basically the Taylor expansion of ψ−1
n−1:n ◦ Fn−1:n around v, which gives

ψ−1
n−1:n (Fn−1:n(v)) = 1− (v − v)

√
Eθ|n(f(v|θ))2 +O

(
(v − v)2

)
(21)

Calculation is complicated by the fact that
(
ψ−1
n−1:n

)′
is infinite at 1. ψ−1

n−1:n ◦ Fn−1:n is still

differentiable at v, because Fn−1:n is very flat near v; we just need to be very careful in how

we calculate things.

Differentiating gives(
ψ−1
n−1:n ◦ Fn−1:n

)′
(v) =

(
ψ−1
n−1:n

)′
(Fn−1:n(v))× F ′n−1:n(v)

= 1

ψ′n−1:n(ψ−1
n−1:n(Fn−1:n(v)))

× F ′n−1:n(v)

= 1

ψ′n−1:n(ψ−1
n−1:n(Eθ|nFn−1:n(v|θ)))

×
(
Eθ|nFn−1:n(v|θ)

)′
= 1

ψ′n−1:n(ψ−1
n−1:n(Eθ|nψn−1:n(F (v|θ))))

×
(
Eθ|nψn−1:n (F (v|θ))

)′
= 1

ψ′n−1:n(ψ−1
n−1:n(Eθ|nψn−1:n(F (v|θ))))

× Eθ|nψ′n−1:n (F (v|θ)) f(v|θ)

so letting ε ≡ v − v,

(
ψ−1
n−1:n ◦ Fn−1:n

)′
(v − ε) =

Eθ|n{ψ′n−1:n (F (v − ε|θ)) f(v − ε|θ)}
ψ′n−1:n

(
ψ−1
n−1:n

(
Eθ|n{ψn−1:n (F (v − ε|θ))}

))
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To calculate the denominator, we first fix θ, and suppress the dependence of F ( · |θ) and f( · |θ)

on θ. The Taylor expansion of F (v|θ) around v gives F (v − ε) = 1 − f(v)ε + 1
2f
′(v)ε2 + O(ε3);

ψn−1:n(s) can be written as nsn−1(1− s) + sn, so

ψn−1:n(F (v − ε)) = n
(
1− f(v)ε+ 1

2f
′(v)ε2 +O(ε3)

)n−1 (
f(v)ε− 1

2f
′(v)ε2 +O(ε3)

)
+
(
1− f(v)ε+ 1

2f
′(v)ε2 +O(ε3)

)n
= nf(v)ε− n

2 f
′(v)ε2 − n(n− 1)(f(v))2ε2

+1− nf(v)ε+ n
2 f
′(v)ε2 + n(n−1)

2 (f(v))2ε2 +O(ε3)

= 1− n(n−1)
2 (f(v))2ε2 +O(ε3)

Eθ|n {ψn−1:n (F (v − ε))} = 1− n(n−1)
2 ε2Eθ|n{(f(v|θ))2}+O(ε3)

Next, we calculate y = ψ−1
n−1:n

(
Eθ|n{ψn−1:n (F (v − ε))}

)
. For ε small, the argument of ψ−1

n−1:n

will be close to 1, so y will be close to 1; let x = 1− y, and solve

ψn−1:n(1− x) = 1− n(n−1)
2 ε2Eθ|n{(f(v|θ))2}+O(ε3)

n(1− x)n−1x+ (1− x)n = 1− n(n−1)
2 ε2Eθ|n{(f(v|θ))2}+O(ε3)

nx− n(n− 1)x2 + 1− nx+ n(n−1)
2 x2 +O(x3) = 1− n(n−1)

2 ε2Eθ|n{(f(v|θ))2}+O(ε3)

1− n(n−1)
2 x2 +O(x3) = 1− n(n−1)

2 ε2Eθ|n{(f(v|θ))2}+O(ε3)

x2 +O(x3) = ε2Eθ|n{(f(v|θ))2}+O(ε3)

x = ε
√
Eθ|n(f(v|θ))2 +O(ε2)

(For the last equality, we’re solving x2 +O(x3) = z2 +O(z3). If x = z + βzα + . . . with α < 2, then

the leading term of x2 − z2 would be of order z1+α, giving a contradiction.)

Finally, taking ψ′n−1:n(1− x) to complete the denominator gives

ψ′n−1:n(s) = n(n− 1)sn−2(1− s)

ψ′n−1:n(1− x) = n(n− 1)(1− x)n−2x

= n(n− 1)(1− ε
√
Eθ|n(f(v|θ))2 +O(ε2))n−2

(
ε
√
Eθ|n(f(v|θ))2 +O(ε2)

)
= n(n− 1)ε

√
Eθ|n(f(v|θ))2 +O(ε2)

and so the denominator of
(
ψ−1
n−1:n ◦ Fn−1:n

)′
(v − ε) is

ψ′n−1:n

(
ψ−1
n−1:n

(
Eθ|n{ψn−1:n (F (v − ε|θ))}

))
= n(n− 1)ε

√
Eθ|n(f(v|θ))2 +O(ε2)
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To calculate the numerator, Eθ|n
{
ψ′n−1:n (F (v − ε)) f(v − ε)

}
, we again fix θ and suppress the

dependence of F and f on θ. F (v− ε) = 1− f(v)ε+O(ε2) and ψ′n−1:n(s) = n(n− 1)sn−2(1− s), so

ψ′n−1:n(F (v − ε)) = n(n− 1)
(
1− f(v)ε+O(ε2)

)n−2 (
f(v)ε+O(ε2)

)
= n(n− 1)f(v)ε+O(ε2)

ψ′n−1:n(F (v − ε))f(v − ε) =
(
n(n− 1)f(v)ε+O(ε2)

) (
f(v)− f ′(v)ε+O(ε2)

)
= n(n− 1)(f(v))2ε+O(ε2)

Eθ|n
{
ψ′n−1:n(F (v − ε|θ))f(v − ε|θ)

}
= n(n− 1)εEθ|n{(f(v|θ))2}+O(ε2)

Putting it together, then,

(
ψ−1
n−1:n ◦ Fn−1:n

)′
(v − ε) =

Eθ|n
{
ψ′n−1:n (F (v − ε|θ)) f(v − ε|θ)

}
ψ′n−1:n

(
ψ−1
n−1:n

(
Eθ|n{ψn−1:n (F (v − ε|θ))}

))
=

n(n− 1)εEθ|n{(f(v|θ))2}+O(ε2)

n(n− 1)ε
√
Eθ|n(f(v|θ))2 +O(ε2)

=
Eθ|n(f(v|θ))2√
Eθ|n(f(v|θ))2

+O(ε)

=
√
Eθ|n(f(v|θ))2 +O(ε)

so

ψ−1
n−1:n (Fn−1:n(v)) = ψ−1

n−1:n (Fn−1:n(v))−
∫ v
v

(
ψ−1
n−1:n ◦ Fn−1:n(s)

)′
(s)ds

= 1−
∫ v
v

[√
Eθ|n(f(v|θ))2 +O (v − v)

]
ds

= 1− (v − v)
√
Eθ|n(f(v|θ))2 +O

(
(v − v)2

)
Thus, if Eθ|n (f(v|θ))2

> Eθ|n′ (f(v|θ))2
, then ψ−1

n−1:n (Fn−1:n(v)) < ψ−1
n′−1:n′ (Fn′−1:n′(v)) for v close

to v, a violation of (10) if n > n′. �

B.4 Asymptotic Properties of the Unconditional Test Statistics in (14)

Here we describe and discuss the main asymptotic results and the corresponding assumptions for

the statistics described in (14). Detailed proofs of all our results can be found in the Technical

Supplement.

B.4.1 Assumptions

We begin by formalizing the basic distribution assumptions, all of which are compatible with the

model presented in Section 2.

Assumption T1

We observe an i.i.d. sample (Wi, Ni)
L
i=1 ≡ (Zi)

L
i=1 of winning bids (transaction prices) W and

auction sizes N . The distribution FW |N (w|n) is continuous in w for each n ∈ SN . The set N ⊆ SN
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is compact and min
n∈N

p
N

(n) ≡ p
N
> 0. For each n, n′ in N , the set Wn,n′ is compact and both

FW |N ( · |n) and FW |N ( · |n′) are strictly bounded away from 0 and 1 everywhere in Wn,n′ .

The reason for restricting the test to a region Wn,n′ on which FW |N is bounded away from 0 and

1 is as follows. Define

∇1Ω(s, n, n′) =
∂

∂s
Ω(s, n, n′)

Following the logic from the proof of Theorem 2, ∇1Ω(s, n, n′) = n(n−1)tn−1(1−t)
n′(n′−1)tn′−2(1−t) , where t =

ψ−1
n′−1:n′(s). If s ∈ (0, 1), then t ∈ (0, 1), and so ∇1Ω(s, n, n′) is well-defined, non-zero, and finite; so

under Assumption T1, ∇1Ω(FW |N
(
· |n′), n, n′

)
is well-defined and bounded everywhere in Wn,n′ .

