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Been Down So Long It Looks Like Up To Me—Richard Fariña.

Abstract. Psychologists report that people make choices on the basis of “deci-
sion utilities” that routinely overestimate the “experienced utility” consequences
of these choices. This paper argues that this dichotomy between decision and
experienced utilities may be the solution to an evolutionary design problem.
We examine a setting in which evolution designs agents with utility functions
that must mediate intertemporal choices, and in which there is an incentive
to condition current utilities on the agent’s previous experience. Anticipating
future utility adjustments can distort intertemporal incentives, a conflict that
is attenuated by separating decision and experienced utilities.
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1 Introduction

People who contemplate living in California routinely report that they expect to
be significantly happier there, primarily on the strength of California’s blissful
weather. People who actually live in California are no happier than the rest
of us (Schkade and Kahneman [16]). Far from being a California quirk, this
“focussing illusion” is sufficiently widespread as to prompt the conclusion that
“Nothing ... will make as much difference as you think” [16, p. 345].1

Psychologists interpret these findings by drawing a distinction between de-
cision utility and experienced utility (e.g., Kahneman and Thaler [8]). Decision
utilities are the utilities that determine (or at least describe, in a revealed-
preference interpretation) our choices. For Schkade and Kahneman [16], these
are the relevant utilities when people contemplate moving to California. Experi-
enced utilities are the rewards we realize once the choices are made. For Schkade
and Kahneman, these are reflected in the satisfaction reports from people living
in California. The focussing illusion, in driving a wedge between these two utili-
ties, raises the troubling possibility that people may make incorrect decisions on
the basis of utilities that systematically overestimate the consequences of those
decisions.

Experienced utilities are of no interest to a fiercely neoclassical economist—
decision utilities suffice to describe behavior. However, if we are to consider
welfare questions, the difference may be important. If experienced utilities do
not match decision utilities, should we persevere with the standard economists’
presumption that decision utilities are an appropriate guide to well-being? Or
should we exhort people to work more diligently in discerning their future ex-
perienced utilities, and then use these to override their decision utilities (as
Schkade and Kahneman [16] imply)? If the focussing illusion is widespread,
shouldn’t we embrace a crusade to “correct” the utilities that shape decisions?

We adopt a positive perspective in this paper, answering the following ques-
tion: Why might we have both decision and experienced utilities in the first
place? We take an evolutionary approach. We assume that evolution has
equipped agents with utility functions designed to induce fitness-maximizing
choices. An agent in our model must make choices in each of two periods that
will (along with random events) determine his fitness. Moreover, these choices
give rise to an intertemporal trade-off, in the sense that the optimal second-
period choice depends upon the alternative chosen in the first period. The
first-period choice may determine the agent’s health or wealth or skill or status,
for example, which may in turn affect how aggressive the agent should be in

1The term “focussing illusion” (e.g., Loewenstein and Schkade [10]) refers to a tendency to
overestimate either the salutary or detrimental effects of current choices. This phenomenon
was thrust into the spotlight by Brickman, Coates and Janoff-Bulman’s [1] study of lottery
winners and paraplegics, and has become the subject of a large literature. See Loewenstein
and Schkade [10] for an introduction and Gilbert [6] for an entertaining popular account.

Attention has also been devoted to the related prospect that people may exhibit a projection
bias (Loewenstein, O’Donoghue and Rabin [9], Conlin, O’Donoghue and Vogelsang [3]). An
agent exhibits a projection bias if he expects his future preferences to be more similar to his
current preferences than will actually be the case.
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seeking second-period consumption. Evolution equips the agent with a first-
period utility function providing the decision utilities shaping the first-period
choice. Evolution also equips the agent with a second-period utility function.
This is the agent’s experienced utility, but it is also the relevant decision utility
for the second period. It differs from the first period decision utility because
it conditions on the first-period choice and on the resolution of the first-period
uncertainty.2 We show that in general, the decision utility shaping the first-
period choice does not match the resulting second-period experienced utility.
Evolution systematically misleads the agent as to the future implications of his
choices.

Why should evolution build an agent to do anything other than maximize fit-
ness, without resorting to conflicting utility notions? Evolution’s design problem
is complicated by two constraints. First, there are limits on how large and how
small are the hedonic utilities evolution can give us.3 By themselves, bounds
on utility pose no obstacles. All that matters is that better alternatives get
higher utilities, and we can accommodate this no matter how tight the range of
possible utilities. However, our second assumption is that the agent is likely to
make mistakes when utilities are too close. When alternative 1 provides only a
slightly higher utility than alternative 2, the agent may mistakenly choose al-
ternative 2. As a result, there is an evolutionary advantage to having the utility
function be as steep as possible, so that the agent is dealing with large utility
differences that seldom induce mistakes. This goal conflicts with the bounds on
utility. Evolution’s response is to make the utility function very steep in the
range of decisions the agent is most likely to face, where such steepness is par-
ticularly important in avoiding mistaken decisions, and relatively flat elsewhere.
For this is to be effective, the steep spot of the utility function must be in the
right place. In the second period, the “right place” depends on what happens
in the first period. Evolution thus has an incentive to adjust second-period
“experienced” utilities in response to first-period outcomes. But if this is to
be done without distorting first-period decisions, the agent must not anticipate
this adjustment—the experienced utilities guiding second-period decisions must
not match the decision utilities shaping first-period decisions.

Robson [14] argues that utility bounds and limited discrimination between
utilities will induce evolution to strategically position the steep part of the utility
function. Rayo and Becker [13] develop this idea in a model that provides the
foundation for our work.4 Section 2.2 provides details.

Section 2 introduces the evolutionary environment. Section 3 examines de-
cision and experienced utilities in a simple special case, allowing us to clearly

2It is relevant in this connection that Carter and McBride [2] argue that experienced utility
has similar empirical properties to decision utility.

3In taking this position, we are following much of the current literature in behavioral
economics in viewing utility maximization as a neurological process by which we make choices,
rather than simply a description of consistent choices. In particular, our view is that utilities
are induced by chemical processes within our brains that are subject to physical constraints.

4Tremblay and Schultz [18] provide evidence that the neural system encodes relative rather
than absolute preferences, as might be expected under limited discrimination. See Friedman
[5] for an early contribution and Netzer [11] and Wolpert and Leslie [19] for more recent work.
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isolate the relevant forces, with the analysis generalized in Section 4. Section 5
considers extensions and implications.

2 The setup

2.1 The evolutionary environment

There are two periods. The agent makes a choice x1 in the first period and
x2 in the second. These choices would be multidimensional in a more realistic
model, but here are taken for simplicity to be elements of [0, 1]. Whenever it is
helpful in conveying intuition, we (temporarily) adopt particular interpretations
of x1 and x2, such as levels of first-period and second-period consumption or,
somewhat less precisely, as a decision to move to California (or not) and a
subsequent decision of how much time to spend surfing (whether in California
or Iowa). We recognize that our stark one-dimensional variables cannot capture
all the subtleties of such decisions.

The agent’s fitness is determined by his choices x1 and x2 as well as the
realizations s1 and s2 of environmental shocks in the first and second periods.
For example, the agent’s health may depend not only on effort he invests in
procuring food, but also on vagaries of the weather or the stock market affecting
the productivity of these efforts. The agent’s first-period choice x1 must be made
in ignorance of the realization s1, while x2 is chosen knowing s1 but not s2.

Evolution designs the agent to maximize total fitness. In the absence of
any constraints, this design problem would be trivial. The fitness-maximization
problem has a maximizer (x∗1, x

∗
2(·)), where x∗2(·) is the optimal mapping from

first-period outcomes to second-period choices. Why would evolution not simply
“hard-wire” agents to make this optimal decision?

The point of departure for our analysis is the assumption that evolution
cannot hard-wire the alternative (x∗1, x

∗
2(·)), as trivial as this sounds in the con-

text of this model. Our interpretation here is that what it means to choose a
particular value of x1 or x2 changes with the context in which the decision is
made. The agent’s choice may consist of an investment in status that some-
times involves hiding food and other times acquiring education, that sometimes
involves cultivating social relationships with neighbors and other times driving
neighbors away. Moreover, the relevant context fluctuates too rapidly for evo-
lution to adapt. The dominant form of investment can change from clearing
fields to learning C++ too quickly for mutation and selection to keep pace. As
a result, evolution must recognize that the agent will frequently face problems
that are novel from an evolutionary perspective.5

5Rayo and Becker [13] similarly confront the question of why evolution cannot hard-wire
agents to make optimal choices. They assume that the evolutionarily optimal action depends
upon an environmental state, and that there are so many possible values of this state that it is
prohibitively expensive for evolution to hard-wire the agent to condition actions on every value.
Our assumption that the state is entirely novel is equivalent, differing from Rayo and Becker
primarily in emphasis. Rayo and Becker explicitly include the state variable within their
model, while we sweep it into the background, simply assuming that evolution cannot dictate
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To capture this constraint, we need to specify the technology by which the
agent’s decisions are converted into fitnesses. Our point of departure is the
relationship

z = z1 + δz2,

defining the agent’s realized total fitness z as the sum of realized first-period
fitness z1 and the discounted value of realized second-period fitness z2, with the
discount factor δ perhaps reflecting a nonunitary survival probability. At this
point, however, we note that it requires only a change in the units in which z
and z1 are measured to normalize the discount factor to be unity, and hence to
rewrite this equation as z = z1 + z2. This significantly simplifies the following
notation and so we we adopt this convention throughout. We then write

z = z1 + z2 (1)

= [f1(x1) + s1] + [γz1 + f2(x1, x2) + s2]. (2)

The first line presents our normalized accounting of fitness. The second line
indicates that first-period fitness is a quasilinear function of the first-period
action x1 and realization s1. For example, x1 may reflect an investment in
skills, and z1 the resulting expertise, or x1 may reflect actions taken in pursuit
of status, and z1 the resulting place in the social order. Second period fitness is
similarly a quasilinear function of the second-period action x2 and realization
s2, and also a function of both the first-period action x1 and fitness z1. A
relatively large value of x1 may reflect a first-period investment that enhances
the productivity of x2 in the second period. In addition, a relatively large first-
period fitness z1 may carry over directly into a higher second-period fitness,
regardless of how z1 is achieved. An agent who is better-nourished in the first
period may enjoy the salutary effects of good health in the second. Section 5.2
describes how quasi-linearity can be generalized.

