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1 Introduction

With increasing concern about the possibility of human induced climate change there is now much

interest in new technologies and innovation that will help reduce emissions of greenhouse gases such

as Carbon Dioxide (CO2). Most models of climate change assume exogenous technological change

(e.g. Stern, 2006), but dealing with the challenge of global warming almost certainly requires some

more climate change related innovation.

Standard models suggest that the market will generate insufficient climate change related inno-

vation and too much R&D investment directed at “dirty” technologies. For example, in Acemoglu

et al. (2009, henceforth AABH) an important feature is that there is path-dependence in the di-

rection of technical change: namely, firms that have innovated a lot in dirty technologies in the

past will find it more profitable to innovate in dirty technologies today. This path dependence

feature combined with the environmental externality whereby firms do not factor in the loss in

aggregate productivity or consumer utility induced by environmental degradation, will induce the

a laissez-faire economy to produce and innovate too much in dirty technologies compared to the

social optimum. This in turn calls for government intervention to “redirect” technical change.

A challenge to the path-dependence hypothesis is that there may be decreasing returns to

each type (clean or dirty) of innovation, so that a firm that has innovated dirty a lot in the past

would have more incentives to innovate clean today. In that case the market would do part of the

job of redirecting technical change towards clean technologies, albeit temporarily (until firms run

sufficiently into decreasing returns on innovations in clean technologies that they would choose to

shift again towards dirty innovations).

In this paper, we exploit a new patent data set on innovations in the auto industry to examine
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the existence of directed technical change when carbon prices change and its relation to path

dependence. Our data are drawn from the European Patent Office (EPO) World Patent Statistical

database. These data cover the population of EPO patents (and their citations) since 1978 (over 80

countries took out such patents). In automobiles we estimate that around 12,000 patents in “clean”

technologies (electric vehicles, hybrid vehicles, fuel cells,..) were filed and about 36,000 patents in

“dirty” technologies which affect regular combustion engines. Moreover, our database reports the

name of patent applicants which in turn allows us to match clean and dirty patents with distinct

patent holders each of whom has her own history of clean versus dirty patenting.

Our main results can be summarized as follows: (i) higher tax-adjusted fuel price encourages

clean innovation consistent with the directed technical change hypothesis; (ii) a firm’s propensity

to innovate in “clean” technologies is positively correlated with their lagged stock of clean patents

and vice versa, consistent with the path-dependence hypothesis; (iii) finally, the positive marginal

impact of a higher tax-adjusted fuel price on the propensity to clean innovation is stronger for firms

with a higher stock of dirty patents and weaker for firms with a higher stock of clean patents.

These results have a number of potential implications. First, in addition to a beneficial effect on

reducing consumer demand for carbon, higher carbon taxes induce relatively more clean innovation

which magnifies the benefit of such a policy. Second, absent government intervention, firms that

have innovated dirty in the past tend to get locked in the same type of innovative activities in the

future. This makes the task of climate change reduction harder as the default option of the economy

is to increase demand for carbon-using technologies. Third, pollution taxes redirect innovation

towards clean mostly where this is needed the most, namely in firms with higher stocks of past

dirty innovations.

Our research relates to a small empirical literature on the effect of energy prices on the direction
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of technical progress. In particular Popp (2002) uses aggregate U.S. patent data from 1970 to 1994

to study the effect of energy prices on energy-efficient innovations. Popp constructs two different

measures of the knowledge stocks for the innovation regressions: (a) a simple stock of previously

U.S. granted patents and (b) a quality-adjusted stock of patents weighted by the productivity

estimates. In particular, he finds a significant impact from both, energy prices and the quality of

the stock of knowledge available to the inventor, on directed innovations. This provides evidence

in favor of directed technical change as a response to change in energy prices, but because the

data is aggregate a concern is that there may other macro-economic shocks correlated with both

innovation and the energy price. Because we have international firm-level data we can exploit

differential policy-induced shocks to the energy price (e.g. fuel taxes) across countries to which

firms are differentially exposed because of the market access. Further evidence of directed technical

change applied to the context of saving energy can be found in Newell et al (1999) which focuses

on the air-conditioning industry, or in Lanzi and Sue Wing (2010) who estimate the price elasticity

of innovation in fossil versus non fossil fuel energy. However, none of these papers look at the effect

of past clean versus dirty innovations on current innovation, and in particular they do not analyze

whether there is path-dependence in the direction of technical change.

Other papers have also argued that ignoring directed technical change overstates the costs of

environmental regulation (see Grubler and Messner (1998), Manne and Richels (2002), Messner

(1997), Buonanno et al (2003), Nordhaus (2002), Sue Wing (2003)). The measure of the over-

statement of costs depends on specific characteristics of the models found in these papers, namely,

the possibility of crowding-out in R&D towards energy-saving innovations.1 However, once again

1As an example, Popp (2004) modifies the standard Nordhaus model of climate change (DICE model) to allow
for induced innovation in the energy sector. After some calibration and simulation exercises and allowing for the
possibility of crowding-out across different kinds of R&D investment, he concludes that ignoring DTC overstates the
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none of these papers deals with the path-dependence issue or how it interacts with direct technical

change.

The paper is organized as follows. Section 2 develops a simple one-period model to guide our

empirical analysis. Section 3 presents the data and the econometric methodology. In Section 4,

we provide a description of the data. Section 5 presents the results and discusses their robustness.

Section 6 concludes.

2 Model

2.1 Demand, production and innovation

We consider a one-period model of an industry populated by a mass 1 of different varieties. Each

variety i is produced by a monopolist who faces an inverse demand curve of the form:

yi = (p′i)
−σ
P σ−β (1)

where σ > 1 is the elasticity of substitution between the different varieties, pi
′ is the consumer

(after tax) price, P is the price index (defined by: P =
(∫ 1

0
(p′i)

1−σ di
) 1

1−σ
) and β is the elasticity

of consumption of the composite good with respect to the overall price index.2

Good i is produced using an energy input with a linear technology. The energy input is produced

one for one with labor (wages being normalized to 1), and comes in two forms, either clean or dirty.

We denote by xji the amount of clean (j = c) or dirty (j = d) energy inputs used by the producer

welfare costs of an optimal tax policy by 9.4% in the base case (where partial - 50% - crowding-out is allowed).
2This demand structure for varieties can be generated by a quasi-linear utility function

u = C0 +
β

β − 1

(∫ 1

0

c
σ−1
σ

i

) σ
σ−1

β−1
β

,

where C0 is a homogenous good.
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of variety i. Each producer has a productivity level for each input, denoted by Aji (with j = c, d).

Variety i is then produced according to the following technology:

yi = Acixci + Adixdi. (2)

The use of the dirty energy input generates pollution: more specifically, if the producer uses a

quantity xdi of dirty energy input, the atmospheric emissions are given by ξxdi (ξ > 0).3

Before production occurs a firm has the opportunity to innovate in clean and/or dirty tech-

nologies. By hiring zji workers the producer can increase his productivity with input j by a factor

(1 + ηjzji) (j = c, d). We denote by A0
ji the initial productivity level, so that the end of period

productivity is given by

Aji = (1 + ηjzji)A
0
ji.

At the beginning of the period, the government can implement two types of environmental

policies: a subsidy to research in the clean sector q (so that the effective cost of hiring zci workers to

innovate on the clean technology is (1− q) zci), and a tax τ per unit of pollution. The relationship

between the consumer and the producer (pi) prices, is then given by

p′i = pi + τ
ξxdi
yi

. (3)

The timing of moves within the period can be summarized as follows. First, the government

decides about research subsidies and pollution tax. Then, producers decide how much to invest in

clean and/or dirty innovation. Then, production takes place.

3Alternatively one could assume that pollution is proportional to Adixdi. All our results carry through in this
case.
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2.2 Equilibrium profits

To simplify the expressions we drop the subscript i in this subsection. The producer chooses the

amount of energy inputs in order to maximize his profits:

Π = p (y) y − xc − xd. (4)

Using (1), (2) and (3), (4) can be rewritten as:

Π = P
σ−β
σ (Acxc + Adxd)

σ−1
σ − xc − (1 + τξ)xd.

Because the clean and dirty energy inputs are perfectly substitutes the producer only uses the input

with the most cost effective technology, thus he uses the clean energy input only if and only if

Ac >
Ad

1 + τξ
,

and the dirty energy input only when Ac <
Ad

1+τξ
.

