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Abstract

Previous research in the laboratory and by epidemiologists has compared the danger

of cell phone use while driving to that of illicit levels of alcohol. This paper investigates

the causal link between driver cell phone use and crash rates by exploiting a natural

experiment� the discontinuity in marginal pricing at 9pm on weekdays from 2002 to

2005 when cellular plans transitioned from �peak�to �o¤-peak�pricing. We �rst docu-

ment that the pricing threshold induced a 7.2% jump on Mondays to Thursdays in call

likelihood for a large and proprietary sample of drivers in California from 2005. Two

additional datasets of calls, drawn from drivers and non-drivers nationwide, a¢ rm the

price sensitivity of cell phone users. We next document the corresponding change in

the crash rate for California as well as the eight additional states for which we have the

universe of crash data. Using a period prior to the prevalence of 9pm plans as a com-

parison group, we �nd no evidence for a relative rise in crashes after 9pm on Mondays

to Thursdays in 2005, or during an extended period from 2002 to 2005. These results

are robust to alternative estimation strategies and controls. Our preferred estimates

imply an upper bound in the odds ratio of crash risk associated with cell phone use of

3.0, which rejects the �ndings of most existing research including the 4.3 asserted in the

in�uential paper by Redelmeier and Tibshirani (1997). A panel analysis of regional

trends in cell phone ownership and legislation banning driver cell phone use con�rms

our basic result. We present possible explanations for this counterintuitive �nding, and

discuss implications for policy.
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1 Introduction

Does talking on a cell phone while driving increase your risk of a crash? The popular belief

is that it does� a recent New York Times/ CBS News survey found that 80% of Americans

believe that cell phone use should be banned.1 This belief is echoed by recent research.

Over the last few years, more than 125 published studies have examined the impact of

driver cell phone use on vehicular crashes.2 These studies include cross-sectional surveys,

simulations in the laboratory, inspection of crash reports, observational studies using in-car

cameras or confederate observers, longitudinal analyses of small samples of drivers, as well

as correlations of aggregate cell phone ownership and crash records. In an in�uential paper

published in the New England Journal of Medicine, Redelmeier and Tibshirani (hereafter,

�RT�) concluded that cell phones increase the relative likelihood of a crash by a factor

of 4.3 (1997). Laboratory and epidemiological studies have compared the relative crash

risk of phone use while driving to that produced by illicit levels of alcohol (Redelmeier and

Tibshirani 1997; Strayer and Drews and Crouch 2006).
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If alcohol, however, is responsible for 40% of fatal and 7% of all crashes each year, as

reported by the National Highway Tra¢ c Safety Administration (NHTSA), then Figure

1 illustrates a puzzle. Cell phone ownership (i.e., cellular subscribers / population) has

1The survey relied on a sample of 829 adults and was administered by phone in October
2009. The question refered speci�cally to handheld cellular use. The survey is reported at:
http://www.nytimes.com/2009/11/02/technology/ 02textingside.html

2As counted by McCartt et. al. 2006.
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grown sharply since 1988, average use per subscriber has risen from 140 to 740 minutes a

month since 1993, and surveys indicate that as many as 81% of cellular owners use their

phones while driving� yet aggregate crash rates have fallen substantially over this period.3

No study has yet provided causal evidence of the relationship between cell phone use

and crashes in the �eld. In this paper, we adopt a unique approach to estimate the causal

link between cellular use and the crash rate. Speci�cally, we exploit a natural experiment

which arises from a feature characterizing a large share of cellular phone plans from 2002

to 2005� a discontinuity in the marginal price of a phone call at 9pm on weekdays.

We �rst provide evidence that this discontinuity in prices drives a sharp increase in

the likelihood of calling for drivers using a unique and proprietary dataset of calls from a

prominent network provider. Our data is restricted to calls routed through multiple cell

phone towers in a contiguous region just outside of a major California downtown area during

an eleven day period in 2005. Given the mechanics of call routing and signal switching,

the calls could have been placed only by callers in moving vehicles.4 While our data is

3Figure 1 plots fatal and all crashes nationwide from 1988 to 2005 per billion highway miles traveled
using data from the General Estimates Survey and the Fatal Analysis Reporting System (see Appendix).
Much of the drop in crash rates over this period is likely attributable to the increasing prevalence of safety
devices and decline in driver alcohol use, while the NHTSA attributes the modest rise in crashes during the
mid-1990s to relaxation of federal speeding regulations (2005). The survey indicating driver cell phone use
was conducted by the Nationwide Insurance Company in 2008 and was based on a sample of 1241 American
adults. See Figure A1 for a plot of average use per subscriber over time.

4An engineer at the major provider suggests that less than .1% of the calls in our sample are not generated
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scaled for con�dentiality, we estimate the data comprises 106,000 to 477,000 calls placed by

moving callers within a region spanned by 300 to 400 cell phone towers. To our knowledge,

our paper is the �rst in the literature to use a large call-level dataset directly from a major

U.S. provider, and moreover, it is the �rst to feature call data from moving vehicles.

Figure 2 presents this distribution of cell phones calls by likely drivers across Mondays to

Thursdays, Fridays and weekend evenings. Friday evenings are presented separately since

callers appear to treat it distinctly from other weekdays and this distinction is statistically

signi�cant. The downward slopes re�ect the pattern of tra¢ c across evenings and we

control for this explicitly in our regression analysis of call likelihood. These regressions

con�rm that driver call likelihood rises by 7.2% at the 9pm threshold when prices transition

from �peak� to �o¤-peak�on Mondays to Thursdays. We �nd no comparable breaks in

likelihood for neighboring hours or on the weekend at 9pm. Two more datasets of cell

phone calls, this time made by drivers and non-drivers, con�rm the price sensitivity of cell

phone users as well as the di¤erential treatment of Fridays. We present additional evidence

on over 30,000 pricing plans across 26 markets by provider to demonstrate that from 2002

to 2005 a large fraction of callers were on plans with the 9pm price threshold. The rise in

call likelihood at 9pm represents the �rst stage of our analysis.

We next test whether the rise in call likelihood at the threshold leads to a corresponding

rise in the crash rate. In order to smooth crash counts that are subject to well recognized

periodicity due to reporting conventions, we aggregate crashes into bins of varying sizes.

While this strategy improves estimate precision, it introduces a bias due to potential co-

variate changes away from the threshold. To account for such movement in covariates, we

compare the change in crashes at the threshold to the analogous change in a control period

prior to the prevalence of 9pm pricing plans and characterized by low cellular use. We

con�rm the relative constancy of two critical covariates, tra¢ c and reporting bias, across

this period.

Figure 3 plots the universe of crashes for the state of California on Monday to Thurs-

day evenings in 2005 and during the control period from 1995 to 1998.5 The plot, and

subsequent regressions, indicate that crash rates in 2005, or in the extended time frame of

2002 to 2005, do not appear to change across the 9pm threshold relative to the pre-period.

Assuming that drivers across the nation are comparable to those in California, we then gen-

eralize our crash analysis to include eight additional states for which we have the universe

of crash data. Again we �nd no evidence for a relative rise in crashes across the threshold.

In a series of placebo checks, we estimate the same model for weekends and then for

the proximal hours of 8pm and 10pm on Mondays to Thursdays. Finally, we demonstrate

by a caller from a moving vehicle.
5The periodicity evident in Figure 3 is due to the aforementioned reporting bias in the timing of accident

reports.
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that our results are robust to a variety of strategies through which one might deal with the

bias that a­ icts the reporting of crashes. Overall, the analysis suggests that cell phone

use does not result in a measurable increase in the crash rate.

We calculate the upper bound of the relative rise in crashes at the 9pm threshold implied

by our estimates. Our analysis of the expanded set of states for 2002 to 2005, as well as

for just 2005, allows us to reject, with a 95% con�dence interval, any relative rise in crashes

larger than 1.0% and 1.2% respectively. Given the size of the observed discontinuity in

call volume, and credible assumptions regarding evening driver cell phone use, the upper

bound of each of these estimates translates to a 3.0 fold increase in crash risk. This not

only rejects the 4.3 fold increase in crash risk estimated by RT, but the con�dence interval

of our estimates does not overlap with that of RT. Our rejection of the RT result is not

sensitive to a reasonable range of assumptions regarding average call likelihood as well as

the precise magnitude of the change in call likelihood at 9pm.

Is cellular use on the road really as dangerous as drunk driving? Our analysis suggests

that it is not. The upper bounds easily rule out the crash risk of 7 associated with positive

levels of blood alcohol, and the crash risk of 13 associated with illegal limits of blood alcohol

(Levitt and Porter 2001a).

Our estimation is subject to at least two caveats. First, we assess only the local average

treatment e¤ect of cell phone use across all drivers and driving conditions around 9pm from

Mondays to Thursdays. However, there is evidence that, even after accounting for lower
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levels of tra¢ c, crash risk is actually higher at night than during the day. Given the higher

speeds and lower visibility that characterizes nighttime driving, one might expect cellular

distraction to be quite hazardous at night. A second drawback is that while we �nd no

evidence for a rise in fatal crashes using an analogous approach, estimates con�ned to fatal

crash data are too imprecise to rule out RT.

While the natural experiment represents our most credible research design, we employ

two additional empirical approaches to con�rm the result and address these limitations. A

�rst approach exploits the non-linear and heterogeneous take-up of cell phone technology

across region by comparing yearly variation in regional ownership with yearly changes in

the crash rate. Our unit of analysis, an �Economic Area,� represents the most disaggre-

gated geographic unit for which ownership data is available. This analysis is the �rst, to

our knowledge, to present region-year regressions of driver cell phone risk at this level of

disaggregation. A second, related approach, estimates the impact of recent legislative bans

on handheld cell phones by a number of states and municipalities on fatal crashes. Neither

approach o¤ers evidence associating cellular use with crashes.

We o¤er three main explanations to reconcile our results with the existing research.

One possibility is that drivers compensate for the dangers of cell phone use by driving

more carefully (Peltzman 1975). We review the mixed �eld and laboratory evidence on

compensatory driving in the face of attentional distraction and present a simple model

suggesting that compensation is a rational response to the dangers and bene�ts of cellular

use. A second explanation, �rst suggested by Hahn and Tetlock (1999), is that the absence

of an e¤ect is caused because risk-loving drivers substitute one source of risk, such as

speaking with others, listening to the radio or driving more aggressively, with another, such

as using a cell phone. A third possibility is that cell phones may be dangerous for some

drivers or under particular driving conditions, but are bene�cial for other drivers or under

alternative driving conditions (Kolko 2009).

Our �ndings have policy implications. Every state has considered some form of legis-

lation to restrict the use of cell phones� or to require the use of hands-free devices� while

driving for some or all groups of drivers. Twenty-seven states already have such legisla-

tion on the books.6 Yet researchers estimate that the economic value of cell phone use to

drivers is considerable (e.g., Hahn and Tetlock 1999; Hahn and Tetlock and Burnet 2000;

Lissy et al. 2000; Cohen and Graham 2003). In light of such bene�ts, our paper casts

doubt on the desirability of at least some policies restricting driver cell phone usage. For

instance, if drivers who currently use cell phones compensate for such use with more careful

driving, then there may be a rationale for penalizing cellular use as a secondary, but not as

6Six states have banned hand-held cell phone use by all drivers and 21 other states have enacted partial
bans primarily targeting younger drivers or those driving school busses (as reported by the Governors
Highway Safety Association website in January 2010).
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a primary, o¤ense. If cellular use is the product of risk substitution, then any legislative

ban is ine¢ cient. Finally, if there is heterogeneity in the e¤ect across drivers and driving

conditions, then partial and targeted bans are appropriate.

Beyond contributing to the literature on the danger of cellular use, our paper is in the

spirit of studies which use natural experiments to assess the e¤ect of driver behavior on

crash risk (Levitt and Porter 2001a; Levitt and Porter 2001b). This study also relates to

the literatures that examine the theory of compensation in the face of driving risk factors

(Peltzman 1975; Cohen and Einav 2003), the di¤erences and potential complementarity

between the laboratory and the �eld (e.g., Dahl and DellaVigna 2009; Levitt and List

2007), and the statistical value of life implicit in policy (e.g., Ashenfelter and Greenstone

2004).

The remainder of this paper proceeds as follows. The following section describes the

background of research on the link between cell phones and crashes. The third section

outlines the empirical approach and accompanying results. Next, we report the sensitivity

of our �ndings to underlying assumptions, attempt to reconcile our estimates with the

existing research, comment on policy implications, and discuss di¤erences in the laboratory

and the �eld in light of our results. The �nal section concludes.

2 Background

The sharp rise in cell phone ownership over the last several years has been paced by an

equally impressive rise in research examining the e¤ects of such ownership on vehicular

crashes. Ignoring the substantial literature on the cognitive and neural underpinnings of

limited attention and multi-tasking, one can classify analyses of crash risk due to cellular

use into one of �ve major methodological categories: (i) Laboratory studies that focus

on subject behavior in simulated, or highly controlled, driving conditions, (ii) Naturalistic

studies of drivers on the actual road, (iii) Studies which inspect police annotations of crash

records, (iv) Correlational analyses of aggregate crash records and cell phone ownership, and

(v) Longitudinal analyses of individual level phone and crash records. Beyond estimating

the impact of phone use on crashes, other researchers have measured the frequency of such

use by drivers. Several excellent recent surveys of these literatures exist.7

Cell Phone Use and Crash Risk. In the standard experimental paradigm in the

lab, a researcher assesses subject driving performance in a simulator across a variety of

metrics (e.g., crash frequency, driving speed, reaction time for braking, following distance,

obedience to tra¢ c signals) under varying forms of distraction. These studies generally

7Examples of these surveys include Hahn and Prieger 2006; McCartt and Hellinga and Braitman 2006;
Prieger and Hahn 2007; Caird et al. 2008.
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conclude that instructing subjects to use cell phones impairs driving by a factor of 3 to

4 as compared to unencumbered counterparts (Strayer and Drews and Johnston 2003).

Authors of this research have even compared the e¤ects of cellular use to moderate levels

of intoxication (Strayer and Drews and Crouch 2006). Importantly, these studies generally

�nd no di¤erences between handheld and hands-free devices (Caird et al. 2008).

Simulations illuminate relative levels of impairment across distractions as well as the

speci�c capacities that are likely to be impaired. A shortcoming of such studies, however,

is their external validity. It is unclear whether cell phone use in simulations is analogous

to use in environments where driver well-being, or survival, is at stake. Additionally,

laboratory studies tend to produce estimates of relative, but not absolute, crash risk.

A second set of approaches, naturalistic studies, employ visual and audio recording

devices to monitor behavior in authentic driving conditions. In one such study, �The 100-

Car Naturalistic Study,� researchers equipped 100 vehicles with cameras and sensors and

tracked 241 primary and secondary drivers for over 1 year (NHTSA 2006). After amassing

nearly 43,000 hours of driving data, the authors �nd that 78% of the 69 crashes and 65%

of the 761 �near-crashes� committed by drivers in their sample were due to some form

of driver inattention. They calculate that dialing a cell phone multiplies crash risk by a

factor of 3, while listening or speaking with a cellular device make drivers 1.3 times (with

a 95 percent con�dence interval of .93 to 1.90) more likely to crash. Cellular use was also

associated with the majority of near-crashes.

Like laboratory studies, naturalistic approaches pinpoint speci�c causes of driver im-

pairment and characterize their relative danger. However, given that drivers may be aware

of being monitored, it is unclear whether such studies improve upon the external validity

of studies conducted in the lab. Further, given the high costs, the sample sizes are often

too small and unrepresentative to infer crash risk (Lissy et al. 2000).