Technically, the key distinction is that, while evolution cannot attach utilities
to the agent’s choices x1 and x2, she can attach utilities to total fitness z.6 That
is, Nature “recognizes” the fitness consequences of the choices of x1 and x2, but
is not familiar with these choices directly and also cannot then “understand”
how these choices induce such fitness consequences via the functions f1(·) and
f2(·). Nature must then delegate novel aspects of the problem to the agent,
while retaining the power to set the way in which fitness is rewarded. Times
have changed too quickly for evolution to attach utility to passing through the
drive-through breakfast line in the morning, but she can reward the attendant
slaking of hunger.

We assume the expected fitnesses f1 and f2 are strictly concave. This ensures
the existence of unique expected fitness maximizers x∗1 and x∗2(x1), which we

optimal choices, in order to simplify the notation. Their simplest model, which corresponds to
our basic model, then makes the analysis more tractable by assuming that the state variable
affects optimal actions but not maximal fitness.

6Fitness may be a function of factors such as status or food that have long evolutionary
pedigrees in improving reproductive outcomes, though such goods are still only intermediate
to the final production of offspring. See Robson [15].
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take to be interior. We assume that s1 and s2 are realizations of independent
random variables s̃1 and s̃2 with zero means and with differentiable, symmetric
unimodal densities g1 and g2 on bounded supports, with zero derivatives only
at 0. Our results go through unchanged, and with somewhat simpler technical
arguments, if s̃1 and s̃2 have unbounded supports.

Finally, we should be clear on our view of evolution. We adopt through-
out the language of principal-agent theory, viewing evolution as a principal who
“designs” an incentive scheme in order to induce (constrained) optimal behavior
from an agent. However, we do not believe that evolution literally or deliber-
ately solves a maximization problem. We have in mind an underlying model
in which utility functions are the heritable feature defining an agent. These
utility functions give rise to frequency-independent fitnesses. Under a simple
process of natural section respecting these fitnesses, expected population fitness
is a Lyapunov function, ensuring that the type maximizing expected fitness
will dominate the population (cf. Hofbauer and Sigmund [7]). If the mutation
process generating types is sufficiently rich, the outcome of the evolutionary pro-
cess can then be approximated by examining the utility function that maximizes
expected fitness, allowing our inquiry to focus on the latter.

2.2 Utility functions

Evolution can endow the agent with nondecreasing utility functions V1(z) and
V2(z|z1). In the first period, the agent considers the realized total fitness z pro-
duced by the agent’s first-period and anticipated second-period choice, reaping
utility V1(z). In the second period, the agent’s choice induces a realized total
fitness z and hence corresponding utility V2(z|z1). Notice in particular that evo-
lution can condition second-period utilities on the realization of the first-period
intermediate fitness z1. Through the technology given by (1)–(2), V1 and V2

implicitly become utility functions of x1, x2, s1 and s2.7

To interpret these utility functions, let us return to our moving-to-California
decision. We think of V1(z) as representing the first-period utility the agent
contemplates should he move to California, taking into account his projections
of how much surfing he will do once there. V2(z|z1) is the second-period utility
the agent uses to make second-period choices, once he has moved to California.
We think of the former as the decision utility mediating the first choice, and
the latter as the resulting experienced utility. If these functions are identical,
we have no focussing illusion.

In the absence of any additional constraints (beyond the inability to write
utilities directly over x1 and x2), evolution’s utility-function design problem is
still trivial. She need only give the agent the utility functions

V1(z) = z

V2(z|z1) = z.

7We could suppose that the agent does not initially know the functions f1 and f2. Instead,
he simply learns which values of x1 and x2 lead to high utilities, in the process coming to act
“as if” he “knows” the functions f1 and f2.
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As straightforward as this result is, we believe it violates crucial evolutionary
constraints that we introduce in two steps. Our first assumption is that evolution
faces limits on how large or small a utility she can induce. Our view here is that
utilities must be produced by physical processes, presumably the flow of certain
chemicals in the brain. The agent makes choices leading to a fitness level z, and
receives pleasure from the resulting cerebral chemistry. There are then bounds
on just how strong (or how weak) the resulting sensations can be. Without loss,
we assume that utilities must be drawn from the interval [0, 1].8

The constraint that utilities be drawn from the unit interval poses no difficul-
ties by itself. Essentially, evolution need simply recognize that utility functions
are unique only up to linear transformations. In particular, in this case evolution
need only endow the agent with the utility functions

V1(z) = A+Bz

V2(z|z1) = A+Bz,

where A and B are chosen (in particular, with B sufficiently small) so as to
ensure that utility is drawn from the unit interval, no matter what the feasible
values of x1, x2, s1 and s2.

We now add a second constraint to evolution’s problem—there are limits
to the ability of the agent to perceive differences in utility. When asked to
choose between two alternatives whose utilities are very close, the agent may
be more likely to choose the alternative with the higher utility, but is not cer-
tain to do so. This is in keeping with our interpretation of utility as reflecting
physical processes within the brain. A very slightly higher dose of a neuro-
transmitting chemical may not be enough to ensure the agent flawlessly chooses
the high-utility alternative, or there may be randomness in the chemical flows
themselves.9 In particular, we assume that there is a possibly very small εi > 0
such that in each period i, the agent can be assured only of making a choice
that brings him within εi of the maximal utility. We will then be especially
interested in the limits as the utility errors εi → 0. It may well be, of course,
that such errors are not small in practice. However, we are interested in the
role of utility constraints in driving a wedge between decision and experienced
utilities, and especially interested in the possibility that such a wedge could
arise despite arbitrarily small errors.

We refer to V1(z) as the agent’s first-period decision utility, since it medi-
ates the agent’s decision in the first period. We refer to V2(z|z1) as the agent’s

8Evidence for bounds on the strength of hedonic responses can be found in studies of how
the firing rate of neurons in the pleasure centers of the brain respond to electrical stimulation.
Over an initial range, this response is roughly linear, but eventually high levels of stimulation
cause no further increase. See, for example, Simmons and Gallistel [17].

9Very small utility differences pose no problem for classical economic theory, where differ-
ences in utility indicate that one alternative is preferred to another, with a small difference
serving just as well as a large one. However, it is a problem when utilities are induced via
physical processes. The psychology literature is filled with studies documenting the inability
of our senses to reliably distinguish between small differences. (For a basic but vivid textbook
treatment, see Foley and Matlin [4].) If the difference between two chemical flows is arbitrarily
small, we cannot be certain that the agent will invariably choose the larger.
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second-period decision utility, since it again mediates the agent’s decision (this
time in the second period), but also refer to this as the agent’s experienced util-
ity, since it is the utility with which the agent ends the decision making process.
How do we interpret these utilities? Earlier in this section, we motivated the
constraints on utilities as reflecting physical constraints on our neuro-chemistry.
We ascribe to the common view in psychology that humans are ultimately mo-
tivated by physically-rooted favorable or unfavorable brain sensations, referred
to as hedonic utilities.

In the first period, we might think of V1(z) is the agent’s anticipated utility,
given his actions. Is anticipated utility itself hedonic? Does anticipating utility
V1(z) induce analogous brain processes to those generated by actually securing
utility V1(z)? If it does, what is the means by which anticipated utility is kept
distinct from utility that reflects current pleasure? If anticipated utility is not
hedonic, how does it provide incentives? Is it a purely intellectual calculation
of future hedonic utilities?

Notice that precisely the same issues arise when thinking about the second-
period utility V2(z|z1), though the time-scale is somewhat abbreviated. V2(z|z1)
is the utility the agent anticipates, given his second-period action. The action x1

and the realization s1 are now known. However, second-period decisions must
still be made before s2 is realized and z finally determined, and hence must
be guided by anticipations of the resulting utility V2. Indeed, decisions about
what to consume in general precede the consumption itself, even if the delay is
small. The consumption itself may pay off with a flow of hedonic utility, but
the decision must be made in anticipation of this flow.

Although neuroscience is currently unable to explain in full detail how an-
ticipated outcomes (over spans of more than a few seconds) affect brain activity
and behavior, we adopt the hypothesis that both V1 and V2 are anticipated
hedonic utilities. Accordingly, the values of these functions are bounded. Fur-
thermore, we assume their expectations are subject to limits on the power to
make fine distinctions.

We allow V1(z) and V2(z|z1) to be unequal. However, as we explain in
Section 3.4, the two utilities are optimally closely related. Outcomes that lead
to larger values of V1(z) also tend to lead to larger expected values of V2(z|z1).
However, our interest lies in the extent to which this correlation is not perfect.
An agent motivated to make first-period investments in anticipation of high
second-period utilities may indeed obtain some of these, but they will in general
be smaller than expected, as evolution will capitalize on the agent’s first-period
decisions to set more demanding second-period utility targets.

