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Abstract

Accommodating couples has been a longstanding issue in the design of centralized labor market

clearinghouses for doctors and psychologists, because couples view pairs of jobs as complements. A

stable matching may not exist when couples are present. This paper’s main result is that a stable

matching exists with high probability in large markets with relatively few couples and preference

lists that are not too long. We also present a mechanism that finds a stable matching with high

probability, and which makes truth-telling by all participants an approximate equilibrium. We relate

these theoretical results to the job market for psychologists, in which stable matchings exist for all

years of the data, despite the presence of couples.
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1 Introduction

One of the big 20th century transformations of the American labor market involves the increased labor

force participation of married women, and the consequent growth in the number of two-career households.1

When a couple needs two jobs, they face a hard problem of coordination with each other and with their

prospective employers. The search and matching process for the spouses can involve very different timing

of searches and hiring. The couple may be forced to make a decision on a job offer for one member of

the couple before knowing what complementary jobs may become available for the other or what better

pairs of jobs might become available elsewhere.

An unusually clear view of this problem can be found in the history of the entry-level labor market

for American doctors. Since the early 1900s, new U.S. medical graduates have been first employed as

“residents” at hospitals, where they work under the supervision of more senior, licensed doctors. This

market experienced serious problems having to do with the timing of offers and acceptances, and this

unraveling of the market led to the creation of a centralized clearinghouse in the 1950s that drew high rates

of participation (see Roth (1984, 2003) and Roth and Xing (1994) for further details). Medical graduates

were almost all men throughout this period, but by the 1970s there were enough women graduating from

medical school so that it was not unheard of for two new medical graduates to be married to each other.2

Many couples felt that the existing clearinghouse did not serve them well, and starting in the 1970s,

significant numbers of these couples began seeking jobs outside of the clearinghouse.

Roth (1984) argues that this was because the matching algorithm used until then did not allow

couples to appropriately express preferences. That paper shows that, in a market without couples, the

1950s clearinghouse algorithm is equivalent to the deferred acceptance algorithm of Gale and Shapley

(1962), and that it produces a stable matching for any reported preferences – loosely speaking, this is

a matching such that there is no pair of hospital and doctor who want to be matched with each other

rather than accepting the prescribed matching.3 It then observes that the algorithm often fails to find a

stable matching when there are couples, and argues that a main problem of the mechanism is that (prior

to the 1983 match) it did not allow couples to report preferences over pairs of positions, one for each

member of the couple. Roth and Peranson (1999) designed the current algorithm, which elicits and uses

couples’ preferences over pairs of positions, and this design has been adopted by more than 40 centralized

clearinghouses including the American labor market for new doctors, the National Resident Matching

Program (NRMP).4

But the problem is difficult even if couples are allowed to express their preferences over pairs of

1See, for instance, Costa and Kahn (2000) for a description of the trends in the labor market choices for college-educated
couples since World War II.

2In the 1967-68 academic year, 8% of the graduates of U.S. medical schools were women. By 1977-78 this fraction had
risen to 21%, and by 2008-09 to 49% (Jonas and Etzel (1998), and http://www.aamc.org/data/facts/charts1982to2010.pdf).

3Section 3 provides a precise definition of our stability concept. The evidence suggests that the stability of the match
plays an important role in attracting high rates of participation (Roth, 1990, 1991).

4See Roth (2007) for a recent list of these clearinghouses as well as a survey of the literature. See also Sönmez and Ünver
(2009).
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positions, because there does not necessarily exist a stable matching in markets with couples (Roth,

1984). However, some matching clearinghouses seem to regularly entertain high rates of participation

and appear to have produced matchings that are honored by participants. In fact, it has been reported

that there have only been a few occasions in which a stable matching was not found over the last decade

in several dozen annual markets (Peranson, private communication). Moreover, in the largest of these

markets, the NRMP, Roth and Peranson (1999) run a number of matching algorithms using submitted

preferences from 1993, 1994 and 1995 and find no instance in which any of these algorithms failed

to produce a stable matching. Why do these matching clearinghouses produce stable outcomes from

submitted preferences even though existing theory suggests that stable matchings may not exist when

couples are present?

This is the puzzle we address, and this paper argues that the answer may have to do with the size

of the market. We consider a sequence of markets indexed by the number of hospitals, where doctors’

preferences are drawn from some distribution. When the number of couples does not grow too fast

relative to the market size, under some regularity conditions, our main result is to demonstrate that

the probability that a stable matching exists converges to one as the market size approaches infinity.

Moreover, we provide an algorithm that finds a stable matching with a probability that converges to one

as the market size approaches infinity.

In practice, preferences are private information, and the matching clearinghouse needs to elicit the

information from participants. This motivates our analysis of the incentive properties of a particular

matching mechanism in markets with couples. More specifically, we first define a mechanism similar to

Roth and Peranson’s algorithm, used in many existing markets. For a Bayesian game in which doctors

and hospitals submit their preferences to this mechanism, our second result is that truth-telling is an

approximate Bayes Nash equilibrium in any market with a sufficiently large number of hospitals.

As our theoretical analysis only provides limit results, we study data on submitted preferences from

the centralized market for clinical psychologists. In the late 1990s, the market evolved from a decentralized

one to one employing a centralized clearinghouse (Roth and Xing, 1997), where a key design issue was

whether it would be possible to accommodate the presence of couples. Keilin (1998) reports that under

the old decentralized system couples had difficulties coordinating their internship choices. In 1999,

clinical psychologists adopted a centralized clearinghouse using an algorithm based on Roth and Peranson

(1999), in which couples are allowed to express preferences over hospital pairs. We explore a variation of

the Roth-Peranson procedure to investigate the existence of a stable matching from nine years of data

from 1999-2007. Using our algorithm, we are able to find a stable matching with respect to the stated

preferences of participants in all nine years.

Related Literature

This paper is related to several lines of work. First, it is part of research in two-sided matching with

couples. Existing studies are mostly negative: Roth (1984) and unpublished work by Sotomayor show
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that there does not necessarily exist a stable matching when there are couples, and Ronn (1990) shows

that it may be computationally hard even to determine if a stable matching exists. Klaus and Klijn (2005)

provide a maximal domain of couple preferences that guarantees the existence of stable matchings. While

their preference domain has a natural interpretation, our paper finds that preferences of almost all couples

in our psychology market data violate their condition.5 This empirical fact motivates our appeal to large

market arguments.

The second line of studies related to this paper is the growing literature on large matching markets.

Roth and Peranson (1999) conduct simulations based on data from the NRMP which includes couples and

randomly generated data. They find suggestive evidence that in large markets, a stable matching is likely

to exist and stable matching mechanisms are difficult to manipulate. We also examine data from the

psychologist market and demonstrate that a stable matching exists for all years we have access to data.

One of the findings of Roth and Peranson (1999) is that the opportunities for manipulation vanish in

large markets if doctor preference lists are bounded as market size grows, but such a result does not hold

if each doctor lists all hospitals in her preference list. Moreover, in the market for clinical psychologists

and the NRMP, each applicant can physically interview at a small number of potential employers. These

two considerations motivate our theoretical analysis based on bounded doctor preference lists.

The closest theoretical work to this paper is Kojima and Pathak (2009). That paper shows that

hospitals are unlikely to be able to manipulate the student-optimal stable mechanism in a large market.

While the use of large market arguments in both papers are similar, the questions studied are substantially

different. A stable matching always exists in the model without couples, while it is not guaranteed to

exist when couples are present. This paper’s use of large market arguments to establish the existence of

a stable matching is, as far as we know, new in the matching literature. A second difference is that in

the student-optimal stable mechanism without couples, truth-telling is a dominant strategy for students.

Unfortunately, we cannot use this fact in our model with couples, as single doctors may have an incentive

to manipulate when couples are present. Hence, our analysis on incentives requires additional steps to

handle these issues.

Large market arguments have been used in a number of other recent studies of the incentive and effi-

ciency of matching mechanisms in two-sided matching (Bulow and Levin, 2006; Immorlica and Mahdian,

2005) and in the closely related assignment or one-sided matching model (Abdulkadiroğlu et al., 2008;

Budish, 2010; Che and Kojima, 2010; Kojima and Manea, 2009; Manea, 2009). We describe subsequent

work by Ashlagi et al. (2010) in the Conclusion. While the analysis of large markets is relatively new

in the matching literature, it has a long tradition in economics. For example, Roberts and Postlewaite

(1976) and Jackson and Manelli (1997) show that, under some conditions, the Walrasian mechanism

5Preference restrictions are also used to study incentives for manipulation in matching markets. The restriction under
which incentive compatibility can be established is often very strong, as shown by Alcalde and Barberà (1994), Kesten
(2006b), Kojima (2007), and Konishi and Ünver (2006b) for various kinds of manipulations. Similarly, in the context of
resource allocation and school choice (Abdulkadiroğlu and Sönmez, 2003), necessary and sufficient conditions for desirable
properties such as efficiency and incentive compatibility are strict (Ergin, 2002; Kesten, 2006a; Haeringer and Klijn, 2009;
Ehlers and Erdil, 2010). Another approach is based on incomplete information (Roth and Rothblum, 1999; Ehlers, 2004,
2008; Kesten, 2009; Erdil and Ergin, 2008).
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is difficult to manipulate in large exchange economies. Similarly, Gresik and Satterthwaite (1989) and

Rustichini et al. (1994) study incentive properties of a large class of double auction mechanisms.