Take any (w, n, n′), where n, n′ ∈ S2
N . We will define

ϕF (Z,w, n) =
1{W ≤ w} − FW |N (w|n)

pN (n)
· 1{N = n},

ϕ∆(Z,w, n, n′) = ϕF (Z,w, n)− ϕF (Z,w, n′),

ϕΩ(Z,w, n, n′) = ∇1Ω
(
FW |N (w|n′), n, n′

)
· ϕF (Z,w, n′),

ϕΦ(Z,w, n, n′) = ϕΩ(Z,w, n, n′)− ϕF (Z,w, n).

(22)

Note that for any n ∈ SN and any w, we have E
[
ϕF (Z,w, n)

]
= 0 and therefore E

[
ϕ∆(Z,w, n, n′)

]
=

E
[
ϕΩ(Z,w, n, n′)

]
= E

[
ϕΦ(Z,w, n, n′)

]
= 0. Take any i 6= j. From the conditions of Assumption

(T1), the linear representations for our nonparametric estimators are given by

F̂−i,jW |N (w|n) = FW |N (w|n) +
1

L− 2

∑
k 6=i,j

ϕF (Zk, w, n) + ς−i,j
L

(w, n),

∆̂−i,jW |N (w, n, n′) = ∆W |N (w, n, n′) +
1

L− 2

∑
k 6=i,j

ϕ∆(Zk, w, n, n
′) + ξ−i,j

L
(w, n, n′),

(23A)

and

Ω
(
F̂−i,jW |N (w|n′), n, n′

)
= Ω

(
FW |N (w|n′), n, n′

)
+

1

L− 2

∑
k 6=i,j

ϕΩ(Zk, w, n
′) + ς̃−i,j

L
(w, n, n′),

Φ̂−i,jW |N (w, n, n′) = ΦW |N (w, n, n′) +
1

L− 2

∑
k 6=i,j

ϕΦ(Zk, w, n, n
′) + ξ̃−i,j

L
(w, n, n′).

(23B)

Using results from empirical process theory (see, e.g., Pakes and Pollard (1989), Andrews (1994)

or Part 2 in van der Vaart and Wellner (1996)), compactness and the remaining features of N and

Wn,n′ described in Assumption (T1), and the classes of functions involved yield

sup
w∈Wn,n′

(n,n′)∈N

∣∣ς−i,j
L

(w, n, n′)
∣∣ = Op

(
1

L

)
, sup

w∈Wn,n′

(n,n′)∈N

∣∣ς̃−i,j
L

(w, n, n′)
∣∣ = Op

(
1

L

)
,

sup
w∈Wn,n′

(n,n′)∈N

∣∣ξ−i,j
L

(w, n, n′)
∣∣ = Op

(
1

L

)
, sup

w∈Wn,n′

(n,n′)∈N

∣∣ξ̃−i,j
L

(w, n, n′)
∣∣ = Op

(
1

L

)
.

(24)

Thus, ξ−i,j
L

and ξ̃−i,j
L

are to be interpreted as the remainder terms of the linear asymptotic

representation of the nonparametric estimators ∆̂−i,jW |N and Φ̂−i,jW |N respectively. From the conditions
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in Assumption (T1), these terms vanish in probability at a rate faster than L−1/2. Additional

properties of these remainders will be important throughout the proof of our main result. In order

to rule out irregular cases, we will assume that the underlying data-generating process is such that

the following additional conditions are satisfied. First, let ∆̂−i,j,kW |N (w, n, n′) and Φ̂−i,j,kW |N (w, n, n′)

denote nonparametric estimators of ∆W |N (w, n, n′) and ΦW |N (w, n, n′) obtained after dropping the

i, j, k observations in the sample. Their corresponding linear representations are straightforward

generalizations of (23A) and (23B). The corresponding remainder terms would now be denoted by

ξ−i,j,k
L

(w, n, n′) and ξ̃−i,j,k
L

(w, n, n′). We assume the following.

Assumption T2

(i) Take i 6= j and let ` denote either i or j. There exists a τ > 0 and a deterministic sequence

H
L

= O(1) such that, for any n, n′ ∈ N ,

Pr
(
−s ≤ ∆W |N (W`, n, n

′) < 0
∣∣∣ ξ−i,jL

(W`, n, n
′),W` ∈ Wn,n′

)
≤ HL ·

∣∣s∣∣ ∀ 0 < s ≤ τ.

(ii) Take any n, n′ in N and any w ∈ Wn,n′ . For k 6= i, j let

γ−i,j
L

(Zk, w, n, n
′) = ξ−i,j

L
(w, n, n′)− ξ−i,j,k

L
(w, n, n′).

Take any n, n′ in N . There exists a deterministic sequence J
L

= O(1) such that for any t ≡
(w, n, n′) where w ∈ Wn,n′∣∣∣∣ E[ϕ∆(Zk, t)

∣∣∣ ξ−i,j,kL
(t) + β · γ−i,j

L
(Zk, t)

]
− E

[
ϕ∆(Zk, t)

∣∣∣ ξ−i,j,kL
(t) + β′ · γ−i,j

L
(Zk, t)

] ∣∣∣∣∣
≤ JL ·

∣∣β − β′∣∣ · ∣∣∣γ−i,jL
(Zk, t)

∣∣∣ ∀ (β, β′) ∈ [0, 1).

Assumption (T2.i) essentially requires that, for ` = i, j, conditional on ξ−i,jL (W`, n, n
′) and W` ∈

Wn,n′ , the density of ∆W |N (W,n, n′) be bounded in a semi open interval of the form [−τ, 0). This

condition will help establish results of the following form for each n, n′ in N ,

Pr
(
−
∣∣ξ−i,j
L

(W`, n, n
′)
∣∣ ≤ ∆W |N (W`, n, n

′) < 0
∣∣∣ ξ−i,jL (W`, n, n

′), W` ∈ Wn,n′

)
= O

(∣∣ξ−i,j
L

(W`, n, n
′)
∣∣).

We wish to stress that, since Assumption (T2.i) deals exclusively with semi-open intervals of the

form [−τ, 0), it does not preclude ∆W |N (W,n, n′) from having a point mass at zero (which would

be the case if (9) is binding as equality with positive probability). Combined with the conditions

leading to (24), the Lipschitz-type restriction in Assumption (T2.ii) will help ensure that

sup
w∈Wn,n′

n,n′∈N

∣∣∣∣E[ϕ∆(Zk, w, n, n
′)
∣∣ ξ−i,j

L
(w, n, n′)

]∣∣∣∣ = Op

(
1

L

)

for k 6= i, j. This result will help yield an exponential probability bound which helps establish our

main result.
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Assumption (T2) is relevant for the inequalities in (9); the following are the analogous conditions

for (10).

Assumption T2’

(i) Take i 6= j and let ` denote either i or j. There exists a τ > 0 and a deterministic sequence

H
L

= O(1) such that, for any n, n′ ∈ N ,

Pr
(
−s ≤ ΦW |N (W`, n, n

′) < 0
∣∣∣ ξ̃−i,jL

(W`, n, n
′),W` ∈ Wn,n′

)
≤ HL ·

∣∣s∣∣ ∀ 0 < s ≤ τ.

(ii) Take any n, n′ in N and any w ∈ Wn,n′ . For k 6= i, j let

γ̃−i,j
L

(Zk, w, n, n
′) = ξ̃−i,j

L
(w, n, n′)− ξ̃−i,j,k

L
(w, n, n′).

Take any n, n′ in N . There exists a deterministic sequence J
L

= O(1) such that for any t ≡
(w, n, n′) where w ∈ Wn,n′∣∣∣∣ E[ϕΦ(Zk, t)

∣∣∣ ξ̃−i,j,kL
(t) + β · γ̃−i,j

L
(Zk, t)

]
− E

[
ϕΦ(Zk, t)

∣∣∣ ξ̃−i,j,kL
(t) + β′ · γ̃−i,j

L
(Zk, t)

] ∣∣∣∣∣
≤ JL ·

∣∣β − β′∣∣ · ∣∣∣γ̃−i,jL
(Zk, t)

∣∣∣ ∀ (β, β′) ∈ [0, 1).

Assumption (T2’) will serve purposes analogous to those of Assumption (T2).

Assumption T3

b
L

is a positive sequence that satisfies
√
L · b

L
−→∞ and

√
L · b2

L
−→ 0.

Along with our previous assumptions, using a nonzero bandwidth b
L

that converges to zero at

a rate slower than L−1/2 will help yield exponential probability bounds while allowing for either

∆W |N (W,n, n′) or ΦW |N (W,n, n′) to have positive probability mass at zero (i.e., allowing for either

(9) or (10) to be binding as equalities with positive probability). Qualitatively speaking, we require

b
L

to converge to zero faster than L−1/4 because the rate at which objects of the following type

disappear in probability will be relevant during the proof of our main result,(∣∣ξ−i,jL (W`, n, n
′)
∣∣+ bL

)
· Pr
(
−
∣∣ξ−i,jL (W`, n, n

′)
∣∣− bL ≤ ∆W |N (W`, n, n

′) < 0
∣∣∣ ξ−i,jL (W`, n, n

′), W` ∈ Wn,n′

)
,(∣∣ξ̃−i,jL (W`, n, n

′)
∣∣+ bL

)
· Pr
(
−
∣∣ξ̃−i,jL (W`, n, n

′)
∣∣− bL ≤ ΦW |N (W`, n, n

′) < 0
∣∣∣ ξ̃−i,jL (W`, n, n

′), W` ∈ Wn,n′

)
.