The twin building blocks of our analysis, that utilities are constrained and
imperfectly discerned, appear in Robson [15] and more formally in Rayo and
Becker [13]. Rayo and Becker’s model is essentially static, while the heart of
our model is the intertemporal links in the fitness technology. In Rayo and
Becker, evolution is free to adjust utilities in response to information about
the environment without fear of distorting incentives in other periods. In our
case, the agent’s period-1 choice has implications for both period-1 and period-2
fitnesses, and depends on both period-1 and period-2 utilities. Evolution thus
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adjusts period-2 utilities to capitalize on the information contained in period-1
outcomes, in the process creating more effective period-2 incentives, only at the
cost of distorting period-1 incentives, giving rise to a more complicated utility-
design problem.

3 A simple case

3.1 Separable decisions

We start with a particularly simple special case, allowing us to isolate the ori-
gins of the difference between decision and experienced utilities. Suppose that
realized fitness is given by

z = z1 + z2 (3)

= f1(x1) + s1 + [γz1 + f2(x2) + s2], (4)

where s1 and s2 are again realizations of random variables. The key feature here
is that the optimal value of x2 is independent of x1 and z1. Nothing from the first
period is relevant for determining the agent’s optimal second-period decision.
That is, second-period fitness depends on x2 through the function f2(x2), rather
than through the f2(x1, x2) that appears in (2). This simplifies the derivation
considerably. Notice, however, that second-period fitness still depends on the
first-period outcome, and this will suffice for a focussing illusion.

3.2 The second period

It is natural to work backwards from the second period. The agent enters the
second period having made a first-period choice x1 and realized a first-period
fitness of z1.

The agent chooses x2 in order to maximize the second-period utility function
V2(z|z1). However, the agent is not flawless in performing this maximization.
In particular, the agent cannot distinguish utility values that are within ε2 of
one another. As a result, when evaluating the utilities that various alternatives
x2 might produce, the agent cannot be assured of choosing the maximizer x∗2 of
Es̃2V2(z1 + (γz1 + f2(x2) + s̃2)|z1). Instead, when evaluating actions according
to the utilities they engender, he views as essentially equivalent any action x2

yielding an expected utility within ε2 of the maximum, i.e., any x2 with the
property that

Es̃2V2(z1 + (γz1 + f2(x∗2) + s̃2)|z1)− Es̃2V2(z1 + (γz1 + f2(x2) + s̃2)|z1) ≤ ε2.

This gives rise to a satisficing set [x2, x2], where x2 < x∗2 < x2 and

Es̃2V2((1 + γ)z1 + f2(x2) + s̃2|z1) (5)

= Es̃2V2((1 + γ)z1 + f2(x2) + s̃2|z1)

= Es̃2V2((1 + γ)z1 + f2(x∗2) + s̃2|z1)− ε2. (6)

8



To keep things simple, we assume the agent chooses uniformly over this set.10

It would be more realistic to model the utility perception error ε2 as pro-
portional to the maximized expected fitness, rather than as an absolute error.
Doing so has no substantive effect on our analysis. In particular, we can inter-
pret ε2 as the “just noticeable difference” in utilities induced by the equilibrium
of the proportional-errors model, and then simplify the notation by writing the
constraints as in (5)–(6), while retaining the proportional interpretation of the
errors.

Evolution chooses the utility functions V2 to maximize fitness, subject to (5)–
(6). We summarize the result of this maximization process with the following
lemma.

Lemma 1 There exists a function Ẑ2(z1) such that the optimal second-period
utility function satisfies

V2(z|z1) = 0, for all z < Ẑ2(z1) (7)

V2(z|z1) = 1, for all z > Ẑ2(z1). (8)

In the limit as ε2 → 0, Ẑ2(z1)→ (1+γ)z1+f2(x∗2) and the agent’s second-period
choice x2 approaches x∗2.

We thus have a bang-bang utility function, equalling 0 for small fitnesses and
1 for large fitnesses. The bang-bang limiting character of this utility function
may appear extreme, dooming the agent to being either blissfully happy or
woefully depressed. Notice, however, that the expected utilities with which
the agent evaluates his choices do not have this property. The expected utility
function Es̃2V2((1 + γ)z1 + f1(x2) + s̃2|z1) is a continuous function of x2 (given
x1 and z1).

The striking feature of this utility function is that the value Ẑ depends on
z1. This allows evolution to adjust the second-period utility function in order to
exploit its limited range most effectively, minimizing the incidence of mistaken
decisions. If the first-period value of z1 is especially high, then the values of z
over which the agent is likely to choose in the second period will similarly be
relatively large. Evolution accordingly adjusts the second-period utility function
so that variations in relatively large values of fitness give rise to relatively large
variations in utility. If instead z1 is small, the the values of z over which the
agent will choose in the second period will similarly be relatively small, and
evolution again adjusts the utility function, this time attaching relatively large
variations in utility to variations in relatively small fitness levels. Intuitively,
this allows evolution to adjust the steep part of second-period expected utility
to occur in the range of decisions likely to be relevant in the second period, in
the process strengthening the second-period incentives. As we shall see, this
lays the foundation for a focussing illusion.

10More generally, we need the agent to choose from the satisficing set in a sufficiently regular
way that an increase in x2, and the associated decrease in x2, increase the expected fitness
induced by the agent’s choice.

9



To prove Lemma 1, we note that in the second period, the agent chooses
from the satisficing set [x2, x2]. The agent’s second-period fitness will be higher
the smaller is the satisficing set [x2, x2], or equivalently the larger are f2(x2)
and f2(x2).

Let f2 be the expected fitness the agent reaps from a choice at the boundary
of this set (and hence f2 = f2(x2) = f2(x2), where the second equality follows
from (5)–(6) and the fact that Es̃2V2 is strictly increasing in f2). Let f∗2 be the
expected fitness from the biologically optimal choice, so that f∗2 = f2(x∗2).

The problem is then one of maximizing f2, subject to the constraints given
by (5)–(6). The constraints given by (5)–(6) can be written as11

ε2 =

∫
V2(z|z1)[g2(z − [(1 + γ)z1 + f∗2 ])− g2(z − [(1 + γ)z1 + f2])]dz. (9)

Now let us fix a candidate value f2 and ask if it could be part of an optimal
solution. If we could choose a utility function V2(z|z1) so as make the right
side of (9) exceed ε2, then the candidate value f2 would give us slack in the
constraints (5)–(6), and the utility function in question would in fact induce a
larger value of f2 than our candidate (since the right side of (9) is decreasing
in f2). This would imply that our candidate value does not correspond to an
optimal utility function. Hence, the optimal utility function must maximize the
right side of (9), for the optimal value f2, in the process giving a maximum
equal to ε2. We now need only note that (9) is maximized by setting the utility
V2(z|z1) as small as possible when g2(z−[(1+γ)z1+f∗2 ])−g2(z−[(1+γ)z1+f2]) <
0 and by setting the utility V2(z|z1) as large as possible when this inequality
is reversed, and hence the optimal utility function must have this property.
Because g2 has a symmetric, unimodal density with nonzero derivative (except
at 0), there is a threshold Ẑ2(z1) ∈ [(1 + γ)z1 + f2, (1 + γ)z1 + f∗2 ] such these
differences are negative for lower values of z and positive for higher values of z.
This gives us a utility function V2(z|z1) that takes a jump from 0 to 1 at Ẑ2(z1).
As ε2 → 0 and hence the agent’s satisficing set shrinks, Ẑ2(z1) converges to
(1 + γ)z1 + f∗2 and the agent flawlessly maximizes f2(x2) by choosing x∗2. This
establishes Lemma 1.

To acquire some intuition, notice that the optimal utility function exhibits
features familiar from principal-agent problems. In particular, consider a hidden-
action principal-agent problem with two effort levels. It is a standard result that
the optimal payment attached to an outcome is increasing in the outcome’s like-
lihood ratio, or (intuitively) in the relative likelihood of that outcome having
come from high vs. low effort. Much the same property appears here. Evolution
would like expected utility to fall off as rapidly as possible as the agent moves
away from the optimal decision x∗2, thereby “steepening” the utility function

11We can reduce (5)–(6) so a single constraint because f2(x2) = f2(x2) = f2. To arrive at
(9), we first expand the expectations in (5)–(6) to obtain

ε2 =

∫
V2((1 + γ)z1 + f∗2 + s2|z1)g2(s2)ds2 −

∫
V2((1 + γ)z1 + f2 + s2|z1)g2(s2)ds2.

A change of the variable of integration from s2 to z then gives (9).
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and reducing the possibility of a mistakenly suboptimal choice. Evolution does
so by attaching high payments to fitnesses with high likelihood ratios, or (intu-
itively) outcomes that are relatively likely to have come from an optimal rather
than a suboptimal choice.

The key property in characterizing the utility function in our case is then
a single-crossing property, namely that the relevant likelihood ratios fall short
of one for small fitnesses and exceed one for large fitnesses. The likelihood
comparison appears in difference rather than ratio form in (9), but the required
single-crossing property is implied by the familiar monotone likelihood ratio

property, that g2(z−α)
g2(z) is increasing in z, for α > 0.

3.3 The first period

Attention now turns to the first period. For simplicity, while examining our
special case we take the limit ε2 → 0 before considering the optimal first-period
utility function.