Finally, a couple preference is a particular form of complementarity, and this paper can be put

in the context of the larger research program on the role of complementarities in resource allocation.

Complementarities have been identified to cause non-existence of desirable solutions in various contexts

of resource allocation. There has been a recent flurry of investigations on complementarities and existence

problems in auction markets (Milgrom, 2004; Gul and Stacchetti, 2000; Sun and Yang, 2009), general

equilibrium with indivisible goods (Bikhchandani and Ostroy, 2002; Gul and Stacchetti, 1999; Sun and

Yang, 2006), and matching markets (Hatfield and Kominers, 2009; Ostrovsky, 2008; Sönmez and Ünver,

2010; Pycia, 2010).

The layout of this paper is as follows. The next section describes some features of the market for

clinical psychologists and lays out a series of stylized facts on matching with couples based on data from

this market. Section 3 defines the model and describes a simple theory of matching with couples in a

finite market. Section 4 introduces the large market assumptions. Section 5 states our main results on

existence, while Section 6 describes our incentive result. Section 7 concludes.

2 The Market for Internships in Professional Psychology

2.1 Background

The story of how design has been influenced by the presence of couples in the National Resident Matching

Program (NRMP) has parallels in the evolution of the market for internships in professional psychology.6

Roth and Xing (1997) described this market through the early 1990s. From the 1970’s through the late

1990’s, this market operated in a decentralized fashion (with frequent rule changes), based on a “uniform

notification day” system in which offers were given to internship applicants over the telephone within

a specific time frame (e.g., a 4 hour period on the second Monday in February). All acceptances and

rejections of offers occurred during this period. Keilin (2000) described the system as “problematic,

subject to bottlenecks and gridlock, encouraging the violation of guidelines, and resulting in less-than-

desirable outcomes for participants.”

In 1998-1999, the Association of Psychology Postdoctoral and Internship Centers (APPIC) switched

to a system in which applicants and internship sites were matched by computer. A major debate in this

decision was whether a centralized system could handle the presence of couples. In the old decentralized

scheme it was challenging for couples to coordinate their internship choices. Keilin (1998) reports that

one partner could be put in the position of having to make an immediate decision about an offer without

knowing the status of the other partner. Following the reforms of the National Resident Matching

6To be clear, we will concentrate on the match run by the Association of Psychology Postdoctoral and Internship Centers
(APPIC) for predoctoral internships in psychology, which involves clinical, counseling, and school psychologists. (This is
distinct from the postdoctoral match in neuropsychology.)

5



Program, a new scheme which allowed couples to jointly express their preferences was adopted.

With the permission of the APPIC, the company which runs the matching process, National Matching

Services, provided us with an anonymized dataset of the stated rank order lists of single doctors, couples

and hospitals and hospital capacities for the first nine years of the centralized system. Because of privacy

concerns, these data do not include any demographic information on applicants, and includes only limited

identifying information on programs.

2.2 Stylized facts

This section identifies some stylized facts from the internship market for professional psychologists. While

we do not have as detailed data from the NRMP, we also mention related facts from that market when

appropriate using information from annual reports.

The data are the stated preferences of market participants, so their interpretation may require some

caution. There are at least two parts to the process by which market participants form their preferences:

(1) they determine which applicants or internship programs may be attractive, and participate in inter-

views, and (2) after interviewing, they determine their rank ordering over the applicants or internship

programs they have interviewed. The model in this paper and the data do not allow us to say much about

the first stage of the application process. In determining where to interview, applicants likely factor in the

costs of traveling to interviews, the program’s reputation and a host of other factors. Programs consider,

among other things, the applicant’s recommendation letters and suitability for their program in deciding

whom to interview. Once market participants have learned about each other, they must come up with

their rank ordering. For the empirical analysis in this section, we abstract away from the initial phase

of mutual decisions of whom to interview, and our interpretation is that the data reflect the preferences

formed after interviews. This, and the fact that participants only seem to rank those with whom they

have had interviews, likely accounts for the relatively short rank order lists.

Even with this interpretation, the reported post-interview preferences may be manipulations of the

true post-interview preferences of market participants since truth-telling is not a dominant strategy for

all market participants. However, there are at least two reasons why treating submitted preferences as

true preferences may not be an unrealistic approximation. First, as noted in Section 6, the organizers

of the APPIC match emphasize repeatedly that market participants should declare their preferences

truthfully. Second, as we will see, Theorem 2 in Section 6 demonstrates that truthtelling is an approximate

equilibrium in large markets.

Table 1 presents some summary statistics on the market. On average, per year, there are 3,010 single

applicants and 19 pairs of applicants who participate as couples. In early years, there were just under

3,000 applicants, but the number of applicants has increased slightly in the most recent years. The

number of applicants who participate as couples has remained relatively small, varying between 28 and

44 (i.e. between 14 and 22 couples) which is about 1% of all applicants.7 On the surface, the small

7As the example in the next section shows, even one couple in the market may lead to non-existence of a stable matching.
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number of couples may appear surprising, but this number represents cases where two couple members

look for a job in professional psychology in the same year. If couple members wish to work in different

fields, or even in the same field, but in different years, each couple member simply applies as a single

applicant. In the National Resident Matching Program, from 1992-2009, there were on average 4.4%

of applicants participating as couples, with slightly more couples participating in the most recent years

(NRMP, 2009).

Fact 1: Applicants who participate as couples constitute a small fraction of all participating applicants.

Panel A of Table 1 shows the length of the rank order lists for applicants and programs. On average

across years, single applicants rank between 7 and 8 programs. Since there are 1,094 programs on average,

this means that the typical applicants ranks less than 1% of all possible programs. Even at the extreme,

the length of the longest single applicant’s rank order list is about 6.7% of all possible programs. In the

NRMP, the length of the applicant preference list is about 7-9 programs, which would be roughly 0.3% of

all possible programs.8 This may not be surprising because an applicant typically ranks a program only

after she interviews at the program, and each applicant receives and can travel to only a limited number

of interviews.

For couples, each entry in the rank order list is a pair of programs (or being unmatched). The

typical rank order list of couples averages 81 program pairs. However, the rank order list of a couple

has entries for both members, so there are many duplicate programs. When we consider the number of

distinct programs ranked by a couple, it is similar to the number ranked by single applicants: on average,

there are about 10 distinct programs listed by each couple member. At the extreme in our dataset, the

maximum number of distinct programs ranked by a couple member is 1.9% of all programs.

Of course, the fact that a doctor has a short preference list does not mean they prefer to leave the

profession if they cannot obtain one of their stated choices. Given our interpretation of preferences as

those formed after interviews, the short rank order list means doctors only interview at a fraction of

possible hospitals and they may have a complete ranking over these options. In the event that they are

unassigned, they either participate in the after-market in which they can learn about additional hospitals

or postpone their training for a year, as is commonly done by doing a research year to strengthen one’s

credentials.

Fact 2: The length of the rank order lists of applicants who are single or couples is small relative to the

number of possible programs.

The next issue we examine is the distribution of applicant preferences. In Figure 1, we explore the

popularity of programs in our data. For each program, we compute the total number of students who

rank that program as their top choice. We order programs by this number, with the program with the

highest number of top choices on the left and programs that no one ranks as their top choice on the

8This information is not available separately for single applicants and those who participate as couples in the NRMP.
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right. Figure 1 shows the distribution of popularity for 2003. In this year, the most popular program was

ranked as the top choice by 19 applicants, and there are 189 programs that are not ranked as a top choice

by any applicant. The other years of our dataset display a similar pattern. Averaged across all years,

the most popular program is ranked as a top choice by 24 applicants, and about 208 programs are not

ranked as a top choice by anyone. The fraction of applicants ranking the most popular program as their

first choice is only 0.8%. (Recall that these are preferences stated after interviews have been conducted,

so it does not preclude the possibility that there are popular programs that receive many applications

but only interview a small subset of applicants.)

Fact 3: The most popular programs are ranked as a top choice by a small number of applicants.

The only identifying information we have on programs are geographic regions where they are located.