A number of studies exploit the existence of police annotations of crash reports to

estimate the e¤ect of cell phone use on crashes.8 These studies attribute roughly one

percent of crashes to phone use (Lissy et al. 2000). However, attempts to infer the causal

e¤ects of cell phone use from crash reports su¤er from source unreliability (NHTSA 1997)

and reporting bias due to recent increases in police awareness of cell phones as a possible

crash cause (McCartt and Hellinga and Braitman 2006). Most importantly, one cannot

infer causality from correlations between police reports and crashes since the growth in

cell phone ownership amongst drivers should mechanically increase the observed fraction of

police reports which cite such use during a crash.

A fourth strategy, which generates absolute estimates of crash risk, is the comparison

8As of 2007, 16 states provide crash statistics in which cell phones or CB radios are listed as a causal
factor (Sundeen 2007).
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of aggregate trends in cell phone ownership with trends in crash rates at the local, state or

national level. In an analysis concurrent with the present study, Kolko (2009) compares

state-year variation in cellular ownership with fatal car crashes from 1997 to 2005. After

controlling for various covariates as well as state and year �xed e¤ects, Kolko�s point esti-

mates, while not statistically signi�cant, imply that the introduction of cell phones led to

a roughly 16% increase in the annual fatal crash rate (with a 95 percent con�dence inter-

val of -7 to +39%).9 Kolko �nds a slightly smaller, but statistically signi�cant, correlation

between ownership and fatal crashes involving only poor driving conditions (i.e., wet roads

or bad weather).

Finally, Kolko examines the impact of state bans restricting handheld cell phone use with

the same framework. He �nds a statistically signi�cant negative impact of this legislation

on the fatal crash rate. Another recent study compares collision claims for new vehicles,

(i.e., under 3 years old), before and after the enactment of bans in California, Connecticut,

New York and Washington D.C., to claims in nearby regions (HLDI 2009). Overall, the

authors �nd no evidence that the legislation led to a subsequent decrease in claims.10

The high level of aggregation and the strong secular and non-linear trend in overall

crashes in the 1990s (see Figure 1) complicates such analyses. For example, panel analy-

sis at the state-year level leaves open the possibility that unobserved state-speci�c and

time-varying risk-factors� such safety technology or speeding laws� might also in�uence

the crash rate. While Kolko exploits weather and road conditions during a crash as an

additional source of variation, it does not appear that the di¤erence in point estimates

between the examined subpopulations is statistically signi�cant.11

The present analysis attempts to address some of these shortcomings with more disag-

gregated data on ownership, an extended time-series using years prior to the widespread

introduction of cell phones as a control period, and controls for region speci�c linear and

quadratic trends. Our attempts at replicating the Kolko estimates of the correlation be-

tween ownership and crashes, as well as the e¤ects of legislation, imply that the inclusion of

region speci�c time trends or a control period eliminates evidence for a positive correlation.

While our analysis is not immune from the disadvantages inherent in this approach, we do

9The extrapolation to absolute crash risk assumes linearity in the in�uence of increasing cellular ownership
on crashes.
10The study reports ten regression coe¢ cients which correspond to speci�cations of various driver pop-

ulations (i.e., all and drivers < 25 years) and control groups over an unspeci�ed number of months. The
regressions control for linear trends in both the control and treatment groups. None of the speci�cations
yielded statistically signi�cant evidence for a drop in claims.
11Table 3 of Kolko (2009) does not provide enough information to infer statistical di¤erence in point

estimates for each of the four regressions whose results are reported (i.e., �good weather�, �dry road�, �bad
weather�, and �wet road�conditions). Given the di¤erence in the magnitude of the point estimates, and the
size of the estimated standard errors, it seems unlikely that the di¤erence between coe¢ cients is statistically
signi�cant.
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not �nd signi�cant evidence for a link between ownership and crashes or for a signi�cant

impact of legislation.

A �nal class of studies tracks individual level phone use and driving behavior for a small

number of drivers. The most widely cited of these is the analysis by RT (1997). In their

in�uential paper, the authors inspect crash records and detailed phone bills for 699 Toronto

drivers recently involved in a minor car crash.12 To control for heterogeneity in driver

quality, the paper relies on a technique commonly employed in epidemiological research�

the �case cross-over method�� to study the health e¤ects of transient exposure to a risk

factor. For each driver, the authors compare exposure to cell phone use immediately prior

to the crash, with exposure during a crash free control period before the crash occurred.

By examining the relative use of cell phones during the two periods, the authors control

for driver speci�c variation in crash likelihood. Using a conditional logit regression, the

paper infers that cell phone use increases the relative likelihood of a crash by a factor of

4.3 (with a 95 percent con�dence interval of 3.0 to 6.0). The study fails to �nd signi�cant

di¤erences in increased crash risk across age or gender. A more recent application of the

case-crossover method in Australia �nds that the use of cell phones increases crash risk by

a factor of 4.1 (McEvoy et al. 2005). This study �nds no signi�cant di¤erence in the crash

risk associated with handheld (4.9) and hands-free devices (3.8).

While the RT paper is considered perhaps the most in�uential of this, or any class, of

studies, Hahn and Prieger point out that the study relies on a very unrepresentative sample

of drivers recently involved in a crash (2006). As evidence for such selection, Prieger and

Hahn (2007) conclude from a survey of 7,268 drivers that handheld cell phone users are

actually more likely to crash even when not on the phone. Wilson et al. arrive at a

similar conclusions from collision records of 3,869 cell-phone using and non-using drivers

(2003). An additional concern is that while the RT methodology controls for �xed driver

characteristics, it does not control for time varying unobservables such as boredom or stress

that may cause both cell phone use and poor driving. Finally, other researchers have noted

that the lack of precision with which RT infer the timing of crashes means that observed

cell phone calls may have been placed after, rather than before, a crash occurred. This is

reasonable if, for instance, calls were placed to authorities or loved ones immediately after

a crash.

In another epidemiological approach, Young and Schreiner (2009) investigate the risks

associated with hands-free use of a popular voice-activated communication device embedded

in select vehicles called OnStar. OnStar automatically places an emergency call in the event

of a crash in which an airbag is deployed. OnStar records the times of phone conversations

12Analagous studies have not been conducted in the United States due to lack of access to billing records
from domestic cell phone providers.
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as well as calls notifying operators of an airbag deployment. The study �nds that from June

2001 to November 2003, hands-free calling amongst the nearly 3 million OnStar subscribers

actually lowered crash risk to a factor of .62 (with a 95 percent con�dence interval of

.37 to 1.05) relative to driving without calling. A bene�t of this design is that OnStar

measures the time of each crash accurately. However, because the study does not directly

observe the driving time during the comparison period for which there are no calls placed,

calculations of relative risk are sensitive to the assumptions that underlie the inference of

such driving duration. If driving time is underestimated, the study in�ates the crash risk in

the comparison period and biases the relative risk estimate downwards. A second concern

is that drivers in the comparison period may be using other types of cellular devices to

make calls.13

Table 1 summarizes estimates of relative and absolute risk emerging from each of the

described methodological classes. Translating across relative and absolute risk, however,

critically relies on assumptions regarding the frequency of driver cell phone use.

Frequency of Cellular Use by Drivers. A number of studies have attempted to

estimate the frequency of cell phone use on the road. These include surveys of driver usage,

as well as observational studies with experimenters or cameras stationed at intersections.

The most widely cited of these is the National Occupant Protection Use Survey (NOPUS)

administered and published (almost) every year since 2000 by the NHTSA. For the 2005

NOPUS, trained observers were dispatched from 8am to 6pm to 1,200 probabilistically

sampled intersections nationwide in June 2005. Six percent of the 43,000 observed drivers

were using a handheld cell phone. The authors estimate, using existing survey data, that

an additional 4% of drivers were on hands-free phones resulting in a total usage of 10%

(NHTSA 2005).14

NOPUS estimates total use has been steadily increasing over the last several years from

6% in 2002, 7% in 2003, 8% in 2004 and 10% in 2005 (NHTSA 2002 to 2005). NOPUS also

hints at considerable heterogeneity in cellular use across driver age and location� but not

gender� with handheld cell phone use alone approaching as high as 10% for drivers from

16 to 24 years in 2005 (Glassbrenner 2005). Independently, a study tracking long-term

legislative compliance in Washington, D.C., Maryland and Virginia, found that daytime

handheld use in 2004 was 5.8% (McCartt and Hellinga 2007). This �gure is slightly higher

than the 4% handheld use estimated by NOPUS for 2004.

13These criticisms were outlined by Braver, Lund and McCartt in their critique published on the Insurance
Institute for Highway Safety website in March 2009.
14NOPUS also reports the incidence of observed �head-set�use which, in 2005, was .7%. The NOPUS

estimate of total hands-free usage combines observed head-set usage with driver survey results (a survey by
Stutts et al. 2003 entitled �Distractions in Everyday Driving�).
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Table 1

EFFECT OF CELLULAR USE ON CRASH RISK: COMPARISON BY METHODOLOGY

RELATIVE RISK ABSOLUTE RISK

Present Analysis 0 times collision risk 0% increase in crashes
(9pm Discontinuity) (3.0 upper bound) (20% upper bound))

Experimental Studies 3 to 4 times impairment 20 to 30% increase in crashes
(Strayer 2003; Strayer 2006) (Extrapolated for 2005)

Naturalistic Studies 1.3 times collision risk 3% increase in crashes
(NHTSA 2006) (Extrapolated for 2005)

Police Annotations 1.25 times collision risk 1% increase in crashes
(Lissy et. al. 2000)

Ownership and Crash Trends 2.6 times collision risk 16% increase in fatal crashes (not significant)
11% increase in bad weather fatal crashes

(Kolko 2009)

Individual Crash Records 4.3 times collision risk 33% increase in crashes
(Redelmeier and Tibshirani 1997) (Extrapolated for 2005)

Notes: The table displays the relative and absolute crash risk implied by selected examples of each class of studies.  In cases where
relative or absolute crash risk was not explicitly calculated, we extrapolate such risk using basic assumptions of cell phone
ownership, baseline usage, and in the case of the present analysis, the equivalence of volume increases and ownership increases.
Extrapolations in absolute crash risk are made for 2005, and extrapolations for relative risk are made using the assumption values
associated with the year of the study.  For example, to generate the absolute crash risk in 2005 associated with the RT (1997) estimate
of 4.3 relative crash risk, we use the baseline NOPUS usage in 2005 of 10% and then add the cellular and non-cellular driver crash
risks (i.e., (.9 * 1) +  (.1*4.3)) to produce a 33% increase.

Our calibrations ultimately rely on assumptions regarding nighttime cellular use. We

are aware of only two studies that explicitly consider cell phone use at night. Jointly

these studies suggest that cellular use in early night-time hours is not di¤erent from use

during the day. In the �rst study, conducted in 2006, authors equipped observers with

night vision technology at 113 randomly selected intersections in Indiana from 9:30pm to

5:45am (Vivoda et al. 2008). The study �nds handheld use to be 6.9% amongst drivers

from 9:30pm to 12am (N = 3774) which is slightly higher than the corresponding NOPUS

estimate of daytime use.15 A second study, conducted in 2001, speci�cally targets cell phone

use amongst high-speed drivers during various points in the day. In this e¤ort, researchers

assessed 40,000 photographs of vehicles traveling on the high-speed NJ Turnpike (Johnson

et al. 2004). On average, only 1.5% of the high-speed drivers are on handheld phones which

is half of the comparable NOPUS estimate. Again, authors �nd no signi�cant di¤erence

between cellular usage during the late evening (i.e., from 8pm to 12am) and the afternoon

(i.e., from 12pm to 4pm) for this particular class of drivers.

Perhaps the most convincing evidence of cell phone use by drivers at night, relative to

during the day, comes from the present analysis. Our data of cellular use by drivers in

California in 2005, after controlling for tra¢ c, provides a relative index of use by drivers

over the course of the day. An analysis of this data, described below, further suggests that
15The study did �nd that usage dropped signi�cantly after 2am (i.e., they estimate 3.1% usage from 2 to

4am and 1.3% usage from 4 to 5:45am).

11



estimates of daytime usage are legitimate, and possibly even conservative, proxies for use

during the late evening.

Table 1 also compares the extrapolated or calculated relative and absolute crash risk for

representative studies in the literature. Extrapolation of absolute crash risk assumes the

10% NOPUS rate of cellular use in 2005, randomization in usage across driver type, and

linearity in the in�uence of ownership on crashes.16 The �rst row of the table reports the

point estimates for the present analysis as well as the implied relative and absolute upper

bounds. We elaborate on the calculation of the relative crash risk produced by the 9pm

analysis below.

3 Empirical Analysis

This section presents the estimation strategy, identifying assumptions, and the empirical

�ndings for the 9pm analysis and brie�y discusses two supplementary approaches. Our

analysis relies on a wide array of data sources which are described in the Appendix and

summarized in Table A1. First, we provide evidence for the sensitivity of call volume

to systematic and transparent discontinuities in the marginal price of cellular calls. We

document that, from 2002 to 2005, most cellular users subscribe to plans which feature near

zero marginal costs for a phone call after 9pm on weekdays. We then provide evidence for

a jump in 9pm call likelihood on Mondays to Thursdays, but not weekends, or proximal

hours, for a region in California. Additional data con�rms that this price sensitivity of

cellular use generalizes across years, geography and providers.

Second, we estimate the e¤ect that increased call likelihood has on the likelihood of a

crash. We �rst compare the di¤erence in the crash rate in California before and after 9pm

on Mondays to Thursdays in 2005 to a control period prior to the prevalence of 9pm plans

and characterized by low average driver call likelihood. In principle, one might advocate a

standard regression discontinuity estimate without the control period. However, the change

in crashes at 9pm is jointly attributable to an on-hour change in the likelihood of a crash

being reported as well as a change in crash risk due to heightened call likelihood. While

we can eliminate the problem of the reporting conventions by aggregating crashes into 30

or 60 minute bins, lengthening the estimation window invalidates the standard regression

discontinuity design by permitting other covariates, such as tra¢ c and driver composition,

to vary across the threshold. We therefore rely on a double di¤erence, with a suitable

control period, to mitigate any such bias.

16Assuming for example that cell phone use occurs during 10% of total driving time, then, ignoring
selection, a relative crash risk of 4.3 translates to a 33% increase in total crashes. Relative crash risks
can be calculated conversely. Accordingly, estimates of the e¤ect of cell phone use on the change in total
crashes range from 1 to 33% in absolute terms.
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For additional precision, we extend the analysis to a larger set of states and to an

extended treatment period from 2002 to 2005. We examine the change in critical covariates,

perform a series of placebo checks with alternative controls including weekends and proximal

hours, and we subject our estimates to a number of robustness checks. Overall, we �nd no

evidence for an increase in the relative crash rate at the 9pm threshold.

3.1 Estimation Strategy and Identifying Assumptions

Let ln(Crashrpwt) refer to the log number of reported crashes in region r in either a �post�

or �pre�period p, during weekdays (i.e., Mondays to Thursdays) or weekends as indicated

by w, at time of the day t. �Post� refers to the period characterized by high cell phone

ownership and high plan conformity around a speci�c threshold (e.g., 2002 to 2005), while

�pre� refers to the period of low average call likelihood and prior to the prevalence of

9pm pricing plans (e.g., 1995 to 1998). In this framework, reported crashes are jointly

determined by the tra¢ c level, bias in the reporting of crashes, and the covariate of interest,

the number of cell phones in use.

Cellular use, CellUserpwt is a function of the likelihood that a driver makes a call,

CallLikepwt, as well as tra¢ c. CallLikepwt varies both across years and time of day.