The agent has a utility function V1(z) with V1 ∈ [0, 1]. In addition, the agent
cannot distinguish any pair of choices whose expected utilities are within ε1 > 0
of each other. This again leads to a random choice from a satisficing set [x1, x1],
where (letting f1(x1) = f1(x1) = f1 and f∗1 = f1(x∗1))

Es̃1,s̃2V1(f1+s̃1+[γ(f1+s̃1)+f∗2 +s̃2]) = Es̃1,s̃2V1(f∗1 +s̃1+[γ(f∗1 +s̃1)+f∗2 +s̃2])−ε1.
(10)

In the first period, the agent randomizes uniformly over the set [x1, x1]. Evolu-
tion chooses the utility function V1(z) to maximize expected fitness, subject to
(10).

The first-period utility-design problem again leads to a bang-bang function
in realized utilities, with the expected utility function Es̃1,s̃2V1(f1(x1) + s̃1 +
[γ(f1(x1) + s̃1) + f∗2 + s̃2]) again being a continuous function of x1.

Lemma 2 There exists a value Ẑ1 such that the optimal first-period utility func-
tion is given by

V1(z) = 0, for all z < Ẑ1

V1(z) = 1, for all z > Ẑ1.

In the limit as ε1 → 0, we have Ẑ1 → (1 +γ)f∗1 +f∗2 and the agent’s first-period
choice x1 approaches x∗1.

We do not offer a proof here, as this result is a special case of Lemma 4,
which is proven in Section 6.1. The ideas behind this result parallel those of
the second period. Evolution creates the most effective incentives by attaching
utilities as large as possible to those fitnesses relatively more likely to have come
from the optimal first-period choice, and utilities as small as possible to fitnesses
relatively more likely to have come from a suboptimal first-period choice.
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3.4 A focussing illusion

We now compare the agent’s decision and experienced utilities—are the utilities
guiding the agent’s decision the same as those the agent will experience when
the resulting outcome is realized?

To answer this question, suppose the agent considers the possible outcome
(x1, s1, x2, s2). For example, the agent may consider moving to California (the
choice of x1), learning to surf (the choice of x2), finding a job (the realization
s1) and enjoying a certain amount of sunshine (the realization s2). Let us create
the most favorable conditions for the coincidence of decision and experienced
utilities by assuming the agent correctly anticipates choosing x2 = x∗2 in the
second period. Then fix x1 and look at utility as s1 and s2 vary. If the outcome
considered by the agent gives (1 + γ)[f1(x1) + s1] + f2(x2) + s2 > Ẑ1, then he
attaches the maximal utility of one to that outcome. However, if the scenario
contemplated by the agent at the same time involves a value s2 < 0 (the agent
contemplates a good job realization and hence a success without relying on
outstanding weather), then his realized experienced utility will be zero, since
then

z = (1 + γ)z1 + f2(x∗2) + s2 < (1 + γ)z1 + f2(x∗2) =⇒ V2(z|z1) = 0.

The agent’s decision utility of one thus gives way to an experienced utility of
zero.

Alternatively, if the agent considers a situation where (1 + γ)[f1(x1) + s1] +
f2(x2) + s2 < Ẑ1, then this generates a decision utility level of zero. However,
if, at the same time s2 > 0, his experienced utility will be one.

The agent’s decision and experienced utilities will thus sometimes agree, but
the agent will sometimes believe he will be (maximally) happy, only to end up
miserable, and sometimes he will believe at the start that he will be miserable,
only to turn out happy. The agent will be mistaken about his experienced utility
whenever his utility projection depends more importantly on the first-period
choice than second-period uncertainty (i.e., anticipating a good outcome because
he is moving to a great location, regardless of the weather; or anticipating a bad
outcome because his location is undesirable, despite good weather). The agent’s
decision utilities fail to take into account that once the first-period choice has
been realized, his utility function will adjust to focus on the second period,
bringing second-period realizations to heightened prominence.

Could this focussing illusion in realized outcomes be washed out in the pro-
cess of taking expected values? Suppose we know simply that the agent con-
templates a first-period utility V1(z) for some specific z. What expectations
should we have concerning this person’s second-period utility? Let us suppose
the agent chose x∗1 in the first period and will choose x∗2 in the second, both
because we expect to observe people who have made optimal choices (given their
decision utilities), and because the continued existence of the focussing illusion
in the presence of optimal choices is of key interest. This leaves us uncertain
as to the likely values of s1 and s2. We can let Es̃1,s̃2 {V2(z|z̃1)|z} represent
our expectation of the agents’ second-period utility, given the observation of z.

12
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Figure 1: First-period decision utility function V1(z) and expected experienced
utility Es̃1,s̃2 {V2(z|z̃1)|z}, as a function of z. Observations of small decision
utilities will then on average give way to larger experienced utilities, while large
decision utilities will on average give way to smaller experienced utilities, giving
rise to a focussing illusion.

Then in general,

V1(z) 6= Es̃1,s̃2 {V2(z|z̃1)|z} (11)

= Pr {V2(z|z̃1) = 1|z} (12)

= Pr {s̃2 ≥ 0|z} . (13)

The larger is z, the more likely it is that s̃2 > 0. As a result, Es̃1,s̃2 {V2(z|z̃1)|z}
increases from 0 to 1 as z increases from its minimum to its maximum value.
Figure 1 illustrates. An agent’s view of the utilities guiding his first-period
decisions thus give way to a more moderate view of second-period experienced
utilities.
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3.5 Generalization?

Section 4 extends the analysis to the more general technology given by (1)–(2).
This subsection motivates this extension.

We have assumed that evolution writes first-period and second-period util-
ity functions of the form V1(z) and V2(z|z1), i.e., that evolution must attach
utilities to total fitnesses. Given the separable technology given by (3)–(4), this
formulation is restrictive. If able to make first-period utility a function of first-
period fitness z1 (rather than total fitness z), evolution can do no better than
to give the agent the utility functions (in the limit as ε1 → 0 and ε2 → 0)

V1(z1) = 0, for all z1 < ẑ1 = f∗1

V1(z1) = 1, for all z1 > ẑ1 = f∗1

V2(z|z1) = 0, for all z < Ẑ2(z1) = (1 + γ)z1 + f∗2

V2(z|z1) = 1, for all z > Ẑ2(z1) = (1 + γ)z1 + f∗2 .

In particular, there is no need to trouble the agent with second-period implica-
tions when the agent is making his first-period choice, as the first-period action
x1 has no second-period implications.

Do we still have a focussing illusion here? On the one hand, the second-
period utility cutoff Ẑ2(z1) adjusts in response to first-period realized fitness z1,
ensuring that the agent will often encounter second-period fitness realizations
that do not match his previous expectation of second-period utility. However,
only first-period outcomes and utilities shape the first-period choice. Although
we still have a focussing illusion, it is irrelevant for the choices that must be
made.

This utility-design procedure would not work with the more general tech-
nology given by (1)–(2), or indeed with any technology in which not only z1,
but also the first-period choice x1, enters the second-period fitness. It no longer
suffices to simply design the agent to maximize the expected value of first-period
fitness z1, as the agent must trade off higher values of z1 with the second-period
implications of x1. In particular, maximizing total fitness may require settling
for a lower value of expected first-period fitness, in order to invest in a level of
x1 that boosts expected second-period fitness. Evolution must then make util-
ity a function of total fitness if the agent is to effectively balance intertemporal
tradeoffs. We examine this more general model in the following section.

4 The general case

We now turn to the complete analysis, featuring the technology given by (1)–
(2). The ideas will be familiar from Section 3, with some additional technical
details.
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4.1 The second period

Once again, the agent enters the second period having made a choice x1 and
realized a first-period fitness of z1. The agent cannot distinguish any pair of
second-period choices whose expected utilities are within ε2 > 0 of each other.
Hence, instead of certainly choosing the maximizer x∗2(x1) of Es̃2V2(z1 + (γz1 +
f2(x1, x2) + s̃2)|z1) in the second period, the agent may choose any x2 yielding
an expected utility within ε2 of this level, i.e., any x2 with the property that

Es̃2V2(z1+(γz1+f2(x1, x
∗
2(x1))+s̃2)|z1)−Es̃2V2(z1+(γz1+f2(x1, x2)+s̃2)|z1) ≤ ε2.

This give rise to a satisficing set [x2, x2], where x2 < x∗2(x1) < x2 and

Es̃2V2((1 + γ)z1 + f2(x1, x2) + s̃2|z1) (14)

= Es̃2V2((1 + γ)z1 + f2(x1, x2) + s̃2|z1)

= Es̃2V2((1 + γ)z1 + f2(x1, x
∗
2(x1)) + s̃2|z1)− ε2. (15)

Evolution chooses the utility functions V2 to maximize fitness, subject to
(14)–(15). We summarize the result of this maximization process with the
following lemma.

Lemma 3 There exist functions Z2(z1) and Z2(z1), with Z2(z1) ≤ Z2(z1),
such that the optimal second-period utility function satisfies

V2(z|z1) = 0, for all z < Z2(z1) (16)

V2(z|z1) = 1, for all z > Z2(z1). (17)

In the limit as ε2 → 0, the agent’s second-period choice x2 approaches x∗2(x1).

Notice that if ε1 > 0, then x1 arises out of random satisficing behavior in the
first period, but nonetheless the second-period choice (when ε2 → 0) is x∗2(x1),
for each realization x1. Lemma 3 leaves open the question of how the utility
function is specified on the potentially nonempty interval (Z2(z1), Z2(z1)). In
the course of examining the first period, we will show that this gap shrinks to
zero as does ε1, the first-period utility-perception error. In particular, the gap
(Z2(z1), Z2(z1)) arises because evolution faces uncertainty concerning agent’s
first-period choice x1. As ε1 → 0, this uncertainty disappears, and in the process
Z2(z1) and Z2(z1) converge to the same limit. We thus approach a bang-bang
utility function, equalling 0 for small fitnesses and 1 for large fitnesses.