The optimal input productions, are then given by:

xc = P σ−β
(
σ − 1

σ

)σ
Aσ−1
c , xd = 0 if Ac >

Ad
1 + τξ

, (5)

xc = 0, xd = P σ−β
(
σ − 1

σ

)σ
Aσ−1
d

(1 + τξ)σ
if Ac <

Ad
1 + τξ

. (6)

These expressions show clearly that the higher Ad, or the lower τ , the higher the level of pollution

as measured by ξxd.

Equilibrium profits are then given by

Π = P σ−β (σ − 1)σ−1

σσ
max

{
Aσ−1
c ,

(
Ad

1 + τξ

)σ−1
}
. (7)
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2.3 Innovation decision

Moving back one step, the producer will decide to invest in clean innovation up to the point where4

(σ − 1)σ

σσ
P σ−β (A0

c

)σ−1
ηc (1 + ηczc)

σ−2 = 1− q, (8)

if it is profitable to innovate clean, and he will invest in dirty innovation up to the point where

(σ − 1)σ

σσ
P σ−β

(
A0
d

1 + τξ

)σ−1

ηd (1 + ηdzd)
σ−2 = 1 (9)

if it is profitable to innovate dirty. In particular, we see that clean R&D investment zc is weakly

increasing in the clean research subsidy q, and in the initial clean productivity A0
c , whereas the

dirty R&D investment zd is weakly decreasing in the rate of pollution tax τ but increasing in the

initial dirty productivity A0
d.

Now, comparing between Πc and Πd we see that producers will innovate clean whenever

A0
c(1 + ηczc) >

A0
d

1 + τξ
(1 + ηdzd),

where the left hand side (resp. right hand side) is the final productivity conditional upon innovating

clean (resp. innovating dirty).

Using (8) and (9), this last condition simply boils down to

A0
c

A0
d

>
ηd
ηc

(1− q)
(1 + τξ)

. (10)

In particular this expression shows that producers are more likely to innovate clean when ηc >>

ηd or the larger q and/or the larger τ, or the larger the initial productivity ratio A0
c/A

0
d. Also,

4Here, we implicitly restrict attention to the case where the producer’s profit is concave in the technology, which
in turn requires that σ be less than 2. This latter assumption can be dispensed with if we assume an innovation cost
which is sufficiently convex (instead of linear).
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starting from a situation where (10) is violated, a small increase in q or τ will have no effect on

clean innovation since that condition will remain violated so that producers will keep innovating

dirty; yet, the increase in τ will reduce the amount of dirty innovation zd by (9) - holding the price

index P constant-. However, a sufficiently large increase in q or τ will make (10) become satisfied,

so that all R&D investment will go into clean.

We now compute the price index to investigate the general equilibrium effect. Using (1), (2),

(5) and (6), we can express the price index as:

P =
σ

σ − 1

(∫ 1

0

(
min

(
A−1
ci , (1 + τξ)A−1

di

))1−σ
di

) 1
1−σ

.

or

P =
σ

σ − 1

(
µdirty (1 + τξ)1−σ E

(
Aσ−1
di |dirty

)
+ µcleanE

(
Aσ−1
ci |clean

)) 1
1−σ

where µclean is the mass of firms producing with the clean technology, µdirty the mass of firms

producing with the dirty technology, and E
(
Aσ−1
di |dirty

)
(resp. E

(
Aσ−1
ci |clean

)
) is the expectation

of Aσ−1
di conditional upon the firm producing dirty (resp. the expectation of Aσ−1

ci conditional upon

the firm producing clean).

Therefore, the price index is increasing in the tax rate and decreasing in the technological levels.

A high price index itself favors both types of innovation as long as the elasticity of substitution

between varieties, σ, is higher than the price elasticity of the composite good ,β, and it is detrimental

to both types of innovation if σ < β (from equation (7)). Overall, a small increase in the tax rate

pushes towards less dirty innovations when most firms have a large stock of clean innovations or

when β > 1.5 A small increase in the tax rate pushes towards more clean innovation in firms

5The LHS of (9) is increasing in τ if and only if:

µdirty (1− β)E(Aσ−1di |dirty) (1 + τξ)
1−σ

+ µclean (1− σ)E(Aσ−1ci |clean)
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producing clean as long as σ > β, but towards less innovation in clean when σ < β. In the

latter case, the income effect from increasing the carbon tax τ dominates the substitution effect, so

that clean and dirty consumption and innovation in dirty and clean goods decrease, even though

consumption and innovation in dirty goods still decrease by more than for clean goods.6

2.4 Summarizing our main predictions

Abstracting from general equilibrium effects working through P, which, as we have just seen, are a

priori ambiguous, our main predictions are:

1. producers have a higher propensity to innovate clean the larger q and/or the larger τ

2. producers have a higher propensity to innovate clean the higher the initial productivity ratio

A0
c/A

0
d, i.e. the higher the stock of clean vs. dirty innovations

3. starting from a situation where (10) is violated so that firms produce and innovate dirty, a

small increase in q or τ will will reduce the amount of dirty innovation but will have little

effect on clean innovation

4. a sufficiently large increase in q or τ will push all R&D investment into clean.

Part 3 points to a positive interaction effect between fuel price and the stock of dirty innovation,

whereas part 4 points to a positive effect of fuel price squared on the propensity to innovate clean.

is positive.
6There are further general equilibrium effects working through the endogenous response of firms’ technological

levels. These can be ignored when innovation rates are sufficiently small (so that the technological levels don’t
change much). For instance, an increase in clean research subsidy increases innovation in clean research and therefore
decreases the price index, which reduces the amounts of both types of innovation when σ > β and increases these
two amounts when σ < β.
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3 Econometric Implementation and Data

3.1 Econometric specification

Our simplest dependent variable is the firm’s propensity to currently innovate clean rather than

dirty, which we capture by the measure

RPATit = ln(1 + PATCit)− ln(1 + PATDit)

where PATCit and PATDit are the flows of clean and dirty patents filed by firm i in year t. RPATit

is approximately equal to the (log) ratio between clean and dirty patents. This variable allows us

to use (log) linear panel data models. We also present results that use the flow of clean and dirty

patents separately as dependent variables and estimate such models using both the OLS and fixed

effect count data methods.

We regress relative patents RPATit on

1. Various measures of government policy, Pit. The primary measure we consider is carbon

pricing for cars. As no country has established meaningful carbon pricing yet, we use tax-

adjusted fuel prices in the various countries in our sample, exploiting cross-country variations

in taxation and market differentiation. We then test the robustness of our results to explicitly

using fuel taxes as the policy variable. Because different firms operate in different markets

(for example GM operates primarily on the US market whereas Toyota operates primarily on

the Japanese market) they are differently exposed to tax changes in different countries. To

take this heterogeneity into account we construct a firm-specific government policy variable.

More specifically, we use the firm’s pre-sample history of patent filing to assess the relative

importance of the various markets the firm is operating in and construct firm-specific weights
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on carbon prices from the corresponding markets (we discuss this in more details in the data

section).

2. Firm i’s lagged clean and dirty patent stocks, which we denote respectively by KPATCit−1

and KPATDit−1.We construct stocks using the perpetual inventory method, but then show

robustness to using non-parametric distributions of patent flows and to considering alternative

assumptions over knowledge depreciation rates.

3. The interaction between Pit and the stocks of clean and dirty patents. Here we want to analyze

the prediction that a firm’s innovation response to a change in carbon pricing, depends upon

the extent to which the firm is already locked-in with dirty technologies.

4. A vector of controls Xit including total country-wide GDP and per capita GDP to control for

market size effects which could increase the demand for innovation, or to control for the type

of innovation being country-specific (for example, richer countries might be a priori biased

towards clean rather than dirty innovation). We also include country fixed effects and year

fixed effects and check that our results are robust to the inclusion of country-by-year fixed

effects. 7

5. Firm fixed effects (ηi) to control for correlated unobserved heterogeneity.

We thus consider the regression equation

7The firm and time specific nature of the policy variable Pit enables us to also condition on a set of country by
year fixed effects and still identify the effect of the policy variable on induced innovation.
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RPATit = βPit−k + α1KPATCit−1 + α2KPATDit−1 + γ1(KPATCit−1 ∗ Pit−k) (11)

+ γ2(KPATDit−1 ∗ Pit−k) + Ω.Xit + ηi + uit

where our conjecture is that α1 > 0, α2 < 0, β > 0, γ1 < 0, and γ2 > 0. We lag the policy variable

by k periods as we expect its impact on patenting not to be immediate. In our baseline estimation

we let k = 1 but show the robustness of other results to increasing the lag.