Average call likelihood across years is determined by a host of factors including levels of

cell phone ownership, legislation, long run change in cellular pricing, and the sophistication

of handset technology. Call likelihood may change during the course of a day due to

changes in pricing, which is sharply discontinuous at 9pm on weekdays, as well as changes

in the composition of drivers. We infer average levels of cellular use from the rich collection

of observational studies discussed above. We also include a vector of additional covariates,

Xrpwt, that may in�uence the rate of vehicular crashes. Such covariates include speeding

regulations, weather conditions, and the availability and adoption of safety technology:

ln(Crashrpwt) = �+ �1Trafficrpwt + �2RepBiasrpwt + �3Xrpwt+

�CellUserpwt(CallLike; T raffic) + "rpwt

It is possible that drivers who use cell phones have a greater a¢ nity for risk, and that

the risk a¢ nity, R, of drivers on the road produces a higher likelihood of entering into a

crash: E(" j R) 6= 0. Since CellUserpwt may also be a function of the risk a¢ nity of

drivers, b� will be biased. One strategy through which to circumvent this bias is to assume
that the distribution of unobserved driver risk is the same immediately before and after the

9pm pricing threshold, such that lim�!0+ E("jR9pm+�) = lim�!0+ E("jR9pm��).
If we de�ne a control function g(R) = E("rpwt j R) which is continuous through the
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9pm threshold, we can rewrite the original equation as:

ln(Crashrpwt) = �+ �1Trafficrpwt + �2RepBiasrpwt

+ �3Xrpwt + �CellUserpwt + g(R) + vrpwt

where the error term v = " � E("jR) is now independent of CellUserpwt. Given our

assumption of a continuous risk function at the pricing threshold, any break that we observe

in crashes can be attributed to a change in the remaining covariates. We formalize this

regression discontinuity at the threshold then, by calculating a �rst di¤erence, Dr11t, which

represents the change in crashes during some time window immediately before the threshold,

t0, from some window immediately after the threshold, t. Initially, we restrict focus to the

post period. Assuming that Xr11t is unchanged locally around the threshold, it drops out

of the �rst di¤erence:

Dr11t = ln(Crashr11t)� ln(Crashr11t0) = �01�Trafficr11t
+ �02�RepBiasr11t + �

0�CellUser11t + v
0
r11t

Additionally, assuming that average call likelihood is unchanged across the threshold,

�CellUser11t will be a function of tra¢ c as well as changes to call likelihood linked to price.

In theory, we allow tra¢ c patterns and reporting bias to vary across this �rst di¤erence. In

the face of covariates that vary across the threshold, we can calculate a second di¤erence,

DDrp1t, by comparing the �rst di¤erence in crashes around the time threshold during the

post period from a similar di¤erence calculated for the pre-period17:

DDrp1t = Dr11t �Dr01t = �
00
(�CellUser11t ��CellUser01t) + v

00
rp1t

If we assume that the change in reporting bias and tra¢ c across the threshold in the

pre and post period do not systematically di¤er (we test this assumption below), then

the double di¤erence in crash rates is simply a function of the residual change across the

threshold in call likelihood due to price in the post relative to the pre period. If the

change in likelihood due to price is absent in the pre-period, then the double di¤erence in

price reduces to a single di¤erence in price at 9pm during the post-period. Importantly,

if one believes that call likelihood does change across the threshold in the pre-period, due

to some unobserved factor, than the double di¤erence in cell phone use must be scaled by

the di¤erence in the average level of call likelihood over the years. For example, if average

likelihood is 5 times higher in the post relative to the pre-period, then a 2% rise in 9pm

17An example of a factor that might systematically change across the 9pm threshold, but whose double
di¤erence should not change systematically across the pre and post periods, is daylight.
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call likelihood in the pre-period, is only equivalent to a .4% change across the threshold in

the post period.

Finally, to allay the concern that the di¤erences in reporting bias or other unobserved

factors may systematically vary across the pre and post period, as a placebo check, we can

calculate additional double di¤erences that compare the �rst di¤erence in crashes across

the threshold on weekends at 9pm, as well as on weekday proximal hours, in the pre and

the post period. Next we discuss details of the pricing discontinuity and document the

subsequent change in call likelihood.

3.2 Change in Call Volume at Price Discontinuity

Pricing Plans. In recent years, contracts for cell phones have been characterized by a

�at monthly fee which entitles subscribers to a speci�ed number of minutes depending on

the time of use. Any use in excess of this allotment is subject to relatively high marginal

fees. For instance, a �900 Nation�plan o¤ered by Cingular in 2006 allows 900 minutes of

peak usage from 6am to 9pm each weekday, unlimited use for o¤-peak periods after 9pm

and before 6am on weekdays, and unlimited use all day on weekends.18 Marginal fees for

excess usage commonly range from $.35 to $.45 per minute.

Figure 4 documents the share of cellular subscribers associated with each hourly thresh-

old at which providers distinguish between peak and o¤-peak usage across major national

markets from 1999 to 2005 (i.e., �legacy share�). We calculate annual legacy shares for

each plan threshold with data on new subscribers, inferred market shares for each category

of pricing plans, and data on plan turnover (Table A2). Speci�cally, we �rst calculate the

unweighted proportion of provider plans associated with each threshold for each year and

then weight these proportions by the yearly market share of each provider as reported by

the FCC. While we expect plans within a provider to vary in popularity, our estimation

assumes that a proliferation of o¤erings is correlated with actual plan popularity. We

assume new subscribers� including both new adopters and existing owners that transition

from existing plans� allocate themselves across providers and into plans in a distribution

dictated by each year�s market share. For simplicity, we treat all subscribers in 1995 as

new and conservatively assume that, from 1995 to 1999, market shares and provider plans

are constant. The basic pattern of Figure 4 is not highly sensitive to such assumptions.

All told, the �gure is a product of data on over 30,000 cell phone plans from 1999 to 2005

across 26 major markets and 30 providers. This data is obtained from a market research

�rm, Econ One Research, and is described in the Appendix.

Figure 4 suggests that from 2002 to 2005, 9pm pricing plans were the most popular

18Actual plans often specify some large, but �nite, limit for non-peak usage. These limits, sometimes
marketed as �unlimited,�are typically 5,000 to 10,000 minutes.
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category of cellular plans. Two-tiered plans with peak and o¤-peak pricing began gaining

in popularity in the late 1990s. By 2002, most providers had abandoned the 8pm threshold,

which had been popular in earlier years, in favor of a 9pm threshold. As a promotional

incentive, by 2004, at least one major provider introduced plans with an earlier switching

time of 7pm. Our model �nds that during the period from 2002 to 2005 about 55% of

subscribers had 9pm plans. The prevalence of 9pm plans during this period is even more

striking if one were to plot the number, as opposed to share, of subscribers� or drivers

who regularly use their cell phone while driving� with 9pm phone plans. Indeed, cellular

ownership and usage by drivers exploded over this period as ownership expanded by a factor

of 2.5 and average call likelihood by drivers grew by an even larger factor.

While plan data from Econ One Research does not exist prior to 1999, numerous analyst

and industry reports, as well as news articles, o¤er no evidence for a national 9pm calling

plan of any popularity in the years prior to 1999. The �rst national one-rate pricing plan

was introduced by AT&T in mid 1998 according to an S&P Industry Survey. Other major

providers quickly followed suit. It was after this innovation that national two-tiered plans

proliferated and only gradually did plans converge to a 9pm switching threshold. Moreover,

due to low ownership and low usage (due, for example, to unwieldy handsets, poor coverage,

and high prices), the absolute number of subscribers, as well as absolute minutes of cellular

use, associated with any plan prior to 1999 is modest. We discuss the implications of low

ownership and low monthly usage below. Accordingly, we treat the years prior to 1999 as

a control for the analysis.

Next we turn to direct evidence on the change in call likelihood from data on actual

cellular calls. We demonstrate that calling patterns conform to the patterns in marginal

pricing suggested by the plan counts above.

Call Likelihood. Does the existence of a sharp change in marginal pricing lead to a

corresponding change in the propensity to call? A Pew Research Center survey of 1,503

people in 2006, reports that 44% of cell phone users delay their calls until they did not

count against their allotment of peak minutes.19 In another survey of 30,000 cell phone

users, those who exceeded their allotment were subject to �overage�fees which, on average,

amounted to 50 to 60% of their usual bill.20 These surveys suggest that the price threshold

during weekday evenings was salient for many users.

We explicitly test for the correspondence between the change in call price and usage

at the plan threshold with a rare, proprietary, dataset of cellular calls made by callers in

19Survey conducted by the Pew Research Center and published online in the Pew Internet and American
Life Project in April 2006.
20This is according to an analysis of 30,000 cell phone users conducted by Telephia as part of their

Customer Value Metrics Service in 2006.

16



moving vehicles during an eleven day period in 2005.21 The region is bounded by coverage

of a single cell phone �switch�which consists of 300 to 400 cell phone towers in a highly

populated area of California. The data is then restricted to calls routed through multiple

cell phone towers.

The mechanics of signal switching are such that a call will originally be routed by the

tower emanating the strongest signal. A call will be rerouted through a second tower only

when the di¤erential in signal strength between the old and a new tower exceeds a certain

threshold. Due to this threshold switching design, signals of stationary or even ambulatory

callers are almost always routed by a single tower. Engineers from the network provider

estimate that a given caller must travel at least approximately 2 miles before a call will

switch towers.22 Rare exceptions to this rule may exist when a caller is walking through

a region with large buildings that interfere with a given tower�s reception. However, our

data is from a switch which covers a region just outside of a downtown area and thus avoids

calls made by ambulatory callers within the city center. According to a provider engineer,

21Data on call volume is di¢ cult to acquire. Providers view such data as propriety, and the few third party
�rms which maintain private databases of billing statements either do not release individual call records, or
make it available only at prohibitively high prices. Our data, �ltered as it is to re�ect only moving callers,
is, to our knowledge, the �rst such data made available to academic researchers.
22This implies that longer duration calls and calls from drivers on speedier roads may be overrepresented

in our call data. Usage evidence from the NJ turnpike study (Johnson et al. 2004) suggests that drivers on
high speed roads may be more cautious in their use of cell phones. If so, the observed rise in call volume
in our data may be understating the e¤ect for drivers on slower roads.
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an expert in call tra¢ c, less than .1% of the calls in our sample are from callers outside of

moving vehicles.

Therefore, our dataset almost certainly comprises calls made or received by callers in

moving vehicles. While volumes are scaled for con�dentiality, we can calculate that the

data consists of 275,000 to 1.24 million minutes of cell phone use.23 Assuming an average

duration of 2.6 minutes per call, this translates to 106,000 to 477,000 calls made during the

course of the 11 days.24 The eleven days of calls represents the longest near-continuous

period in 2005 during which data could be retrieved from the archives.25

Importantly, the fraction of users that subscribe to 9pm plans for the provider for

which we have direct data in 2005 is both lower than the same fraction for other providers

in 2005 and is also lower than the overall fraction across all providers in 2002 to 2005

according to our analysis of plan counts and our calculation of legacy shares. Our provider

began o¤ering a highly publicized alternative pricing plan in 2004 which featured an earlier

switching hour. While we cannot disclose the details of this calculation for con�dentiality,

the ratio of the rise in call volume at 9pm and at this alternative hour, in our �rst stage

data, is in approximate proportion to our estimate of the ratio of the legacy share of callers

associated with both of these thresholds. Therefore, our observed �rst stage is, in this

sense, a lower bound of the rise in call likelihood for the broader range of providers and

years.

Figure 2 depicts call volume for moving callers for each minute from 8 to 10pm for

Mondays to Thursdays, Fridays, and the weekend across the sample. A vertical line

marks the 9pm threshold at which time the marginal price of calls on weekdays� but not

weekends� drops sharply. Critically, the �gure reveals a discontinuity in the likelihood of

making a call on Mondays to Thursdays at 9pm as compared to weekends and Fridays.26

Why might callers treat Friday as distinct from other weekdays? This behavior is

evident in two additional datasets of cellular calls documented in the Appendix. One

speculates that this pattern in calls may be due to the lessened salience of the price change

on Fridays as compared to other weekdays. If callers are mindful that on 9pm on Friday

they are on the precipice of 50 to 60 hours of o¤-peak pricing, they may choose to smooth

calling moreso than at other weekday thresholds where they face far fewer (particularly

waking) hours of o¤-peak calls.

A plausible skeptic might contend that some fraction of the callers in our dataset are

23The calculation is based on knowing that the scaling factor is an integer from 2 to 9.
24The average call duration of 2.6 minutes is calculated from another large dataset of cellular calls that

is described in detail in the appendix (TNS).
25More precisely the calls are from a continuous 14 day period, but there are three days for which no data

could be extracted.
26A regression analysis con�rms that we can reject the null that the rise in call likelihood on Fridays is

equal to the analogous rise on other weekdays.
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passengers as opposed to drivers. While this is likely true, it is important to note that we

rely on this data only as a measure of relative likelihood amongst moving callers across the

day and speci�cally at 9pm. We infer average call likelihood from the extensive literature

that surveys such use. The composition of the data is a concern if passenger callers are

di¤erentially more sensitive at 9pm to price changes than driver callers.

We can calculate the robustness of the driver �rst stage to the possibility that passengers

are more responsive to prices than their driving counterparts. While we do not have direct

data on the price sensitivity or baseline call likelihood of passengers, we do have extensive

evidence on drivers in single as compared to multiple occupant vehicles. NOPUS reports

that drivers in vehicles without passengers are 4 times more likely to be cellular users

(NHTSA 2006). If phone use is heightened, as both intuition and data suggest, for single

occupants as compared to accompanied occupants, then we can initially assume that the

baseline call likelihood of passengers is equivalent to that of drivers in multiple occupant

vehicles. One may reasonably have competing intuitions as to whether passengers are

more or less price sensitive at 9pm than such drivers. However, using data on average

vehicular occupancy, a calibration indicates that the magnitude of the �rst stage for drivers

e¤ectively drops from 7.2% to 6.8% if passengers are twice as price sensitive as drivers. If

passenger baseline likelihood is also twice as high as assumed, then the e¤ective �rst stage

drops to 6.4%. Finally, if baseline likelihood and price sensitivity are both three times as

high as driver reference points, the magnitude of the �rst stage drops to 5.4%. As outlined

in the discussion, an attenuation of this degree does not alter the interpretation of the

second stage results.27 To the extent that calls by passengers also serve as distraction to

drivers, even di¤erential price sensitivity between drivers and passengers may not be cause

for concern with respect to the research design.

To formally estimate the size of the break in call likelihood in the hour following the

Mondays to Thursdays pricing threshold, we estimate the following OLS model:

27We calculate the e¤ective driver �rst stage in the case of di¤erential price sensitivity with (1) the share
of single and multiple occupant vehicles on the road (2005 crash data for California indicates that 23%
of the 970,000 vehicles in the sample are multiple occupant), (2) the baseline call likelihood of drivers in
both vehicle types from NOPUS (13.3% and 3.3%, respectively, after handheld �gures are scaled to account
for handheld and hands-free use), (3) an initial assumption that passengers share the calling norms of
their accompanying drivers, (4) and �nally the assumption that multiple passengers are not on the phone
simultaneously. The calibrations imply that even if baseline likelihood and price sensitivity are 2x higher for
passengers than their driver counterparts, the e¤ective �rst stage is 6.4%. If likelihood and price sensitivity
are 3x higher for passengers, then the e¤ective �rst stage is 5.4%. To illustrate the calculation for a 2x
increase in both parameters, note that the passenger share of mobile individuals on the road is 19% (i.e.,
.23 / (.77 + .23 + .23)). Given the baseline likelihood across occupants, and an assumption of 2x higher
passenger likelihood, the passenger share of total cellular usage is 13% (i.e., 2*(.19*.033) / (2*.19*.033 +
.19*.033 + .63*.134)). Next, if x is the rise in driver call likelihood at 9pm, and we further assume that
passengers are 2x as price sensitive as drivers, then, 0.87x+0.13*2x = 7.2% which implies an e¤ective driver
�rst stage of x = 6.4%. It is worth noting that if one believes that cellular use by passengers is distracting,
the �gure should be treated as a lower bound of this exercise.
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ln(Calls=Traffic)t = �+ 
After9pmt + "t

where Callst denotes scaled calls for each minute t, and Traffict represents the tra¢ c

count for the region of consideration at each minute. We acquire tra¢ c data from several

thousand tra¢ c counters located on roadways in the California region corresponding to the

call data.28 After 9pmt is a dummy variable indicating whether the crash occurred on or

after 9pm and is the explanatory variable of interest. The model is estimated from 8 to

10pm separately for Mondays to Thursdays, Fridays and weekends.29 Note that, due to

the log speci�cation, the scaling of the cellular call data now becomes immaterial to the

estimated coe¢ cient of interest.