To establish Lemma 3, suppose first (temporarily) that evolution could con-
dition the second-period utility function on the agent’s first-period choice x1

as well as his first-period fitness z1. In the second period, the second-period
analysis would then match that of Section 3, except that the optimal value of
x∗2 would depend on x1. This would give us Lemma 3 (and more), were it not
for our counterfactual assumption that evolution can “observe” x1 as well as z1.

More generally, since second-period utilities cannot be conditioned on x1,
evolution must form a posterior expectation over the likely value of x1, given

15



her observation of z1.12 She would then choose a utility function V2(z|z1) that
maximizes the agent’s expected fitness, given this posterior. In particular, for
each possible value of x1, the agent will mix over a set [x2(x1), x2(x1)], being
the satisficing set corresponding to (14)–(15) (for that value of x1). Evolution
is concerned with the resulting expected value of the total fitness (1 + γ)z1 +
f2(x1, x2) + s2, where the expectation is taken over the likely value of x1 (given
z1), over the choice of x2 (from the resulting satisficing set), and the draw
of s2 (governed by g2). Evolution increases expected fitness by reducing the
size of the satisficing sets [x2(x1), x2(x1)]. While this is in general a quite
complicated problem, the key observation is that there exists a value Z2(z1)
such that g2(z − [(1 + γ)z1 + f2(x1, x

∗
2)]) − g2(z − [(1 + γ)z1 + f2(x1, x2)]) is

negative for z < Z2(z1), for every x1 in the first-period satisficing set, as well as
a value Z2(z1) such that these differences are all positive for all z > Z2(z1).13

It thus decreases the size of every possible satisficing set to set V2(z|z1) = 0 for
z < Z2(z1) and V2(z|z1) = 1 for z > Z2(z1).

This leaves us without having determined what happens on the set [Z2(z1), Z2(z1)],
and if there is a wide range of possible x1 values, this gap might be large. As ε1

gets small, however, the first-period satisficing set will shrink, causing the gap
[Z2(z1), Z2(z1)] to disappear (cf. Lemma 4). Finally, even for fixed (but small)
ε1 > 0, it follows from the fact that V2(z|z1) is increasing and the continuity of
f2 that as ε2 approaches zero, the agent’s second-period satisficing sets collapse
on x∗2(x1), for each realization x1 of the first-period random satisficing choice.

4.2 The first period

Attention now turns to the first period. For simplicity, we initially take the limit
ε2 → 0 before considering the optimal first-period utility function, returning to
this assumption at the end of this section.

The agent has a utility function V1(z) with V1 ∈ [0, 1]. In addition, the agent
cannot distinguish any pair of choices whose expected utilities are within ε1 > 0
of each other. This again leads to a random choice from a satisficing set [x1, x1],
where

Es̃1,s̃2V1(f1(x1) + s̃1 + [γ(f1(x1) + s̃1) + f2(x1, x
∗
2(x1)) + s̃2]) (18)

= Es̃1,s̃2V1(f1(x1) + s̃1 + [γ(f1(x1) + s̃1) + f2(x1, x
∗
2(x1)) + s̃2])

= Es̃1,s̃2V1(f1(x∗1) + s̃1 + [γf1(x∗1) + s̃1) + f2(x1, x
∗
2(x∗1)) + s̃2])− ε1. (19)

In the first period, the agent randomizes uniformly over the set [x1, x1]. Evolu-
tion chooses the utility function V1(z) to maximize expected fitness, subject to
(18)–(19).

12We emphasize again that evolution does not literally form posterior beliefs over the agent’s
actions and then solve an optimization problem. The results follow from the observation that
fitness will be maximized by that utility function that would be optimal given the appropriate
posterior beliefs.

13This follows from the observation that f2 is bounded, and hence so are the values [(1 +
γ)z1 + f2(x1, x∗2(x1))] and [(1 + γ)z1 + f2(x1, x2(x1))] = [(1 + γ)z1 + f2(x1, x2)], over the set
of possible satisficing values of x1, with the former larger than the latter.
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Once again, we have a bang-bang function in realized utilities, with the ex-
pected utility function Es̃1,s̃2V1(f1(x1)+s̃1+[γ(f1(x1)+s̃1)+f2(x1, x

∗
2(x1))+s̃2])

being a continuous function of x1. Section 6.1 uses arguments parallelling those
applied to the second period to prove (letting f1(x∗1) = f∗1 and f2(x∗1, x

∗
2(x∗1)) =

f∗2 ):

Lemma 4 There exists a value Ẑ1 such that the optimal first-period utility func-
tion is given by

V1(z) = 0, for all z < Ẑ1

V1(z) = 1, for all z > Ẑ1.

In the limit as ε1 → 0, we have

Ẑ1 = (1 + γ)f∗1 + f∗2 ,

as well as

Z2(z1) → (1 + γ)z1 + f∗2

Z2(z1) → (1 + γ)z1 + f∗2 .

The final part of this lemma resolves a lingering question from the preceding
analysis of the second period, showing that the intermediate range [Z2, Z2] on
which we had not pinned down the second-period utility function disappears
as ε1 tends to zero and hence the randomness in the agent’s first-period choice
disappears.

The ideas behind this result parallel those of the second period. The utility
perception error ε1 causes the agent to choose x1 randomly from a satisficing set
[x1, x1], and evolution’s task is to choose the utility function to reduce the size
of this satisficing set. Total fitness is now affected by the random variable s̃1 as
well as s̃2, and the key to the result is to show that the resulting distribution
over total fitness exhibits a single-crossing property, with larger total fitnesses
relatively more likely to have come from the fitness-maximizing choice x∗2 than
from either of the choices x1 or x1.

Putting our two intermediate results together, we have shown:

Proposition 1 In the limit as the “utility-perception errors” ε2 and then ε1

approach zero, the optimal utility functions are given by

V1(z) = 0, for all z < Ẑ1 = (1 + γ)f∗1 + f∗2

V1(z) = 1, for all z > Ẑ1 = (1 + γ)f∗1 + f∗2

V2(z|z1) = 0, for all z < Ẑ2(z1) = (1 + γ)z1 + f∗2

V2(z|z1) = 1, for all z > Ẑ2(z1) = (1 + γ)z1 + f∗2 .
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We thus have bang-bang utility functions in each period. As the utility-perception
errors ε1 and ε2 get small, the agent’s choices collapse around the optimal choices
x∗1 and x∗2(x∗1).

Our argument can be easily adapted to establish Proposition 1 under the
assumption that ε2 goes to zero sufficiently fast relative to ε1 (as opposed to
taking ε2 → 0 first). Indeed, we can establish Proposition 1 under the joint limit
as the utility-perception errors ε1 and ε2 go to zero, using additional technical
assumptions and a somewhat more involved argument. In order to evaluate the
utility consequences of his first-period actions, the agent must know what his
subsequent second-period actions will be. Taking ε2 to zero before examining
the first period, as we have done, simplifies the argument by allowing the agent
to unambiguously anticipate the choice x∗2(x1) in the second period. What
should the agent anticipate if ε2 > 0? His second-period choice will now be a
random draw from a satisficing set. An apparently natural assumption would
give the agent rational expectations about his second-period choice. However,
the satisficing set is determined by the second-period utility function, and under
the separation of decision and experienced utilities, the agent does not correctly
anticipate the second-period utility function governing the choice of x2.14 It is
then conceptually problematic to assume rational expectations.

Whatever rule evolution gives the agent for anticipating second-period choices,
we will obtain the results given in Proposition 1 as long as random second-
period choices do not reverse first-period fitness rankings. In particular, the
fitness-maximizing first-period choice x∗1 gives a distribution of total fitnesses
that first-order stochastically dominates the distribution induced by the sub-
optimal choices x1 or x2, when each is paired with the corresponding optimal
second-period choice x∗2(·). It would suffice for a general limit result that for
ε2 > 0 (but small), the optimal choice x∗1 still gives fitnesses that first-order
stochastically dominate those of x1 or x2; given the rule used by the agent to
anticipate second-period choices.15 One obvious sufficient condition for this to
hold is that f2(x1, x2) be separable in x1 and x2 (with the agent’s anticipated
second-period choice then naturally being independent of x1). Other sufficient
conditions would allow more flexible technologies, at the cost of more cumber-
some statements.

4.3 Sophisticated agents?

An argument analogous to that of Section 3.4 confirms that we have a focussing
illusion in this general case. This illusion gives rise to the following question.
Evolution here has designed the agent to be naive (cf. O’Donoghue and Rabin
[12]), in the sense that the first-period decision is made without anticipating the

14Notice that in the limit as ε2 → 0, it need only be the case that second-period expected
utility will be increasing in fitness to ensure that x∗2(x1) will be chosen in the second period,
making rational expectations straightforward.

15Total fitness would then continue to exhibit the appropriate version of the single-crossing
property given by (23)–(24), with the agent’s belief about x2 as well as those about s̃1 and
s̃2 now being random.
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attendant second-period utility adjustment. Why not make the agent sophisti-
cated? Why not simply let the agent make decisions on the basis of experienced
utilities?

The utility functions presented in Proposition 1 will not elicit fitness-maximizing
decisions if the agent is sophisticated. Given optimal second-period choices, and
taking the limit as the utility errors tend to zero, evolution induces the agent
to make an appropriate first-period choice by having the agent select x1 to
maximize

Es̃1,s̃2V1(z̃) = Pr[(1+γ)s̃1+s̃2 ≥ ((1+γ)f∗1 +f∗2−((1+γ)f1(x1)+f2(x1, x
∗
2(x1)))].