Combined with the conditions leading to (24) and with Assumptions (T2.i) and (T2’.i), the above

objects will disappear at a rate of b2
L

. Assumption (T3) then ensures that this convergence rate is

faster than L−1/2.
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B.4.2 Main result

For a given n, n′ in N and a given w, let

ΓF (w, n, n′) =

EW
[(
1{w ≤W} − FW |N (W |n′)

)
· 1
{

∆W |N (W,n, n′) ≥ 0
}
· 1
{
W ∈ Wn,n′

}]
,

ΓΦ(w, n, n′) =

EW
[(

Ω
(
FW |N (W |n′), n, n′

)
− 1{w ≤W}

)
· 1
{

ΦW |N (W,n, n′) ≥ 0
}
· 1
{
W ∈ Wn,n′

}]
,

ΓΩ(w, n, n′) =

EW
[
∇1Ω

(
FW |N (W |n′), n, n′

)
·
(
1{w ≤W} − FW |N (W |n′)

)
· 1
{

ΦW |N (W,n, n′) ≥ 0
}
· 1
{
W ∈ Wn,n′

}]
(25)

These functionals will help us characterize the asymptotic distribution of our unconditional test-

statistics. Let

U
T̂F
n,n′

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i 6=j

T̂Fn,n′ (Zi, Zj) U
T̂Ω
n,n′

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i 6=j

T̂Ω
n,n′ (Zi, Zj).

By (14) we have

U T̂
F

L(2) =
∑∑

n,n′∈N ,n>n′

U
T̂F
n,n′

L(2) , and U T̂
Ω

L(2) =
∑∑

n,n′∈N ,n>n′

U
T̂Ω
n,n′

L(2) .

We establish the asymptotic properties of our statistics U T̂
F

L(2) and U T̂
Ω

L(2) by characterizing those of

U
T̂F
n,n′

L(2) and U
T̂Ω
n,n′

L(2) for each n, n′.

Theorem 5 Let µFn,n′ and µΩ
n,n′ be as defined in (12).

(i) If Assumptions (T1), (T2) and (T3) are satisfied, then

√
L · U

T̂F
n,n′

L(2) =
√
L · µFn,n′ +

1√
L

L∑
i=1

ηFn,n′(Zi) + op(1), where E
[
ηFn,n′(Zi)

]
= 0.

From (14), it follows by construction that

√
L · U T̂

F

L(2) =
√
L ·

∑∑
n,n′∈N

n>n′

µFn,n′

+
1√
L

L∑
i=1

ηFN (Zi) + op(1), where ηFN (Zi) =

∑∑
n,n′∈N

n>n′

ηFn,n′(Zi)

 .
(26)

For each n, n′ in N , if (9) is satisfied with probability one in Wn,n′ , the function ηFn,n′ reduces to

ηFn,n′(Zi) = 1{Ni = n} · ΓF (Wi, n, n
′)− pN (n)

pN (n′)
· 1{Ni = n′} · ΓF (Wi, n, n

′). (27)

(ii) If Assumptions (T1), (T2’) and (T3) are satisfied, then

√
L · U

T̂Ω
n,n′

L(2) =
√
L · µΩ

n,n′ +
1√
L

L∑
i=1

ηΩ
n,n′(Zi) + op(1), where E

[
ηΩ
n,n′(Zi)

]
= 0.
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From (14), it follows by construction that

√
L · U T̂

Ω

L(2) =
√
L ·

∑∑
n,n′∈N

n>n′

µΩ
n,n′

+
1√
L

L∑
i=1

ηΩ
N (Zi) + op(1), where ηΩ

N (Zi) =

∑∑
n,n′∈N

n>n′

ηΩ
n,n′(Zi)

 .
(28)

For each n, n′ in N , if (10) is satisfied with probability one in Wn,n′ , the function ηΩ
n,n′ reduces to

ηΩ
n,n′(Zi) = 1{Ni = n} · ΓΦ(Wi, n, n

′) +
pN (n)

pN (n′)
· 1{Ni = n′} · ΓΩ(Wi, n, n

′). (29)

Note that the functions ηFn,n′(Zi) and ηΩ
n,n′(Zi) have mean zero regardless of whether (9) or (10)

are satisfied. These functions are the leading terms in the Hoeffding decompositions (see Hoeffding

(1961) and Serfling (1980), Chapter 5) of the relevant U-statistics involved. Their general expressions

can be found in Equations (T-42) and (T-46) of the Technical Supplement. Theorem 5 characterizes

these expressions for the case where (9) and (10) are satisfied w.p.1. in Wn,n′ . In this instance, using

(25) and iterated expectations, we can easily show that E
[
1{Ni = n} · ΓF (Wi, n, n

′)
]

= µFn,n′ = 0

and E
[
1{Ni = n′} · ΓF (Wi, n, n

′)
]

= 0, which yields E
[
ηFn,n′(Zi)

]
= µFn,n′ = 0. Likewise, iterated

expectations yields E
[
1{Ni = n} ·ΓΦ(Wi, n, n

′)
]

= µΩ
n,n′ = 0 and E

[
1{Ni = n′} ·ΓΩ(Wi, n, n

′)
]

= 0,

yielding E
[
ηΩ
n,n′(Zi)

]
= µΩ

n,n′ = 0.

B.4.3 A Rejection Rule based on Theorem 5

Based on the statement of Theorem 5 and the expressions in (27) and (29), we see that if (9) is

satisfied almost everywhere in Wn,n′ for each n > n′ in N as a strict inequality, then ηFN (Zi) = 0

w.p.1, and therefore Var
(
ηFN (Zi)

)
= 0. Otherwise, said variance is strictly positive. The same is

true about (10) and Var
(
ηΩ

N (Zi)
)
. Combining (26) with Theorems 4 and 5,

√
L · U T̂F

L(2) will diverge

to +∞ with probability 1 if the inequalities in (9) are violated with positive probability on Wn,n′

for any n, n′ ∈ N (n > n′). Conversely, if (9) is satisfied as strict inequality almost everywhere in

each Wn,n′ , then
√
L · U T̂F

L(2) will vanish in probability. Finally, if (9) is satisfied almost everywhere

in each Wn,n′ and binding with nonzero probability in some Wn,n′ , the statistic
√
L · U T̂F

L(2) will be

asymptotically normally distributed with mean zero and variance Var
(
ηFN (Zi)

)
> 0. The same

results hold for (10) and
√
L · U T̂Ω

L(2) .

Let η̂F
n,n′

(Zi) and η̂Ω
n,n′

(Zi) be estimators of the expressions given in (27) and (29). It follows

from Theorem 5 that, for any pair of arbitrary constants c1 > 0 and c2 > 0, the rejection rules

described in (16A) and (16B) based on

√
L · U T̂

F

L(2)√
V̂ar

[∑∑
n>n′

η̂F
n,n′

(Zi)

]
+ c1

and

√
L · U T̂

Ω

L(2)√
V̂ar

[∑∑
n>n′

η̂Ω
n,n′

(Zi)

]
+ c2

, (30)

55



would satisfy the asymptotic properties described in (17) for our testing range. Let ϕF and ϕΩ be

as defined in (22). Define

ĜFn,n′(Zi, Zj , Zk) = ϕF (Zi,Wk, n
′) · 1{Nj = n} · 1

{
∆̂−i,j,kW |N (Wk, n, n

′) ≥ −bL
}
· 1
{
Wk ∈ Wn,n′

}
,

ĜΩ
n,n′(Zi, Zj , Zk) = ϕΩ(Zi,Wk, n, n

′) · 1{Nj = n} · 1
{

Φ̂−i,j,kW |N (Wk, n, n
′) ≥ −bL

}
· 1
{
Wk ∈ Wn,n′

}
.

(31)

We can estimate ηFn,n′ and ηΩ
n,n′ as described in (27) and (29) by using

η̂Fn,n′(Zi) =
1

L− 1

∑
j 6=i

T̂Fn,n′(Zi, Zj)−
1

(L− 1)(L− 2)

∑
j 6=i

∑
k 6=j
k 6=i

ĜFn,n′(Zi, Zj , Zk),

η̂Ω
n,n′(Zi) =

1

L− 1

∑
j 6=i

T̂Ω
n,n′(Zi, Zj) +

1

(L− 1)(L− 2)

∑
j 6=i

∑
k 6=j
k 6=i

ĜΩ
n,n′(Zi, Zj , Zk)

(32)

The resulting estimated variances to be used in (30), V̂ar

[∑∑
n>n′

η̂F
n,n′

(Zi)

]
and V̂ar

[∑∑
n>n′

η̂Ω
n,n′

(Zi)

]
,

are consistent under the conditions of Theorem 5.