The top panel of Table 2 reports the results of this analysis. The upper panel of the

table con�rms the pattern evident in the �gures� call likelihood increases by 7.2% from 9

to 10pm on Mondays to Thursdays. There is a sharp local rise in call likelihood at 9pm

and this rise appears to persist until at least 10pm. While changes to call likelihood away

from the threshold could potentially be due to changes in factors such as driver composition

or driver willingness to call that are unrelated to price, the size and stability of the increase

is consistent with price playing a sustained role in the heightened likelihood. Moreover,

comparing likelihood from 9 to 10pm on weekends to Mondays to Thursdays suggests that,

if anything, the price change may temper what might otherwise have been a late evening

decline in call likelihood. Fridays feature a smaller, but still statistically signi�cant, rise

in call likelihood.

Our analysis relies on comparisons between the treatment period to an earlier control

period from 1995 to 1998. While we cannot display the equivalent plots nor perform

the equivalent analysis of likelihood for the control period, we are persuaded that driver

call likelihood did not sharply rise at 9pm for two reasons. First, the control period is

characterized by the absence of 9pm calling plans. Second, generally, there is not evidence

for a rise in call likelihood across hours not associated with a price change.

To persuade the reader that the observed rise in call likelihood in 2005 is due to price

changes, as opposed to other on-the-hour phenomena present even during the unobserved

pre-period (e.g., the need to coordinate plans), the lower panel of Table 2 examines the local

change in call likelihood for a series of placebo hours not associated with a pricing change.

These placebos include weekends at 9pm, proximal hours on Mondays to Thursdays, as well

as across a composite of evening hours, excluding 9pm, on all days. While the estimates

28We download tra¢ c data at the 30 second level from a California tra¢ c database, called PEMS, for the
relevant region and time. The PEMS database is described in the Appendix.
29The analysis of Fridays relies on tra¢ c data at the 5 minute level since the more disaggregate data

was not available for these days. Aggregating calls and estimating this regression at �ve minute intervals
produces a virtually identical point estimate for the coe¢ cient of interest.
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are not highly precise, there is no systematic evidence for a rise in call volume for evening

hours not associated with a price change.

Note that average call likelihood in the control period is minimal due in part to low

ownership (26%), low monthly average usage (300 minutes) and the scarcity of hands-

free technology. Given minimal average call likelihood prior to 1999, an increase in call

likelihood at 9pm due to some on-the-hour phenomenon does not pose a major concern

for the research design. So long as the crash risk associated with cell phone use due to

this phenomena is comparable to the crash risk associated with cellular use due to a price
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change, one can be agnostic about the cause of the call likelihood increase. To illustrate,

suppose that in 1998 the rise at 9pm in call likelihood amongst drivers is 2%. Conservatively

allowing for an average call likelihood during this period of 2% yields a net change in call

volume of .04%. Producing an equivalent net change in 2005 would require only a .4% rise

in 9pm call likelihood.30

Generalizability of First Stage. To what extent is the price sensitivity exhibited

in our data generalizable across years, providers, and geography? Two datasets provide

additional direct evidence that the price sensitivity of cellular users can be generalized

across time, geography, and provider. These data also suggest, as one might intuit, that

drivers are less responsive to changes in marginal price than stationary callers. We brie�y

describe the behavior of callers in these data below and leave the descriptive and analytic

detail for the Appendix.

The �rst additional data set was acquired from researchers at the MIT Media Lab

(hereafter, MIT) who implanted surveillance technology in cellular phones in order to track

subject movements, interactions, and cellular communication over the course of the acad-

emic year.31 A total of 65 subjects placed approximately 80,000 outgoing cell phone calls

from August 2004 to May 2005.32 Figure A2 depicts a sharp increase in calls made at the

9pm pricing threshold on Mondays to Thursdays but not Fridays or weekends. Regres-

sions, reported in the top panel of Table A3, con�rm the pattern evident in the �gures� call

volume rises by 23% in the hour after 9pm on Mondays to Thursdays but not on Fridays or

weekends.33 Moreover, there are no prominent breaks evident at other surrounding hours.

It is worth noting that because the dataset is comprised primarily of students and faculty,

it may overstate the price sensitivity of the broader population of contemporaneous callers.

Finally, we appeal to a second, more representative, dataset, assembled by TNS Telecom,

of over 741,000 calls made by 9,864 cell phone users in 2000 and 2001 (hereafter, TNS).

The data was extracted from cellular phone bills voluntarily submitted from households

randomly selected as part of wider survey of telecommunications behavior and attitudes

and consequently allows for a within-subject estimation of call usage. While details of the

inference are presented in the Appendix, for the subsample of 287 callers (16,900 evening

30We arrive at this calculation by scaling the hypothetical pre-period 9pm rise in likelihood of 2% by the
ratio of the 2005 and 1998 average call likelihood (10% / 2%). Average call likelihood in 1998 is not known.
However, given the 2000 NOPUS estimate of 4% likelihood, and considering changes in ownership, monthly
usage and availability of hands-free technology during the previous two years, one can assume that average
likelihood in the pre-period was no more than 2%.
31Eagle, Nathan and Alex Pentland, �Reality Mining: Sensing Complex Social Systems,�Personal and

Ubiquitous Computing, Vol. 10, No. 4, pp. 255-268, 2006.
32This period re�ects the fact that most subjects joined and remained in the sample during the academic

year. A small fraction of calls were made in summer months and these were not included.
33A negative binomial model, which one might advocate due to the high number of 0 call hours, produces

similar estimates (i.e., a 23.4% call rise for Mondays to Thursdays, and nearly identical point estimates for
Fridays and weekends).
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calls) with a cleanly identi�able switching threshold from 6 to 10pm, we �nd that callers

in the TNS data are also highly sensitive to call pricing during non-Friday weekdays. The

bottom panel of Table A3 reports that the relative rise in call volume in the hour subsequent

to the pricing thresholds is 23% on Mondays to Thursdays and is smaller and statistically

insigni�cant on other days.34

Collectively, these data document the price sensitivity of cell phone users across a variety

of caller types, geographies, providers, time periods and even pricing plans. While drivers

may be less sensitive to a change in prices than the more general population of cellular

users, we have no reason to believe that such sensitivity is a particular artifact of the region

and time which characterizes our �rst stage data.

3.3 Change in Crash Rate at Price Discontinuity

Do crash rates respond to the increased cellular usage induced by a change in prices? We

turn to this question next.

Reporting Bias. A well recognized drawback of using a crash database based on self-
reports is the presence of substantive periodic heaping. Our data on the universe of crashes

for selected states comes from the State Data System (SDS) administered by the NHTSA

and described in the Appendix. The trajectory of a crash record helps to illuminate the

origins of this bias in the SDS database. Once a vehicular crash is reported, a police

at the scene documents various details of the incident, including the minute of the crash

occurrence, and submits the paperwork to one of several possible state agencies. States,

however, vary in the speci�cs that govern data collection and crash quali�cation criteria.

Crash records are ultimately centralized and sent once a year to the NHTSA where they

are standardized and maintained. Any bias which is likely to occur then, may vary in

severity across states as well as over time. Figure 5 illustrates the nature of the heaping

that characterizes a representative hour in 2005 across the states in our sample. A close

examination indicates that nearly 11% of crashes are reported to have occurred exactly on

the hour. About 31% of crashes are reported to have occurred either on the hour, half

hour, or quarter hour, and 61% of crashes are reported to have occurred in a minute ending

in either 0 or 5.

The periodic heaping in crash reports complicates a standard regression discontinuity

design. In principle, one should be able to describe the change in crashes induced by a

fall in prices at the threshold by �tting lines, or higher order polynomials, on either side of

9pm on weekdays in recent years. The challenge, however, is to disentangle the on-hour

34To test for the concern that the rise in calls at the switching threshold may be counterbalanced by a
fall in call duration, we test for and �nd no evidence for a statistically signi�cant fall in call duration at the
threshold.
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spike in reported crashes from changes in actual crashes at the threshold. One might be

tempted, in a regression framework, to control �exibly for the reporting bias by including

dummy indicators for minutes ending in 0 or 5. However, such a strategy yields imprecise

estimates of the change in crashes at 9pm. The reason for this imprecision is that the

on-hour spike due to the reported bias is an order of magnitude larger than any plausible

change in the crash count induced by higher cellular use.

One strategy through which to deal with this complication is to smooth the count

data by choosing a unit of analysis which aggregates crashes into larger minute bins (e.g.,

intervals of 30 or 60 minutes). However, aggregation introduces its own imprecision in the

estimates due to changing patterns in driving behavior away from the threshold. As a

result, we rely on a double di¤erence approach in addition to smoothing in order to adjust

for the observed heaping and to increase the precision and accuracy of the estimates. In

a series of robustness checks we alter the strategy used to bin crashes and show that our

results are insensitive to the treatment of reporting spikes at each hour, half-hour, or even

�ve minute intervals.

Crash Analysis. We turn �rst to the distribution of crashes around the pricing

threshold in California for 2005. Implicit in this initial test is the assumption that the

driver behavior re�ected in the �rst stage sample is representative of the broader population

of drivers across all of California in 2005. A comparison of ownership, using FCC data,

reveals that, in 2005, ownership in the region associated with our �rst stage (78%) is slightly

higher than statewide ownership (68%) and is on par with other metropolitan regions within
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the state.

Figure 3 displays the pattern of average crashes across 10 minute intervals from Mondays

to Thursdays in California from 8 to 10pm in 2005 as compared to the analogous pattern

for the pre-period from 1995 to 1998. The cyclicality of the plot is due to the reporting

biases discussed above. The vertical line marks the 9pm pricing plan threshold. Figure

A3 in the Appendix compares Monday to Thursday crashes in California from 8 to 10pm in

2005 to a second control of weekend crashes. Neither plot provides evidence for a relative

rise in crashes at the pricing threshold.

We formally estimate the relative change in crashes around 9pm on Monday to Thurs-

days with the following Poisson model:

E[Crashsymdtb j : ] = exp(�+ �(Posty � After 9pmb)yb + 
1After 9pmb

+ 
2Posty + �s + �y + �m + �d)

where Crashsymdtb denotes the fatal crashes in state s, year y, monthm, day of week d, date

t, and minute bin b. Posty indicates whether the crash occurred in the treatment period

where there is a shift in pricing at 9pm, and After 9pmb is a dummy variable indicating

whether the crash occurred on or after 9pm. The interaction term (Post � After 9pm)yb
is the explanatory variable of interest. The model controls for state, year, month and day

of the week speci�c variation. The regression is estimated with a Poisson speci�cation.35

Intuitively, the experiment simulated by this regression is a comparison of the di¤erence

in pre and post crashes around the threshold for symmetric estimation windows around

9pm from Mondays to Thursdays. We initially estimate a baseline regression of daily crash

counts for 60 minute windows before and on/after the threshold in California from 8 to

9:59pm each day in 2005 as well as the control period from 1995 to 1998. In addition, we

estimate the model for 30 minute windows from 8:30 to 9:29pm. The narrower estimation

window around 9pm is less likely to be confounded by unobservable changes in pre and

post trends before or after the threshold, but is more sensitive to the problems raised by

the reporting biases documented above. As such, standard errors actually increase for the

tighter estimation windows.

The choice of the control period is dictated by the low prevalence of 9pm plans and low

average call likelihood prior to 1999, as well as the trade-o¤ between the added precision,

and the possibility of introducing bias, associated with a lengthier period. Our estimation

results are robust to control periods of alternative lengths.36

35The estimation choice is dictated by the highly non-normal shape of the crash count distribution.
Many of the cells contain 0 fatal crashes. Our results are also robust to estimations based on alternative
speci�cations (e.g. the linear probability model, and negative binomial regression).
36Results of these estimations are available from the authors upon request. Note that 1990 is the earliest
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Next, to heighten the precision in the regressions, we estimate the model for an extended

period from 2002 to 2005 during which we are con�dent that most individuals were on cell

phone plans characterized by the 9pm break and for which our �rst stage is representative.

Finally, we estimate the model for the full set of states for which we have crash data.

This extended analysis includes California, Florida, Illinois, Kansas, Maryland, Michigan,

Missouri, Ohio and Pennsylvania.37 Assuming driver behavior with respect to crashes

and cellular use is not qualitatively di¤erent across geographic regions, including additional

states in the model allows us to add even more precision to the results. Figure A4 depicts

the distribution of crashes in the pre and post period for the expanded sample.

The extension of the analysis to drivers outside of California in 2005 is, at least in

part, justi�ed by the MIT and TNS call data that asserts that price sensitivity of callers

generalizes across geography and time periods. Moreover, cellular ownership for the region

associated with the �rst stage (78% in 2005) is in the same range of ownership nationally

(71%).

The upper panel of Table 3 provides regression results for crashes in California. The

�rst two columns report near-zero and insigni�cant point estimates for the interaction

term of interest for both the baseline and the more narrow 30 minute window. The next

two columns present analogous, but much more precise, results for a broader time period

stretching from 2002 to 2005.

Our estimation approach relies on the constancy of important covariates across the

threshold in the post-period relative to the pre-period. We can explicitly test this assump-

tion for tra¢ c and reporting bias in California. First, we estimate the double-di¤erence of

log tra¢ c counts in a manner consistent with the above analysis, for 2005 as well as 2002

to 2005. We �nd no evidence for a signi�cant change in tra¢ c across the 9pm threshold

relative to the control period.38 Second, to verify the constancy of reporting bias, at least

for the 30 minute estimation, we test for a change in the fraction of total crashes reported

within the �rst 30 minutes of each hour in the post as compared to the pre-period. Again,

we cannot reject the null that this fraction is identical across periods.

possible bound for a control period due to data availability.
37Some state-years are missing from the SDS data or do not report the time of accident which is required

for our analysis. Speci�cally, Illinois is available only from 1996 to 2003, and Pennsylvania is missing data
for 2002. The variability in data availability is in part due to the fact that the SDS must ultimately rely
on each state to provide its own crash records.
38We estimate the double-di¤erence regressions of log hourly tra¢ c counts at the tra¢ c station x date

level in California for 8 to 10pm, Monday to Thursday, in the pre and post period(s). The coe¢ cient of
interest is b = .0040, se = .0045 for 2005 and b = -.0012, se = .0042 for 2002 to 2005. The regressions
include �xed e¤ects to control for station, year, month, and day of week speci�c variation. Errors are robust
and clustered at the date level.
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Finally, in the lower panel of Table 3, we present regressions for the expanded set of

states. Illinois is excluded from the 2005 analysis since no data is available for that year.