The eleven geographic regions in our dataset are ten regions in the US, each of which corresponds to the

first digit of the zip code of the program’s location, and one region for all of Canada. Figure A1 illustrates

these regions and shows the number of programs in each region. The Figure shows that programs are

concentrated on the West Coast and in the Northeast. In Table 1, we report the number of distinct

regions ranked by applicants. Half of single applicants rank at most two regions. Couples, on the other

hand, tend to rank slightly more regions.

For a given couple rank order list, we also compute the fraction of entries on their submitted list that

have both jobs in the same region. On average, 73% of a couple’s rank order list is for programs in the

same region.

Fact 4: A pair of internship programs ranked by doctors who participate as a couple tend to be in the

same region.

In the psychology market, there are about 1,100 internship programs. The average capacity is about

2.5 seats, and more than three quarters of programs have three or fewer spots. The total capacity of

internship programs is smaller than the total number of applicants who participate, which implies that

each year there will be unmatched applicants. This is also true in the NRMP where the number of

positions per applicant ranges from 0.75-0.90 over the period 1995-2009 (NRMP, 2009).

Even though there are more applicants than programs, in the APPIC match, there are a sizable

number of programs that are unfilled at the end of the regular match. According to the APPIC’s

statistics, during 1999-2007, on average 17% of programs had unfilled positions. In the NRMP, a similar

proportion of programs had unfilled seats. In 2009, for instance, 12% of programs had unfilled positions.9

9In practice, to place these remaining applicants, both of these markets have a decentralized aftermarket where positions
are filled. In this market, applicants can communicate and informally interview with places they did not initially consider,
but under a very short time limits. In recent years there have been proposals to eliminate these processes completely
(see, e.g., Supplemental Offer and Acceptance Program (SOAP) described on http://www.nrmp.org/soap.pdf, accessed on
October 22, 2010.) The model in this paper is only about the main match and does not model this decentralized aftermarket,
though understanding how it may interact with the main round is an interesting question for future work.
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Fact 5: Even though there are more applicants than positions, many programs still have unfilled positions

at the end of the centralized match.

2.3 Stable Matchings in the Market for Psychologists

We next investigate whether a stable matching exists in the psychologist market.10 Roughly speaking,

this is a matching such that there is no pair of hospital and applicant who prefer each other to the

prescribed matching.11 We use a variant of the procedure by Roth and Peranson (1999) to compute a

stable matching.12 For each of the 9 years of data, a stable matching exists in the market with couples.

Table 2 shows that, on average, more than a third of single applicants obtain their top choice in this

stable matching, and 18% of couples obtain their top choice.13 The number of unassigned couples is

small (only about 5% of couples) while almost 20% of single applicants are unassigned.

Fact 6: A stable matching exists in all nine years in the market for psychologists.

We also compare the assignment of single applicants at the stable matching we find in a market with

couples to their assignment in the applicant-optimal stable matching in a market without couples in Table

2. While adding couples to the market could in principle affect the assignment received by many single

applicants, in practice it has little effect. This can be seen by comparing the overall distribution of choice

received for single applicant in a stable matching in markets without couples and with couples. Moreover,

Table 3 reports the exact number of single applicants who receive a less preferred assignment in the market

with couples. On average, there are 19 couples or 38 applicants who participate as couples in the market

and because of their presence, only 63 single applicants obtain a lower choice. This corresponds to about

3 single applicants obtaining a different assignment per couple.

Fact 7: Across stable matchings, most single applicants obtain the same position in the market without

couples as in the market with couples.

10The model we analyze in this paper allows employers to have preferences over sets of applicants provided that the
preferences are responsive. Our data on program rank order lists consist only of preferences over individual applicants.
We do not know, for instance, whether a program prefers their first and fourth ranked applicants over their second and
third ranked applicants. To compute a stable matching in the market for psychologists, it is necessary to specify how
comparisons between individual applicants relate to comparisons between sets of applicants. For the empirical computation,
when comparing sets of applicants D1 and D2, we assume that D1 is more preferred to D2 if the highest individually ranked
applicant in D1 who is not in D2 is preferred to the highest individual ranked applicant in D2 who is not in D1. This
would imply that the first and fourth ranked applicant are preferred over the second and third ranked applicant. (We take
advantage here of the more flexible formulation of preferences over sets that we employ, compared to that used in practice.)

11Section 3 provides a precise definition of our stability concept.
12Our variation has a different sequencing of applications from single applicants and couples than that described in Roth

and Peranson (1999). That paper gives some evidence that these sequencing decisions have little impact on the success of
the procedure.

13We focus on a particular stable matching in the market with couples, since we are unable to compute the entire set of
stable matchings. There may be a reason to suspect that this set is small. In Table A.1 in the appendix, we compute stable
matchings in the market without couples and find that very few applicants and programs have different assignments across
the applicant-optimal and program-optimal stable matchings.
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In summary, this section describes some stylized facts that influence our choice of modeling assump-

tions. For the psychologist market, we are able to find a stable matching for each year for which we have

data, which motivates our search for an existence result.

3 A Simple Theory of Matching with Couples

3.1 Model

A matching market consists of hospitals, doctors, and their preferences. Let H be the set of hospitals

plus an outside option ∅ for doctors. S is the set of single doctors and C is the set of couples of doctors.

Each couple is denoted by c = (f,m), where f and m denote the first and second members of couple c

respectively. When we need to refer to the members of a specific couple c, we sometimes write (fc,mc).

Let F = {f |(f,m) ∈ C for some m} and M = {m|(f,m) ∈ C for some f} be the sets of first and second

members that form couples. Let D = S ∪ F ∪M be the set of doctors.

Each single doctor s ∈ S has a preference relation Rs over H. We assume that preferences are strict:

if hRsh� and h�Rsh, then h = h�. We write hPsh� if hRsh� and h �= h�. If hPs∅, we say that hospital h is

acceptable to single doctor s.

Each couple c ∈ C has a preference relation Rc over H × H, pairs of hospitals (and being un-

matched). We assume that preferences of couples are strict with Pc denoting the asymmetric part of Rc.

If (h, h�)Pc(∅, ∅), then we say that pair (h, h�) is acceptable to couple c. We say that hospital h is listed

by Rc if there exists h� ∈ H (so h� may be ∅) such that either (h, h�)Pc(∅, ∅) or (h�, h)Pc(∅, ∅).
Each hospital h ∈ H \ {∅} has a preference relation over 2D, all possible subsets of doctors. We

assume preferences of hospitals are strict. Let h ∈ H \ {∅} and κh be a positive integer. We say

that preference relation �h is responsive with capacity κh if it ranks a doctor independently of her

colleagues and disprefers any set of doctors exceeding capacity κh to being unmatched (see Appendix A.1

for a formal definition). We follow much of the matching literature and assume that hospital preferences

are responsive throughout the paper. Let Rh be the corresponding preference list of hospital h, which

is the preference relation over individual doctors and ∅. We write dPhd� if dRhd� and d �= d�. We say that

doctor d is acceptable to hospital h if dPh∅. We write �H= (�h)h∈H . We refer to a matching market Γ

as a tuple (H,S,C, (�h)h∈H , (Ri)i∈S∪C).

We proceed to define our stability concept in markets with couples. The descriptions are necessarily

somewhat more involved than those in the existing literature because we allow for capacity of hospitals

larger than one (we will elaborate on the issue in Section 3.1.1). First, it is convenient to introduce the

concept of hospital choices over permissible sets of doctors. For any set of doctors and couplesD� ⊆ D∪C,
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define

A(D�) = {D�� ⊆ D|∀s ∈ S, if s ∈ D�� then s ∈ D�,

∀c ∈ C, if {fc,mc} ⊆ D��, then (fc,mc) ∈ D�,

if fc ∈ D�� and mc �∈ D��, then fc ∈ D�,

if fc �∈ D�� and mc ∈ D��, then mc ∈ D�}.

In words, A(D�) is the collection of sets of doctors available for a hospital to employ when doctors (or

couples of doctors)D� are applying to it. Underlying this definition is the distinction between applications

by individual couple members and those by couples as a whole. For example, if (f,m) ∈ D� ∩ C but

f,m /∈ D�, then the couple is happy to be matched to the hospital if and only if both members are

employed together, while if (f,m) /∈ D� but {f,m} ⊆ D�, then the couple is happy to have one member

matched to the hospital but not together.

For any set D� ⊆ D ∪ C, define the choice of hospital h given D�, Chh(D�), to be the set such that

• Chh(D�) ∈ A(D�),

• Chh(D�) �h D�� for all D�� ∈ A(D�).