Subsequently, we separately regress the flows of clean and dirty innovations. In the count data

versions of these regressions we estimate Poisson models of the form:

PATCit = exp(βCPit−k + αC1 KPATCit−1 + αC2 KPATDit−1 + γC1 (KPATCit−1 ∗ Pit−k) (12)

+ γC2 (KPATDit−1 ∗ Pit−k) + ΩC .Xit + ηCi + uCit)

and

PATDit = exp(βDPit−k + αD1 KPATCit−1 + αD2 KPATDit−1 + γD1 (KPATCit−1 ∗ Pit−k) (13)

+ γD2 (KPATDit−1 ∗ Pit−k) + ΩD.Xit + ηDi + uDit )

To deal with fixed effects in these non-linear Poisson models, we use the results in Blundell,

Griffith and Van Reenen (1999) who argue that using a pre-sample mean scaling estimator is an

attractive way of controlling for correlated unobserved heterogeneity in dynamic innovation models8.

We also compare this method with the Hausman, Hall and Griliches (1984) approach, although

8See also Blundell, Griffith and Windmeijer (2002) and Blundell, Griffith and Van Reenen (1995).

13



this requires strict exogeneity, which is inconsistent with dynamic models with lagged dependent

variables on the right-hand side as we have in equations (12) and (13).

3.2 Data

3.2.1 Main dataset

Our data are drawn from the World Patent Statistical Database (PATSTAT) maintained by the

European Patent Office. Patent documents are categorized using the international patent classifica-

tion (IPC) and national classification systems. We have extracted all the patents filed from 1978 to

2007 at the EPO pertaining to “clean” (C) and “dirty” (D) technologies in the automotive indus-

try. “Dirty” includes patents related to the internal combustion engine. “Clean” includes patents

specifically related to clean car technologies such as electric or hydrogen vehicles. Our selection

of relevant IPC codes for clean technologies relies heavily on previous work by the OECD.9 The

precise description of the IPC codes used to identify relevant patents can be found in Annex 1.

The data set includes 12,438 “clean” and 37,103 “dirty” patent applications. In addition to these

patents, we have extracted all other patents filed by holders of at least one clean or dirty patent.

This represents a total of 746,564 patent applications.

The PATSTAT database reports the name of patent applicants. A common problem with

patent data is that the name of patentees often varies, because of spelling mistakes, typographical

errors and name variants. To uniquely identify patent holders we use the OECD “HAN” database,

which provides a dictionary of harmonized patent applicants’ names produced through a computer

9See www.oecd.org/environment/innovation
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algorithm.10 We complement the HAN database with manual improvements.11 As a result, we

are able to reduce the number of distinct patent holders from 11,334 to 6,827, 4,366 of which are

companies and 2,461 are individuals.12 For every patent holder we subsequently identify the number

of clean, dirty and “other” (i.e. neither clean nor dirty) patent applications filed every year.

3.2.2 Patents as an indicator of innovation

To measure innovation, we use counts of patent applications. The advantages and limitations of

patenting as a measure of innovation, have been discussed at length in the literature 13. For our

purpose, the main advantage of using patent data is that these are available at a highly disaggregated

level. R&D cannot be disaggregated by type of innovation in this way. Further, R&D is not

reported for many small and medium sized firms, especially in Europe (in the US privately listed

firms are also exempt from the accounting requirement to report material R&D). In particular we

can map innovations in the automotive industry according to specific technologies, such as control

systems specially designed for hybrid vehicles. Moreover, the car industry is a large, R&D intensive

industry where patents are perceived as an efficient means of protection against innovation. This

high propensity to patent innovations makes patenting data a good indicator of innovative activity

in the sector.

Patent-based indicators suffer from a number of limitations. The first is that patents are not

the only way to protect innovations, although a large fraction of the most economically significant

innovations appear to have been patented (Dernis et al., 2001). Another problem with patent-based

10The HAN database is only available for patent applicants at the EPO. This is we restricted our data sample to
patents applied for at the EPO.

11This allows us to match for example Ford Motor Company with Ford Werke, its German subsidiary.
12We are also able to match 1736 of these companies with the Orbis database, a rich company characteristics

database.
13See Griliches (1990) and, for a recent overview, OECD (2009)
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indicators is that the value of individual patents is heterogeneous, and the overall distribution of

individual patent values is skewed, with most patents having a very low valuation, thus the number

of patents does not perfectly reflect the aggregate innovative output. To deal with this problem,

we use citation-weighted patenting data in some of our robustness specifications. FinaIly, the

number of patents that are granted for a given innovation varies significantly across patent offices.

Our decision to consider only patents filed at the European Patent Office is meant to avoid this

potential problem.

3.2.3 Constructing tax-adjusted fuel prices

To estimate the impact of a carbon tax on innovation in clean and dirty technologies, we use

information on fuel prices and fuel taxes. Data on tax-adjusted fuel prices are available from the

International Energy Agency for 25 countries (including some non-OECD countries), from 1978

onwards.14 Since data are available for both diesel and gasoline fuels, we construct a time-varying

country-level fuel price defined as the average of diesel and gasoline prices.

An important issue noted in the previous section is that data on fuel prices are available only at

the country level, whereas our empirical analysis requires the policy variable to vary across firms (as

we include time dummies). Another issue is that the car market is a global market where government

policies abroad might be at least as important for firms’ innovation decisions as domestic policies

in the country where the firm operates. To deal with these issues we construct a firm-level tax-

adjusted fuel price variable for each firm as a weighted average of fuel prices across countries where

the firm sells. The weight of each country is in turn determined by the importance of that country

as a market outlet for that particular firm. To construct those weights and measure the exposure

14The IEA reports some incomplete data for an additional 13 countries.
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of a company to a specific market we make use of information on patent families. For every patent

applied for at the European Patent Office, we know that the patenting firm has paid the cost of

legal protection in a discrete number of countries. For example, a firm may choose to enforce its

rights in all EU countries or only in a subset of countries, say Germany and the UK. Similarly, the

firm may decide to apply for patent protection in the US but not in smaller markets. Assuming that

the country distribution of a firm’s patent portfolio is a good indicator of the firm’s exposure to

the various markets, we can use this distribution information to construct a firm-specific fuel price

whose value is computed as the weighted geometric mean of the fuel prices in the relevant markets,

with weights equal to the shares of the corresponding countries in the firm’s patent portfolio. In

addition, in order to make sure that the computed exposures are a (weakly) exogenous source of

variation across firms, the weights are calculated using the patent portfolio of each company over

the 1978-1985 “pre-sample” period, whereas we run regressions over the period 1986-2007. We then

perform robustness tests using different pre-sample periods.

3.2.4 Patent stocks

Following Peri (2005) and Cockburn and Griliches (1988), the patent stock is calculated using the

perpetual inventory method. We use the recursive formula:

KPATCit = (1− δ)KPATCit−1 + PATCit

We use the same formula for the stocks of dirty patents. We take δ, the depreciation of R&D

capital, to be equal to 15%, as is commonly assumed in the literature, but we check the robustness

of our results to other values of . 15.

15Since the European Patent Office was created in 1978, we do not have patent data prior to 1978. We assume
that the pre-1978 growth (g) in patent stock was 15% and assume that the initial patent level was in steady state
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A common problem with patent data is that the value of patents is highly heterogeneous across

firms and over time. Evidence also suggests that there may be diminishing returns to R&D (Popp,

2002). In order to deal with these problems, we construct alternative measures of patent stocks in

which patents are weighted by the number of citations they received in subsequent patents. We

should also stress that we rely exclusively on patents filed at the European Patent Office. Since

patent filing at the EPO involves higher fees than filings at national offices, our patent stock measure

is biased towards higher quality patents.16

4 Descriptive statistics

4.1 Aggregate statistics

4.1.1 Trend in innovation activity

Aggregate patenting in clean and dirty technologies has been rising over time. The number of

patents in dirty technologies rose steadily between 1980 and 2001 and remained stable since then.