The last column, with estimates for 30 minute windows, excludes Michigan and Ohio since

these states provide the hour, but not minute, of each crash prior to 2000. Extending

the sample to multiple years reduces estimated standard errors but does not substantively

change the point estimates.

Our favored speci�cations are for the expanded set of states and imply an upper bound

of the relative change in the crash rate of .97% for 2002 to 2005 and 1.18% for 2005.39

39Note that for coe¢ cients near zero, the interpretation of a Poisson regression is similar to that of a
percent change. Upper bounds of point estimates using a 95% con�dence interval were produced by our
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Overall, the results provide no evidence for a positive relative change in the crash rate.40

We repeat our benchmark analysis for the subset of fatal crashes. Our data is from the

NHTSA�s Fatality Analysis Reporting System (FARS) and is described in the Appendix.

A bene�t of expanding focus to fatal crashes is that, unlike the SDS data, it extends to

all 50 states. A (statistical) drawback is that fatal crashes are 150 times less frequent

than their non-fatal counterparts with just under 40,000 incidents per year. Moreover,

the recording of fatal crashes su¤ers from the same reporting bias with large spikes on

the hour and the half hour. Consequently our estimates are substantially noisier. The

double di¤erence estimate for change in fatal crashes at 9pm on Mondays to Thursdays in

2002 to 2005 compared to 1995 to 1998 is actually negative and marginally signi�cant (b

= -0.058, se: 0.033) The corresponding placebo estimate for weekends is slightly positive

and insigni�cant (b = 0.028, se: 0.042).41

Placebo and Robustness Checks. Table 4 reports the results of a series of placebo

and robustness checks for the expanded year and state model. The �rst four columns of

the upper panel present results of the baseline crash analysis for the 8 and 10pm hours for

30 and 60 minute windows. The �nal two columns of the panel report estimates of the

model for weekends, using 30 and 60 minute windows around 9pm. The analysis con�rms

the absence of a strong negative change in the crash rate around the threshold for weekday

proximal hours, or weekends at 9pm, that could mask a potential e¤ect of cellular use at

9pm. Additionally, we estimate, but do not report in the table, triple di¤erence estimates,

using the change across proximal hours and 9pm on weekends, as additional controls.42

The �rst column of the lower panel of the table estimates the baseline speci�cations for

a smaller window of 15 minutes . Despite being subject to considerable on-hour reporting

biases, the estimate for the smaller window is comparable to estimates for the lengthier

statistical program but can also be calculated manually using the delta method.
40One important assumption in the di¤erence-in-di¤erence analysis is that the trend in crashes is parallel

in the pre and post periods. As evidence for this identifying assumption, we test whether the crash rate in
the post and pre period have similar linear trends for varying windows around 9pm. Poisson regressions
test this assumption by modeling crashes across 1, 15, 30 and 60 minute bins as a function of pre and post
period speci�c linear time-trends and controls for day of week, month and year speci�c variation. We fail
to reject the null of di¤erential trends for any reasonable level of signi�cance and for varying time windows
around 9pm. Results of these estimations are available from the authors (also see Figures 3 and A4).
41Just as in our benchmark analysis, a Poisson model estimates regressions at the state-date-bin level. We

examine 60 minute bins before and after 9pm in 2002 to 2005 using 1995 to 1998 as a control period. We
include �xed e¤ects to control for variation across state, year, month and day of the week. Due to the large
number of zero crash counts, we also estimate a negative binomial model and the results remain largely
unchanged.
42We amend the expanded year and state model to calculate these triple di¤erence estimates. The

resulting coe¢ cient of the net change across the 30 minute window around 9pm is b = -.0082, se = .0138,
when using the 10pm hour as a double di¤erence control, and is b = .0004, se = .0135, when using 8pm as a
double di¤erence control. We cannot produce the analogous triple di¤erence using a 60 minute window for
proximal hours without overlapping estimation periods. The triple di¤erence estimate when using weekends
as a double di¤erence control, across 60 minute windows, is b = -.0177, se = .0147.

28



windows but is less precise.

The remaining columns of the lower panel present estimates for the standard windows

after modifying the strategy used to allocate crashes to bins before and after the threshold.

The new allocations are meant to address the possibility that the double di¤erence approach

does not adequately correct for the reporting bias. Accordingly, in Column 2, we shift the

minute bin so that crashes reported from 8:01 to 9:00 are treated as having occurred prior to

the threshold while crashes reported from 9:01 to 10:00 are treated as having occurred after

the threshold. The next three columns of the panel estimates the baseline speci�cation but

after eliminating crashes reported at regular intervals that may be subject to reporting bias.

First, crashes at exactly at 8:00 and 9:00 in both the pre and post periods are eliminated,
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then crashes occurring at 8:30 and 9:30 are also eliminated, and �nally, crashes occurring

at every 5 minute increment are eliminated. Omitting these data points, in which many

of the crash reports are concentrated, does little to change the underlying pattern in point

estimates but does produce greater imprecision. The �nal column of the second panel

eliminates each 5 minute increment but for the shorter 30 minute window.

As a �nal test of robustness, we conduct, but do not report, separate regressions for each

day of the week from Monday to Thursday and �nd no evidence for positive and signi�cant

crash increases. The robustness and placebo checks o¤er no evidence for the existence of a

confounding factor or measurement idiosyncrasy that might mask a positive change in the

relative crash rate at 9pm.

In summary, the 9pm pricing analysis provides no evidence for a relative increase in

crashes at the threshold. The point estimates for the change in relative crash rates across

the threshold are consistently near zero. The upper bound of the estimated relative change

is .97% in the fully expanded speci�cation and 1.18% for the expanded set of states when

considering only 2005. These �gures both imply that the relative crash risk associated

with cellular use is 3.0. This assumes an average call likelihood of 7.8% across 2002 to

2005 and 10% in 2005, as well as the 7.2% increase in driver call volume indicated by the

�rst stage analysis.43 These upper bounds reject the RT estimate of a 4.3 fold increase in

crash risk due to cell phone use. We now describe two additional empirical strategies that

produce results consistent with these �ndings.

3.4 Panel Analysis of Ownership, Crashes and Legislation

Two alternative empirical approaches supplement our basic results. Full details of these

approaches are provided in the Appendix. In the �rst, we compare aggregate trends in

crashes and cellular ownership at the level of the state and Economic Area (EA). EAs

are used by the FCC to denote regions of contiguous economic activity and represent the

most disaggregated geographic units for which data on cellular ownership data is available.

Our data includes the universe of crashes for approximately 60 EAs across nine states

from 1990 to 2005, and for the universe of fatal crashes for all states from 1989 to 2007.

Using a panel regression with �exible controls for region and time trends, and a control

period during which we know that ownership is trivial, we show that there is no statistically

signi�cant link between change in ownership and crashes.

In an second, related, approach, we estimate the in�uence of recent legislative bans

restricting handheld cellular use by drivers in New York, New Jersey, Connecticut, as well

43 It is worthwhile to note that the estimated behavioral response at 9pm is based on changes in cellular
usage rather than changes in cell phone ownership. This complicates the translation of the regression
estimates to a relative crash risk. This concern can be allayed with a simple assumption equating the
e¤ects of increased usage with increased ownership.
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as the large municipalities of Chicago and Washington D.C. Recognizing that the e¤ect

of legislation on crashes is determined by both compliance as well as crash risk associated

with handheld cellular use, we use a panel analysis to trace the monthly time-path of fatal

crashes following the imposition of the bans. The analysis suggests that the legislation did

not lead to a signi�cant reduction in the fatal crash rate over short or longer run horizons.

4 Discussion

Sensitivity of Results to Assumptions. The present analysis suggests the counter-

intuitive �nding that cell phone use by drivers is not associated with higher crash rates.

Whether the upper bounds from our analysis are able to reject existing research depends

on the value of two key parameters associated with drivers� average call likelihood and the

increase in call likelihood at 9pm.

A �rst key parameter relates to the average call likelihood at 9pm during the treatment

period. Evidence exists that usage during the evening is no lower than average use across

the day. Data on use during the day is extensive. NOPUS reports daytime usage, de�ned

from 8am to 6pm, is 10% by 2005. Average daytime use across 2002 to 2005 is 7.8%.

There are three pieces of evidence that speak to the relationship between evening and

daytime use. Two studies, to our knowledge, have considered evening usage and both

suggest that cellular use in the evening is no di¤erent than it is during the day (Vivoda et

al. 2008, Johnson et al. 2004). The most direct evidence of relative cellular usage across

times of the day is from our own �rst stage data of 106,000 to 477,000 phone calls from 2005.

A minute level regression of the natural log of indexed call volume divided by tra¢ c, for the

hours from 8am to 6pm and 8 to 9pm on Mondays to Thursdays, on an indicator signalling

inclusion in the 8 to 9pm hour, suggests that cellular usage, as a fraction of tra¢ c, from

8 to 9pm is signi�cantly higher than the average use during the NOPUS day (b = .317,

se: .004). A similar estimation indicates that usage at precisely 9pm is also signi�cantly

higher than over the NOPUS period (b = .353, se: .020). Together, the evidence suggests

that the NOPUS estimates of daytime usage are legitimate, and even conservative, proxies

for use during the late evening.

A second key parameter regards the rise in cellular call likelihood at 9pm. The �rst

stage data indicates a 7.2% increase in call likelihood from Mondays to Thursdays at the

pricing threshold for likely drivers. Our calculation of legacy shares indicate that this data

is from a provider and a period which almost certainly underrepresents the fraction of users

at 9pm as compared to other providers in 2005 or across 2002 to 2005. Even allowing

for di¤erential price sensitivity across vehicular passengers and drivers, we believe that the

7.2% represents a conservative estimate of the change in call likelihood for drivers at the
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pricing threshold.

As additional context for the magnitude of this price sensitivity, it does appear that

drivers are less price sensitive than the broader population of cellular users. While driver

and non-driver elasticities may not be strictly comparable, two additional data sets of callers

(MIT and TNS) provide evidence for an over 20% rise in general call likelihood at pricing

thresholds in the period under consideration.

To explore the sensitivity of our �ndings to the assumptions laid out above, Table 5

compares the relative crash risk implied by the upper bounds of our estimates across a

range of values for average driver call likelihood and the change in call likelihood at 9pm.

The table relies on the analysis of the set of expanded states during 2002 to 2005 as well

as just 2005. The latter estimates, while less precise, correspond to a period of higher

average call likelihood. The table is centered at our best estimate for each parameter.

For example, if average call likelihood is 7.8%, 9pm call likelihood rises by 7.2%, and the

estimated upper bound for the change in the crash rate at 9pm is .97%, then our analysis

implies an upper bound in the relative crash risk of 3.0.44

Shaded regions of the table indicate upper bounds which reject the 4.3 suggested by

RT. Fixing the change in likelihood at 7.2%, given an average call likelihood as low as

6%, the 2002 to 2005 analysis would imply a crash risk of 3.6 which is below RT. Fixing

average call likelihood at 7.8%, a �rst stage rise in likelihood of 5.2% would imply an upper

bound of 3.9. One can similarly gauge the sensitivity of the calibrations for the 2005

estimates. Moreover, to the extent that dialing intensity jumps discontinuously at 9pm,

assuming dialing is more dangerous than simply talking, then the pertinent baseline crash

risk from the existing literature may be higher than 4.3.

What might explain the departure of our results from RT? The RT study su¤ers from

three principle drawbacks. The �rst is that it relies on an unrepresentative sample of

those involved in a recent crash (Hahn and Prieger 2006). Selection implies that the RT

result is at best an upper bound for the population of drivers as a whole. Second, there

is the possibility that the RT result is confounded by a factor such as driver anxiety which

prompts both cellular use as well as higher crash risk.45 Finally, given the lack of precision

44The change in the indexed crash rate at 9pm, is the sum of the change due to cellular users and non-
users: �%CrashRateUBt � CrashRatet = �CrashRateCellt + �CrashRateNon�Cellt = [x � �CellUset] +
[1 ��NonCellUset]. �CrashRateCellt is the product of the relative crash risk associated with cellular use,
x, and the change in normalized cellular use, �CellUset, which is itself a product of the change in 9pm
call likelihood and average call likelihood. �CrashRateNon�Cellt is simply the product of the crash risk of
drivers not on cellular phones, normalized to 1, and the change in the share of drivers that are non-users
at 9pm (i.e., �NonCellUset). Similarly, the baseline crash rate, CrashRatet, is a sum of the crash rates
of cellular and non-cellular users prior to 9pm. The populated equation is .0097[1*(1-.078) + x(.078)] =
[x(.072*.078) + 1(-.072*.078)]. Solving for x yields 3.0.
45Hahn and Tetlock (1999) suggest the possibility of worsening tra¢ c conditions (e.g., poor weather or

tra¢ c congestion) as a possible example of this problem.
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in timing of crashes, it could be that observed calls may have been placed in response to a

crash as opposed to serving as the cause of an incident. We turn next to the mechanisms

which might explain the absence of a correlation between crashes and cellular use.

Plausible Explanations for the E¤ect. If cell phones are a source of distraction,

given limits to attentional capacity, how is it that such phones have no, or perhaps very

little, in�uence on crashes? There are a number of plausible explanations for why cell

phone use may not raise crash frequency.

One explanation is that drivers who use cell phones compensate for the added distraction

by modifying their driving behavior. This so called �Peltzman E¤ect�was popularized by

Sam Peltzman who suggested that the bene�ts of seat-belt regulations might be o¤set by

riskier driving (1975). It is plausible to imagine drivers who slow down, pull over, shift to

uncongested lanes or roadways, or simply devote more attention to driving in response to

making or receiving a cell phone call. In the Appendix, we present a simple model that

illustrates how compensation is a rational response for drivers who both bene�t from, and

are distracted by, cellular use.

The evidence for driver compensation under the in�uence of cell phones is mixed. In

driver simulations in the lab, several studies have found that drivers reduce their speeds

slightly when subject to either handheld or hands-free use (see Caird et al. 2008 for a

meta-analysis of 33 studies).46 However, some studies �nd a higher variance in such

speeds (e.g., Rakauskas and Gugerty and Ward 2004), while others �nd that cellular users

actually increase speed (Rosenbloom 2006).47 The few studies which examine cell phone

distraction in repeated trials �nd evidence for learning (e.g., Shinar and Tractinsky and

Compton 2005).

Given concerns over external validity, one can turn to �eld studies for alternative insight.

There is �eld evidence consistent with compensation. In a study looking at cellular driving

in both �eld and experimental settings, Mazzae et al. �nd signi�cant degradation in various

driver outcomes in simulated, but not real-life, driving (2004). While this di¤erence may

be due to the lack of statistical power, the study also �nds, consistent with compensation,

that cellular usage is lower when tra¢ c is more congested. The NJ Turnpike study also

reports cellular usage at very high speeds (i.e., 15 mph over the speed limit) is 20% lower

than moderately speeds and this di¤erence is statistically signi�cant (Johnson et al. 2004).

46Caird et al. (2008) estimates that the standardized mean weighted e¤ect size of handsfree use relative
to a baseline control is r = .23 (with 95% CI of .06 to .40 and composite N = 495), while the mean e¤ect
size of handheld use relative to the same baseline control is r = .39 (with 95% CI of .26 to .52 and composite
N = 160). The authors, however, characterize this level of compensation as not �appreciable.�
47We thank an anonymous referee for bringing this study to our attention.
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A second explanation for our �ndings is that the drivers who use cell phones have an

a¢ nity for risk (Hahn and Tetlock 1999). In this scenario, risk loving drivers simply use cell

phones as a substitute for other distractions (e.g., talking to a fellow passenger, or �ddling

with radios, televisions or DVDs). Prieger and Hahn suggest that driver heterogeneity in

riskiness leads most research to signi�cantly overestimate the impact of cell phone use on

crashes (2007). Much like our study, they conclude that driver use of cell phones has close

to a zero e¤ect on crashes. In another study, authors classi�ed 3,869 Canadian drivers

as cellular users and non-users based on observed usage at a single point in time and then

collected and analyzed collision records for these vehicles over a 2 to 3 year period (Wilson

et al. 2003). The study �nds a higher rate of violations for cellular users and attributes this

di¤erential to violations associated with aggressive driving, alcohol, non-moving violations,

and seat belt non-use rather than inattention.