The choice Chh(D�) is the most preferred subset of doctors among those in D� such that each couple

is either chosen or not chosen together if they apply as a couple.14

A matching specifies which doctors are matched to which hospitals (if any). Formally, a matching

µ is a function defined on the set H ∪S ∪C, such that µ(h) ⊆ D for every hospital h, µ(s) ∈ H for every

single doctor s, and µ(c) ∈ H ×H for every couple c where

• µ(s) = h if and only if s ∈ µ(h) and

• µ(c) = (h, h�) if and only if fc ∈ µ(h) and mc ∈ µ(h�).

When there are only single doctors in D�, the set A(D�) is simply the set of subsets of D�. Hence the

choice Chh(D�) is the subset of D� that is the most preferred by h. This is the standard definition of

Chh(·) in markets without couples (see Roth and Sotomayor (1990) for example), and hence the current

definition is a generalization of the concept to markets with couples.

A matching is individually rational if no player can be made better off by unilaterally rejecting

some of the existing partners (see Appendix A.1 for a formal definition). We define different cases of a

block as follows:

(1) A pair of a single doctor s and a hospital h is a block of µ if hPsµ(s) and s ∈ Chh(µ(h) ∪ s).

14We denote a singleton set {x} simply by x whenever there is no confusion. This formulation of hospital preferences
involving couples is more general than currently implemented in practice, where hospitals’ preferences are elicited only over
individual members of a couple.
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(2) (a) A coalition (c, h, h�) ∈ C ×H ×H of a couple and two hospitals, where h �= h�, is a block of

µ if

• (h, h�)Pcµ(c),

• fc ∈ Chh(µ(h) ∪ fc), and

• mc ∈ Chh�(µ(h�) ∪mc).

(b) A pair (c, h) ∈ C ×H of a couple and a hospital is a block of µ if

• (h, h)Pcµ(c) and

• {fc,mc} ⊆ Chh(µ(h) ∪ c).

A matching µ is stable if it is individually rational and there is no block of µ.

3.1.1 Discussion of the solution concepts

Models of matching with couples where hospitals have multiple positions are a particular form of many-

to-many matching because each couple may seek two positions.15 Various definitions of stability have

been proposed for many-to-many matching, which differ based on the assumptions on what blocking

coalitions are allowed (Sotomayor, 1999, 2004; Konishi and Ünver, 2006a; Echenique and Oviedo, 2006).

Consequently, there are multiple possible stability concepts in matching with couples. The present

definition of stability allows us to stay as close to the most commonly used pairwise stability as possible,

by assuming away deviations involving large groups. Ruling out large coalitions appears to be reasonable

because identifying and organizing large groups of agents may be difficult.

It is nevertheless important to understand whether our analysis is sensitive to a particular definition

of stability. To address this issue, in Appendix A.2 we present an alternative definition of stability that

allows for larger coalitions to block a matching. We show that all the results of this paper hold under

that definition as well.

Most studies in matching with couples have focused on the case in which every hospital has capacity

one.16 Following the standard definition of stability in such models (see Klaus and Klijn (2005) for

instance), we say that a matching µ is unit-capacity stable if

(1) µ is individually rational,

(2) there exists no single doctor-hospital pair s, h such that hPsµ(s) and sPhµ(h), and

(3) there exists no coalition by a couple c = (f,m) ∈ C and hospitals (or being unmatched) h, h� ∈ H

with h �= h� such that (h, h�)Pcµ(c), fRhµ(h) and mRh�µ(h�).17

15More precisely, Hatfield and Kojima (2008, 2009) point out that the model is subsumed by a many-to-many generalization
of the matching model with contracts as analyzed by Hatfield and Milgrom (2005).

16Some papers consider multiple positions of hospitals but treat a hospital with capacity larger than one as multiple
hospitals with capacity one each. This approach is customary and innocuous when there exists no couple because most
stability concepts are known to coincide in that setting (Roth, 1985). However the approach has a consequence if couples
exist since it leads to a particular stability concept. A different modeling approach is pursued by McDermid and Manlove
(2009).

17We adopt the notational convention that dR∅d
� for any d, d� ∈ D ∪ ∅.
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Our concept of stability is equivalent to the unit-capacity stability as defined above if every hospital

has responsive preferences with capacity one. To see this, first observe that condition (3) of unit-capacity

stability is equivalent to the nonexistence of a block as defined in condition (2a) of our stability concept.

Moreover, condition (2b) of our stability concept is irrelevant when each hospital has capacity one because

a hospital with capacity one never prefers to match with two members of a couple. Finally, the remaining

conditions for unit-capacity stability have direct counterparts in our definition of stability. Thus the

stability concept employed in this paper is a generalization of the standard concept to the case where

hospitals have multiple positions.

Also note that our stability concept is equivalent to the standard definition of (pairwise) stability when

there exist no couples. More specifically, condition (2) of our stability concept is irrelevant if couples are

not present, and condition (1) is equivalent to the nonexistence of a blocking pair which, together with

individual rationality, defines stability in markets without couples.

3.2 The Existence Problem with Couples

We illustrate how the existence of couples poses problems in the theory of two sided matching. To

understand the role of couples, however, it is useful to start by considering a matching without couples.

In that context, the (doctor-proposing) deferred acceptance algorithm defined below always produces

a stable matching (Gale and Shapley, 1962).

Algorithm 1. Doctor-Proposing Deferred Acceptance Algorithm

Input: a matching market (H,S, (�h)h∈H , (Rs)s∈S) without couples.

• Step 1: Each single doctor applies to her first choice hospital. Each hospital rejects its least-preferred

doctor in excess of its capacity and all unacceptable doctors among those who applied to it, keeping

the rest of the doctors temporarily (so doctors not rejected at this step may be rejected in later

steps).

In general,

• Step t: Each doctor who was rejected in Step (t-1) applies to her next highest choice (if any).

Each hospital considers these doctors and doctors who are temporarily held from the previous step

together, and rejects the least-preferred doctors in excess of its capacity and all unacceptable doctors,

keeping the rest of the doctors temporarily (so doctors not rejected at this step may be rejected in

later steps).

The algorithm terminates at a step where no doctor is rejected. The algorithm always terminates in a

finite number of steps. At that point, all tentative matchings become final. Gale and Shapley (1962) show

that for any given market without couples, the matching produced by the deferred acceptance algorithm is

stable. Furthermore, they show that it is the doctor-optimal stable matching, the stable matching that is

weakly preferred to any other stable matching by all doctors.
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By contrast, stable matchings do not necessarily exist even when there is only one couple in the

market (shown by Roth (1984) and an unpublished work by Sotomayor). This fact is illustrated in the

following example, based on Klaus and Klijn (2005).

Example 1. Let there be a single doctor s and a couple c = (f,m) as well as two hospitals h1 and h2,

each with capacity one. Suppose the acceptable matches for each agent, in order of preference, are given

by:

Rc : (h1, h2) Rs : h1, h2

�h1 : f, s �h2 : s,m.

We illustrate that there is no stable matching in this market, by considering each possible matching.

(1) Suppose µ(c) = (h1, h2). Then single doctor s is unmatched. Thus single doctor s and hospital h2

block µ because s prefers h2 to her match µ(s) = ∅ and h2 prefers s to its match µ(h2) = m.

(2) Suppose µ(c) = (∅, ∅).

(a) If µ(s) = h1, then (c, h1, h2) blocks µ since couple c prefers (h1, h2) to their match µ(c) = (∅, ∅),
hospital h1 prefers f to its match µ(h1) = s and hospital h2 prefers m to its match µ(h2) = ∅.

(b) If µ(s) = h2 or µ(s) = ∅, then (s, h1) blocks µ since single doctor s prefers his first choice

hospital h1 to both hospital h2 and ∅ while h1 prefers s to its match µ(h1) = ∅.

Klaus and Klijn (2005) identify a sufficient condition to guarantee the existence of a stable matching

called weak responsiveness. A couple’s preferences are said to be responsive if an improvement in one

couple member’s assignment is an improvement for the couple. Preferences are said to be weakly respon-

sive if the requirement applies to all acceptable positions.18 The preferences of couples in Example 1 do

not satisfy this condition. If, for instance, the couple’s preferences are (h1, h2), (h1, ∅), (∅, h2), (∅, ∅), in
order of preference, then it satisfies responsiveness and a stable matching exists. Klaus and Klijn (2005)

write that “responsiveness essentially excludes complementarities in couples’ preferences.” They showed

that:

(1) if the preferences of every couple are weakly responsive, then there exists a stable matching.

(2) if there is at least one couple whose preferences violate weak responsiveness while satisfying a

condition called “restricted strict unemployment aversion,” then there exists a preference profile of

other agents such that preferences of all other couples are weakly responsive but there exists no

stable matching.