The number of clean patents remained very low during 15 years before rising sharply between 1995

and 2002 at an average annual growth rate of 21%. It reached a record-high of 1,203 patents in

2003. The rate of innovation has been stable during the last available years. Figure 1 describes

the ratio of clean to dirty patents between 1980 and 2007. While the number of clean patents

represented only 10% of the number of dirty patents during the 1980s, this ratio has grown sharply

since 1990. Today, around 4 clean patents are filed for every 10 dirty patents.

so we can approximate the patent stock by PAT0/(δ + g). Note that, as we perform regressions over the 1986–2007
period, the influence of the discounted initial stocks is small.

16It has been empirically demonstrated that the number of countries in which a patent is filed is correlated with
other indicators of patent value (see, for example, Lanjouw et al, 1998, Harhoff et al, 2003). On average, EPO patents
are validated in 5 European countries and filed in 4 additional patent offices worldwide (Van Zeebroeck, 2010), which
shows that the value of patents filed at the EPO is high.

18



Figure 1: Ratio of clean to dirty patents, 1978-2007
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Table 1: Distribution of clean patents by IPC code

IPC code Description

B60K   1 Arrangement or mounting of electrical propulsion units 373

B60K   6 1378

B60L   3 333

B60L   7 Dynamic electric regenerative braking 80
B60L  11 Electric propulsion with power supplied within the vehicle 951

B60L  15 354

B60R  16 192

B60S   5 Supplying batteries to, or removing batteries from, vehicles 25

B60W  10 1174

B60W  20 Control systems specially adapted for hybrid vehicles 257
H01M   8 Fuel cells 8065

Number of 
patents

Arrangement or mounting of hybrid propulsion systems 
comprising electric motors and internal combustion engines
Electric devices on electrically-propelled vehicles for safety 
purposes; Monitoring operating variables, e.g. speed, 
deceleration, power consumption

Methods, circuits, or devices for controlling the traction- motor 
speed of electrically-propelled vehicles
Electric or fluid circuits specially adapted for vehicles and not 
otherwise provided for

Conjoint control of vehicle sub-units of different type or different 
function

4.1.2 Technological distribution of patents

Clean and dirty patents are identified using a number of relevant International Patent Classification

codes. The tables below provides a detailed breakdown of the patents included in our data set by

core IPC code.

4.1.3 Where are clean and dirty inventions protected?

The PATSTAT database holds information about the set of countries where the same invention

is patented. For every patent in our data set, we know whether the invention has also been filed
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Table 2: Distribution of dirty patents by IPC code

IPC code Description

F02B 9691

F02D Controlling combustion engines 11392

F02F 2637

F02M 12200

F02N 1308

F02P 1883

Number of 
patents

Internal-combustion piston engines; combustion engines in 
general

Cylinders, pistons, or casings for combustion engines; 
arrangement of sealings in combusion engines
Suplying combusion engines with combustible mixtures or 
constituents thereof
Starting of combusion engines
Ignition (other than compression ignition) for internal-
combustion engines

(prior to or following the filing of the European patent) at the Japanese Patent Office (JPO), at the

US Patent Office (USPTO), or at any other patent office included in PATSTAT. Table 3 provides

information on the geographical coverage of clean and dirty innovations. The Patent applications

filed at the three main patent offices (EPO, JPO, and USPTO) are referred to as triadic patent

families (Dernis and Kahn, 2004). Triadic patent families make up for 50% of dirty inventions and

for 59% of clean inventions. Triadic patent families are naturally considered as the most valuable

innovations. Table 3 shows that the average value of inventions in our data set is high. Interestingly,

31% of clean inventions are also patented in China. This is almost twice the rate for dirty inventions,

17% of which only make their way to China.
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Table 3: Geographical coverage of patent protection

Type of technology
Share of inventions also patented in:

USA Japan USA & Japan China

Clean 75% 66% 59% 31%

Dirty 66% 59% 50% 17%

Notes: The patents included in our data set are from the European Patent Office. The table reports the share of

patents that are also filed in Japan, USA and China for each category.

4.1.4 Knowledge spillovers as indicated by citation patterns in clean and dirty tech-
nologies

When a patent is filed, it must include citations to earlier patents that are related to the new

invention. Citations to earlier patents - or backward citations - are indicative of the accumulated

knowledge used by the inventor to develop the new invention. We collect this information from the

Patstat database. This represents 172,600 citations for all clean and dirty patents included in our

data set, which amount to 3.34 citations for the average patent. Dirty patents cite 3.5 patents on

average, while clean patents cite only 2.8. Moreover, 40% of clean patents have no citation, whereas

the figure is only 29% for dirty patents (which partly reflects the fact that clean patents are on

average of more recent vintage than dirty patents). Table 4 reports the distribution of citations

between clean and dirty categories. We see that among the patents cited by clean patents, 55% are

clean, whereas 4% are dirty. The remaining 41% refer to other - i.e. neither clean or dirty – patents.

To get a sense of what these figures imply, suppose that spillovers between clean and dirty patent

categories are uniform; i.e. a clean patent – on average – facilitates subsequent clean innovation no

more than it would facilitate subsequent dirty innovation and vice versa. Considering that even at

the end of our sampling period in 2008 there are about three times as many dirty patents as there
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Table 4: Citation patterns

Cited patent

Clean Dirty Other

Citing patent

Clean 55.2% 3.7% 40.1%

Dirty 1.0% 67.7% 31.3%

Other 0.3% 1.2% 98.5%

Notes: The table reports the distribution of citations across the dirty and clean categories; e.g. 55% of all citations

found in clean patents refer to other clean patents whereas 4% refer to a dirty patent. The remaining 41% are

citations of other patents.

are clean patents, we would expect that the likelihood of a clean or dirty patent citing a dirty patent

be at least three times higher than that of the clean patent citing a clean patent. Interestingly,

we find that the likelihood of a clean on clean citations (55%) is almost as high as the likelihood

of dirty on dirty citations (68%), suggesting that within category spillovers are vastly higher than

between category spillovers. This clearly reflects path-dependence in the direction of innovation.

4.2 Describing companies’ patent portfolios

4.2.1 Who are the top inventors in clean and dirty technologies?

Table 5 displays the top 10 inventor companies in clean technologies between 1978 and 2007. In

particular it shows the predominance of Japanese and German companies. Table 6 focuses on the

last three years of the data sample and shows that the ranking is quite stable over time. That

said there are a number of new leaders in clean technology patenting including Peugeot Citroën

and BASF Fuel Cells. An interesting finding from tables 5 and 6 is that the vast majority of top

innovators in clean technologies are not strictly specialized in this field. Most top companies’ patent
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Table 5: Main clean patent holders 1978-2007

Company Clean patents Dirty patents Other patents Total patents

Toyota 719 1578 3414 5711

Nissan Motor 521 818 2602 3941

Honda 405 1044 3216 4665
Siemens 349 1832 33201 35382

Robert Bosch 235 4746 14530 19511

Hitachi 191 815 9685 10691

Ballard Power Systems 183 0 49 232

DaimlerChrysler AG 173 669 3727 4569

Panasonic 162 3 7938 8103
135 57 2826 3018Zahnradfabrik Friedrichshafen

Notes: The table reports the top 10 clean patent holders between 1978 and 2007. We also report the number of

dirty patents and the number of total patents (including clean, dirty and other patents) held by these applicants.

portfolios include both clean and dirty patents. The only exception are Ballard Power System, a

fuel cell manufacturer, and Samsung SDI, a battery specialist. Table 7 displays the top 10 inventor

companies in dirty technologies between 1980 and 2007. Again we see a predominance of Japanese

and German companies.17 While it is clear that there a number of big companies active in both

clean and dirty automotive patenting, computing a Herfindahl Index (HHI) for patenting over 2005

to 2007 for clean innovation we find a HHI of 0.019 and for dirty we find a HHI of 0.031, both of

which reflect a low degree of concentration. The top 10 patent holders in clean account for 30%

of patents over 2005 to 2007 whereas the corresponding figure is 41% for dirty, suggesting that

innovation in dirty is slightly more concentrated than innovation in clean.

17Recall that this is based on patents filed at the European Patent Office and US companies tend to file dispro-
portionally more patents in the US than in Europe. This explains why companies such as General Motors - the top
patenter in dirty technologies at the US patent office - is not among the top 10 patenters at the EPO.