Finally, the e¤ect of cellular use on crashes may be heterogeneous across drivers.48

While the local average treatment e¤ect may be zero, there may be drivers for whom

the use of cell phones is detrimental, as well as some drivers for whom cell phones are

bene�cial. For example, cell phones may actually improve selective driver outcomes by

alleviating boredom. The NHTSA reports that 100,000 crashes, and 1500 fatal crashes each

year are attributable to driver fatigue or sleepiness (2004), and �The 100-Car Naturalistic

Study�concluded that 20% of crashes and 12% of near-crashes were linked to driver fatigue
48See Hahn and Prieger (2006) for a model of the heterogeneous e¤ects of cellular use on crashes.
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(NHTSA and Virginia Tech 2006). The dangers of fatigue may be particularly pronounced

for drivers accustomed to driving long distances or long hours. To this point, the Federal

Motor Carrier Safety Administration, in 2003, implicated fatigue as a factor in 13% of all

fatal large-truck crashes.49

Implications for Welfare and Policy. Cell phones provide economic value to drivers.
The Harvard Center for Risk Analysis assessed the value of non-emergency cellular calls

by drivers at $43 billion annually (Cohen and Graham 2003). The Cellular Telephone

Industry Association reports that more than 200,000 emergency calls are made by drivers

using cell phones every day. Yet despite transparent bene�ts, a majority of Americans

support bans of driver cell phone use and view such devices as a leading threat to public

safety. Moreover, a large number of municipalities, states, and even Congress, have either

considered or passed legislation restricting driver use of cell phones over the last several

years.

In light of the bene�ts of cellular devices, our results suggest that blanket bans on

cellular use are not desirable. A number of additional considerations exist. First, our

results represent only local treatment e¤ects of the in�uence of cellular use around 9pm.

A plausible argument is that cellular use at 9pm may be less hazardous than during the

day since there is less tra¢ c at night. However, crash rates per vehicle mile travelled are

actually signi�cantly higher at night than during the day (NHTSA 2000). This elevated

crash risk is likely due, in part, to lower visibility as well as higher average speeds.50 To

the extent that lower visibility and higher speeds exacerbate the crash risk associated with

attentional distractions, cellular use may be just as, or more, deleterious at night as it is at

other times of the day.

Second, if drivers compensate for cellular use with more careful driving, then there may

be a rationale for penalizing cellular use as a secondary, but not as a primary, o¤ense. Third,

given that our results cannot rule out the detrimental in�uence of cell phones for certain

subpopulations, partial bans which target speci�c drivers may be appropriate. Partial

bans of cell phone use by teenagers in several states suggests that policy makers believe in

such heterogeneity in risk. More research is needed to clarify whether the in�uence of cell

phones is heterogeneous across drivers (as well as driving conditions).

A number of researchers have made the analogy between the dangers of cellular use and

drunk driving. Our analysis is inconsistent with this claim. Our upper bounds easily rule

out the crash risk of 7 associated with positive levels of blood alcohol, and the crash risk

of 13 associated with illegal limits of blood alcohol (i.e., > .10 BAC) (Levitt and Porter

49This statistic was reported as a part of the �Report to Congress on the Large Truck Crash Causation.�
50Data on average hourly speeds for highway tra¢ c in California from 2005, (collected from the PEMS

website described in the Appendix), suggests that speeds from 9 to 10pm are about 6% higher than speeds
throughout the rest of the day.
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2001a).

Finally, policies aimed at regulating driver cell phone use trade o¤ the bene�ts of usage

against possible harm to person or property. As such, the estimates of our paper can be

used to help calculate the statistical value of life implicit in such policies (e.g., Ashenfelter

and Greenstone 2004). Our upper bound in relative crash risk of 3.0 implies an upper

bound in aggregate crashes of 20% as reported in Table 1. Applying this �gure to the

annual fatal crash count produces an upper bound of 8,000 fatalities per year. The $43

billion bene�t of cellular use implies that implicit in cellular bans is a lower bound in the

value of life of about $5 million.51

Laboratory and Field Evidence. This paper is a part of a growing collection of

studies which highlight di¤erences and possible complementarity between the laboratory

and the �eld. The �nding that cell phone use does not cause crashes is not necessarily

inconsistent with laboratory �ndings that such use distracts. The explanations o¤ered

above� compensation, risk substitution, and e¤ect heterogeneity� each highlight di¤er-

ences and relative advantages across laboratory and �eld settings.

A �rst di¤erence is suggested by the possibility that cell phones do distract but drivers

o¤set such distraction by driving more carefully. If compensatory behavior is responsible

for our results, then naive translation of the mechanisms posited by laboratory �ndings

to policy prescriptions neglects the in�uence that possible alternative mechanisms, such as

self-preservation, may have on behavior. Field studies may be useful in illuminating the

presence of alternative mechanisms, or interactions between understood mechanisms and

real-world variables, that might be otherwise neglected in the laboratory.

A second di¤erence between the laboratory and the �eld is highlighted by the possibility

that certain drivers substitute across di¤erent sources of risk when driving. Driver distrac-

tion experiments explicitly compute a treatment e¤ect by comparing the relative likelihood

of a crash with and without a cell phone. If real-world cell phone use is concentrated

amongst risk-loving drivers who would otherwise engage in activities such as talking to fel-

low passengers, then the laboratory and �eld analyses rely on di¤erent comparison groups.

In such an event, laboratory �ndings would lead to in�ated inferences of the dangers of

cellular use (see Dahl and Dellavigna 2009).

Finally, the possible heterogeneity in the magnitude of the e¤ect across drivers hints

at a third di¤erence between the laboratory and the �eld. If some drivers rely on cell

phones in order to counteract fatigue, then this self-selection in use will not be captured in

laboratory settings where participant fatigue is not randomized.

Our analysis underscores a potential complementarity between laboratory and �eld

51 Hahn, Tetlock and Burnett (2000) outline a more detailed method to account for the lifetime costs
associated with mortality, injuries, property damage, lost productivity, and medical expenses.
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approaches. Speci�cally, modi�ed experimental studies in the lab could help to arbitrate

between the possible explanations suggested by the �ndings of our natural experiment.

For example, by introducing appropriate incentives, one could at least begin to test the

hypothesis of compensation in the laboratory. Other laboratory experiments could identify

the presence of risk substitution or interactions between cellular use and fatigue.

5 Conclusion

This paper exploits a natural experiment� the discontinuity in the marginal price of a cell

phone call during weekday evenings� to estimate the in�uence of driver cell phone use

on vehicular crashes. Using a wide array of data on crashes, ownership, cell phone plans,

average call likelihood, as well as rare datasets of actual cell phone calls, we �nd no evidence

that an exogenous rise in call volume, induced by the change in cellular prices, leads to

an increase in crashes. This result is at odds with much of the existing research. The

most in�uential study on this topic (RT) suggests that cell phone use results in a 4.3 fold

increase in relative crash risk and equates the danger of cellular use to that of illicit levels of

alcohol. The upper bounds of our estimates allow us to rule out the crash risk implied by

RT under plausible assumptions of average call likelihood. To corroborate our �ndings, we

pursue two additional empirical strategies. Neither of these provide evidence to support

the relationship between phone use and crashes.

We note that this research does not imply that cell phone use is innocuous. It simply

implies that current cellular use by drivers does not appear to cause a rise in crashes. It is

possible that drivers who use such devices compensate for the added distraction by driving

more carefully. Alternatively, it could be that risk loving drivers may treat cell phones as

a substitute for other, equally debilitating, distractions. Finally, because we measure an

average treatment e¤ect, it could be that cell phones are dangerous for certain drivers or

driving conditions, and are countervailingly bene�cial for others.

In the least, we believe our �ndings should renew interest in empirical research ex-

amining the e¤ects of cell phone use and reopen discussions on the costs and bene�ts of

policy restricting such use. One direction of future research, which may prove particularly

important to policy makers, is to investigate whether the in�uence of cellular use di¤ers

across types of drivers and driving conditions. Our research design allows for such an

analysis of driver heterogeneity if one exploits di¤erences in price sensitivity and average

call likelihood across demographic groups as an additional source of treatment variation.

Finally, our �ndings could be used to help design future laboratory studies which may shed

added light on the link between cellular use and crashes.
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7 Appendix

7.1 Description of Data

Crash Data. This paper relies on a wide array of data. These sources are summarized

in Table A1. Each empirical approach depends on data on crash records, as well as data

on changes in cell phone ownership. The State Data System (SDS) provides data for the

universe of crashes from 1990 to 2005 for California, Florida, Illinois, Kansas, Maryland,

Michigan, Missouri, Ohio and Pennsylvania. A handful of these state-years su¤er from data

limitations ranging from complete unavailability to state-years for which a critical variable

is not reported (e.g., Pennsylvania in 2002 and Illinois in 2004 and 2005). The Fatality

Analysis Reporting System (FARS) provides data for the universe of fatal crash records

from 1987 to 2007 for each of the 50 states. FARS captures any vehicle crash resulting in

a death within 30 days of the collision. The SDS and FARS databases are administered

by the National Highway Transportation Safety (NHTSA) Administration which collects

records from participating state agencies. A total of eighteen states participate in the SDS,

but only nine states release crash data which covers a signi�cant portion of the desired time

frame.

Figure 1 depicts the trends in crashes, indexed to highway tra¢ c volume, for each year

from 1988 to 2007. Data on all crashes in this plot is taken from the General Estimates

Survey which is a national probability sample calculated by the NHTSA. The plot indicates

a decrease in crashes over the last �fteen years, with a slight rise in the mid-1990s. Much

of the drop in crash rates over this period is attributable to the increasing prevalence and

usage of safety devices as well as a decline in driver alcohol use. The mild rise in the mid-

1990s can be at least partially attributed to relaxation in nationwide speeding regulations

(NHTSA 2005). Recently, there have been about 40,000 fatal crashes, and approximately

6 million total crashes reported each year nationwide.

Much of the analysis for the alternative empirical approaches is at the level of the EA.

De�ned originally by the Bureau of Economic Analysis (BEA), EAs are currently used

by the Federal Communications Commission to denote regions of contiguous economic

activity. Each of the 172 EAs consists of one or more economic nodes� a metropolitan or

micropolitan statistical area that serves as a regional economic center. The BEA uniquely

mapped counties to an Economic Area in 2000. We use these mappings to construct EA

level crash and population data.

Cell Phone Ownership. Measures of cell phone ownership require data on the num-
ber of subscribers as well as the population in a region. Data on cell phone subscribers for

each EA from 2001 to 2005 as well as 2007, each state from 1999 to 2007, and nationally

from 1985 to 2005 was collected from the FCC and the Cellular Telephone Industry Asso-
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ciation. Historical population data was downloaded from the Bureau of Labor Statistics

website. Figure A1 in the Appendix depicts trends in cell phone ownership nationwide as

well as the growth in the average usage of each phone per user.52 Overall, both ownership

and usage increase exponentially over this period. By 2007, 5 of every 6 residents owned

a cell phone despite only 1 of 3 owning a cell phone just eight years earlier.

Call Likelihood. The central empirical strategy in this paper is grounded in the

claim that discontinuities in cell phone pricing prompt sharp increases in cell phone call

volume. To illustrate this �rst stage relationship between call volume and call pricing,

the analysis relies primarily on a large dataset of calls by likely drivers during an eleven

day period in 2005 acquired from a major network provider. The data is restricted to

calls routed through multiple cell phone towers in a contiguous, highly populated, region in

California. The boundary of this region is de�ned by coverage of a single cell phone switch

which consists of 300 to 400 towers. The mechanics of signal switching are such that a

call will originally be routed by the tower emanating the strongest signal. A call will be

rerouted through a second tower only when the di¤erential in signal strength between the

old and a new tower exceeds a certain threshold. Due to this threshold switching design,

signals of stationary or even ambulatory callers are almost always routed by a single tower.

Rare exceptions to this rule may exist when a caller is walking through a region with large

buildings that interfere with a given tower�s reception. However, our data is from a switch

which covers a region just outside of downtown and thus avoids calls made within the city

center. The 11 days of calls represents the longest near-continuous period in 2005 during

which data could be retrieved from the archives.53

Engineers from the network provider estimate that a given caller must travel at least

approximately 2 miles before a call will switch towers. Therefore, our dataset almost

certainly comprises calls made by callers in moving vehicles. While volumes are scaled for

con�dentiality, we can estimate that the data consists of 276,000 to 1.24 million minutes

of cell phone use over this period. Given an average duration of 2.6 minutes per call,

calculated from a large dataset of cellular calls described below (TNS), this translates to

106,000 to 477,000 calls made during the course of the 11 days. The data also allows us

to compare relative call likelihood at di¤erent points during the day.

Two additional datasets of calls con�rm the price sensitivity of a broader population

of cellular callers that extends beyond drivers. First, complete logs of cell phone activity

for approximately 65 students and faculty over the academic years from 2004 and 2005

was obtained from the Reality Mining Project at the MIT Media Lab (MIT).54 As part

52Data on average usage is reported in the annual FCC CMRS reports.
53More precisely the calls are from a continuous 14 day period, but there are three days for which no data

could be extracted.
54The data is described in the publication: Eagle, Nathan and Alex Pentland, �Reality Mining: Sensing
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of a study examining the evolution of social networks and the transmission of information,

researchers embedded surveillance technology in the cellular phones of each subject in their

sample. Approximately 80,000 outgoing calls were logged over the course of the surveillance

period. Electronic logs ensure that the timing of calls are accurately documented to the

second. The data may not be representative of the larger population across a variety of

dimensions given that the subjects are primarily students.

Figure A2 depicts the distribution of calls, aggregated in 10 minute bins, from 8 to

10pm for Mondays to Thursdays, Fridays and weekends. In order to formally estimate the

size of the rise in call volume at the price threshold, the upper panel of Table A3 reports

results of a Poisson regression of minute level calls from 8 to 10pm with �xed e¤ects that

control for day of week, month and year of the call. The results indicate a rise in call

likelihood of 22.6% in the hour after 9pm on Mondays and Thursdays and no signi�cant

rise in the comparable period on Fridays or weekends. The placebo checks for other hours

indicate a rise at 8pm of about 12% and no rise at 10pm. However, the estimated rise at

8pm is not due to a discontinuous break at 8pm, but rather a gradual rise in calls from 8

to 9pm that may be idiosyncratic to this academic population.

Our second additional dataset (TNS) comprises over 741,000 calls made by 9,864 cell

phone users from households across the country in 2000 and 2001.55 The data was har-

vested from cellular phone bills voluntarily submitted from households randomly selected to

participate in an earlier survey of telecommunications behavior and attitudes.56 The data

is hourly data and is from a period characterized by either the absence of a cell phone plan

or plans with non-uniform switching thresholds across the weekday evenings. The data

usefully provides peak and o¤-peak designations for each call, and allows for the analysis

of individual call patterns.