B.4.4 A Test for the Reverse Inequality in (10) and Its Asymptotic Properties

We go back to the test of (10’), which was used in Section 3.4 to discriminate between CIPV and

IPV. (10’) is simply the reverse inequality in (10). As we pointed out there, if the data supports

(10), then rejecting (10’) implies that the inequalities in (10) are strict with positive probability,

which rules out IPV as the true model. Let T−Ω
n,n′(Zi, Zj) be as defined in (11’). A test of (10’)

replaces TΩ
n,n′(Zi, Zj) with

T̂−Ω
n,n′(Zi, Zj) =

(
1{Wi ≤Wj} − Ω

(
F̂−i,jW |N (Wj |n′), n, n′

))
· 1{Ni = n}

· 1
{
−Φ̂−i,jW |N (Wj , n, n

′) ≥ −b
L

}
· 1{Wj ∈ Wn,n′}

Let

UT
−Ω

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i 6=j

 ∑∑
n,n′∈N ,n>n′

T−Ω
n,n′(Zi, Zj)


U T̂
−Ω

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i 6=j

 ∑∑
n,n′∈N ,n>n′

T̂−Ω
n,n′(Zi, Zj)

 (33)

For a given n, n′ in N and a given w, let

Γ−Φ(w, n, n′) =

EW
[(
1{w ≤W} − Ω

(
FW |N (W |n′), n, n′

))
· 1
{
−ΦW |N (W,n, n′) ≥ 0

}
· 1
{
W ∈ Wn,n′

}]
,

Γ−Ω(w, n, n′) =

EW
[
∇1Ω

(
FW |N (W |n′), n, n′

)
·
(
1{w ≤W} − FW |N (W |n′)

)
· 1
{
−ΦW |N (W,n, n′) ≥ 0

}
· 1
{
W ∈ Wn,n′

}]
.

Let

µ−Ω
n,n′ = pN (n) · E

[
max

{
0 , − ΦW |N (Wj , n, n

′)
}
· 1
{
Wj ∈ Wn,n′

}]
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We have E
[
T−Ω
n,n′(Zi, Zj)

]
= µ−Ω

n,n′ ; note that µ−Ω
n,n′ ≥ 0 by construction. Having µ−Ω

n,n′ > 0 for some

n > n′ in N would indicate that (10) holds as a strict inequality with positive probability in Wn,n′ ,

leading us to reject the notion that, unconditionally, the data generating process is consistent with

IPV. Denote

U
T̂−Ω
n,n′

L(2) =
1

L(L− 1)

∑∑
i,j∈{1,...,L},i 6=j

T̂−Ω
n,n′(Zi, Zj).

Under the type of conditions leading to part (ii) of Theorem 5, we can show that

√
L · U

T̂−Ω
n,n′

L(2) =
√
L · µ−Ω

n,n′ +
1√
L

L∑
i=1

η−Ω
n,n′(Zi) + op(1), where E

[
η−Ω
n,n′(Zi)

]
= 0.

It follows by construction from (33) that

√
L · U T̂

−Ω

L(2) =
√
L ·

∑∑
n,n′∈N

n>n′

µ−Ω
n,n′

+
1
√
L

L∑
i=1

η−Ω
N (Zi) + op(1), where η−Ω

N (Zi) =

∑∑
n,n′∈N

n>n′

η−Ω
n,n′ (Zi)

 . (34)

For each n, n′ in N , if the reverse inequality in (10) is satisfied with probability one in Wn,n′ , the

function η−Ω
n,n′ reduces to

η−Ω
n,n′(Zi) = 1{Ni = n} · Γ−Φ(Wi, n, n

′)− pN (n)

pN (n′)
· 1{Ni = n′} · Γ−Ω(Wi, n, n

′). (35)

Let η̂−Ω
n,n′

denote an estimator of the function described in (35) and let c > 0 denote a pre-specified

constant. A rejection rule like the ones described previously could be used, based on
√
L · U T̂

−Ω

L(2)√
V̂ar

[∑∑
n>n′

η̂−Ω
n,n′ (Zi)

]
+ c

(36)

Let ϕΩ be as defined in (22) and denote

Ĝ−Ω
n,n′(Zi, Zj , Zk) = ϕΩ(Zi,Wk, n, n

′) · 1{Nj = n} · 1
{
−Φ̂−i,j,kW |N (Wk, n, n

′) ≥ −bL
}
· 1
{
Wk ∈ Wn,n′

}
.

(37)

We can estimate the expression in (35) with

η̂−Ω
n,n′(Zi) =

1

L− 1

∑
j 6=i

T̂−Ω
n,n′(Zi, Zj)−

1

(L− 1)(L− 2)

∑
j 6=i

∑
k 6=j
k 6=i

Ĝ−Ω
n,n′(Zi, Zj , Zk). (38)

From here we estimate V̂ar

[∑∑
n>n′

η̂−Ω

n,n′
(Zi)

]
to be plugged into (36).

B.5 Testing Conditional on Observable Covariates

Next, we modify the test to condition on observable covariates. Let X be a vector of covariates, and

let Y ≡ (N,X) and Z ≡ (W,Y ). We maintain the assumption of having an i.i.d. sample (Zi)
L
i=1.

Define

FW |Y (w|n, x) ≡ Pr(W ≤ w|N = n,X = x)

∆W |Y (w, n, n′, x) ≡ FW |Y (w|n, x)− FW |Y (w|n′, x)

ΦW |Y (w, n, n′, x) = Ω
(
FW |Y (w|n′, x), n, n′)− FW |Y (w|n, x)
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We will test whether conditional analogs of (9) and (10) hold at each realization of X – that is,

whether n > n′ implies

FW |Y (w|n, x) ≤ FW |Y (w|n′, x) (39)

and

ψ−1
n−1:n

(
FW |Y (w|n, x)

)
≥ ψ−1

n′−1:n′
(
FW |Y (w|n′, x)

)
(40)

(or, equivalently, ∆W |Y (w, n, n′, x) ≤ 0 and ΦW |Y (w, n, n′x) ≤ 0 almost everywhere). For clarity,

we present the case where X is one-dimensional and continuously distributed, as is the case in our

application. Later we discuss extending the test to cases where X is multi-dimensional and includes

both discrete and continuous covariates.

As before, let N ⊆ SN be a fixed subset with p
N

(n) > 0 for all n ∈ N , and let Cn,n′ ⊆ SX×SW
be a pre-specified range of values of (x,w) on which we will test (39) and (40). (Again, Cn,n′ should

be chosen such that FW |Y (·|n, ·) and FW |Y (·|n′, ·) are both bounded away from 0 and 1 on Cn,n′ .)

Let h
L
−→ 0 be a nonnegative bandwidth sequence converging to zero, and let K : R −→ R be a

bias-reducing kernel of order M .35 We will impose conditions on M below. Define

SFLn,n′ (Zi, Zj , Zk) =
(
1{Wi ≤Wk} − FW |Y (Wk|n′, Xj)

)
· 1{Ni = n}

·1
{

∆W |Y (Wk, n, n
′, Xj) ≥ 0

}
· 1
{

(Xj ,Wk) ∈ Cn,n′
}
· 1
h
L
K

(
Xi−Xj
h
L

)
SΩ
Ln,n′

(Zi, Zj , Zk) =
(

Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− 1{Wi ≤Wk}

)
· 1{Ni = n}

·1
{

ΦW |Y (Wk, n, n
′, Xj) ≥ 0

}
1
{

(Xj ,Wk) ∈ Cn,n′
}
· 1
h
L
K

(
Xi−Xj
h
L

) (41)

Both functions are constructed such that only triples (Zi, Zj , Zk) for which Xi−Xj lies in a vanishing

neighborhood around zero will matter asymptotically. The following result describes a set of sufficient

conditions under which lim
L→∞

E
[
SFLn,n′ (Zi, Zj , Zk)

]
= 0 and lim

L→∞
E
[
SΩ
Ln,n′

(Zi, Zj , Zk)
]

= 0 if and only

if ∆W |Y and ΦW |Y are negative almost everywhere within the test range.

Theorem 6 Let fX|N ( · |n) denote the density of X conditional on N = n. Suppose that the support

of fX|N ( · |n) is the same for all n ∈ N . Further, suppose that for any n ∈ N , fX|N (x|n) and

FW |Y (w|n, x) are both M times differentiable with respect to x, with bounded derivatives at almost

all x for which (x,w) ∈ Cn,n′ for some w. Then for i 6= j 6= k,

E
[
SFLn,n′ (Zi, Zj , Zk)

]
= γFn,n′ +O(hM

L
)

E
[
SΩ
Ln,n′

(Zi, Zj , Zk)
]

= γΩ
n,n′ +O(hM

L
)

where

γFn,n′ = pN (n) · E
[
max

{
0,∆W |Y (Wk, n, n

′, Xj)
}
· fX|N (Xj |n) · 1

{
(Xj ,Wk) ∈ Cn,n′

}]
γΩ
n,n′ = pN (n) · E

[
max

{
0,ΦW |Y (Wk, n, n

′, Xj)
}
· fX|N (Xj |n) · 1

{
(Xj ,Wk) ∈ Cn,n′

}]
35That is, K satisfies K(s) = K(−s),

∫∞
−∞K(s)ds = 1,

∫∞
−∞ srK(s)ds = 0 for all r = 1, . . . ,M − 1, and∫∞

−∞ sMK(s)ds <∞.
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Proof. We focus on E
[
SΩ
Ln,n′

(Zi, Zj , Zk)
]
; the proof for E

[
SFLn,n′ (Zi, Zj , Zk)

]
follows identical steps.