24



Table 6: Main clean patent holders 2005-2007

Company Clean patents Dirty patents Other patents Total patents

Toyota 337 517 1143 1997

Nissan Motor 166 152 633 951

Robert Bosch 123 1058 5187 6368
Samsung Electronics 98 0 4381 4479

Siemens 69 329 7454 7852

Honda 53 226 807 1086

51 8 945 1004

Panasonic Corporation 48 1 3157 3206

Toshiba 44 0 1105 1149
BASF 42 4 4172 4218

Zahnradfabrik Friedrichshafen

Notes: The table reports the top 10 clean patent holders between 2005 and 2007. We also report the number of dirty

patents and the number of total patents (including clean, dirty and other patents) filed by these applicants during

the same period.

Table 7: Main dirty patent holders 1978-2007

Company Dirty patents Clean patents Other patents Total patents

Robert Bosch 4746 235 14530 19511

Siemens 1832 349 33201 35382

Toyota 1578 719 3414 5711
Honda 1044 405 3216 4665

Ford 878 88 2825 3791

Nissan Motor 818 521 2602 3941

Hitachi 815 191 9685 10691

DaimlerChrysler 669 173 3727 4569

Renault 644 128 2002 2774
Delphi Technologies 619 89 2696 3404

Notes:The table reports the top 10 clean patent holders between 1978 and 2007. We also report the number of dirty

patents and the number of total patents (including clean, dirty and other patents) held by these applicants.
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4.2.2 Complementarity between clean and dirty innovation

From Table 6 we saw that top clean patent holders also innovate in dirty technologies. Is this result

true for all companies or only for leaders in the field? Figure 2 shows the number of firms with

respectively at least one dirty patent in their portfolio, at east one clean patent, or at least one

clean and one dirty patent. As the figure shows, the proportion of firms innovating both in clean

and dirty technologies is small. Interestingly, this proportion varies across technologies. Among

firms active in dirty innovation, only 6% on average are also active in clean innovation. However,

among clean innovators, the proportion of firms also active in dirty technologies accounts for 29%.18

This might suggest that the skills needed for the production of clean and dirty inventions are not

necessarily complementary. These results also suggest that the likelihood that a firm active in clean

innovation be also active in dirty innovation is higher than the likelihood that dirty innovators also

work on clean technologies. Clean patents make up 42% of the average patent portfolio of firms

having at least one clean patent whereas firms with at least one dirty patent have 65% of dirty

patents in their portfolio.

5 Results

In this section we present and discuss the results from estimating the model in equation 11 and

then we present some robustness checks.

18Note that interpretation of this result is subject to caution as the patent classifications used for each technology
may not be equally inclusive. For example, if we identify 90% of all clean vehicles patents but only 50% of all dirty
patents, we will underestimate the proportion of clean innovators also active in dirty innovation.
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Figure 2: Companies with clean and/or dirty patents
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5.1 Main Results

Our main results are shown in Table 8 covering 6,422 patent holders.19 We estimate our panel over

22 years from 1986 to 2007 and use pre-sample information for the 1978-1985 period for the weights

(and calculation of the stocks). Note that all estimates include firm fixed effects and country by year

dummies. In column (1), we include only the tax inclusive fuel price. This policy variable shows a

positive and significant coefficient which is consistent with the idea of endogenous directed technical

change: higher carbon prices induce firms to switch their innovation portfolio towards clean and

away from dirty innovation. Column (2) includes the lagged patent stocks and suggests strong path

dependence in the direction of innovation: namely, a higher stock of clean patents makes future

clean innovations relatively more likely, and a higher stock of dirty patents makes future clean

innovations less likely. In other words, firms build on their existing stock of technology-specific

knowledge to develop new innovations, which in turn can lead to technological lock-in. Column (3)

includes both the patent stocks and the fuel price, and shows that all three terms are significant.

In order to account for possible correlations between the fuel price and other macro-level vari-

ables, in column (4) we add GDP and GDP per capita as control variables. Both variables are

constructed in the same way as the fuel price variable, using the same time-invariant applicant-level

weights based on 1978-1985 patent portfolios. Our results remain robust to including these con-

trols. In the last column where we interact the fuel price with the patent stocks variables. Here,

the regression results suggest that firms with higher stocks of dirty patents react more strongly to

an increased fuel price than firms with no patents at all. And conversely firms with higher stocks

of clean patents respond less to an increased fuel price than firms with no patents as indicated by

the negative coefficient on the interaction between the stock of clean patents and fuel price. This

19Applicants who only filed patents before 1986 are dropped from the regression.
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is in line with our third prediction, namely that an increase in fuel price will lower the incentive

to pursue dirty innovation to a greater extent for firms that are locked in dirty production and

innovation, while it will have a smaller effect on firms that have already accumulated a higher stock

of clean technologies.

To summarize: (i) tax-adjusted fuel prices (our proxy for a carbon tax) appear to induce di-

rected technical change towards “clean” innovation; (ii) there is path dependence in the direction of

innovation; (iii) tax-policies aimed at inducing clean innovation are, at the margin, more effective

for those firms with a higher stock of dirty innovations.

5.2 Extensions

5.2.1 Disentangling clean and dirty innovation

Above we used the ratio between clean and dirty patenting as our dependent variable. Alternatively,

we may want to look separately at how clean and dirty innovation respond to government policies

and to the stocks of clean and dirty patents, as formalized in equations (12) and (13). One advantage

of this latter approach is that we can implement count data models that more properly reflect the

nature of the dependent variable. In Table 9 we start by reproducing the OLS log linear models

for clean and dirty patents respectively. Again we see evidence of path dependence in the direction

of innovation, with stronger spillovers from past innovation within innovation type (clean versus

dirty) than between innovation types. Moreover, a fuel price increase has a positive impact on

the level of clean patenting and a negative impact on the level dirty patenting. In Table 10 we

repeat the same regressions using a Poisson model without fixed effects (Columns 1 and 2), and in

columns (3) and (4) we include fixed effects using the Blundell et al (1999) approach. While there

are some changes to the values of point estimates, the qualitative implications are the same in all
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Table 8: Regressions of the ratio between clean and dirty patenting

(1) (2) (3) (4) (5)

Dep. Variable
Difference between Clean and Dirty Patent applications

Fuel Price (including tax) 1.688*** 1.235*** 0.838*** 0.498**
(0.246) (0.225) (0.201) (0.194)

Stock of clean patents 0.161*** 0.159*** 0.158*** 0.144***
(0.014) (0.014) (0.014) (0.015)

Stock of dirty  patents -0.085*** -0.084*** -0.080*** -0.046**
(0.013) (0.013) (0.014) (0.019)

Stock of clean patents X  Fuel Price -0.029
(0.046)

Stock of dirty patents  X  Fuel Price 0.131***
(0.032)

Controls for population & GDP no no no yes yes
Firm Fixed Effects yes yes yes yes yes
Year Fixed Effects yes yes yes yes yes
Observations 141284 141284 141284 141284 141284
Firms 6422 6422 6422 6422 6422

ln(1+Pc)-ln(1+Pd)

ln Pit-1

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country

dummies and year dummies and a set of company fixed effects. The tax adjusted fuel price variable is a weighted

average of 26 country-specific fuel prices where the firm-specific weights are constructed according to the firm’s patent

portfolio in these countries (see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions

estimated 1986-2007. ln(GDP) and ln(GDP per capita) are constructed using the same time-invariant firm-specific

weights.