Es̃1,s̃2V1(z̃) is readily seen to be maximized at x∗1. Suppose that instead, evolu-
tion designed the agent to maximize the expected value of the correctly antici-
pated, expected experienced utility, or

Es̃1,s̃2V2(z̃|z̃1) = Pr[s̃2 ≥ f∗2 − f2(x1, x
∗
2(x1))].

The agent’s decision utility captures two effects relevant to choosing x1, namely
the effect on first-period fitness z1, with implications that carry over to the
second period, and the effect on expected second-period incremental fitness
f2(x1, x

∗
2(x1)). In contrast, the correctly anticipated experienced utility omits

the first consideration. Expected experienced utility thus leads the agent to
consider only the second-period implications of his decisions, potentially yielding
outcomes that differ markedly from those that would maximize fitness. Making
agents naive increases their fitness.

To illustrate this point, suppose that maxx2 f2(x1, x2) is independent of x1,
though the maximizer may yet depend on x1. Hence, the action the agent must
take to maximize second-period incremental fitness depends on the outcome of
the first period, though in each case the agent adds the same expected increment
to fitness. In the limiting case of no utility error, we have

Es̃1,s̃2V2(z̃|z̃1) = Pr[s̃2 ≥ f∗2 − f2(x1, x
∗
2(x1))] =

1

2
,

for every value of x1. Correctly anticipated experienced utility now provides
no incentives at all, while first-period decision utilities still effectively provide
incentives. Why does making the agent sophisticated destroy incentives? The
naive agent believes that a suboptimal choice of x1 will decrease utility. Should
such a suboptimal choice x1 be made, however, the agent’s second-period util-
ity function will (unexpectedly) adjust to the first-period choice x1 to still yield
an expected experienced utility of 1

2 . From evolution’s point of view, this ad-
justment plays the critical role of enhancing second-period incentives. Should
the agent be sophisticated enough anticipate it, however, first period incen-
tives evaporate, with expected utility now being independent of the first-period
choice.

The intuition behind this result is straightforward. Evolution must create in-
centives in the first period, and naturally constructs decision utilities to penalize
suboptimal choices. However, once a first-period alternative is chosen, evolution
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must now induce the best possible second-period choice. In the present model,
she adjusts the agent’s utility function in response to the first-period choice,
causing the optimal second-period choice to induce the same expected utility,
regardless of its first-period predecessor. Suboptimal first-period choices thus
lead to the same experienced utility in the second period as do optimal ones.
The decision-utility penalty attached to suboptimal choices in the first period
is removed in the second in order to construct better second-period incentives.

5 Discussion

5.1 Extensions

We have highlighted the forces behind the focussing illusion by working with
a stark model. A number of extensions would be of interest. Some of these
are conceptually straightforward, even if they are analytically more tedious.
For example, we would be interested in a model spanning more periods, allow-
ing us to examine a richer collection of investment opportunities. As our model
stands, a first-period investment x1 already yields its gains in the second period.
What about more prolonged investments? Acquiring an education may entail
numerous periods of investment, during which time the agent may become ac-
customed to a low consumption level. This low-consumption acclimation may in
turn magnify the initial utility-enhancing consequences of the post-graduation
jump in consumption, though these utility gains will subsequently be eroded
away as the agent adjusts to higher consumption.16

Evolution must now construct a sequence of utility functions, each serving as
a decision utility for current actions and an experienced utility for past actions.

Similarly, it would be interesting to allow z1 and z2 (as well as x1 and x2) to
be multidimensional. We derive utility from a variety of sources. Perhaps most
importantly, we can ask not only how evolution has shaped our utility func-
tions, given their arguments, but which arguments she has chosen to include.
At first, the answer to this question seems straightforward. The currency of
evolutionary success is reproduction, and evolution should simply instruct us to
maximize our expected reproductive success. Even if one could solve the atten-
dant measurement issues,17 maximizing this goal directly is presumably beyond
our powers.18 Instead, evolution rewards us for achieving intermediate targets,
such as being well-fed and being surrounded by affectionate members of the
opposite sex. But which intermediate targets should evolution reward? Clearly,

16The relevant measure of the length of a period is determined by the how quickly evolution
can induce our utility functions to adapt to our circumstances. A single fine meal is unlikely
to be a preference-altering event, but it may not take long for one to feel “settled” in their
circumstances, prompting drift in the “steep spot” of the utility function.

17For example, how do we trade off the number of children versus their “quality,” presumably
self-referentially defined by their reproductive success? How do we trade off children versus
grandchildren?

18Calculating the fitness implications of every action we take would be overwhelming, while
feedback (such as the birth of a healthy child) is sufficiently rare as to make trial-and-error
an ineffective substitute (cf. Robson [15]).
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our utility functions should feature arguments that, to the extent possible, are
directly related to the ultimate goal of reproductive success and are sufficiently
straightforward that we can perform the resulting maximization. In addition,
we will suggest below that our utility functions should contain arguments that
are effective at implicitly conveying information to evolution.

5.2 A more general technology

Quasi-linearity is not needed at all for the second-period analysis. The critical
step in the first-period argument arises in examining the cumulative distribution
function of (1 + γ)s̃1 + s̃2. Letting G denote this distribution, we have

G(z − [(1 + γ)f1(x1) + f2(x1, x
∗
2(x1))]

= Pr[(1 + γ)s̃1 + s̃2] ≤ z − [(1 + γ)f1(x1) + f2(x1, x
∗
2(x1))]

= Pr[(1 + γ)(f1(x1) + s̃1) + f2(x1, x
∗
2(x1)) + s̃2 ≤ z]. (20)

Now letting g be the density of G, we can interpret g(z − [(1 + γ)f1(x1) +
f2(x1, x

∗
2(x1))]) as the “1ikelihood” that fitness z is the result of choices (x1, x

∗
2(x1)),

which give rise to expected fitness (1 + γ)f1(x1) + f2(x1, x
∗
2(x1)). Paralleling

the second-period argument, it would suffice for this distribution to have the
single-crossing property that g(z − [(1 + γ)f1(x∗1) + f2(x∗1, x

∗
2(x∗1))]) − g(z −

[(1 + γ)f1(x1) + f2(x1, x
∗
2(x1))]) is negative for small values of z (in which case

V1(z) = 0) and positive for large values (giving V1(z) = 1), for which it suf-
fices that g exhibit the monotone likelihood ratio property. Intuitively, higher
realized fitness levels must be relatively more likely to have come from actions
yielding higher expected fitness levels.19

Now suppose fitness is given by z = z1 + z2 = f1(x1, s1) + f2(z1, x2, x2, s2).
This general technology will give rise to an analogous utility function if the
counterpart of (20) again gives rise to a single crossing property. However, now
we must define the cumulative distribution function of fitness directly as

Ĝ(z) = Pr[f1(x1, s̃1) + f2(f1(x1, s̃1), x1, x
∗
2(f1(x1, s̃1), x1), s̃2) ≤ z].

In this case, Ĝ is the cumulative distribution of a potentially complicated, non-
linear function of s̃1 and s̃2. We can then no longer automatically count on Ĝ
exhibiting the requisite single-crossing property. Instead, this property is now
a potentially complicated joint assumption on the distributions or the random
variables and the technology. Simple sufficient conditions for this property are
then elusive, though we have no reason to doubt that higher realized fitnesses
will again be relatively more likely to have emerged from actions yielding higher
expected fitnesses.

19Under the quasilinearity assumption (2), the cumulative distribution function of fitness
in (20) is derived immediately from the cumulative distribution function G of the relatively
simple linear combination (1 + γ)s̃1 + s̃2 of the random variables s̃1 and s̃2. This ensures (as
we show in Section 6.1) that the corresponding density g exhibits the single-crossing property.
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We believe there are good reasons to expect the desired single-crossing prop-
erty to hold, even if the primitive conditions leading to the requisite monotonic-
ity property are not easily identified in the general model. Bringing us back
to ideas which we opened Section 5, evolution has not only designed our util-
ity functions, but has chosen the arguments to include in those functions. We
have been chosen to have a taste for sweetness, whereas we could just as eas-
ily have been chosen to have different tastes. Among the many considerations
behind what gets included in our utility functions, we expect one to be that
the technology surrounding the variable in question exhibits the single-crossing
properties required for simple utility functions to deliver strong incentives. We
thus expect the single-crossing property to be one of the features that makes a
variable a good candidate for inclusion in our utility function, and hence think
it likely that the property will hold precisely because evolution has an incen-
tive to attach utilities to variables with this property. Once we have that, we
immediately reproduce the results of Section 4.2 in the more general setting.

5.3 Smooth utility functions

The optimal utility functions in our model assign only the utilities zero and
one to realized outcomes. Can we obtain more realistic utilities that are not
always zero or one? To demonstrate one way of doing this, we begin with the
model of Section 3.1. The key new feature is the addition of a shock r̃ that is
observed by the agent before the first choice must be made but is unobservable to
evolution. This shock captures the possibility that there may be characteristics
of the agent’s environment that affect the agent’s fitness, but that fluctuate too
rapidly for evolution to directly condition his behavior. The agent may know
whether the most recent harvest has been good or bad, or whether the agent
is in the midst of a boom or recession. Fitness thus varies with a state that is
unobserved by evolution (as in Rayo and Becker [13]). Suppose that realized
fitness is given by

z = r + z1 + z2

= r + f1(x1) + s1 + [γz1 + f2(x2) + s2],

where the associated random variables s̃1, s̃2 and r̃ are independent.
Two assumptions significantly simplify the analysis. First, r̃ takes only a

finite number of possible outcomes (r1, . . . , rK). Our second assumption, made
precise after acquiring the required notation, is that the dispersion in the values
of r̃ is large relative to the supports of s̃1 and s̃2. Intuitively, the new information
in r̃ the agent can observe is relatively important.