A sizable share of the 9,864 callers in the data have plans with thresholds that either do

not exist or cannot be inferred.57 We therefore retain a subsample of callers that satisfy

each of the following conditions: (i) Callers are in the sample for at least 30 or more

Complex Social Systems,�Personal and Ubiquitous Computing, Vol. 10, No. 4, pp. 255-268, 2006.
55The dataset, Residential Quarterly Tracking Data: Bill Harvesting, is commercially distributed by TNS

Telecom. While the �rm continued to harvest cellular phone bills after 2001, we were unable to acquire
this data for a more recent period due to prohibitive costs.
56The �ReQuest Consumer Survey�is a quarterly survey of about 30,000 households on consumer behavior

and attitudes related to telecommunications. Households were o¤ered a small payment in exchange for copies
of one month�s worth of cellular, cable, TV and internet bills. In the fourth quarter of 2001, households
were o¤ered $5 and participation in a �special cash prize ra­ e�for their bills.
57We impute the switching hour by computing the change in the average peak/o¤-peak rating for each

evening hour. Peak calls are tagged with the value �1�while o¤-peak calls are tagged with the value �2�.
In principle, if a caller has a 7 pm switching threshold, then the average peak/o¤-peak rating should jump
cleanly from 1 to 2 at 7 pm on weekdays. However, due to the presence of holidays or calls made in excess
of the allowed quota for that month, we do not always observe unit jumps in the rating. In the absence of
clean rating jumps, we tag the evening hour with the largest jump in average peak/o¤-peak rating as the
switching hour for each caller.

43



calendar days and had calls on at least half of these days, (ii) Callers log at least one call

in the evening hours (i.e., 5pm or after) in each of Monday to Thursdays, Fridays, and the

weekend, (iii) Callers have no calls that are ambiguously tagged (i.e., each call is tagged

as either �peak�or �o¤-peak�rather than �unclear�), and (iv) Callers have a mix of peak

and o¤-peak calls which allows us to infer the switching hour of the caller�s plan.58 The

remaining 287 callers have plans with switching thresholds at 6pm (65), 7pm (104), 8pm

(78), 9pm (23) or 10pm (17). These individuals make a total of 16,900 evening calls.

The data clearly demonstrates the responsiveness of callers to their particular weekday

pricing thresholds. We specify the following Poisson model at the level of the individual

caller to formally size the sensitivity of callers to their respective plan thresholds:

E[Callshsi j : ] = exp[�+ 
Switchs + �AfterSwitchhsi + �h + �i]

where Callshsi refers to the total calls in hour h by caller i under a calling plan which

transitions to o¤-peak pricing at hour s. Switchs refers to the transition hour, while

AfterSwitchhsi denotes hours after (but not inclusive of) the switching threshold. Fixed

e¤ects are included to control for hour speci�c variation, as well as for each individual caller.

The model is estimated for all weekday outgoing calls made from 5pm to 12am for those

callers included in the sample.

The coe¢ cient estimates in the bottom panel of Table A3 indicates a rise in call volume

of 22.5% in the hour following the switching threshold on Mondays to Thursdays, and no

signi�cant comparable rise in calls on other days. There is likely higher persistence in

the call volume increase following the pricing threshold in this data, relative to other data,

because many callers are on plans that switch fairly early in the evening. Finally, to test

for the concern that the rise in calls at the switching threshold may be counterbalanced by

a fall in call duration, we check and �nd no evidence for a statistically signi�cant fall in

duration at the threshold.

Pricing Plan Data. We obtain data on historical cellular pricing plans through

monthly screen-shots of cell phone provider websites taken each year from 1999 to 2005 by

Econ One Research.59 The survey details the availability of pricing plans by provider, the

schedule of marginal prices per call, as well as the time threshold at which tiered pricing

plans switch from peak to o¤-peak pricing (Various Years). Our data covers 26 major

markets and 30 providers over this period. Market shares for the top 25 wireless providers

58The rationale for employing a minimum day and call threshold is to ensure su¢ cient power for a �xed
e¤ects estimation, as well as to minimize any potential miscategorization of switching time thresholds. The
basic results and �gures are robust to less strict selection criteria.
59The survey is o¢ cially entitled: Econ One Wireless Survey: An Internet Survey of Cellular and PCS

Pricing Plans. It is distributed each year by Econ One Research.
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were collected from the CMRS Competition reports published each year by the FCC.60

In many cases, mapping the plan counts to FCC market shares required knowledge of

ownership changes, subsidiary relationships and regional brand names. We used a variety

of resources including analyst reports and online news sources to assist in this mapping.

Finally, in order to calculate legacy subscription rates for each threshold, we required the

rate of turnover, or churn, for each year. Churn rates were acquired from S&P Industry

Surveys from 2001 to 2005. We assume churn to be at 2001 levels for years prior to

2001. Table A2 details the data and calculations used to estimate legacy shares by pricing

threshold, and Figure 4 displays these shares for years from 1999 to 2005.

Legislation and Tra¢ c. Tra¢ c counts at the 30 second level for the region of interest
in California was downloaded from the Performance Evaluation Monitoring System (PEMS)

website administered by UC Berkeley and the state�s Department of Transportation. This

data was aggregated to produce minute level counts and was used to calculate the change in

call likelihood across the pricing threshold in the analysis of the �rst stage. The database

was also the source of hourly level tra¢ c counts from 1993 to 2005 used in the checks of

tra¢ c constancy in the second stage analysis. California has several thousand counting

stations in place across major highways, freeways and local roadways and these produce

highly disaggregated tra¢ c counts that can be downloaded for one of several districts by

which the state is segregated.

The �rst alternative analysis in the paper is a comparison of aggregate cellular ownership

and crash rates. This analysis includes a robustness check which controls for state-level

tra¢ c data. We collected data on annual highway tra¢ c volume for all states from 1989 to

2007 from the Federal Highway Tra¢ c Administration. The agency compiles tra¢ c data

from approximately 4,000 counting stations positioned on roadways across the country.

Total tra¢ c volume on U.S. highways grew by nearly 1 trillion miles during this period

reaching 3.0 trillion in 2007. A second alternative approach entails the analysis of legislation

banning driver use of cell phones for which we rely on legislative descriptions published by

the National Conference of State Legislatures as well as the Governors Highway Safety

Association website (Sundeen 2007).

7.2 Supplementary Analyses

Two additional empirical approaches con�rm our basic results. In the �rst approach, we

compare aggregate national trends in crashes and cellular ownership at the EA and state

level. Next, using a region-month panel, we examine whether legislative bans on handheld

driver cell phone use reduced the fatal crash rate.

60This report, entitled �Annual Report to Congress on the State of Competition in the Commercial Mobile
Radio Services Industry,� is available for each year on the FCC website.
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7.2.1 Panel Estimation of Crashes and Ownership

A basic test of whether cell phone use causes crashes is to compare the change in cell phone

ownership with the change in the rate of crashes over time. Figure 1 jointly depicts the

trend in cellular ownership with trends in tra¢ c adjusted crashes. If anything, the �gure

hints at a negative correlation between the two series. Such a negative correlation is even

more pronounced if the change in cell phone usage per month, depicted in Figure A1, is

considered as well.

However, given the heterogeneous rise in cell phone ownership across regions, we can

exploit variation across regions as well as years to more accurately pin down the relationship

between ownership and crashes. Economic Areas (EAs) represent the most disaggregated

geographic units for which data on cellular ownership data is available. EAs are currently

used by the FCC to denote regions of contiguous economic activity. Each of the 172 EAs

consists of one or more economic nodes� a metropolitan or micropolitan statistical area that

serves as a regional economic center. Examples of EAs include �Minneapolis-St.Paul�,

�Washington-Baltimore�, as well as the largest, �New York-Northern New Jersey-Long

Island.�

EAs are associated with considerable variation in ownership. Ownership rates ranged

from 19 to 57 percent across EAs in 2001 and from 61 to over 100 percent by 2007.61 We

estimate the following model with an OLS regression:

ln(Crash Rate)ry = �+ 
Cell Ownry + � ln(Traffic)ry + �r + �y + "ry

where ln(Crash Ratery) denotes the log of the crash rate for region r and year y, while

Cell Ownry refers to the percent share of cell phone ownership for a given region-year. The

model also includes �xed e¤ects to control for region and year speci�c variation as well as

more �exible controls for region speci�c linear and quadratic time trends. As a robustness

check, we include additional speci�cations with a covariate, ln(Traffic)ry, to control for

highway tra¢ c volume across region and year. All estimations are conducted at the EA

level, with the exception of the robustness speci�cations which are estimated at the state

level.

Since cellular ownership is only observed at the EA level from 2001 to 2007 (excluding

2006 for which ownership data is not available), and given that national ownership is less

than 5% prior to 1993, we code region speci�c ownership as missing from 1993 to 2000 and

as zero prior to this period. This strategy allows us to e¤ectively construct a control period

with near-zero ownership and contrast it with a treatment period for which ownership is

61 In rare cases, such as in Washington D.C., the FCC reports ownership as being greater than 100% due
to either multiple subscriptions by some residents or the fact that the FCC records location of registration
rather than of residence.
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both positive and known.

Table A4 presents the results of the estimations. The �rst two columns report results

of the panel analysis of the crash rate across the approximately 60 EAs in nine states from

1990 to 2005 for which we have the universe of crash data. The point estimate of interest

indicates the percent change in the crash rate given a 1% point increase in average EA

ownership after controlling for EA and year �xed e¤ects. To control for the possibility

that omitted factors that cause crashes within a state over time are correlated with cellular

ownership, the next column includes more �exible controls which allow for EA speci�c time

trends.62 Columns 3 and 4 repeat the exercise for fatal crashes for all 172 EAs from 1989

to 2007. None of the estimates suggest a statistically signi�cant positive link between

ownership and fatal crashes.

In principal, we can calculate upper bounds for the above estimates and compare these

to other e¤ect sizes reported in the literature. Assuming that cellular in�uence is linear in

ownership we can also calculate upper bounds for the overall in�uence of the introduction

of cell phones compared to the counterfactual scenario in which cell phones were not intro-

duced. In our favored speci�cation for all crashes, reported in Column 2, the upper bound

for the coe¢ cient estimate is .0024 which implies that, in 2005, the upper bound of the

in�uence of cell phones on the crash rate is 17% (i.e., (.0024*.70)*100). This upper bound

rejects the 33% increase in crashes implied by RT. For fatal crashes, the upper bound for

the coe¢ cient estimate of Column 4, .0044, rejects any increase in aggregate crashes larger

than 31%.

The �nal columns of the table provide a robustness check of the results by controlling

for changes in tra¢ c volume across regions and time. Since tra¢ c volume is only coded at

the state level, this regression is limited to fatal accidents at the state, rather than the EA,

level.63 The estimation, admittedly imprecise, again provides no evidence for a statistically

signi�cant correlation between ownership and crashes.

Importantly, if we restrict our state-year analysis of fatal crashes to 1999 to 2005 we can

approximately replicate the e¤ect sizes reported in Kolko (2009). Kolko reports positive

but insigni�cant estimates of the e¤ect of cellular ownership on crashes, adjusted for tra¢ c

volume, after controlling for state and year �xed e¤ects in a state-year panel regression from

1997 to 2005.64 His favored estimates imply, under the previously stated assumptions, that

62Silva and Tenreyo point out that log-linear estimations can be inconsistent if the true underlying model
is charcaterized by a Poisson distribution (2006). We re-estimate our baseline model using a Poisson speci-
�cation and a population o¤set. The point estimates are substantially similar and insigni�cant.
63Regressions are con�ned to fatal accidents because of the limited number of states in the SDS dataset.

As opposed to EA level penetration which is available only since 2001, state level ownership data is available
since 1999.
64Kolko uses proprietary survey data from Forrester Research to infer state-year cell phone ownership

from 1997 to 2005. Our ownership data, taken from the FCC, is only available as of 1999 which prevents
a closer replication.
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the introduction of cell phones produces a 15% increase in the aggregate fatal crash rate.65

Our analogous and also insigni�cant estimates imply a 12% increase in the fatal crash

rate.66 However, we �nd that the introduction of an early control period with no cellular

ownership or the introduction of linear and quadratic state time-trends each� as well as

both jointly� eliminate the positive point estimates for cellular ownership.67

There are several possible explanations for why our estimations do not yield statistically

signi�cant results. One, of course, is the absence of any genuine correlation between crashes

and cellular ownership. A second possibility is that unobserved, time-varying determinants

of crashes are correlated with the growth in cell phone ownership. The inclusion of controls

for region and year �xed e¤ects, and region speci�c time trends is meant to help guard

against this possibility. A �nal possibility is that our test lacks power to detect the true

e¤ect size.

Though the EA represents the most disaggregated level for which subscription data is

widely available, our analysis ignores the potential variation of cell phone usage over time

due to the recent introduction of bans on handheld cell phone use in selected regions. We

explore this additional source of variation next.

7.2.2 Analysis of Legislative Bans on Handheld Cell Phones

In a third approach, we estimate the in�uence of legislative bans that restrict cellular use by

drivers. Six states have banned handheld phones (almost) without exception.68 New York�s

ban went into e¤ect in November 2001, followed by New Jersey in July 2004, Connecticut in

October 2005, California and Washington in July 2008 and Oregon in early 2010. Beyond

these states, a number of municipalities have enacted complete bans. The largest of these

municipalities are Chicago, whose ban went into e¤ect in July 2005, and Washington D.C.

which banned cellular use by drivers beginning in July 2004. Several additional states have

legislated partial bans on cellular use but these bans typically target a modest fraction of

drivers. Table A5 in the Appendix enumerates the states and large municipalities with

complete or partial bans.69 Note that to the extent that drivers substitute hands-free

65Originally reported as 16%, the Kolko estimate is taken from Column 2 of Table 2 and is discussed in
the subsequent text and footnote. We adjust the �gure to 15% to account for the 70% ownership rate for
2005 which we use throughout the text.
66Speci�cally, we estimate the model presented in Column 5 after restricting the sample to 1999 to 2005.

We �nd a coe¢ cient estimate of ownership equal to .0016 (with a standard error of .0022).
67The introduction of linear and quadratic time trends reduces the point estimate of cell phone ownership

(%) from .0016 to -.0031. The introduction of an early control period with no cellular ownership reduces
the point estimate from .0016 to -.0008. The inclusion of both a control period and the time trends reduces
the point estimate to -.0001. None of these estimates are statistically signi�cant.
68One common exception is the use of cell phones for emergency calls.
69The table excludes numerous states which ban cellular use by school bus drivers. A list of municipalities

with bans can be found in �Cell Phones and Highway Safety: 2006 Legislative Update� published by the
National Conference of State Legislatures (Sundeen 2007).
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devices for banned handheld phones, our analysis tests for the di¤erence in crash risk

between hands-free and handheld use.

Our data on fatal crashes, from 1989 to 2007, allows us to explore the e¤ects of the

legislation in New York, New Jersey, Connecticut, as well as the large municipalities of

Chicago and Washington D.C. The analysis is at the state, rather than EA, level since

states are actually a more disaggregated unit of analysis for these regions, and EA ownership

data is not available for 2006. The ban in Chicago is treated as if it were for the entire

state of Illinois in this analysis.70 Since the bans are generally enacted during the year,

the analysis is at the monthly, rather than yearly, level. Unfortunately, our data on all

crashes fails to cover the regions and time periods of interest.

It is worth noting that the impact of handheld bans on the crash rate is multi-determined.

For example, the e¤ect of legislation on crashes is determined by the crash risk associated

with handheld use, driver compliance with the legislation, possible compensatory use of

hands-free devices, and in the event of such compensation, the crash risk associated with

hands-free use. There is some evidence that drivers, at least in the short-run, comply

to legislative bans although such compliance may dissipate in the long-run (McCartt and

Hellinga 2007). While much laboratory evidence suggests that the distracting e¤ects of

hands-free cell phones are comparable to handheld counterparts (Caird et al. 2008), it is

unclear to what extent drivers substituted to hands-free devices, particularly, during the

early years of the technology.