18See Klaus et al. (2009) for formal definition.
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Their second result says that the class of weakly responsive preferences is the “maximal domain”

of preferences. That is, it is the weakest possible condition that can be imposed on individual couples’

preferences that guarantees the existence of stable matchings.19

There seem to be many situations in which couple preferences violate weak responsiveness. One

reason may be geographic, as stated as Fact 4 in Section 2.2: both programs ranked as a pair by a couple

tend to be in the same geographic region. For example, the first choice of a couple of medical residents

may be two residency programs in Boston and the second may be two programs in Los Angeles, while one

member working in Boston and the other working in Los Angeles could be unacceptable because these two

cities are too far away from each other. The coordinator of the Association of Psychology Postdoctoral

and Internship Centers (APPIC) matching program writes in Keilin (1998) that “most couples want to

coordinate their internship placements, particularly with regard to geographic location.” This suggests

that violation of weak responsiveness due to geographic preferences is one of the representative features

of couple preferences.20

To further study this question empirically, we analyze the data on the stated preferences of couples

from the APPIC.21 During years for which we have data (1999–2007), preferences of only one couple

out of 167 satisfy weak responsiveness. Thus the data suggest, in light of the results of Klaus and Klijn

(2005), that it is virtually impossible to guarantee the existence of a stable matching in such markets

with couples based on a domain restriction of preferences.

However, the fact that the preferences of the overwhelming majority (166 out of 167) of couples violate

weak responsiveness does not mean that a stable matching does not exist in the psychologist market.

Stable matchings have been found in many labor markets despite the presence of couples, and as we

described in Section 2.3, we find a stable match for each of the nine years of the psychology market for

which we have data. This motivates our desire to understand what market features enable the existence

of stable matchings most of the time, when the known sufficient conditions on couples’ preferences do

not guarantee existence.

3.3 Sequential Couples Algorithm

The original deferred acceptance algorithm does not incorporate applications by couples. We consider an

extension of the algorithm, which we call the sequential couples algorithm. While we defer a formal

definition to Appendix A.3 for expositional simplicity, we offer an informal description as follows.

(1) run a deferred acceptance algorithm for a sub-market composed of all hospitals and single doctors,

but without couples,

19Hatfield and Kominers (2009) show that the substitutes condition is a maximal domain in the absence of restricted strict
unemployment aversion.

20For an investigation of couple decision making in the market for new Ph.D. economists, see Helppie and Murray-Close
(2010).

21Since truth-telling is not necessarily a dominant strategy for couples, the use of stated preferences is potentially prob-
lematic. However, Theorem 2 in this paper provides formal defense for this assumption by demonstrating that truthtelling
is an approximate equilibrium in large markets.
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(2) one by one, place couples by allowing each couple to apply to pairs of hospitals in order of their

preferences (possibly displacing some doctors from their tentative matches), and

(3) one by one, place singles who were displaced by couples by allowing each of them to apply to a

hospital in order of her preferences.

We say that the sequential couples algorithm succeeds if there is no instance in the algorithm in

which an application is made to a hospital where an application has previously been made by a member

(or both members) of a couple except for the couple who is currently applying. Otherwise, we declare a

failure and terminate the algorithm.

Failure of the sequential couples algorithm does not mean that a stable matching does not exist.

Therefore, in practice, a matching clearinghouse would be unlikely to declare failure when the sequential

couples algorithm fails, but would instead consider some procedure to try to assign the remaining couples

and find a stable matching. This is the main idea behind the Roth-Peranson algorithm (Roth and

Peranson, 1999), which is the basis for the mechanism used in the NRMP, APPIC, and other labor

markets. If the sequential couples algorithm would succeed, then the Roth-Peranson algorithm produces

the matching reached by the sequential couples algorithm. However, the sequential couples algorithm

and the Roth-Peranson algorithm are different in two aspects.22

First, where the sequential couples algorithm fails, the Roth-Peranson algorithm proceeds and tries

to find a stable matching. The algorithm identifies blocking pairs, eliminating instances of instability

one by one, in a manner similar to Roth and Vande Vate (1990). Note that since a stable matching

does not necessarily exist in markets with couples, the Roth-Peranson algorithm could cycle without

terminating. However, the algorithm forces termination of a cycle and proceeds with processing other

applicants. This sometimes ultimately results in a stable matching, and sometimes no stable matching

is found. Second, in the Roth-Peranson algorithm, when a couple is added to the market with single

doctors, any single doctor who is displaced by the couple is placed before another couple is added. By

contrast, the sequential couples algorithm holds any displaced single doctor without letting her apply,

until it processes applications by all couples.23

The reason we focus on this simplified procedure is that the success of the sequential couples algorithm

turns out to be sufficient to verify the existence of a stable matching (the proof is in Appendix A.3).

Lemma 1. If the sequential couples algorithm succeeds, then the resulting matching is stable.

To illustrate the main idea of Lemma 1, we consider how the sequential couples algorithm proceeds

for the market in Example 1. In Step 1 of the algorithm, we run the doctor-proposing deferred acceptance

algorithm in the sub-market without couples. Single doctor s proposes to hospital h1 and is assigned

22A complete description of the Roth-Peranson algorithm, specifically how the algorithm terminates cycles and proceeds
with processing, is not publicly available, but a more detailed description than the one provided here is offered by Roth and
Peranson (1999).

23As we will point out subsequently, our result also holds if we follow the sequencing of doctors as in the Roth-Peranson
algorithm. We chose the current definition of the sequential couples algorithm for expositional simplicity.
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there. Then in Step 2, we let couple c apply to their top choice (h1, h2). Couple member f is preferred

to s by h1 and couple member m is preferred to a vacant position by h2. Thus f and m are tentatively

assigned to h1 and h2 respectively while s is rejected. Then in Step 3, we let s apply to her next highest

choice. In this case, she applies to hospital h2, where a couple member m has applied and been assigned

before. At this point we terminate the algorithm and declare that it has failed.

To see why declaring a failure of the sequential couples algorithm is useful, suppose that we hypo-

thetically continue the algorithm by allowing h2 reject m as h2 prefers s to m. Then the couple prefers

being unassigned rather than having only f be matched to h1, so doctor f would like to withdraw his

assignment from hospital h1. Suppose we terminate the algorithm at this point once f becomes un-

matched. Then the resulting matching assigns no doctor to h1 and s to h2. This matching is unstable

because doctor s can block with hospital h1. On the other hand, if we continue the algorithm further by

allowing s to match with h1, then the resulting matching is identical to the one obtained at the end of

Step 1 of the sequential couples algorithm. This suggests that reasonable algorithms would cycle without

terminating in this market.

The idea of declaring failure of the sequential couples algorithm is to avoid a situation like the above

example, and turns out to be a useful criterion for judging whether the algorithm produces a stable

matching. Of course, the algorithm sometimes fails even if there exists a stable matching, so the success

of the algorithm is only a sufficient condition for the existence of a stable matching. What is remarkable

is that looking at this particular sufficient condition turns out to be enough for establishing that a stable

matching exists with a high probability in the environment we study in this paper. Moreover, there is a

sense in which it is necessary to use an algorithm that finds a stable matching only in some instances,

rather than one that always finds a stable matching whenever it exists. Ronn (1990) shows that the

problem of determining whether a market with couples has a stable matching or not is computationally

hard (NP-complete). The result suggests that it may be inevitable to employ an approach that does not

always find a stable matching like our sequential couples algorithm.

Example 1 illustrates that the sequential couples algorithm does not necessarily succeed, and suggests

that markets of any finite size would allow such a failure. We instead consider a large market environ-

ment with a random component in the preferences of the market participants. Our contribution is to

demonstrate that, with high probability, the sequential couples algorithm succeeds, and hence a stable

matching exists in this environment.

4 Large Markets

4.1 Random Markets

We have seen that a stable matching does not necessarily exist in a finite matching market with couples.

To investigate how often a stable matching exists in large market, we introduce the following random

environment. A random market is a tuple Γ̃ = (H,S,C,�H , k,P,Q, ρ), where k is a positive integer,
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P = (ph)h∈H and Q = (qh)h∈H are probability distributions on H, and ρ is a function which maps two

preferences over H to a preference list for couples (explained below). Each random market induces a

market by randomly generating preferences of doctors as follows:

Preferences for Single Doctors: For each single doctor s ∈ S,

• Step 1: Select a hospital independently from distribution P. List this hospital as the top ranked

hospital of single doctor s.

In general,

• Step t ≤ k: Select a hospital independently from distribution P until a hospital is drawn that has

not been previously drawn in steps 1 through t − 1. List this hospital as the tth most preferred

hospital of single doctor s.

Single doctor s finds these k hospitals acceptable, and all other hospitals unacceptable. For example,

if P is the uniform distribution on H, then the preference list is drawn from the uniform distribution

over the set of all preference lists of length k.