The agent is endowed with a second-period utility function V2(z|z1). This
is non-decreasing in fitness z, where V2(z|z1) ∈ [0, 1]. Suppose that z1 has
been realized in the first-period and the agent has observed realization rk of
the random variable r̃. The agent then chooses from a satisficing set of the

form [xk2(z1), xk2(z1)] 3 x∗2 where (letting f2(xk2(z1)) = f2(xk2(z1)) = f
k

2 and
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f2(x∗2) = f∗2 )

Es̃2V2((1 + γ)z1 + f∗2 + rk + s̃2)− Es̃2V2((1 + γ)z1 + f
k

2 + rk + s̃2) (21)

= ε2.

Consider now evolution’s optimal choice of V2(z|z1). We can rewrite (21) as∫
V2(z|z1)

[
g2(z − (1 + γ)z1 − f∗2 − rk)− g2(z − (1 + γ)z1 − f

k

2 − rk)
]
dz = ε2.

(22)
Define Zk2 (z1) by the requirement that

g2(Zk2 (z1)− (1 + γ)z1 − f∗2 − rk) = g2(Zk2 (z1)− (1 + γ)z1 − f
k

2 − rk).

Since g2 is symmetric and unimodal (with nonzero derivative except at 0), there

exists a unique such Zk2 (z1) ∈ [(1 + γ)z1 + f
k

2 + rk, (1 + γ)z1 + f∗2 + rk].
If we could fix the value of rk, we would then have precisely the problem of

Section 3.1. Evolution would set V2(z|z1) = 0 for z < Zk2 (z1) and V2(z|z1) = 1
for z > Zk2 (z1), with Zk2 (z1)→ (1 +γ)z1 + f∗2 + rk as ε2 → 0. Now, however, we
have not just one such problem, but a collection of k such problems, one corre-
sponding to each possible value of rk. At this point, we simplify the interaction
between these problems by invoking our assumption that the successive values
of rk are sparse, relative to the support of s̃1 and s̃2, so that for each value of
z, there is at most one value rk that can make g2(z − (1 + γ)z1 − f∗2 − rk) or

g2(z − (1 + γ)z1 − f
k

2 − rk) nonzero. Equivalently, each possible realization rk
gives rise to a set of possible realizations of z̃ (conditioning on z1 throughout),
each of which can arise from no other realization of r̃k. On this set of values,
evolution would like to set V2(z|z1) as low as possible for z < Zk2 (z1), and as
high as possible for z > Zk2 (z1). The implicit constraint behind the “if possible”
in these statements is that V2(z) must be non-decreasing. Hence, for example,
setting V2(z|z1) relatively low for a value z < Zk2 (z1) relevant for the realiza-
tion rk, while improving incentives conditional on realization rk, constrains the
incentives that can be provided for smaller realizations.

These observations immediately lead to the conclusion that, given z1 and ε2,
there will be an ascending sequence of values (V 0

2 , . . . , V
K
2 ) such that

V2(z|z1) = V 0
2 = 0 for all z < Z1

2 (z1)

V2(z|z1) = V k2 for all z ∈ [Zk2 (z1), Zk+1
2 (z1)), k = 1, ...,K − 1

V2(z|z1) = V K2 = 1 for all z ≥ ZK2 (z1).

In the limit as ε2 → 0, we have Zk2 (z1) → (1 + γ)z1 + f∗2 + rk, and hence, a
utility function given by

V2(z|z1) = 0 for all z < (1 + γ)z1 + f∗2 + r1

V2(z|z1) = V k2 for all z ∈ [(1 + γ)z1 + f∗2 + rk, (1 + γ)z1 + f∗2 + rk+1), k = 1, ...,K − 1

V2(z|z1) = 1 for all z ≥ (1 + γ)z1 + f∗2 + rK .
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The remaining task is then to calculate the values V 1
2 , . . . , V

K−1
2 . It is

straightforward to write the programming problem these values must solve and
to find conditions characterizing the equilibrium. In general, however, it is diffi-
cult to find this equilibrium explicitly. Section 6.2 presents an example in which
enough structure is imposed on the problem to admit a simple closed-form so-
lution.

The first period situation is analogous to that provided above. Evolution’s
criterion is then E [(1 + γ)f1(x1) + s̃1 + f2(x∗2) + s̃2 + r̃] = (1 + γ)Ef1(x1) +
f2(x∗2), given optimal choice in the second period, but allowing for random
satisficing behavior in the first. In the limit where ε1 → 0, it then follows that

V1(z) = 0 for all z < (1 + γ)f∗1 + f∗2 + r1

V1(z) = V k1 for all z ∈ [(1 + γ)f∗1 + f∗2 , (1 + γ)f∗1 + f∗2 ), k = 1, . . . ,K − 1

V1(z) = 1 for all z ≥ (1 + γ)f∗1 + f∗2 + rK

where the values V k1 , k = 0, . . . ,K match those of the second period.
The utility functions V1 and V2 now increase in K steps, becoming nearly

smooth as K gets large. Once again, it is optimal to dissociate first period utility
V1(z) from second period utility V2(z|z1). Each utility function in the second
period is a replica of the utility function in the first period, being a horizontal
translation of the first period utility function by the random shock (1 + γ)s̃1,
whose mean is zero. It can be shown that, in each neighborhood of each jump
point, the first-period utility function V1(z) is more extreme than the expected
second-period function EV2(z|z̃1). Indeed, the argument is essentially identical
to that used when utilities had a single jump. This gives us a focussing illusion
that we believe would only become more pronounced in a more realistic model
in which the rk are not sparse, though this would entail solving a significantly
more complicated inference problem.

5.4 Implications

Psychologists and classical economists tend to approach the concept of utility
from different perspectives. Psychologists are more apt to give utility a direct
hedonic interpretation, and to be comfortable with the idea of multiple forms of
utility. Classical economists are more inclined to think of utility as an analytical
device, and to always work with only a single notion of utility. Recent advances
in behavioral economics have highlighted this apparent contradiction.

Our analysis suggests that if we interpret utility as having an evolutionary
origin, in the process embracing the hedonic interpretation, then we should
expect a distinction between decision and experienced utility. Psychologists
are prone to go further, arguing that decisions would be improved if decision
utility were replaced by expected experienced utility. Our model provides no
support for this view. Decision and experienced utilities combine to produce
fitness-maximizing choices. To an observer, the resulting choices will exhibit
all the characteristics of rational behavior, including satisfying the revealed-
preference axioms (as long as the utility errors are sufficiently small, and with
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fitness as the underlying utility function), despite the seeming inconsistencies
between decision and experienced utilities. Replacing the resulting decisions
with choices based on experienced utilities can only reduce fitness.

Of course, maximizing fitness may not be the relevant goal. There is no
compelling reason why conscious beings should, as a moral imperative, strive
to maximize the fitness criterion implicitly guiding their evolution. Once we
abandon fitness, however, we are left with little guide as to what the appro-
priate welfare criterion should be, and little reason to think that emphasizing
the fitness-maximizing experienced utilities should yield a welfare improvement.
One might respond by arguing that experienced utility is the appropriate cri-
terion, but we see little reason for singling out one particular utility function as
the appropriate one.

What revealed-preference implications does our model have? Evolutionary
explanations of behavior are intriguing, but provide their most convincing payoff
when pointing to implications for observed behavior that would hitherto have
gone unnoticed. In the current model, we note that training people to place
greater emphasis on experienced utilities will alter the incentives to make in-
vestments in future utility. In particular, suppose we consider actions whose
costs and benefits are unevenly spread over time. The action may involve costly
current effort that pays off in the form of future consumption, or current con-
sumption requiring future compensatory effort. Our comparison of naive and
sophisticated agents in Section 4.3 suggests that in our two-period model, mak-
ing agents sophisticated will cause them to emphasize the future utility impacts
of their actions, as they realize that the current utility gains or losses will be
ratcheted away by future utility adjustments. Their decision making will then
rely more heavily on the future implications of their choices. In essence, sophis-
ticated agents are likely to appear to be more patient.

Consider the following example. Let f1(x1) = −x2
1 and f2(x1, x2) = 8x1(x2−

x2
2). We can think of x1 as an investment, with current cost −x2

1, that pays off
in the form of future fitness gains. A naive agent chooses x∗1 = 1

1+γ .20 A
sophisticated agent recognizes that any first-period utility impacts of x1 will be
offset by second-period utility adjustments, and hence chooses x1 to maximize
simply the expected second-period expected utility f(x1, x

∗
2) = 8x1

(
1
4

)
, leading

to pressure to choose the largest possible value of x1 = 1. This agent thus gives
the appearance of being “hyper-patient,” ignoring first-period considerations
altogether. Suppose instead we have f1(x1) = x1 and f2(x1, x2) = x2−x2

2−x2
1,

so that first-period fitness gains are purchased at the cost of second-period costs.
Training the agent to rely on experienced utility will again give rise to hyper-
patience, in this case inducing the agent who ignores the potential first-period
benefits to choose x1 = 0. Either scenario involves potentially disastrous fitness
consequences. A richer model in which agents could be “partially sophisticated”
might give rise to intermediate levels of enhanced patience, while models with

20The agent chooses x∗2 = 1
2

, in the second period. In the first period, given that the utility

errors vanish, the agent maximizes overall expected fitness (1 + γ)(−x21) + 8x1
(
1
4

)
, giving

x∗1 = 1
1+γ

.
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more periods may give rise to more subtle impacts.