As before, define

S
Ω
Ln,n′

(Ni, Zj , Zk) = EWi,Xi|Ni

[
SΩ
Ln,n′

(Zi, Zj , Zk)
]

= EXi|Ni

[
EWi|Ni,Xi

[
SΩ
Ln,n′

(Zi, Zj , Zk)
]]

= EXi|Ni

[(
Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− FW |Y (Wk|Ni, Xi)

)
· 1{Ni = n}

·1
{

ΦW |Y (Wk, n, n
′, Xj) ≥ 0

}
· 1
{

(Xj ,Wk) ∈ Cn,n′
}
· 1
h
L
K

(
Xi−Xj
h
L

)]
= EXi|Ni

[(
Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− FW |Y (Wk|Ni, Xi)

)
· 1
h
L
K

(
Xi−Xj
h
L

)]
·1{Ni = n} · 1

{
ΦW |Y (Wk, n, n

′, Xj) ≥ 0
}
· 1
{

(Xj ,Wk) ∈ Cn,n′
}

=

[(
Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− FW |Y (Wk|n,Xj)

)
fX|N (Xj |n) +O(hM

L
)

]
·1{Ni = n} · 1

{
ΦW |Y (Wk, n, n

′, Xj) ≥ 0
}
· 1
{

(Xj ,Wk) ∈ Cn,n′
}

= 1{Ni = n} · 1
{

(Xj ,Wk) ∈ Cn,n′
}

· max{0,ΦW |Y (Wk, n, n
′, Xj)} · fX|N (Xj |n) +O(hM

L
)

The second-to-last inequality comes from an M th-order Taylor approximation, which given our

smoothness assumption yields

EXi|Ni

[(
Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− FW |Y (Wk|Ni, Xi)

)
· 1
h
L
K

(
Xi−Xj
h
L

)]
=

∫ (
Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− FW |Y (Wk|Ni, x)

)
1
h
L
K

(
x−Xj
h
L

)
fX|N (x|Ni)dx

=
(

Ω
(
FW |Y (Wk|n′, Xj), n, n′

)
− FW |Y (Wk|Ni, Xj)

)
fX|N (Xj |Ni) +O(hM

L
)

along with the fact that the entire expression is zero unless Ni = n. Taking the expectation of

S
Ω

Ln,n′
over (Ni, Zj , Zk) then proves the result. �

As with the unconditional test, we modify (41) by replacing FW |Y with a nonparametric estimate

calculated on all the observations but i, j, k and introducing a positive but vanishing bandwidth b
L

.

Let K̃ and h̃
L

be an additional kernel function and bandwidth sequence, and define

R̂−i,j,kW |Y (w|n, x) = 1

(L−3)h̃
L

∑
6̀=i,j,k 1{W` ≤ w}1{N` = n}K̃

(
X`−x
h̃
L

)

p̂−i,j,k
Y

(x, n) = 1

(L−3)h̃
L

∑
6̀=i,j,k 1{N` = n}K̃

(
X`−x
h̃
L

)

F̂−i,j,kW |Y (w|n, x) =

 R̂−i,j,kW |Y (w|n, x)
/
p̂−i,j,k
Y

(x, n) if p̂−i,j,k
Y

(x, n) 6= 0

0 otherwise

and

∆̂−i,j,kW |Y (w, n, n′, x) = F̂−i,j,kW |Y (w|n, x)− F̂−i,j,kW |Y (w|n′, x)

Φ̂−i,j,kW |Y (w, n, n′, x) = Ω
(
F̂−i,j,kW |Y (w|n′, x), n, n′)− F̂−i,j,kW |Y (w|n, x)
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Define

ŜFLn,n′ (Zi, Zj , Zk) =
(
1{Wi ≤Wk} − F̂−i,j,kW |Y (Wk|n′, Xj)

)
· 1{Ni = n}

·1
{

∆̂−i,j,kW |Y (Wk, n, n
′, Xj) ≥ −bL

}
· 1
{

(Xj ,Wk) ∈ Cn,n′
}
· 1
h
L
K

(
Xi−Xj
h
L

)
ŜΩ
Ln,n′

(Zi, Zj , Zk) =
(

Ω
(
F̂−i,j,kW |Y (Wk|n′, Xj), n, n′

)
− 1{Wi ≤Wk}

)
· 1{Ni = n}

·1
{

Φ̂−i,j,kW |Y (Wk, n, n
′, Xj) ≥ −bL

}
1
{

(Xj ,Wk) ∈ Cn,n′
}
· 1
h
L
K

(
Xi−Xj
h
L

) (42)

Our conditional test statistics are

U
ŜFL
L(3) =

1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i6=j 6=k

∑∑
n,n′∈N

n>n′

ŜFLn,n′ (Zi, Zj , Zk)



U
ŜΩ
L

L(3) =
1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i6=j 6=k

∑∑
n,n′∈N

n>n′

ŜΩ
Ln,n′

(Zi, Zj , Zk)


(43)

Appendix B.6 gives conditions under which
√
L · U Ŝ

F
L

L(3) and
√
L · U Ŝ

Ω
L

L(3) have asymptotic behavior

analogous to the unconditional test statistics; the formal result is given as Theorem 7.

B.6 Asymptotic Properties of the Conditional Test Statistics in (43)

Here we describe and discuss the main asymptotic results and the corresponding assumptions for

the statistics described in (43). Detailed proofs of all our results can be found in the Technical

Supplement.

B.6.1 Assumptions

Again, we begin with the distributional assumptions, all of which are compatible with the model

presented in the text.

Assumption C1

(i) We observe an i.i.d. sample (Wi, Ni, Xi)
L
i=1 ≡ (Zi)

L
i=1. Let fX|N (·|n) denote the density of X

conditional on N = n. Then fX|N (x|n) is continuous in x for each n ∈ SN and its support is

the same for every n ∈ N . The distribution FW |Y (w|n, x) is continuous in w for almost every

(n, x) ∈ SN × SX . The sets N ⊆ SN and Cn,n′ are compact (the latter being true for each n, n′ in

N ). For each n, n′ in N and almost everywhere in Cn,n′ , FW |Y (w|n, x) is strictly bounded away

from 0 and 1.

(ii) Let p
Y

(x, n) = fX|N (x|n)·p
N

(n). Then inf
{
p
Y

(x, n) : n ∈ N and (w, x) ∈ Cn,n′ for some w and n′ ∈ N
}
≡

p
Y
> 0. For each n, n′ ∈ N and almost everywhere in Cn,n′ , the functions fX|N (x|n) and

FW |Y (w|n, x) are M times differentiable with respect to x with bounded derivatives.

60



As before, part (i) guarantees that ∇1Ω
(
FW |Y (w|n′, x), n, n′) is well-defined and strictly bounded

in our testing range. Let

ΥF
L

(Z,w, n, x) =
1{W ≤ w} − FW |Y (w|n, x)

pY (n, x)
· 1{N = n} · 1

h̃L
K̃

(
X − x
h̃L

)
,

Υ∆
L

(Z,w, n, n′, x) = ΥF
L

(Z,w, n, x)−ΥF
L

(Z,w, n′, x),

ΥΩ
L

(Z,w, n, n′, x) = ∇1Ω
(
FW |Y (w|n′, x), n, n′

)
·ΥF

L
(Z,w, n′, x),

ΥΦ
L

(Z,w, n, n′, x) = ΥΩ
L

(Z,w, n, n′, x)−ΥF
L

(Z,w, n, x).

(44)

Let M be as described in Assumption (C1). Suppose the kernel function K̃ is Lipschitz-continuous,

bias-reducing of order M with compact support, and suppose the bandwidth sequence h̃
L

satisfies

L1/2 · h̃M
L
−→ 0. An M th−order approximation yields, for all n, n′ in N and (w, x) ∈ Cn,n′ ,

E
[
ΥF
L

(Z,w, n, x)
]

= O(hM
L

) = o(L−1/2), E
[
Υ∆
L

(Z,w, n, n′, x)
]

= O(hM
L

) = o(L−1/2),

E
[
ΥΩ
L

(Z,w, n, n′, x)
]

= O(hM
L

) = o(L−1/2), E
[
ΥΦ
L

(Z,w, n, n′, x)
]

= O(hM
L

) = o(L−1/2).

Furthermore, suppose L1/2 · h̃
L
−→∞ (we will impose stronger bandwidth convergence conditions

below in Assumption (C4)). Then, given the class of functions involved and the conditions described

in Assumption (C1), we can show (see e.g, Lemma 3 in Collomb and Hardle (1986), or Theorem 1’ in

Lewbel (1997) and the references cited there) that the linear representations for our nonparametric

estimators are given by

F̂−i,j,k
W |Y (w|n, x) = FW |Y (w|n, x) +

1

L− 3

∑
` 6=i,j,k

ΥF
L

(Z`, w, n, x) + ς−i,j,k
L

(w, n, x),

∆̂−i,j,k
W |Y (w, n, n′, x) = ∆W |Y (w, n, n′, x) +

1

L− 3

∑
` 6=i,j,k

Υ∆
L

(Z`, w, n, n
′, x) + ξ−i,j,k

L
(w, n, n′, x),

(45A)

and

Ω
(
F̂−i,j,k
W |Y (w|n′, x), n, n′

)
= Ω

(
FW |Y (w|n′, x), n, n′

)
+

1

L− 3

∑
` 6=i,j,k

ΥΩ
L

(Z`, w, n, n
′, x) + ς̃−i,j,k

L
(w, n, n′, x),

Φ̂−i,j,k
W |Y (w, n, n′, x) = ΦW |Y (w, n, n′, x) +

1

L− 3

∑
` 6=i,j,k

ΥΦ
L

(Z`, w, n, n
′, x) + ξ̃−i,j,k

L
(w, n, n′, x),

(45B)

where, for any δ > 0 we have

sup
(w,x)∈Cn,n′

(n,n′)∈N

∣∣∣ς−i,j,k
L

(w, n, n′, x)
∣∣∣ = Op

(
1

L1−δ · h̃L

)
, sup

(w,x)∈Cn,n′

(n,n′)∈N

∣∣∣ς̃−i,j,k
L

(w, n, n′, x)
∣∣∣ = Op

(
1

L1−δ · h̃L

)
,

sup
(w,x)∈Cn,n′

(n,n′)∈N

∣∣∣ξ−i,j,k
L

(w, n, n′, x)
∣∣∣ = Op

(
1

L1−δ · h̃L

)
, sup

(w,x)∈Cn,n′

(n,n′)∈N

∣∣∣ξ̃−i,j,k
L

(w, n, n′, x)
∣∣∣ = Op

(
1

L1−δ · h̃L

)
.