Preferences for Doctors who are Couples: Couples’ preferences are formed by drawing preferences,

Rf and Rm, for each doctor in the couple c = (f,m). Rf is constructed from the same process used to

generate preferences for a single doctor, except that the hospitals are drawn from distribution Q instead

of P. Likewise, Rm is generated using Q.

To construct the preference list for the couple c = (f,m), define ρ(Rf , Rm) to be a preference of the

couple with the following restriction: if (h1, h2) is acceptable according to ρ(Rf , Rm), then h1Rf∅ and

h2Rm∅. This is the only restriction we place on ρ.

Preferences for Hospitals: Each hospital h has a responsive preference relation defined over sets of

doctors �h such that all doctors are acceptable. The preference list-capacity pair consistent with �h is

denoted by (Rh, κh).

Discussion of modeling choices

We are specializing the structure of the model in several important ways. One important modeling as-

sumption is that doctor preferences are drawn independently from one another, and the way in which each

doctor’s preference list is drawn also follows a particular procedure. It is important to note that although

preferences are drawn independently, there can remain some correlation between doctors’ preferences

because some hospitals can be listed with higher probability than others. While this framework excludes

some cases, it has been used in several papers on matching such as Immorlica and Mahdian (2005),

Kojima and Pathak (2009), and Manea (2009). One cannot dispense with these restrictions completely,
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as some of our results fail when these assumptions are violated. For example, Section 6 establishes an ap-

proximate incentive compatibility of a class of mechanisms in large matching markets, but the result fails

under preference distributions violating our assumption.24 However, one natural generalization of this

structure is to split the economy into R regions, where each region has its own probability distribution.

This type of model allows for certain markets to have different distributions based on their geographical

location. Provided that R is bounded as the market grows, our results are unaffected.25

We allow Q for couples to be different from P for single doctors, sacrificing simplicity. We chose to

do so because couples in practice could have very different views on desirability of hospitals from those

held by single doctors. However, Q can be the same distribution as P.

The function ρ is a mapping that outputs a preference relation for each couple (f,m) given the pair

of preferences Rf and Rm over H. One could interpret ρ(Rf , Rm) as describing the outcome of household

bargaining when preferences of the members are Rf and Rm, respectively. For example, the function ρ

can represent a process in which any pair of hospitals that are too far away from each other is declared

unacceptable, which seems to be consistent with the observed rank order lists of couples described earlier.

We remain agnostic about ρ except that a hospital pair (h, h�) is weakly acceptable for the couple under

ρ(Rf , Rm) only when h and h� are listed under Rf and Rm, respectively. In other words, no hospital

appears in the preference list of a couple unless it is considered by the relevant member of the couple.

Note that this, of course, does not impose that the couples preferences are weakly responsive. All our

results are unchanged if we allow the function ρ to vary across different couples, but we model a common

function ρ for all couples for expositional simplicity. Moreover, our results also hold when couples draw

their preferences jointly from some distribution over pairs of hospitals.

Some NRMP participants who participate as couples are advised to form preferences by first forming

individual rank order lists after interviewing with programs. Then, these individuals’ lists serve as an

input into the joint ranking of the couple. For instance, medical students who are couples at the University

of Kansas Medical School are suggested to make a list of all possible program pair combinations from

both individual rank order lists by computing the difference between the ranking number of the program

on each individual’s rank order list and trying to minimize this difference in their joint rank order list.

This would be one example of a ρ function.26

The probabilistic structure we place on doctor preferences is unneeded for hospital preferences.

Rather, hospital preferences can be arbitrary except for two important restrictions. First, hospital prefer-

24There is an example in Immorlica and Mahdian (2005) where preference distributions violate our assumption and the
result fails even without couples. Since the current model is a generalization of theirs, the counterexample applies. See also
the discussion in Kojima and Pathak (2009).

25Kojima and Pathak (2009) pursue this generalization for the college admissions model without couples. We do not do
so here to keep the exposition simple.

26The details on this advice are available at http://www.kumc.edu/som/medsos/cm.html, accessed on March 20, 2010.
The clearinghouse for new doctors in Scotland only allows couple members to submit individual rank order lists, in contrast
to the model we analyze here. In that context, their mechanism combines these lists into a preference over pairs for the couple
using their individual lists and a table of positions that are determined to be geographically compatible by the mechanism.
See the discussion of the Scottish Foundation Allocation Scheme at http://www.nes.scot.nhs.uk/sfas/About/default.asp,
accessed on March 29, 2010.
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ences are assumed to be responsive as in much of the literature on two-sided matching. The labor market

clearinghouses which motivate our study impose this restriction by eliciting preferences over individual

doctors.

The second important assumption on hospital preferences is that hospitals find all doctors accept-

able. We make this assumption so that there are enough hospitals that can actually hire doctors in

large markets. At first glance, this assumption seems violated in the data from the market for clinical

psychologists as no program submits a rank order list of all doctors (for instance, as seen in Table 1, the

average number of doctors listed in a hospital’s preference list is 16.7 in our APPIC data). However, the

programs rank most doctors who have ranked them, which might suggest that most applicants would in

fact be acceptable to a program had they interviewed there. The results follow, at additional notational

complexity, in a model where at least a constant fraction of hospitals find all doctors acceptable. Another

variant of the assumption is a situation in which each hospital finds acceptable only doctors who list it

as hospitals will only rank doctors it has interviewed. Clearly the existence result follows under this

alternative assumption, because any stable matching at the original preference profile is also stable under

the modified preference profile.

4.2 Regular Sequence of Random Markets

To analyze limit behavior of the matching market as the market becomes large, we consider a sequence

of markets of different sizes. A sequence of random markets is denoted by (Γ̃1, Γ̃2, . . . ), where

Γ̃n = (Hn, Sn, Cn,�Hn , kn,Pn,Qn, ρn) is a random market in which |Hn| = n is the number of hospitals.

Consider the following regularity conditions.

Definition 1. A sequence of random markets (Γ̃1, Γ̃2, . . . ) is regular if there exist λ > 0, a ∈ [0, 12),

b > 0, r ≥ 1, and positive integers k and κ̄ such that for all n,

(1) kn = k,

(2) |Sn| ≤ λn, |Cn| ≤ bna,

(3) κh ≤ κ̄ for all hospitals h in Hn,

(4) ph
ph�

∈ [1
r
, r] and qh

qh�
∈ [1

r
, r] for all hospitals h, h� in Hn.

Condition (1) assumes that the length of doctors’ preference lists does not grow when the number

of market participants grow. This assumption is motivated by Fact 2 in Section 2.2 that the length of

single doctors’ preference lists is small relative to the number of hospitals. Condition (2) requires that

the number of single doctors does not grow much faster than the number of hospitals. Moreover, couples

do not grow at the same rate as the number of hospitals and instead grow at the slower rate of O(na)

where a ∈ [0, 12). This condition is motivated by Fact 1 that the number of couples is small compared
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with the number of hospitals or single doctors. Note that the assumption also implies that the total

number of applicants |Sn| + |Cn| is of order at most n and is consistent with either more doctors than

hospitals or fewer. Condition (3) requires that the capacity of each hospital is bounded. This condition

is not needed for the existence result of a stable matching, and we use it only for our incentive result.

Condition (4) requires that the popularity of different hospitals (as measured by the probability of being

listed by doctors as acceptable) does not vary too much, as suggested by Fact 3. Allowing lengths of

preference lists to be different from doctor to doctor does not change any of our results, as long as there

is an upper bound k of list lengths where k is a constant independent of n.27

This paper focuses on regular sequences of random markets and makes use of each condition in our

arguments. A notable implication of the model is that, if the market is large, then it is a high probability

event that there are a large number of hospitals with vacant positions, even if there are more applicants

than positions (for formal statements, see Proposition 1 in the Appendix). Note that the feature that

there are many hospitals with vacant positions is consistent with Fact 5 in Section 2.2.

5 Existence of Stable Matchings

As seen in Example 1, a stable matching does not necessarily exist when some doctors are couples.

However, there is a sense in which a stable matching is likely to exist if the market is large. This claim

is formalized in the following result on asymptotic existence for a regular sequence of random markets

(Definition 1).

Theorem 1. Suppose that (Γ̃1, Γ̃2, . . . ) is a regular sequence of random markets. Then the probability

that there exists a stable matching in the market induced by Γ̃n converges to one as the number of hospitals

n approaches infinity.

We defer the formal proof to Appendix A.3 and describe the argument here. Our proof involves

analysis of the sequential couples algorithm in a regular sequence of random markets. By Lemma 1,

we know that a stable matching exists whenever the algorithm succeeds. Our proof strategy is to show

that the probability that the sequential couples algorithm succeeds converges to one as the market size

approaches infinity.