30



Table 9: Separate regressions for clean and dirty

Dep.Variable
Number of Patent Applications

Clean Dirty
(1) (2) (3) (4) (5) (6)

Fuel Price (including tax) 0.564*** 0.307*** -0.006 -0.671*** -0.531*** -0.504***

(0.068) (0.077) (0.078) (0.086) (0.097) (0.098)
Stock of clean patents 0.216*** 0.216*** 0.201*** 0.057*** 0.057*** 0.057***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)
Stock of dirty  patents 0.036*** 0.039*** 0.072*** 0.120*** 0.120*** 0.118***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Stock of clean patents X Fuel Price -0.040*** -0.011

(0.006) (0.007)
Stock of dirty  patents X Fuel Price 0.125*** -0.006

(0.004) (0.005)
Controls for GDP & Population no yes yes no yes yes
Firm Fixed Effects yes yes yes yes yes yes
Year Controls yes yes yes yes yes yes
Observations 141284 141284 141284 141284 141284 141284
Firms 6422 6422 6422 6422 6422 6422

ln(P
it-1

)

ln(1+KPATC
it-1

)

ln(1+KPATD
it-1

)

ln(1+KPATC
it-1

) X ln(P
it-1

)

ln(1+KPATD
it-1

) X ln(P
it-1

)

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in is the log of one plus the number of clean (respectively dirty) patents. The fuel price variable is a

weighted average of 26 country fuel prices where the firm-specific weights are constructed according to the firm’s

patent portfolio in these countries. To construct the weights we use patent data in the 1978-1985 period and estimate

regressions from 1986. GDP and GDP per capita are constructed using the same time-invariant firm-level weights.

specifications. In particular, fuel prices have a positive effect on clean innovation and a negative

effect on dirty innovation, whereas our previous regressions where we used relative innovation as

the dependent variable, would not rule out the possibility that the effect of a higher fuel price on

clean innovation also be negative as long as it would be even more negative on dirty innovation.
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Table 10: Regressions with count data models

Dep.Variable
Patent counts

Clean Dirty Clean Dirty
(1) (2) (3) (4)

Fuel Price (including tax) 1.239*** -0.828*** 1.360*** -0.329***

(0.139) (0.089) (0.140) (0.086)
Stock of clean patents 1.456*** -0.102*** 1.462*** -0.070***

(0.008) (0.006) (0.008) (0.006)
Stock of dirty  patents -0.010* 1.352*** -0.020** 1.431***

(0.006) (0.004) (0.009) (0.005)
Firm Fixed Effects no no yes yes
Year Controls yes yes yes yes
Observations 141284 141284 141284 141284
Firms 6422 6422 6422 6422

ln(P
it-1

)

ln(1+KPATC
it-1

)

ln(1+KPATD
it-1

)

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in is the number of clean (respectively dirty) patents. Columns 1 and 2 are estimated using a poisson count

data model. In columns 3 and 4 we add the average level of patenting over the 1978 to 1985 period for both both,

clean and dirty patents, as well as a dummy variable capturing if a firm has any patents at all in this period. In

this we follow the approach proposed by Blundell et al (1995), to account for fixed differenced in the propensity to

patent in the presence of lagged endogenous variables. The fuel price variable is a weighted average of 26 country

fuel prices where the firm-specific weights are constructed according to the firm’s patent portfolio in these countries.

To construct the weights we use patent data in the 1978-1985 period and estimate regressions from 1986. GDP and

GDP per capita are constructed using the same time-invariant firm-level weights.
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5.2.2 Computing elasticities

The regressions for clean patents alone are closest to the results reported in Popp (2002) who also

focuses on clean patenting. Therefore it makes sense to use the coefficients found in the above

regressions for a basic comparison of magnitudes. Popp reports coefficients of a regression of the

share of clean patents in total patenting on (log) price. If we assume that changes in the price have

no effect on total patenting, then these coefficients can be interpreted as the short run price elasticity

of clean patenting. Popp reports coefficients ranging from 2.8 to 6%. To compute comparable figures

we have to take account of two things. First, Popp’s figures refer to the aggregate economy and

second, because of the construction of our dependant firm level variable and because we interact

prices with patent stocks, our econometric model does not assume that elasticities are constant

across firms. Note that from differentiation of our dependant variable with respect to fuel price we

find that

∂ln (1 + PATCi)

∂lnPi
=

1

1 + PATCi

∂PATCi
∂lnPi

= βP + βPCKPATCi + βPDKPATDi

Hence, we can compute the marginal effect on patenting of a 1% change in price at the firm level

as

∂PATCi
∂lnPi

= (βP + βPCKPATCi + βPDKPATDi) (1 + PATCi)

Thus, to get the aggregate price elasticitiy we simply have to aggregate this across firms and divide

by the total number of patents:

∆PATCA
PATCA

∆P
P

=

∑
i (βP + βPCKPATCi + βPDKPATDi) (1 + PATCi)∑

i PATCi
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Doing this in the last year of our sample period and using the parameter estimates reported in

Column 3 of Table 9 suggests that the aggregate price elasticity is 11.7%; i.e. somewhat higher

than the range of values found by Popp.

5.2.3 Non linear effects

In order to explore nonlinearities in the inducement effect of fuel prices, we include a quadratic

price term in our estimations. The results are presented in Table 11. As shown in column (1),

the coefficient on the squared fuel price is statistically significant and positive.20 This finding is

consistent with our model which suggests that larger price changes induce non-marginal changes

in firm behavior leading to more dramatic responses in innovation outcomes. In column (3) we

interact patent stocks with both linear and quadratic price terms. As before we find a stronger

response for firms with higher stocks of dirty patents. This general finding of a stronger effect for

larger changes in the fuel price persists when we allow for a more flexible functional form for price,

but our sense is that the inclusion of the quadratic fuel price variable already captures non-linear

effects. Interestingly, when we analyze the non-linear effect of fuel prices separately on clean and

on dirty innovations21 , we find that the quadratic term has a statistically significant effect only

on clean innovation. This shows that a strong increase in the price of fuel will strongly encourage

clean innovation but does not have much additional effect on dirty innovation.

5.2.4 The tax component of the fuel price

Our estimations have so far used fuel prices as the government policy variable. However the IEA

data allow us to isolate the tax component of the fuel price. We compute a firm-level fuel tax variable

20This effect is however not robust to including the usual control variables in column (2).
21The results are presented in Appendix D.
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Table 11: Regressions with quadratic price effects

(1) (2) (3)

Dep. Variable
Ratio between Clean and
Dirty Patent applications

Fuel Price (including tax) 1.278*** 0.684** 0.083
(0.232) (0.298) (0.277)

Fuel Price squared 0.222*** -0.102 -0.211

(0.070) (0.142) (0.132)

Stock of clean patents 0.159*** 0.158*** 0.150***
(0.014) (0.014) (0.016)

Stock of dirty  patents -0.080*** -0.081*** -0.048**
(0.014) (0.014) (0.020)

Stock of clean patents X  Fuel Price -0.180**
(0.072)

Stock of dirty patents  X  Fuel Price 0.191***
(0.053)

-0.394***

(0.153)

0.118
(0.092)

Controls for population & GDP no yes yes
Firm Fixed Effects yes yes yes
Year Fixed Effects yes yes yes
Observations 141284 141284 141284
Firms 6422 6422 6422

ln Pit-1

(ln Pit-1)
2

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Stock of clean patents X  Fuel Price2

ln(1+KPATCit-1) X (ln Pit-1)
2

Stock of dirty patents  X  Fuel Price2

ln(1+KPATDit-1) X (ln Pit-1)
2

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country

dummies and year dummies and a set of company fixed effects. The tax adjusted fuel price variable is a weighted

average of 26 country-specific fuel prices where the firm-specific weights are constructed according to the firm’s patent

portfolio in these countries (see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions

estimated 1986-2007. ln(GDP) and ln(GDP per capita) are constructed using the same time-invariant firm-specific

weights.
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using the same weights as before. Arguably, fuel taxes, rather than the overall fuel price, reflect

the likely impact of carbon pricing and may suffer less from endogeneity issues. Table 12 contains

the results and shows that an increase in fuel taxes leads to relatively more clean innovation. The

coefficients in Tables 8 and 12 are similar, suggesting that firms react similarly to increases in the

price of oil and to increases in taxes. Moreover, we still obtain significant path-dependence in the

direction of innovation.

5.3 Robustness tests

5.3.1 Controlling for country specific time effects

All our results include year dummies to account for global shocks that might influence patenting

irrespective of price effects. A concern might be, however, that our results could be driven by other

country specific shocks rather than the price or tax channel we suggest above. For example fuel

price increases might be correlated with other supply side measures governments are undertaking

such as subsidies for clean innovation. We examine this in Table 13 by reporting our basic regression

specification while also including country specific year effects. Comparing the results in Table 13

to the ones in Table 8 we see that the estimates change very little.