(46)

Equations (45A)-(45B) and (46) are analogous to (23A)-(23B) and (24), respectively. Analogously

to the unconditional-test case, our main result in this section relies on regularity conditions of the

remainder terms ξ−i,j,k
L

and ξ̃−i,j,k
L

. Accordingly, we will impose conditions that serve an analogous

purpose to those described in Assumptions (T2) and (T2’).
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Assumption C2

(i) Take a distinct triple i, j, k in 1, . . . , L and let ` 6= `′, where each denotes either i, j or k. There

exists a τ > 0 and a deterministic sequence H
L

= O(1) such that, for any n, n′ ∈ N ,

Pr
(
−s ≤ ∆W |Y (W`, n, n

′, X`′) < 0
∣∣∣ ξ−i,j,kL

(W`, n, n
′, X`′), (W`, X`′) ∈ Cn,n′

)
≤ HL ·

∣∣s∣∣ ∀ 0 < s ≤ τ.

(ii) Take any n, n′ in N and any (w, x) ∈ Cn,n′ . For ` 6= i, j, k let

γ−i,j,k
L

(Z`, w, n, n
′, x) = ξ−i,j,k

L
(w, n, n′, x)− ξ−i,j,k,`

L
(w, n, n′, x).

Take any n, n′ in N . There exists a deterministic sequence J
L

= O(1) such that for any t ≡
(w, n, n′, x) where (w, x) ∈ Cn,n′ ,∣∣∣∣ E[Υ∆

L
(Z`, t)

∣∣∣ ξ−i,j,k,`L
(t) + β · γ−i,j,k

L
(Z`, t)

]
− E

[
Υ∆
L

(Z`, t)
∣∣∣ ξ−i,j,k,`L

(t) + β′ · γ−i,j,k
L

(Z`, t)
] ∣∣∣∣∣

≤ JL ·
∣∣β − β′∣∣ · ∣∣∣γ−i,j,kL

(Z`, t)
∣∣∣ ∀ (β, β′) ∈ [0, 1).

(iii) There exists V
L

such that, for any i 6= j 6= k,

sup
(n,n′)∈N

(w,x)∈Cn,n′

∣∣∣ξ−i,j,kL
(w, n, n′, x)

∣∣∣ ≤ VL , and lim
L−→∞

E
[
V 4
L

]
<∞.

Similarly to Assumption (T2), imposing (C2) in this context will help ensure that, for `, `′ ∈ i, j, k
and ` 6= `′,

Pr
(
−
∣∣ξ−i,j,k
L

(W`, n, n
′, X`′)

∣∣ ≤ ∆W |Y (W`, n, n
′, X`′) < 0

∣∣∣ ξ−i,j,kL (W`, n, n
′, X`′), W` ∈ Wn,n′

)
= O

(∣∣ξ−i,j,kL (W`, n, n
′, X`′)

∣∣),
and

sup
(w,x)∈Cn,n′

n,n′∈N

∣∣∣∣E[Υ∆
L

(Z`, w, n, n
′, x)

∣∣ ξ−i,j,k
L

(w, n, n′, x)
]∣∣∣∣ = Op

(
1

L1−δ · h̃L

)
∀ δ > 0

Assumption (C2.iii) includes an existence-of-moments condition that was redundant in Assumption

(T2) because, in the latter case, the remainder term ξ−i,j
L

was bounded w.p.1. by construction of

the nonparametric estimators. This is no longer the case in our current context due to the use of

bias-reducing kernels. We extend Assumption (T2’) as follows.

Assumption C2’

(i) Take a distinct triple i, j, k in 1, . . . , L and let ` 6= `′, where each denotes either i, j or k. There

exists a τ > 0 and a deterministic sequence H
L

= O(1) such that, for any n, n′ ∈ N ,

Pr
(
−s ≤ ΦW |Y (W`, n, n

′, X`′) < 0
∣∣∣ ξ̃−i,j,kL

(W`, n, n
′, X`′), (W`, X`′) ∈ Cn,n′

)
≤ HL ·

∣∣s∣∣ ∀ 0 < s ≤ τ.
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(ii) Take any n, n′ in N and any (w, x) ∈ Cn,n′ . For ` 6= i, j, k let

γ̃−i,j,k
L

(Z`, w, n, n
′, x) = ξ̃−i,j,k

L
(w, n, n′, x)− ξ̃−i,j,k,`

L
(w, n, n′, x).

Take any n, n′ in N . There exists a deterministic sequence J
L

= O(1) such that for any t ≡
(w, n, n′, x) where (w, x) ∈ Cn,n′ ,∣∣∣∣ E[ΥΦ

L
(Z`, t)

∣∣∣ ξ̃−i,j,k,`L
(t) + β · γ̃−i,j,k

L
(Z`, t)

]
− E

[
ΥΦ
L

(Z`, t)
∣∣∣ ξ̃−i,j,k,`L

(t) + β′ · γ̃−i,j,k
L

(Z`, t)
] ∣∣∣∣∣

≤ JL ·
∣∣β − β′∣∣ · ∣∣∣γ̃−i,j,kL

(Z`, t)
∣∣∣ ∀ (β, β′) ∈ [0, 1).

(iii) There exists V
L

such that, for any i 6= j 6= k,

sup
(n,n′)∈N

(w,x)∈Cn,n′

∣∣∣ξ̃−i,j,k
L

(w, n, n′, x)
∣∣∣ ≤ VL , and lim

L−→∞
E
[
V 4
L

]
<∞.

The results that will follow from Assumption (C2’) are analogous to those discussed above for

the case of (C2). In addition to these regularity conditions about the linear representation of our

nonparametric estimators, we will require additional smoothness assumptions, described next.

Assumption C3

For a given n, n′ in N and a given (w, x), let

λF (w, n, n′, x) =

EW
[(
1{w ≤W} − FW |Y (W |n′, x)

)
· 1
{

∆W |Y (W,n, n′, x) ≥ 0
}
· 1
{

(x,W ) ∈ Cn,n′
}]
,

λΦ(w, n, n′, x) =

EW
[(

Ω
(
FW |Y (W |n′, x), n, n′

)
− 1{w ≤W}

)
· 1
{

ΦW |Y (W,n, n′, x) ≥ 0
}
· 1
{

(x,W ) ∈ Cn,n′
}]
,

λΩ(w, n, n′, x) =

EW
[
∇1Ω

(
FW |Y (W |n′, x), n, n′

)
·
(
1{w ≤W} − FW |Y (W |n′, x)

)
· 1
{

ΦW |Y (W,n, n′, x) ≥ 0
}
· 1
{

(x,W ) ∈ Cn,n′
}]

(47)

Let M be as described in Assumption (C1). Then, for each n, n′ in N and almost everywhere

in Cn,n′ , the functions λF (w, n, n′, x), λΦ(w, n, n′, x) and λΩ(w, n, n′, x) are M times differentiable

with respect to x with bounded derivatives.

The functionals described in (C3) will appear in the leading terms of the Hoeffding decompositions

of the relevant U-statistics involved in our constructions. As a result of the smoothness requirements

in (C3) and (C3’) and the bandwidth conditions to be described below, these leading terms will be

asymptotically normally distributed at the parametric rate of
√
L.
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Assumption C4

Let M be the constant described in Assumptions (C1) and (C3). Both K(·) and K̃(·) are Lipschitz-

continuous, bounded and symmetric (around zero) bias-reducing kernels of order M . Each has

compact support of the form [−a, a] (the support of K can differ from that of K̃), and they are both

bounded by some constant K. The sequences b
L

, h
L

and h̃
L

satisfy

L
1
2 · b

L
· h̃

L
· h

L
−→∞,

L
1
2 · b2

L

h̃
1
2
L · h2

L

−→ 0,

(
h̃M
L

h
L

)
· L1/2 −→ 0 and

(
hM
L

h̃
L

)
· L1/2 −→ 0.