Suppose that there are a large number of hospitals in the market. Given our assumptions on the

distribution of couples’ preferences, different couples are likely to prefer different pairs of hospitals.

Hence, in Step 2 of the algorithm, members of two distinct couples are unlikely to apply to the same

hospital. In such an instance, this step of the algorithm tentatively places couples without failure. Given

that, it suffices to show that the single doctors displaced in Steps 2 and 3 (if any) are likely to be placed

without applying to a hospital where a couple has applied. To show this, first we demonstrate that if

the market is large, then it is a high probability event that there are a large number of hospitals with

27Fact 2 indicates the rank order lists of both applicants who participate as couples and who participate as singles are
small relative to the number of programs.
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vacant positions at the end of Step 2 (even though there could be more applicants than positions: see

Proposition 1 in the Appendix).28 Then, any single doctor is much more likely to apply to a hospital

with a vacant position than to one of the hospitals that has already received an application by a couple

member. Since every doctor is acceptable to any hospital by assumption, a doctor is accepted whenever

an application is made to a vacant position. With high probability the algorithm places all the single

doctors in Step 3, resulting in a success. Together with Lemma 1, we conclude that if the market is large

enough, then the probability that there exists no stable matching can be made arbitrarily small. This

completes the argument.

As explained in Section 3.3, the sequential couples algorithm is similar to but slightly different from

the Roth-Peranson algorithm in the order of which doctors apply to hospitals. However, it is clear from

the proof that the argument can be modified for the Roth-Peranson algorithm. Therefore, we have the

following result as a corollary.

Corollary 1. Suppose that (Γ̃1, Γ̃2, . . . ) is a regular sequence of random markets. Then the probability

that the Roth-Peranson algorithm produces a stable matching in the market induced by Γ̃n converges to

one as the number of hospitals n approaches infinity.

In Appendix A.3, we show that if the number of couples is bounded along the sequence (that is, a = 0

in Definition 1), then the probability that there is no stable matching approaches zero at least with the

rate of convergence O(1/n).

6 Incentives

The previous section establishes our main result on the existence of a stable matching with respect to

reported preferences that follow certain distributional assumptions. In practice, however, preferences are

private information of market participants, and the matching clearinghouse needs to elicit this informa-

tion. Thus a natural question is whether there is a mechanism that induces participants to report true

preferences and produces a stable matching with respect to the true preferences.

One motivation for studying this question comes from the market for psychologists. The following

advice is given to participants by clearinghouse organizers:29

IMPORTANT: There is only one correct “strategy” for developing your Rank Order List:

simply list your sites based on your true preferences, without consideration for where you

believe you might be ranked by them. List the site that you want most as your #1 choice,

followed by your next most-preferred site, and so on.

28Note that the feature that there are many hospitals with vacant positions is consistent with Fact 5 in Section 2.2, which
states that there are many resident programs with vacant positions in practical matching markets.

29“FAQ for Internship Applicants” in the APPIC website, http://www.appic.org/match/5 2 1 2 6.html, accessed on
November 11, 2009.
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The previous paragraph is so important that we are going to repeat it: simply list your sites

based on your true preferences.

Similar recommendations are made in other labor markets with couples. Below is the advice for partici-

pants offered by the National Resident Matching Program (NRMP).30

Programs should be ranked in sequence, according to the applicant’s true preferences. . . . It

is highly unlikely that either applicants or programs will be able to influence the outcome of

the Match in their favor by submitting a list that differs from their true preferences.

In these quotes, market participants are advised to report their true preferences to the matching authority,

even though no existing study analyzes formally when truth-telling is optimal in markets with couples.

Our main interest in this section is whether this advice is justified.

Before their interviews, an applicant may find many hospitals acceptable. However, doctors typically

interview with only a small subset of hospitals, which naturally restricts the set of hospitals they consider.

The incentive question we specifically examine is whether after interviews, given a particular mechanism

which finds a stable matching with high probability, applicants have an incentive to report their pref-

erences truthfully. At a first glance, a positive result seems elusive: there exists no mechanism that is

stable and strategy-proof even without couples (Roth, 1982). We seek, therefore, an idea of approximate

incentive compatibility in the context of large matching markets.

6.1 Mechanism

To consider the incentives for manipulation in a market with couples, we consider a mechanism which

builds on the sequential couples algorithm. We defer a formal definition of the mechanism to the Appendix

and present an informal description here.

(1) run a deferred acceptance algorithm for a sub-market composed of all hospitals and single doctors,

but without couples,

(2) one by one, place couples by allowing each couple to apply to pairs of hospitals in order of their

preferences (possibly displacing some doctors from their tentative matches), and

(3) one by one, place singles who were displaced by couples by allowing each of them to apply to a

hospital in order of her preferences.

We define ϕ to be the mechanism that, given all reported preferences and capacities, produces the

matching reached at the end of this algorithm.

Mechanism ϕ is analogous to the sequential couples algorithm except that we need to specify what

matching is returned by the mechanism when the sequential couples algorithm fails. The algorithm

30“Rank Order Lists” in the NRMP website, http://www.nrmp.org/fellow/rank order.html, accessed on November 11,
2009.
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defining ϕ proceeds identically to the sequential couples algorithm as long as the latter succeeds. Unlike

the sequential couples algorithm, however, in mechanism ϕ we do not declare failure when someone

applies to a hospital to which a couple member has already applied. Instead, we allow the new applicant

to be assigned to the hospital. If the new applicant applies to a hospital in which a couple member is

already tentatively matched, then we allow the applicant to displace the couple member. If a couple

member is displaced, then we assume that the other member of that couple withdraws application from

the current match (if any), and the couple applies to their next preferred hospital pair. More specifically,

the algorithm forces each (single or couple) doctor to apply from the top-ranked hospital (pair) and

prevents her from applying again to the same hospital (pair).

By construction the algorithm underlying ϕ terminates in a finite number of steps, at which point

the tentative matching becomes final. This mechanism does not necessarily produce a stable matching.

However, since this algorithm coincides with the sequential couples algorithm whenever the latter suc-

ceeds, the proof of Theorem 1 implies that the probability that ϕ produces a stable matching converges

to one as the market size becomes infinitely large.

6.2 Equilibrium

To study incentives of participants in mechanism ϕ, we consider a Bayesian game in which both hospitals

and doctors report their preferences strategically to the matching authority.31 Kojima and Pathak

(2009) study a similar model without couples, but the current analysis involves a number of additional

considerations due to the existence of couples. For instance, if there are no couples, then reporting true

preferences is a dominant strategy for every doctor in ϕ, but such a result is no longer true if there are

couples.32 As a result, we need to analyze strategic behavior by all market participants including doctors,

rather than only hospitals as in Kojima and Pathak (2009).

A matching game is a Bayesian game specified by Γ̂ = (H,S,C, (Ui, Fi)i∈H∪S∪C). The set of players

is H ∪ S ∪C, the set of all hospitals and doctors (including both singles and couples). For each player i,

the set Ui represents the set of utility types for i, with each element ui specifying a utility function for i.

Fi is a probability distribution over Ui. Types (ui)i are independently distributed across agents.

All the players move simultaneously. At strategy σi, a player i submits an ordinal preference relation

σi(ui) upon observing her own type ui, but not the realized types of the other players. We assume that

hospitals are allowed to submit only responsive preferences and single doctor and couples can submit

any preference relation in Section 3.1. Once all players report their preferences, each player i receives a

matching resulting from ϕ under the submitted preferences.33

31Other authors who have studied Bayesian games of preference revelation in the matching context are Ehlers and Massó
(2007, 2010) and Chakraborty et al. (2010).

32To see why truthtelling is a dominant strategy for each doctor if there are no couples, note that ϕ is equivalent to the
doctor-proposing deferred acceptance algorithm if there are no couples. Truthtelling is a dominant strategy for every doctor
under the doctor-proposing deferred acceptance algorithm (Dubins and Freedman, 1981; Roth, 1982), thus the assertion
follows.

33Thus if player i’s type is ui and matching µ results, then she receives utility ui(µ(i)).
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Given ε ≥ 0, a strategy profile σ∗ is an ε-Bayes Nash equilibrium if there exists no i ∈ H ∪S ∪C,

ui ∈ Ui and strategy σi such that

E[ui(ϕi(σi(ui), σ
∗
−i(u−i)))] > E[ui(ϕi(σ

∗(u)))] + �,

where ϕi(σi(ui), σ∗
−i
(u−i)) and ϕi(σ∗(u)) are the matchings for i when reported preference profiles are

(σi(ui), (σ∗
j
(uj))j �=i), and (σ∗

j
(uj)j∈H∪S∪C) respectively. That is, a strategy profile is an ε-Bayes Nash

equilibrium if no player of any type can gain utility of more than ε by unilateral deviation. This concept

is a generalization of the standard Bayes-Nash equilibrium and coincides with it if ε = 0. We say that

a strategy profile σ is truth-telling if for every i and type ui, strategy σi(ui) is the ordinal preference

represented by ui. That is, a strategy profile is truth-telling if every player of any type reports their true

ordinal preferences.