5.3.2 Alternative categorization of clean versus dirty technologies

In our analysis so far, we took patents related to internal combustion engines to represent dirty

technologies in the automotive industry. However, some of the technologies we took to be dirty, are

in fact aimed at reducing fuel consumption in combustion engines vehicles. In particular, one can

identify patents pertaining to fuel injection technologies, which are explicitly designed to reduce

the amount of fuel burnt in combustion engines. This is clearly not the case for innovations leading
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Table 12: Regressions using with energy taxes as explanatory variable

(1) (2) (3) (4) (5)

Dep. Variable
Difference between Clean and Dirty Patent applications

Fuel tax 1.643*** 1.116*** 0.616** 0.26
(0.308) (0.287) (0.312) (0.294)

Stock of clean patents 0.161*** 0.159*** 0.159*** 0.218***
(0.014) (0.014) (0.014) (0.053)

Stock of dirty  patents -0.085*** -0.083*** -0.080*** 0.02
(0.013) (0.013) (0.014) (0.044)

Stock of clean patents X  Fuel Tax 0.09
(0.064)

Stock of dirty patents  X  Fuel Tax 0.113***
(0.041)

Controls for population & GDP no no no yes yes
Firm Fixed Effects yes yes yes yes yes
Year Fixed Effects yes yes yes yes yes
Observations 141284 141284 141284 141284 141284
Firms 6422 6422 6422 6422 6422

ln(1+Pc)-ln(1+Pd)

ln Pit-1

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country

dummies and year dummies and a set of company fixed effects. The tax adjusted fuel price variable is a weighted

average of 26 country-specific fuel prices where the firm-specific weights are constructed according to the firm’s patent

portfolio in these countries (see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions

estimated 1986-2007. ln(GDP) and ln(GDP per capita) are constructed using the same time-invariant firm-specific

weights.
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Table 13: Regressions with country specific time effects

(1) (2) (3) (4) (5)

Dep. Variable
Difference between Clean and Dirty Patent applications

Fuel Price (including tax) 1.782*** 1.351*** 0.958*** 0.616***
(0.250) (0.229) (0.204) (0.199)

Stock of clean patents 0.159*** 0.157*** 0.156*** 0.142***
(0.014) (0.014) (0.014) (0.015)

Stock of dirty  patents -0.086*** -0.084*** -0.081*** -0.047**
(0.013) (0.013) (0.014) (0.019)

Stock of clean patents X  Fuel Price -0.030
(0.046)

Stock of dirty patents  X  Fuel Price 0.130***
(0.032)

Controls for population & GDP no no no yes yes
Firm Fixed Effects yes yes yes yes yes
Country by Year Fixed Effects yes yes yes yes yes
Observations 141284 141284 141284 141284 141284
Firms 6422 6422 6422 6422 6422

ln(1+Pc)-ln(1+Pd)

ln Pit-1

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country ×
year dummies and a set of company fixed effects. The fuel price variable is a weighted average of 26 country-specific

fuel prices where the firm-specific weights are constructed according to the firm’s patent portfolio in these countries

(see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions estimated 1986-2007. ln(GDP)

and ln(GDP per capita) are constructed using the same time-invariant firm-specific weights.
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to marginal improvements in pollution intensities and to marginal reductions in the running costs

of internal combustion engines. In this section we test the robustness of our previous results to

moving all fuel injection patents from the ”dirty” to the ”clean” category. This represents 7,532

patent applications. We then perform the estimations on the new data set. As shown in Table 14,

all the results presented above hold using this alternative organization of our data set.

5.3.3 Dropping individual patent holders

Our data set includes 6,422 distinct patent holders: 4,181 companies and 2,241 individuals. In

order to check that the results are not driven by individuals, we perform a regression where we drop

individual patent holders from our data sample. Table 15 shows that all the above results continue

to hold. In addition, we find that the impact of higher fuel prices is higher on companies than on

the average patent applicants.

5.3.4 Alternative lags

As pointed earlier we have tried various lags for the price variable. Our findings are robust to using

larger lags. As shown in Table 16 the coefficient on the fuel price is higher when we use a 2-years

lag of the price than when we use a 1-year lag (see Table 8).

5.3.5 Checking for outliers

One needs to check that our results were not driven by outliers. As is commonly the case with patent

data, the distribution of patents across applicants is highly heterogeneous with a few companies

accounting for a large share of innovations. For this reason we considered trimming (dropping the

top 1% of companies in both clean and dirty innovation) or winsorizing these extreme values. Our

findings are robust to performing these changes. For example, the coefficient (standard error) on
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Table 14: Regressions with alternative definition of clean

(1) (2) (3) (4) (5)

Dep. Variable
Difference between Clean and Dirty Patent applications

Fuel Price (including tax) 1.334*** 1.072*** 0.755*** 0.609***
(0.213) (0.197) (0.181) (0.171)

Stock of clean patents 0.126*** 0.124*** 0.124*** 0.121***
(0.012) (0.012) (0.012) (0.014)

Stock of dirty  patents -0.049*** -0.047*** -0.045*** -0.031**
(0.010) (0.010) (0.010) (0.015)

Stock of clean patents X  Fuel Price 0.005
(0.038)

Stock of dirty patents  X  Fuel Price 0.052*
(0.029)

Controls for population & GDP no no no yes yes
Firm Fixed Effects yes yes yes yes yes
Year Fixed Effects yes yes yes yes yes
Observations 141284 141284 141284 141284 141284
Firms 6422 6422 6422 6422 6422

ln(1+Pc)-ln(1+Pd)

ln Pit-1

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country

dummies and year dummies and a set of company fixed effects. The tax adjusted fuel price variable is a weighted

average of 26 country-specific fuel prices where the firm-specific weights are constructed according to the firm’s patent

portfolio in these countries (see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions

estimated 1986-2007. ln(GDP) and ln(GDP per capita) are constructed using the same time-invariant firm-specific

weights.
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Table 15: Regressions for company patent holders only

(1) (2) (3) (4) (5)

Dep. Variable
Difference between Clean and Dirty Patent applications

Fuel Price (including tax) 2.016*** 1.479*** 0.993*** 0.580**
(0.314) (0.284) (0.265) (0.255)

Stock of clean patents 0.174*** 0.172*** 0.172*** 0.154***
(0.014) (0.014) (0.014) (0.016)

Stock of dirty  patents -0.120*** -0.119*** -0.115*** -0.078***
(0.015) (0.015) (0.016) (0.020)

Stock of clean patents X  Fuel Price -0.050
(0.048)

Stock of dirty patents  X  Fuel Price 0.156***
(0.033)

Controls for population & GDP no no no yes yes
Firm Fixed Effects yes yes yes yes yes
Year Fixed Effects yes yes yes yes yes
Observations 91982 91982 91982 91982 91982
Firms 4181 4181 4181 4181 4181

ln(1+Pc)-ln(1+Pd)

ln Pit-1

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country

dummies and year dummies and a set of company fixed effects. The tax adjusted fuel price variable is a weighted

average of 26 country-specific fuel prices where the firm-specific weights are constructed according to the firm’s patent

portfolio in these countries (see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions

estimated 1986-2007. ln(GDP) and ln(GDP per capita) are constructed using the same time-invariant firm-specific

weights.
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Table 16: Using 2-years lag of the price

(1) (2) (3) (4) (5)

Dep. Variable
Difference between Clean and Dirty Patent applications

Fuel Price (including tax) 1.932*** 1.400*** 0.883*** 0.459**
(0.281) (0.260) (0.217) (0.201)

Stock of clean patents 0.161*** 0.159*** 0.159*** 0.142***
(0.014) (0.014) (0.014) (0.016)

Stock of dirty  patents -0.085*** -0.083*** -0.080*** -0.037*
(0.013) (0.013) (0.014) (0.021)

Stock of clean patents X  Fuel Price -0.032
(0.049)

Stock of dirty patents  X  Fuel Price 0.143***
(0.035)

Controls for population & GDP no no no yes yes
Firm Fixed Effects yes yes yes yes yes
Year Fixed Effects yes yes yes yes yes
Observations 141284 141284 141284 141284 141284
Firms 6422 6422 6422 6422 6422

ln(1+Pc)-ln(1+Pd)

ln Pit-2

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-2

ln(1+KPATDit-1) X ln Pit-2

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the ratio of the number of clean to the number of dirty patents. All columns

estimated by OLS with standard errors in parentheses (clustered by firm). All columns include a full set of country

dummies and year dummies and a set of company fixed effects. The tax adjusted fuel price variable is a weighted

average of 26 country-specific fuel prices where the firm-specific weights are constructed according to the firm’s patent

portfolio in these countries (see Appendix 1). To construct the weights we use patent data 1978-1985. Regressions

estimated 1986-2007. ln(GDP) and ln(GDP per capita) are constructed using the same time-invariant firm-specific

weights.

42



the fuel price in the specification of 8 column (4) is equal to 1.160 (0.227) in the winsorized version.