Figure A5 depicts the raw monthly counts of fatal crashes for the months preceding and

following the enactment of each complete ban for the regions of interest. With the possible

exception of New York, the �gure indicates no sharp drop in crashes for any of the regions

during the �ve months following ban enactments (t+5). We attribute the drop in crashes

in New York at least partially to drops in tra¢ c as a result of the attacks on September

11th, 2001. In fact, the New York legislation, while nominally enacted in November 2001,

was not enforced with binding �nes until March 2002 which corresponds to (t + 4) in the

�gure. Longer horizons reveal no systematic patterns across the regions.

In order to formally test for the e¤ects of the legislation, we estimate the following OLS

regression at the region level for fatal crashes each month from 1989 to 2007:

ln(Crash Rate)rym = �+�Banrmy+
Cell Ownry+� ln(Traffic)ry+�r+ �y+�m+"rym

where Banrmy is a dummy variable which indicates that a complete handheld ban was in

e¤ect for any part of a given state r, in month m, and year y. As before, we include a

70One might expect this to bias the results against �nding any e¤ect of the legislation but our basic results
are not sensitive to the inclusion of Illinois.
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control period with 0% ownership prior to 1993. Region, year, and month, �xed e¤ects are

included along with linear and quadratic time trends by region and year to �exibly control

for time and region speci�c variation in crashes.

In an initial speci�cation with just month, year and state �xed e¤ects, the estimated

coe¢ cient of interest, b� in Column 1 of Table A6 suggests a large and statistically signi�cant
13% drop in fatal crashes after the enactment of legislation. This is broadly consistent with

the �ndings of Kolko (2009). However, the inclusion of state speci�c linear and quadratic

time trends reduce the point estimate to a statistically insigni�cant -.08. Additional checks

reveal that the pattern of crashes in Washington D.C. is responsible for the negative point

estimate. Given the modest fatal crash rate in Washington D.C. (about 4 per month),

any small change in crashes strongly alters the estimated coe¢ cients given the construction

of the dependent variable. The exclusion of Washington D.C. eliminates the apparent

negative e¤ect of the legislation as reported in Column 3.

To better understand the time-path impact of the legislation, we estimate the above

model with dummy variables indicating 1 month, 2 to 3 month, 4 to 6 month and > 6 month

horizons. The estimates in the �nal three columns suggest that, without controlling for time

trends, the legislation prompted a statistically signi�cant reduction in the long-run crash

rate. However, with time trends included, the ban appears to have no signi�cant impact on

fatal crashes. Excluding Washington D.C. eliminates the negative point estimates entirely.

7.3 Model of Compensatory Response

We consider a simple model which illustrates the conditions under which a rational driver

might compensate in the face of bene�cial, but distracting, cell phone use. De�ne driver

utility as follows:

U(s; c;m) = v(c) + w(s)�mc� p(s; c)L

Here s is the driving speed. Driver utility increases with higher speeds because drivers value

their time and possibly enjoy such driving independently. However, speeding is subject

to diminishing marginal utility such that ws > 0 and wss < 0. Drivers enjoy cell phone

use, denoted by c, but the bene�t of such use is also subject to diminishing marginal utility

such that vc > 0 and vcc < 0. Additionally, m is the unit cost of cell phone use while the

probability of an accident, p, is an increasing and convex function of speed and cell phone

use such that ps > 0, pc > 0, pss > 0 and pcc > 0. We also assume that pcs > 0 to indicate

that cellular use is increasingly dangerous at high speeds. Finally, L represents the loss

from an accident and L � m.

For a given unit cost, m, a driver chooses (s�, c�) to maximize utility (see Appendix

for derivation of �rst and second order conditions). The e¤ect of a change in the cost of
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cellular usage, m, on the probability of an accident, p(s�; c�) can be expressed as:

dp(s�; c�)

dm
= ps

ds�

dm
+ pc

dc�

dm

A fall in the price of a cellular call, m, all else equal, will increase the probability of an

accident by increasing cellular usage since dc�

dm < 0. However, even if cellular use rises, the

probability of a crash may remain unchanged, or even fall, so long as the driver compensates

for the increased danger by driving more slowly (i.e., if ds
�

dm > 0).

We can show that such compensation arises under the stated assumptions and prefer-

ences by solving for ds
�

dm (derivation below):

ds�

dm
=

pscL

(wss � pssL)(vcc � pccL)� p2scL2

The numerator of the above equation is positive. The denominator can be expanded and

rewritten as wssvcc�wsspccL�vccpssL+(psspccL2�p2scL2). Under the stated assumptions
and preferences each term in this expression is positive which ensures that ds

�

dm > 0. The

relative magnitude of the respective terms determines whether partial, complete, or over-

compensation occurs.

Derivation of Solution. The �rst order conditions of the model are given by:

Us : ws � psL = 0

Uc : vc �m� pcL = 0

Total di¤erentiation of the �rst order condition for (s�, c�) yields:

wss
ds�

dm
� L(pssds�dm+ psc

dc�

dm
) = 0

vcc
dc�

dm
� L(psc

ds�

dm
+ pcc

dc�

dm
) = 0

Note that the second order condition requires that the Hessian is negative semi-de�nite.

While it is easily seen that Uss < 0, a second requirement is that:

UssUcc � U2sc : (wss � pssL)(vcc � pccL)� p2scL > 0

We can recast the above expression as:

UssUcc � U2sc : wssvcc � wsspcc � vccpssL+ (psspcc � p2sc)L2 > 0
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The �rst three terms of the expression are positive while the last term is positive so long

as psc is su¢ ciently small.

7.4 Additional Tables and Figures

Table A1

SUMMARY OF DATA SOURCES

DATA SOURCE YEARS DESCRIPTION

CRASH / TRAFFIC RECORDS
Crash Records State Data System (SDS) 1990 to 2005 Crash records for all crashes for nine states

Fatal Crash Records Fatality Analysis Reporting System (FARS) 1989 to 2007 Crash records for all fatal crashes for all 50 states

State-Year Traffic Federal Highway Administration 1989 to 2007 Traffic volume by state by year
Minute Level Traffic Performance Evaluation Monitoring System 2002 to 2005 Raw 30 second and 5 minute counts from several

thousand traffic detectors on CA roadways

CELL PHONE OWNERSHIP
Cellular Subscribers Cellular Telephone Industry Association 1999 to 2007 Cellular subscribers by state by year

Federal Communications Commission 2001 to 2007 Cellular subscribers by Economic Area (EA)

Population Bureau of Labor Statistics 1990 to 2007 Yearly population by county

EA - County Codes The Bureau of Economic Analysis 2000 EA codes for each county

CELL PHONE CALL VOLUME

Major Network Provider 2005
Cellular signals from moving users in a large

contiguous CA region spanned by 300 to 400 cell
phone towers over 11 days in 2005

Reality Mining Project, MIT 2004 to 2005
Logs tracking 80,000 outgoing cellular calls for 65

students/faculty at MIT during academic year

TNS Telecom 2000 to 2001 Data from cellular phone bills for 9864 households

Provider Pricing Plans Econ One Research 1999 to 2005
Monthly snapshots of historical pricing plan details
for all providers across major national markets each

year from 1999 to 2005
Provider Market Shares FCC CMRS Competition Reports 1999 to 2005 Market shares for top 25 providers by year
Churn Rates S&P Industry Surveys 2001 to 2005 Market shares for top 25 providers by year

CELL PHONE PRICING
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Table A2

PRICING THRESHOLDS FOR CALLING PLANS FROM 1999 TO 2005

ALL NATIONAL MARKETS

NONE 6PM 7PM 8PM 9PM 10PM SUB MKT SH NONE 6PM 7PM 8PM 9PM 10PM SUB MKT SH

Verizon 266 0 47 161 66 75 30% Verizon 340 0 0 0 1634 0 24%
SBC 78 0 0 52 25 26 19% Cingular 0 0 432 0 432 0 15%
AT&T 122 0 34 1 90 0 12% AT&T 336 0 0 0 1050 0 14%
Sprint 74 0 5 124 64 0 7% Sprint 0 0 390 0 780 0 10%
Voicestream 42 0 0 0 0 0 3% T-Mobile 0 0 0 0 546 0 8%
Western 62 0 10 28 0 0 1% Nextel 104 0 0 0 156 0 8%
Powertel 10 0 0 0 0 0 1% Alltel 0 0 0 0 67 0 5%
US West 60 0 0 0 0 0 1% US Cellular 0 0 0 0 48 0 3%
Cincinnati Bell 15 0 0 0 0 0 0.2% Metro PCS 8 0 0 0 0 0 1%

Qwest 60 0 0 0 0 0 1%
Cincinnati Bell 0 0 0 0 19 0 0.3%

New Share 50% 0% 6% 23% 15% 6% 86.0m 0.72
Legacy Share 46% 0% 6% 23% 16% 9%

New Share 13% 0% 13% 0% 74% 0% 158.7m 0.88
Legacy Share 30% 0% 5% 11% 51% 3%

Verizon 603 0 33 0 31 87 25%
Cingular 350 0 0 12 0 0 18%
AT&T 282 0 0 140 0 0 14% Cingular 0 0 0 0 273 0 27%
Sprint 0 0 0 750 0 0 9% Verizon 0 0 0 0 1952 0 24%
Alltel 26 0 0 0 0 0 6% Sprint 0 0 390 0 2236 0 12%
T-Mobile 112 0 0 0 0 0 4% T-Mobile 0 0 0 0 546 0 10%
Western 70 0 0 0 11 0 1% Nextel 104 0 0 0 302 0 9%
Powertel 13 0 0 0 0 0 1% Alltel 0 0 0 0 72 0 5%
Qwest 65 0 0 0 0 0 1% US Cellular 0 0 8 0 74 0 3%
Cincinnati Bell 20 0 0 1 0 0 0.3% Metro PCS 16 0 0 0 0 0 1%

Qwest 0 0 55 0 145 0 0%
Cincinnati Bell 0 0 0 0 15 0 0.3%

New Share 60% 0% 1% 33% 2% 4% 109.5m 0.78
Legacy Share 59% 0% 4% 21% 10% 7%

New Share 2% 0% 7% 0% 91% 0% 182.1m 0.90
Legacy Share 0.89

Verizon 662 0 0 281 54 0 23%
Cingular 12 0 0 0 326 83 17%
AT&T 184 0 0 322 0 0 14% Cingular 0 0 494 0 182 0 26.0%
Sprint 0 0 0 0 550 0 11% Verizon 312 0 0 0 678 0 24.7%
T-Mobile 108 0 0 0 0 0 5% Sprint 0 1298 1298 0 1298 0 21.6%
Alltel 0 0 0 62 0 0 5% T-Mobile 0 0 0 0 390 0 10.4%
Qwest 0 0 0 40 0 0 1% Alltel 0 0 66 0 66 0 5.1%
Cincinnati Bell 10 0 0 0 6 0 0.4% US Cellular 0 0 124 0 40 0 2.4%
PrimeCo 12 0 0 0 0 0 0.3% Metro PCS 20 0 0 0 0 0 1.0%

Cincinnati Bell 0 0 0 0 8 0 0.2%

New Share 37% 0% 0% 26% 34% 3% 128.4m 0.77
Legacy Share 50% 0% 2% 24% 18% 6% New Share 5% 20% 32% 0% 43% 0% 207.9m 0.91

Legacy Share 21% 0% 4% 7% 66% 2%

Verizon 360 0 0 71 1568 0 23%
Cingular 11 0 0 0 432 0 16% 1999 2000 2001 2002 2003 2004 2005
AT&T 204 0 0 0 1092 0 15%
Sprint 0 0 0 0 500 0 10%
T-Mobile 200 0 0 0 0 0 7% Estimated Churn 27% 27% 27% 26% 22% 22% 20%
Alltel 0 0 0 0 65 0 5%
US Cellular 0 0 0 0 28 0 3%
Leap Wireless 3 0 0 0 0 0 1% NONE 6PM 7PM 8PM 9PM 10PM
Qwest 23 0 25 0 0 0 1%
Cincinnati Bell 9 0 0 0 9 0 0.3% Average Weighted

Legacy, 2002-05 26% 1% 7% 9% 55% 2%

New Share 18% 0% 1% 2% 80% 0% 140.8m 0.81
Legacy Share 39% 0% 2% 16% 39% 4%

2004

2005

1999

2000

2001

Notes: The table displays the distribution of pricing plans associated with each switching threshold by provider and year as well as calculations which estimate the new and legacy share of subscribers associated with each
threshold by year.  The data on plan counts is from monthly snapshots of provider websites originally reported in the Wireless Survey administered by Econ One Research.  All years are for the month of December except for 1999
which displays plan data from September.  New Shares for each year reflect the unweighted fraction of plans associated with each threshold and provider weighted by national market shares for each provider.  Market shares for
the top 25 providers each year are collected from annual FCC CRMS reports.  New Shares are scaled up to account for unknown market shares.  Legacy shares are calculated by applying annual churn rates--listed above and
gathered from S&P Analyst Surveys--to the threshold shares each year.  Assumptions of the legacy calculations are outlined in the text.  Legacy Shares weighted by total subscribers for 2002 to 2005 are listed as well.

2002

2003
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Table A3

DEPENDENT VARIABLE -CALLS PER MINUTE BIN (MIT)

9PM THRESHOLD ANALYSIS 8PM 10PM

Mon - Thu Friday Weekend Mon - Thu Mon - Thu
(1) (2) (3) (4) (5)

After 9pm 1.227*** 0.958 0.994
(0.054) (0.069) (0.062)

After 8pm 1.120***
(0.048)

After 10pm 0.984
(0.042)

N N = 20880 N = 5160 N = 10440 N = 20880 N = 20880

DEPENDENT VARIABLE - HOURLY CALLS BY CALLER (TNS)

SWITCHING THRESHOLD ANALYSIS - 1 HR + 1 HR

Mon - Thu Friday Weekend Mon - Thu Mon - Thu

Switching Threshold 1.225*** 1.143 1.116 0.871 1.084
(0.057) (0.094) (0.075) (0.096) (0.140)

After Switching 1.045 0.829 1.191* 1.126 1.054
Threshold (0.069) (0.095) (0.110) (0.210) (0.220)

N N = 2009 N = 2009 N = 2009 N = 1369 N = 1369

Notes:  The table es timates the change in call likelihood for two additional sets of cellular call data.  The upper
panel presents the estimated rise in calls at 9pm and other placebo hours for a sample of MIT callers from 2004
and 2005.  The first three columns estimate the rise in outgoing calls at 9PM for Monday to Thursdays, Fridays
and the Weekend respectively.  The final two columns present placebo estimates for changes in call likelihood
at 8PM and 10PM on Monday to Thursdays.  All specifications are Poisson estimates run at the minute level,
and the reported estimates are incidence rate ratios.  Robust standard errors clustered by date are presented
parenthetically.  The lower panel presents the estimates from the TNS sample of callers in 2000 for 2001.  The
first three columns report the estimated change in outgoing calls at the switching threshold for each caller for
Monday to Thursdays, Fridays and Weekends respectively.  The final two columns present placebo estimates
that test for changes an hour before and an hour after the switching threshold.  All specifications are Poisson
estimates run at the hourly x caller level and the reported estimates are incidence rate ratios.  Robust standard
errors clustered by caller are reported parenthetically.

* significant at 10%; ** significant at 5%; *** significant at 1%

CHANGE IN CALL VOLUME AT PLAN THRESHOLD (MIT / TNS)
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