Values of M compatible with Assumption (C4) can be as low as M = 8. In this case (M = 8),

our bandwidth convergence conditions would be satisfied, for instance, if we let ε = 0.0001 and we

set b
L
∝ L−c1 , h

L
∝ L−c2 and h̃

L
∝ L−c3 , with c1 = 1

2
·
(

3
4
− 3

8(M−1)
− 3

4
(M − 1) · ε

)
≈ 0.3479, c2 =

1
2(M−1)

+ ε ≈ 0.0715, c3 = 1
2(M−1)

+ (M − 1) · ε ≈ 0.0721. It follows that the various functionals described

in Assumptions (C1) and (C3) would have to be M = 8 times differentiable, but we remind the

reader that these smoothness restrictions can be violated at any subset of our testing range with

measure zero.

B.6.2 Main Result

Let

U
ŜFL

n,n′

L(3) =
1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i6=j 6=k

ŜFLn,n′
(Zi, Zj , Zk), U

ŜΩ
L
n,n′

L(3) =
1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i6=j 6=k

ŜΩ
Ln,n′

(Zi, Zj , Zk)

By (43) we have

U
ŜFL
L(3) =

∑∑
n,n′∈N

n>n′

U
ŜFL

n,n′

L(3) and U
ŜΩ
L

L(3) =
∑∑
n,n′∈N

n>n′

U
ŜΩ
L
n,n′

L(3) .

We study the asymptotic properties of the statistics U
ŜFL
L(3) and U

ŜΩ
L

L(3) by characterizing those of

U
ŜFL

n,n′

L(3) and U
ŜΩ
L
n,n′

L(3) .

Theorem 7 Let γFn,n′ and γΩ
n,n′ be as defined in Theorem 6.

(i) If Assumptions (C1), (C2), (C3) and (C4) are satisfied, then

√
L · U

ŜFL
n,n′

L(3) =
√
L · γFn,n′ +

1√
L

L∑
i=1

φFn,n′(Zi) + op(1), where E
[
φFn,n′(Zi)

]
= 0.

From (43), it follows by construction that

√
L · U Ŝ

F
L

L(3) =
√
L ·

∑∑
n,n′∈N

n>n′

γFn,n′

+
1√
L

L∑
i=1

φFN (Zi) + op(1), where φFN (Zi) =

∑∑
n,n′∈N

n>n′

φFn,n′(Zi)

 .
(48)
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For each n, n′ in N , if (39) is satisfied with probability one in Cn,n′ , the function φFn,n′ reduces to

φFn,n′(Zi) = 1{Ni = n}·λF (Wi, n, n
′, Xi) ·fX(Xi)−

pY (n,Xi)

pY (n′, Xi)
·1{Ni = n′}·λF (Wi, n, n

′, Xi) ·fX(Xi) (49)

(ii) If Assumptions (C1), (C2’), (C3) and (C4) are satisfied, then

√
L · U

ŜΩ
L
n,n′

L(3) =
√
L · γΩ

n,n′ +
1√
L

L∑
i=1

φΩ
n,n′(Zi) + op(1), where E

[
φΩ
n,n′(Zi)

]
= 0.

From (43), it follows by construction that

√
L · U Ŝ

Ω
L

L(3) =
√
L ·

∑∑
n,n′∈N

n>n′

γΩ
n,n′

+
1√
L

L∑
i=1

φΩ
N (Zi) + op(1), where φΩ

N (Zi) =

∑∑
n,n′∈N

n>n′

φΩ
n,n′(Zi)

 .
(50)

For each n, n′ in N , if (40) is satisfied with probability one in Cn,n′ , the function φΩ
n,n′ reduces to

φΩ
n,n′(Zi) = 1{Ni = n}·λΦ(Wi, n, n

′, Xi) ·fX(Xi)+
pY (n,Xi)

pY (n′, Xi)
·1{Ni = n′}·λΩ(Wi, n, n

′, Xi) ·fX(Xi) (51)

The functions φFn,n′(Zi) and φΩ
n,n′(Zi) have mean-zero regardless of whether (39) or (40) are satisfied.

Once again, these functions appear as the leading terms of the various Hoeffding decompositions

involved. Their general structure is provided in Equations (T-72) and (T-79) of the Technical

Supplement. Theorem 7 characterizes these expressions for the case where (39) and (40) are satisfied

w.p.1. in Cn,n′ . In this instance, using the definitions in (47) and iterated expectations, it is easy

to verify that E
[
1{Ni = n} · λF (Wi, n, n

′, Xi) · fX(Xi)
]

= γFn,n′ = 0 and E
[
p
Y

(n,Xi)

p
Y

(n′,Xi)
· 1{Ni = n′} ·

λF (Wi, n, n
′, Xi) · fX(Xi)

]
= 0, which yields E

[
φFn,n′(Zi)

]
= γFn,n′ = 0. Likewise, iterated expectations

yields E
[
1{Ni = n}·λΦ(Wi, n, n

′, Xi)·fX(Xi)
]

= γΩ
n,n′ = 0 and E

[
p
Y

(n,Xi)

p
Y

(n′,Xi)
·1{Ni = n′}·λΩ(Wi, n, n

′, Xi)·

fX(Xi)
]

= 0, and therefore E
[
φΩ
n,n′(Zi)

]
= γΩ

n,n′ = 0.

B.6.3 A Rejection Rule based on Theorem 7

The implications of Theorem 7 are reminiscent those of the unconditional-test case. Combined

with Theorem 6, we have that
√
L · U Ŝ

F
L

L(3) diverges w.p.1 to +∞ if (39) is violated with positive

probability in Cn,n′ ; it vanishes in probability to zero if (39) is satisfied as a strict inequality w.p.1.

in Cn,n′ , and it converges in distribution to a normal random variable with mean zero and variance

Var
(
φFn,n′(Zi)

)
> 0 if (39) is satisfied w.p.1. in each Cn,n′ and is binding as an equality with nonzero

probability in some Cn,n′ . There is an equivalent relationship between
√
L · U Ŝ

Ω
L

L(3) and (40).

Let φ̂F
n,n′

(Zi) and φ̂Ω
n,n′

(Zi) be estimators of the expressions given in (49) and (51). It follows

from Theorem 7 that, for any pair of arbitrary constants c1 > 0 and c2 > 0, rejection rules like those
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described in (16A) and (16B) based on

√
L · U Ŝ

F

L(3)√
V̂ar

[∑∑
n>n′

φ̂F
n,n′

(Zi)

]
+ c1

and

√
L · U Ŝ

Ω

L(3)√
V̂ar

[∑∑
n>n′

φ̂Ω
n,n′

(Zi)

]
+ c2

, (52)

would satisfy the asymptotic properties described in (17) for our testing range. Let ΥF
L

and ΥΩ
L

be

as defined in (44). Let

ĜFLn,n′
(Zi, Zj , Zk, Z`) =

ΥF
L

(Zi,W`, n
′, Xk) · 1{Nj = n} · 1

{
∆̂−i,j,k,`
W |Y (W`, n, n

′, Xk) ≥ −bL
}
· 1
{

(Xk,W`) ∈ Cn,n′
}
·

1

hL
K

(
Xj −Xk
hL

)
,

ĜΩ
Ln,n′

(Zi, Zj , Zk, Z`) =

ΥΩ
L

(Zi,W`, n, n
′, Xk) · 1{Nj = n} · 1

{
Φ̂−i,j,k,`
W |Y (W`, n, n

′, Xk) ≥ −bL
}
· 1
{

(Xk,W`) ∈ Cn,n′
}
·

1

hL
K

(
Xj −Xk
hL

)
.

We can estimate φFn,n′ and φΩ
n,n′ as described in (49) and (51) by using

φ̂Fn,n′ (Zi) =
1

(L− 1)(L− 2)

∑
j 6=i

∑
k 6=j
k 6=i

ŜFLn,n′
(Zi, Zj , Zk)−

1

(L− 1)(L− 2)(L− 3)

∑
j 6=i

∑
k 6=j
k 6=i

∑
6̀=k
6̀=j
` 6=i

ĜFLn,n′
(Zi, Zj , Zk, Z`)

φ̂Ω
n,n′ (Zi) =

1

(L− 1)(L− 2)

∑
j 6=i

∑
k 6=j
k 6=i

ŜΩ
Ln,n′

(Zi, Zj , Zk) +
1

(L− 1)(L− 2)(L− 3)

∑
j 6=i

∑
k 6=j
k 6=i

∑
6̀=k
6̀=j
` 6=i

ĜΩ
Ln,n′

(Zi, Zj , Zk, Z`)

(53)

The resulting estimated variances to be used in (52), V̂ar

[∑∑
n>n′

φ̂F
n,n′

(Zi)

]
and V̂ar

[∑∑
n>n′

φ̂Ω

n,n′
(Zi)

]
,

are consistent under the conditions of Theorem 7.