5.3.6 Alternative sample period for constructing the weights for policy variable

The choice of the pre-sample period to construct the weights in somewhat arbitrary. Using more

pre-sample information improves the precision with which one can compute the policy variable,

however at the cost of having fewer remaining years for estimating the main equations. Yet, we

have tried different pre-sample periods to calculate the weights. The results remain qualitatively

similar. For example, instead of the base case where we use 1978-1985 data we experimented using

1978-1990 data. The coefficient (resp. standard error) on the fuel price in the specification of Table

8 column (4) is 0.921 ( resp. 0.160) in the 1978-1990 version.

6 Conclusion

In this paper we used a unique patent data set to see whether there is path dependence in clean

versus dirty innovation in the automotive industry. Our findings suggest that firms with past

experience in dirty patenting are more likely to pursue dirty innovation activities in the future and

conversely for firms that have been more active in clean patenting. We also explored how firms are

reacting to exposure to fuel price increases in their product markets, and we found that higher fuel

prices induce a bias towards cleaner innovation. We also find that this effect is heterogenous among

firms: with prior focus on dirty technologies tend to react more strongly to fuel price increases than

firms with prior focus on clean innovation: in line with the idea of technological lock-in, a fuel price

increase has a small effect on firms already specialized in clean technologies.

Our analysis could be extended in several directions. One extension would be to see how the

direction of innovation reacts to other instruments such as direct subsidies to clean innovation: one
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prediction of the model is that – contrary to the effect of fuel prices – the effect of clean research

subsidies should be stronger for firms which have already innovated in clean technologies. Another

extension would be to use micro data to estimate the relative efficiency of R&D investments in clean

versus dirty innovation, and also the elasticity of substitution between the two types of production

technologies (which the above model took to be infinite). As argued in AABH, these parameters

play as important a role as the discount rate in characterizing the optimal environmental policy.

These and other equally important extensions are left for further research.
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A Appendix 1: Construction of the Tax-adjusted Fuel Price

The firm-specific tax-adjusted fuel price is

Pit =
∑
c

wic lnPct

where Pct is the fuel price (including taxes) in country c at time t and wic is a firm and country

specific weight constructed from patterns of patenting. To construct the weights we use patent data

in the pre-sample period (i.e. 1978-1985 when we estimate regressions from 1985 and 1978-1990

when we estimate from 1990). Suppose firm i holds PATic patents in country c. We then compute

wic as

wic =
GDPc × ˜PAT ic∑
cGDPc × ˜PAT ic

(14)

where ˜PAT ic = 1+PAT ic; where we also take into account the market size of a country by weighting

with its GDP. Note that we add a 1 to every country’s patent count to deal with firms that had no

patents in the 1978 to 1985 period. Such a firm would then be allocated the GDP weighted fuel

price across countries. Adding a 1 even to firms that have patents in 1978 to 85 ensures that there

are no discrete jumps in our index as we move from firms with no to firms with some patents.
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B Appendix 2: Patent categories

Table 17 presents the patent classification codes used to construct the data sets.
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Table 17: Definition of IPC Patent classes

Description IPC code
Electric vehicles
Electric propulsion with power supplied within the vehicle B60L 11

B60L 3

B60L 15

Arrangement or mounting of electrical propulsion units B60K 1

Hybrid vehicles

B60K 6

B60W 20

Regenerative braking
Dynamic electric regenerative braking B60L 7/1

B60L 7/20

Fuel cells

B60W 10/28

B60L 11/18

Fuel cells; Manufacture thereof H01M 8
Combustion engines
Combustion engines F02 (excl. C/G/ K)

Electric devices on electrically-propelled vehicles for safety 
purposes; Monitoring operating variables, e.g. speed, deceleration, 
power consumption
Methods, circuits, or devices for controlling the traction- motor 
speed of electrically-propelled vehicles

Conjoint control of vehicle sub-units of different type or different 
function / including control of electric propulsion units, e.g. motors 
or generators / including control of energy storage means / for 
electrical energy, e.g. batteries or capacitors

B60W 10/08, 24, 
26

Arrangement or mounting of plural diverse prime-movers for 
mutual or common propulsion, e.g. hybrid propulsion systems 
comprising electric motors and internal combustion engines
Control systems specially adapted for hybrid vehicles, i.e. vehicles 
having two or more prime movers of more than one type, e.g. 
electrical and internal combustion motors, all used for propulsion 
of the vehicle

Braking by supplying regenerated power to the prime mover of 
vehicles comprising engine -driven generators

Conjoint control of vehicle sub-units of different type or different 
function; including control of fuel cells
Electric propulsion with power supplied within the vehicle - using 
power supplied from primary cells, secondary cells, or fuel cells
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C Appendix 4: Disaggregating the non-linear effects
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Table 18: Regressions on the level of clean patenting with quadratic term

(1) (2) (3)

Dep. Variable
Ratio between Clean and
Dirty Patent applications

Fuel Price (including tax) 0.609*** 0.514** -0.156
(0.155) (0.203) (0.202)

Fuel Price squared 0.234*** 0.138 0.120

(0.045) (0.086) (0.085)

Stock of clean patents 0.216*** 0.216*** 0.212***
(0.014) (0.014) (0.015)

Stock of dirty  patents 0.040*** 0.040*** 0.073***
(0.006) (0.006) (0.010)

Stock of clean patents X  Fuel Price -0.265***
(0.066)

Stock of dirty patents  X  Fuel Price 0.134***
(0.036)

-0.613***

(0.159)

0.013
(0.061)

Controls for population & GDP no yes yes
Firm Fixed Effects yes yes yes
Year Fixed Effects yes yes yes
Observations 141284 141284 141284
Firms 6422 6422 6422

ln Pit-1

(ln Pit-1)
2

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Stock of clean patents X  Fuel Price2

ln(1+KPATCit-1) X (ln Pit-1)
2

Stock of dirty patents  X  Fuel Price2

ln(1+KPATDit-1) X (ln Pit-1)
2

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the number of clean patents. All columns are estimated by OLS with standard

errors in parentheses (clustered by firms). All columns include a full set of country dummies and year dummies and

a set of company fixed effects. The tax adjusted fuel price variable is a weighted average of 26 country-specific fuel

prices where the firm-specific weights are constructed according to the firm’s patent portfolio in these countries (see

Appendix 1). To construct the weights we use patent data 1978-1985. Regressions estimated 1986-2007. ln(GDP)

and ln(GDP per capita) are constructed using the same time-invariant firm-specific weights.
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Table 19: Regressions on the level of dirty patenting with quadratic term

(1) (2) (3)

Dep. Variable
Ratio between Clean and
Dirty Patent applications

Fuel Price (including tax) -0.668*** -0.171 -0.239
(0.225) (0.298) (0.267)

Fuel Price squared 0.012 0.240* 0.331**

(0.069) (0.144) (0.133)

Stock of clean patents 0.057*** 0.057*** 0.062***
(0.011) (0.011) (0.012)

Stock of dirty  patents 0.120*** 0.120*** 0.120***
(0.016) (0.016) (0.020)

Stock of clean patents X  Fuel Price -0.084**
(0.041)

Stock of dirty patents  X  Fuel Price -0.057
(0.050)

-0.219**

(0.091)

-0.105
(0.089)

Controls for population & GDP no yes yes
Firm Fixed Effects yes yes yes
Year Fixed Effects yes yes yes
Observations 141284 141284 141284
Firms 6422 6422 6422

ln Pit-1

(ln Pit-1)
2

ln(1+KPATCit-1)

ln(1+KPATDit-1)

ln(1+KPATCit-1) X ln Pit-1

ln(1+KPATDit-1) X ln Pit-1

Stock of clean patents X  Fuel Price2

ln(1+KPATCit-1) X (ln Pit-1)
2

Stock of dirty patents  X  Fuel Price2

ln(1+KPATDit-1) X (ln Pit-1)
2

Notes:*=significant at the 10% level, **=significant at the 5% level, ***significant at the 1% level. The dependent

variable in all columns is the log of the number of dirty patents. All columns are estimated by OLS with standard

errors in parentheses (clustered by firms). All columns include a full set of country dummies and year dummies and

a set of company fixed effects. The tax adjusted fuel price variable is a weighted average of 26 country-specific fuel

prices where the firm-specific weights are constructed according to the firm’s patent portfolio in these countries (see

Appendix 1). To construct the weights we use patent data 1978-1985. Regressions estimated 1986-2007. ln(GDP)

and ln(GDP per capita) are constructed using the same time-invariant firm-specific weights.
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