6 Appendix: Proofs

6.1 Proof of Lemma 4

Taking ε2 → 0. ensures that, for any first-period choice x1, the agent anticipates
x∗2(x1) as the second-period choice.

The first step of the proof now parallels that of the second period, and is to
rewrite the constraints as∫ ∫

V1(f1(x∗1) + s1 + γ[f1(x∗1) + s1] + f2(x∗1, x
∗
2(x∗1)) + s2)g1(s1)g2(s2)ds1ds2

−
∫ ∫

V1(f1(x1) + s1 + γ[f1(x1) + s1] + f2(x1, x
∗
2(x1)) + s2)g1(s1)g2(s2)ds1ds2

=

∫ ∫
V1(f1(x∗1) + s1 + γ[f1(x∗1) + s1] + f2(x∗1, x

∗
2(x∗1)) + s2)g1(s1)g2(s2)ds2

−
∫ ∫

V1(f1(x1) + s1 + γ[f1(x1) + s1] + f2(x1, x
∗
2(x1)) + s2)g1(s2)g2(s2)ds2

= ε1.

The next task is to execute the corresponding change of variable to rewrite these
constraints as ∫

V1(z)g(z − [(1 + γ)f1(x∗1) + f2(x∗1, x
∗
2(x∗1))])dz (23)

−
∫
V1(z)g(z − [(1 + γ)f1(x1) + f2(x1, x

∗
2(x1))])dz

=

∫
V1(z)g(z − [(1 + γ)f1(x∗1) + f2(x∗1, x

∗
2(x∗1))])dz

−
∫
V1(z)g(z − [(1 + γ)f1(x1) + f2(x1, x

∗
2(x1))])dz

= ε1, (24)

where g is the density of the random variable (1 + γ)s̃1 + s̃2.
This ensures that there exists a Ẑ1 with the property that V1(z) = 0 for

z < Ẑ1 and V1(z) = 1 for z > Ẑ1, if we can show that g is symmetric and
unimodal with zero derivative only at 0. In addition, as ε1 → 0, Ẑ1 approaches
(1 + γ)f1(x∗1) + f2(x∗1, x

∗
2(x∗1)).

The next step of the proof is to establish that g indeed has the required
properties. It is clear that these properties are preserved under multiplication
by a nonzero scalar, so it suffices to show that if two arbitrary random variables
s̃1 and s̃2, with densities g1 and g2, have these properties, then so does their
sum. Let s = s1 + s2 for feasible values of s and define:

σ2(s) = max{s2, s− s1}
σ2(s) = min{s2, s− s1}.
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Notice that σ2(s) < σ2(s) and that, from symmetry, s1 = −s1 and s2 = −s2.
Then, letting G be the cumulative distribution of the sum s, we have

G(s) =

∫ σ2(s)

s2

G1(s1)g2(s2)ds2 +

∫ σ2(s)

σ2(s)

G1(s− s2)g2(s2)ds2 +

∫ s2

σ2(s)

G1(s1)g2(s2)ds2

=

∫ σ2(s)

s2

g2(s2)ds2 +

∫ σ2(s)

σ2(s)

G1(s− s2)g2(s2)ds2.

We say that σ2 is relevant if σ2 > s2 (and irrelevant otherwise), and that
σ2 is relevant if σ2 < s2. Differentiating, we have (note that σ2 > s2 =⇒
G1(s− σ2) = 1 and σ2 = s2 =⇒ dσ2

ds = 0, which between them account for the
second equality):

g(s) = g2(σ2)
dσ2

ds
−G1(s− σ2)g2(σ2)

dσ2

ds
+

∫ σ2(s)

σ2(s)

g1(s− s2)g2(s2)ds2

=

∫ σ2(s)

σ2(s)

g1(s− s2)g2(s2)ds2.

To see that this distribution is symmetric, we note that

g(−s) = =

∫ σ2(s)

σ2(s)

g1(−s− s2)g2(s2)ds2 =

∫ σ2(s)

σ2(s)

g1(s+ s2)g2(s2)ds2

=

∫ σ2(s)

σ2(s)

g1(s− s2)g2(−s2)ds2 =

∫ σ2(s)

σ2(s)

g1(s− s2)g2(s2)ds2 = g(s).

Unimodality, and the presence of a zero derivative only at zero, follow from
taking another derivative to obtain:

G′′(s) = g1(s− σ2)g2(σ2)
dσ2

ds
− g1(s− σ2)g2(σ2)

dσ2

ds

+

∫ σ2(s)

σ2(s)

g′1(s− s2)g2(s2)ds2.

It suffices to show that the first line is nonnegative and the second line positive
when s < 0, with the reverse holding when s > 0. We present the case for
s > 0, with the case of s < 0 being analogous. Consider the first line. We

note that dσ2

ds =
dσ2

ds = 1 if σ2 and σ2 are both relevant, and that an irrelevant
term gives a zero derivative. Because s > 0, it must be that either (i) only σ2

is relevant (in which case the first line is nonpositive), (ii) neither σ2 nor σ2

is relevant (in which case it is zero) or (iii) both are relevant (in which case
g1(s − σ2) = g1(s1) = g1(s1) = g1(s − σ2) and g2(σ2) < g2(σ2), with the first
line then again being nonpositive).

Consider the second line. This expression is obviously negative if s−σ2(s) >
0, so assume s− σ2(s) < 0. Then we can write∫ σ2(s)

σ2(s)

g′1(s−s2)g2(s2)ds2 =

∫ −(s−σ2(s))

s−σ2(s)

g′1(s1)g2(s−s1)ds1+

∫ s−σ2(s)

−(s−σ2(s))

g′1(s2)g2(s−s1)ds1.
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The final term on the right is clearly nonpositive, and so we concentrate on the
first term on the right, for which we have∫ −(s−σ2(s))

s−σ2(s)

g′1(s1)g2(s− s1)ds1 =

∫ −(s−σ2(s))

0

g′1(s1)g2(s− s1)ds1 +

∫ −(s−σ2(s))

0

g′1(−s1)g2(s+ s1)ds1

=

∫ −(s−σ2(s))

0

g′1(s1)[g2(s− s1)− g2(s+ s1)]ds1,

which is negative since g′1(s1) is negative for s1 > 0 and g2(s−s1)−g2(s+s1) is
positive for s, s1 > 0, completing the argument that g has the desired properties.

6.2 Calculations for Section 5.3

We assume that the functions fi are given by

fi(xi) = −|x∗i − xi|, i = 1, 2 (25)

so that agents pay a linear penalty for straying away from the optimal choice.
Let p1, . . . , pK be the probabilities of r1, . . . , rK , respectively. We can per-

form the integration in (22) to find that

G2(Ẑk2 (z1)−(1+γ)z1−f2(xk2)−rk)−G2(Ẑk2 (z1)−(1+γ)z1−f2(x∗2)−rk) =
ε2

V k+1
2 − V k2

, k = 1, ...,K−1,

where G2 is the cumulative distribution function of s̃2. Evolution’s problem is
to choose the nontrivial utilities {V k2 }K−1

k=1 so as to maximize

K∑
k=1

pkΠk,

where Πk is the expected fitness of an agent who has observed rk and now
chooses from a uniform distribution over the set [xk2 , x

k
2 ].

The first-order conditions for evolution’s choice of the V k2 are thus

pk
∂Πk

∂V k2
+ pk−1

∂Πk−1

∂V k2

= pk
∂Πk

∂f2(xk2)

∂f2(xk2)

∂V k2
+ pk−1

∂Πk−1

∂f2(xk−1
2 )

∂f2(xk−1
2 )

∂V k2
= 0, k = 1, ...,K − 1.

Using the envelope theorem, we have

∂f2(xk2)

∂V k2
=

−ε2

g2(Ẑk2 (z1)− (1 + γ)z1 − f2(xk2)− rk)(V k+1
2 − V k2 )2

∂f2(xk−1
2 )

∂V k2
=

ε2

g2(Ẑk−1
2 (z1)− (1 + γ)z1 − f2(xk−1

2 )− rk−1)(V k2 − V
k−1
2 )2
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so the first-order conditions become

∂Πk

∂f2(xk2)

pk

g2(Ẑk2 (z1)− (1 + γ)z1 − f2(xk2)− rk)(V k+1
2 − V k2 )2

=
∂Πk−1

∂f2(xk−1
2 )

pk−1

g2(Ẑk−1
2 (z1)− (1 + γ)z1 − f2(xk−1

2 )− rk−1)(V k2 − V
k−1
2 )2

,

for k = 1, ...,K − 1.

Now note that (25) implies that Πk(xk2) = γ
xk
2−x

∗
2

2 + rk + (1 + γ)z1, so that
∂Πk

∂f2(xk
2 )

= ∂Πk−1

∂f(xk−1
2 )

. In the limit as ε2 → 0, we have f2(xk2) → f2(x∗2) and

Ẑk2 (z1)→ (1 + γ)z1 + γf2(x∗2) + rk. In this limit, then

V k+1
2 − V k2
V k2 − V

k−1
2

=

√
pk
pk−1

.

It follows that

V k2 =

k−1∑
`=1

(V `+1
2 − V `2 ) = K

`−1∑
`=1

√
pm

where K =
1∑K

`=1

√
p`
.
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