Remark 1 (Extension to multivariate X). Our methodology can be extended to the multivari-

ate X case, with both discrete and continuous covariates. Our nonparametric estimators would use

indicator functions for the discrete components of X, and a multivariate (e.g, multiplicative) bias-

reducing kernel for the continuous elements. The value of M needed to preserve
√
L−consistency and

asymptotic normality of the resulting test-statistic would increase with the number of continuously

distributed elements in X. To be precise, let d denote the number of continuous elements in X. We

can show that the bandwidth convergence conditions analogous to Assumption (C4) that correspond

to the multidimensional case would be satisfied if M > 1
4
·
(
8 + 5 · d +

√
(8 + 5 · d)2 + 120 · d

)
. Thus, for

instance if d = 2 we need M ≥ 11, if d = 3, M ≥ 14, if d = 4, M ≥ 16, and so on. The use of

bias-reducing kernels of these (and higher) orders is highly feasible computationally. Furthermore,

as we pointed out in the one-dimensional case studied above, even though higher values of M would

in turn imply a higher degree of smoothness for the relevant distributions and functionals involved,

this feature can be violated at any subset of our testing range that has measure zero.
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B.6.4 A Test for the Reverse Inequality in (40) and Its Asymptotic Properties

Failing to reject either (39) or (40) could be attributed to the data being consistent with IPV

conditional on X. As we did in the unconditional case (see Appendix B.4.4), to check whether this

is the case we can test whether the reverse inequality in (40) holds: namely, whether

ψ−1
n−1:n

(
FW |Y (w|n, x)

)
≤ ψ−1

n′−1:n′
(
FW |Y (w|n′, x)

)
(40’)

for every n, n′ ∈ N with n > n′ and almost all (w, x) ∈ Cn,n′ . If the data supports (40), then

rejecting (40’) implies that the inequalities in (40) are strict with positive probability, which rules

out IPV (conditional on X) as the true model. A test of (40’) would replace SΩ
Ln,n′

(Zi, Zj , Zk) with

S−Ω
Ln,n′

(Zi, Zj , Zk) =
(
1{Wi ≤Wk} − Ω

(
FW |Y (Wk|n′, Xj), n, n′

))
· 1{Ni = n}

· 1
{
−ΦW |Y (Wk, n, n

′, Xj) ≥ 0
}
1
{

(Xj ,Wk) ∈ Cn,n′
}
·

1

hL
K

(
Xi −Xj
hL

)
.

We estimate this function with

Ŝ−Ω
Ln,n′

(Zi, Zj , Zk) =
(
1{Wi ≤Wk} − Ω

(
F̂−i,j,k
W |Y (Wk|n′, Xj), n, n′

))
· 1{Ni = n}

· 1
{
−Φ̂−i,j,k

W |Y (Wk, n, n
′, Xj) ≥ −bL

}
1
{

(Xj ,Wk) ∈ Cn,n′
}
·

1

hL
K

(
Xi −Xj
hL

)
Let

U
S−Ω
L

L(3) =
1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i 6=j 6=k

∑∑
n,n′∈N

n>n′

S−Ω
Ln,n′

(Zi, Zj , Zk)

 ,

U
Ŝ−Ω
L

L(3) =
1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i 6=j 6=k

∑∑
n,n′∈N

n>n′

Ŝ−Ω
Ln,n′

(Zi, Zj , Zk)


(54)

For a given n, n′ in N and a given (w, x), let

λ−Φ(w, n, n′, x) =

EW
[(
1{w ≤W} − Ω

(
FW |Y (W |n′, x), n, n′

))
· 1
{
−ΦW |Y (W,n, n′, x) ≥ 0

}
· 1
{

(x,W ) ∈ Cn,n′
}]
,

λ−Ω(w, n, n′, x) =

EW
[
∇1Ω

(
FW |Y (W |n′, x), n, n′

)
·
(
1{w ≤W} − FW |Y (W |n′, x)

)
· 1
{
−ΦW |Y (W,n, n′, x) ≥ 0

}
· 1
{

(x,W ) ∈ Cn,n′
}]

Let

γ−Ω
n,n′ = pN (n) · E

[
max

{
0,−ΦW |Y (Wk, n, n

′, Xj)
}
· fX|N (Xj |n) · 1

{
(Xj ,Wk) ∈ Cn,n′

}]
Under the type of smoothness and bandwidth-convergence conditions of Theorem 7, we have

E
[
Ŝ−Ω
Ln,n′

(Zi, Zj , Zk)
]

= γ−Ω
n,n′ + o(L−1/2). Note that γ−Ω

n,n′ ≥ 0. Having γ−Ω
n,n′ > 0 for some n > n′

in N would indicate that (40) holds as a strict inequality with positive probability in Cn,n′ , leading

us to reject the notion that, conditional on X, the data generating process is consistent with IPV.

Let

U
Ŝ−Ω
L
n,n′

L(3) =
1

L(L− 1)(L− 2)

∑∑∑
i,j,k∈{1,...,L}

i6=j 6=k

Ŝ−Ω
Ln,n′

(Zi, Zj , Zk).
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Under the type of conditions leading to part (ii) of Theorem 7, we can show that

√
L · U

Ŝ−Ω
L
n,n′

L(3) =
√
L · γ−Ω

n,n′ +
1√
L

L∑
i=1

φ−Ω
n,n′(Zi) + op(1), where E

[
φ−Ω
n,n′(Zi)

]
= 0.

By construction in (54), it follows that

√
L · U Ŝ

−Ω
L

L(3) =
√
L ·

∑∑
n,n′∈N

n>n′

γ−Ω
n,n′

+
1√
L

L∑
i=1

φ−Ω
N (Zi) + op(1), where φ−Ω

N (Zi) =

∑∑
n,n′∈N

n>n′

φ−Ω
n,n′(Zi)

 .
(55)

For each n, n′ in N , if the reverse inequality in (40) holds w.p.1. in Cn,n′ , the function φ−Ω
n,n′ reduces

to

φ−Ω
n,n′(Zi) = 1{Ni = n}·λ−Φ(Wi, n, n

′, Xi)·fX(Xi)−
pY (n,Xi)

pY (n′, Xi)
·1{Ni = n′}·λ−Ω(Wi, n, n

′, Xi)·fX(Xi) (56)

Let ΥΩ
L

be as defined in (44). Define

Ĝ−Ω
Ln,n′

(Zi, Zj , Zk, Z`) =

ΥΩ
L

(Zi,W`, n, n
′, Xk) · 1{Nj = n} · 1

{
−Φ̂−i,j,k,`

W |Y (W`, n, n
′, Xk) ≥ −bL

}
· 1
{

(Xk,W`) ∈ Cn,n′
}
·

1

hL
K

(
Xj −Xk
hL

)
.

We can estimate φ−Ω
n,n′ as described in (56) by using

φ̂−Ω
n,n′ (Zi) =

1

(L− 1)(L− 2)

∑
j 6=i

∑
k 6=j
k 6=i

Ŝ−Ω
Ln,n′

(Zi, Zj , Zk)−
1

(L− 1)(L− 2)(L− 3)

∑
j 6=i

∑
k 6=j
k 6=i

∑
` 6=k
6̀=j
` 6=i

Ĝ−Ω
Ln,n′

(Zi, Zj , Zk, Z`)

(57)

B.6.5 Application of the Conditional Test

We apply our test, conditional on X = appraisal value, to our timber data. We use N =

{2, 3, . . . , 11} and Cn,n′ =
{

(x,w) : 0.02 ≤ FW |Y (w|m,x) ≤ 0.98 for m = n, n′
}

as our testing

range. We use 1
{

0.02 ≤ F̂−i,j,kW |Y (Wk|n,Xj) ≤ 0.98
}
· 1
{

0.02 ≤ F̂−i,j,kW |Y (Wk|n′, Xj) ≤ 0.98
}

to estimate

1{(Xj ,Wk) ∈ Cn,n′} in the construction of ŜFLn,n′ (Zi, Zj , Zk) and ŜΩ
Ln,n′

(Zi, Zj , Zk). We employed

polynomial kernels with bounded support of form K(z) = K̃(z) =
(
a0+

∑7
j=1 aj ·z

2j
)
·1
{
−Ck ≤ z ≤ Ck

}
.

The aj ’s are chosen to satisfy the conditions
∫ Ck
−Ck K(z)dz = 1 and

∫ Ck
−Ck z

2j · K(z)dz = 0 for

j = 1, . . . , 6. Since our kernel is symmetric around zero, it guarantees
∫ Ck
−Ck z

r · K(z)dz = 0

for any odd r. In our results we used Ck = 8, which yields a support large enough to include

most of the probability mass, e.g., of a standard normal kernel. Using polynomial kernels helped

simplify the computation of our test-statistics significantly. The bandwidths we used are of the type

bL = 0.015 ·L−0.344, hL = d1 · σ̂X ·L
−0.073, and h̃L = d2 · σ̂X ·L

−0.073 , where σ̂
X

denotes the sample

standard deviation of X (appraisal value). The expression for b
L

was chosen so that b
L
≈ 0.001 given
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our sample size. Combined with the exponents used for the remaining bandwidths, the conditions

in Assumption (C4) are satisfied for M = 16. The constants of proportionality d1 and d2 were fixed

at 2 in our implementation.

The test-statistics for (39) and (40) were constructed using the analytic expressions for variances

described in Equations (52)-(53) in Appendix B.6.3, with c1 = c2 = 10−6. We also implement

the IPV test described in Appendix B.6.4, using the analytic expressions for the variance given in

Equations (56)-(57) with c = 10−6. As we can see in those equations, constructing the analytic

variance estimators requires the use of a fourth-order U-statistic. Given our sample size, this would

amount to a sum with approximately 20004 terms. In order to make the task of estimating this

variance computationally feasible, we chose 20 random subsamples of size L = 500 and computed

the corresponding estimate of the variance for each subsample. Our final estimate was computed as

the average of these 20 estimates.

?
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