To analyze incentive compatibility in large markets, consider a sequence (Γ̂1, Γ̂2, . . . ) of matching

games, where Γ̂n = (Hn, Sn, Cn, (Ui, Fi)i∈Hn∪Sn∪Cn) is the game in which there are n hospitals. Nor-

malize utility functions such that utility of being unmatched is zero for every player. We consider the

following definition of regularity for a sequence of matching games:

Definition 2. A sequence of matching games (Γ̂1, Γ̂2, . . . ) is regular if there exist λ > 0, a ∈ [0, 12),

b > 0, r ≥ 1, positive integers k and κ̄, and distributions P1,Q1,P2,Q2, . . . such that for all n,

(1) Distribution Fi for i ∈ Sn (respectively i ∈ Cn) is such that the distribution on ordinal preferences

Ri represented by the utility function ui follows the processes described in Section 4.1 associated

with Pn (respectively Qn and ρn) and k.

(2) |Sn| ≤ λn, |Cn| ≤ bna,

(3) For each n, h ∈ Hn, ordinal preferences of h represented by each type uh satisfy assumptions in

Section 4.1 representing a responsive preference with capacity at most κ̄,

(4) ph
ph�

∈ [1
r
, r] and qh

qh�
∈ [1

r
, r] for all hospitals h, h� in Hn.

(5) supn∈N,D�⊆Dn,h∈Hn,uh∈Uh
uh(D�), supn∈N,s∈Sn,h∈Hn,us∈Us

us(h), supn∈N,c∈Cn,h,h�∈Hn,uc∈Uc
uc(h, h�) <

∞, where Dn is the set of doctors in Γ̂n.

The first four conditions require that the sequence of matching games induce a regular sequence of

random markets. More specifically, if we define a sequence of random markets by focusing on ordinal

preferences represented by utility functions in the matching games, then the induced sequence of random

markets is regular in the sense of Definition 1. The last condition (5) does not have a counterpart in the

definition of regular markets. It requires that utilities are bounded across matching games in the given

sequence.
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Theorem 2. Consider a regular sequence of matching games. For any � > 0, there exists n such that

truth-telling is an ε-Bayes Nash equilibrium for every matching game in that sequence with more than n

hospitals.

We defer the proof to the Appendix and describe the main argument here. First consider incentives

for single doctors. We begin by recalling that the doctor-proposing deferred acceptance algorithm, which

is Step 1 of the sequential couples algorithm and hence part of mechanism ϕ, is strategy-proof for doctors.

Next consider Steps 2 and 3 in the sequential couples algorithm, as couples are added to the market. If

the market is large and doctors’ preference lists have bounded lengths, then it can be shown that with

high probability there are a large number of hospitals with vacant positions (see Proposition 1 in the

Appendix). In such a circumstance, at each instance of Steps 2 and 3, it is much more likely for the

current applicant(s) to apply to a (pair of) vacant position(s) than to a hospital where any particular

single doctor is tentatively assigned. Because there are only a finite number of applicants in Steps 2 and

3 of the algorithm, it is very unlikely for any particular single doctor to be displaced in these Steps. In

other words, for each doctor, it is likely that at the end of Step 3 she receives the same matching as in

the deferred acceptance algorithm. This implies that the probability that she is made strictly better off

is small, and hence we conclude that a unilateral deviation cannot make her better off by a large amount.

Analysis of hospitals’ incentives is more involved. The first challenge is that even the doctor-proposing

deferred acceptance algorithm without couples is not strategy-proof for hospitals, unlike for doctors.

Thus the large size of the market is first exploited to establish that hospitals are unlikely to benefit by

misreporting under the deferred acceptance algorithm. To see this, we first observe that a hospital has

an opportunity to profitably manipulate its preferences only when a strategic rejection by a hospital

causes a chain of applications and rejections that benefits the manipulating hospital. More specifically,

if a hospital strategically rejects some doctors, then these doctors apply to other hospitals, displacing

other doctors, who apply to yet other hospitals, and so on. This chain may cause some doctor rejected

elsewhere to apply to the original manipulating hospital, and the hospital may be made better off if this

new applicant is desirable. In fact, one can show that whenever a hospital’s manipulation is successful,

there is a corresponding chain of applications and rejections described above, so showing that there is no

such chain suffices for showing manipulation is not profitable (Kojima and Pathak (2009) formalize and

prove this claim). Now, in a large market, there is a high probability that there will be many hospitals

with vacant positions at the conclusion of the algorithm. Hence the applicants who are strategically

rejected (or those who are displaced by them and so on) are likely to apply to those vacant positions

and be accepted rather than apply to the original manipulating hospital. As a result, the manipulating

hospital is unlikely to be made better off in the deferred acceptance algorithm. Moreover, an argument

similar to that for the single doctors can be made, which shows that the mechanism ϕ is unlikely to change

the assignment for the hospital after the deferred acceptance algorithm if the market is sufficiently large.

These arguments establish that hospitals do not benefit by a large amount by misreporting when the

market size is large.

To investigate incentives for couples, note that when a couple is tentatively matched for the first time

26



during the algorithm, they are matched to their most preferred hospital(s) among the available ones at

that step. Thus any misreport of preferences results in a weakly less preferred tentative matching at that

step. Moreover, if the market is sufficiently large, an argument similar to those for single doctors and

hospitals establishes that the final matching for the couple is likely to be identical to the one obtained

above. This implies that a couple cannot improve their expected utility by a large amount by misreporting

their preferences.

7 Conclusion

This paper contributes towards understanding the consequences of the complementarities caused by

couples in matching markets, a phenomenon that has grown in importance as dual-career households

have become an important part of the labor force. We investigate this issue by studying couples in

labor market clearinghouses. Even though a stable matching does not necessarily exist when couples are

present, as long as the complementarities caused by couples are small in an appropriate way, our main

result is that the market has a stable matching with a high probability. Our second result is that in a

large preference revelation game induced by a mechanism that produces a stable matching with a high

probability, it is an approximate equilibrium for all participants – single doctors, couples, and hospitals –

to submit their preferences truthfully. More broadly, our study suggests that not only does large market

analysis help understand economies with indivisibilities, but it also generates new kinds of results in

markets with complementarities, which have been challenging for existing approaches.

We have complemented our theoretical results with analysis of data from the market for psychologists.

The stylized facts from the data motivate some of the modeling assumptions. In every year of the data

we were able to find a stable matching with respect to the stated preferences. Given our result that

truth-telling is an approximate best response in large markets, this empirical result suggests that there

exists a stable matching with respect to the true preferences of participants after they interview. Since

the mechanism we analyze is similar to the actual procedures used in markets such as the NRMP for

American medical residents, our results help explain why some mechanisms in practice provide a stable

matching with high probability even in the presence of couples.

Our model made a number of assumptions, some of which could be relaxed. Perhaps the strongest

assumption in our analysis relates to the growth rate of couples. Empirically, we have seen that there

are very few couples in actual markets, but this fact does not directly imply the appropriate growth

rate for a limit economy. Subsequent and ongoing work by Ashlagi et al. (2010) studies a model with

similar features. Their main result is to establish existence of a stable matching (with a weaker notion

of stability) when couples are allowed to grow at rate n1−� for � > 0. They are able to improve on our

slower growth rate for couples by considering a particular sequence of proposals by couples and finding

the order which is least likely to generate existence problems. Moreover, they provide evidence that this

“almost” linear result is probably the best that can be achieved: their simulation and theory suggest

that asymptotic existence fails if the number of couples grow proportionately to the market size. Finally,
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they complement the theory by conducting simulations with randomly generated preferences and varying

market sizes, suggesting that the probability that a stable matching is found is quite high.34

Another assumption that merits discussion is the way we draw preferences. In particular, the as-

sumption that all single doctors (resp. couple members) draw preferences from the same distribution

may appear restrictive. As mentioned before, however, it is possible to consider the generalization of

the model as in Kojima and Pathak (2009) where doctors are assigned to regions, and the probability

distribution differs by regions, as might be expected for geographic reasons. Provided that the number

of regions is bounded, both the existence and incentive results continue to hold.

There are a number of additional questions motivated by this paper. One question is whether stability

itself is the reason for the enduring success of the NRMP and post-doctoral psychology market. Field

and laboratory evidence suggests that stability is responsible for the persistence of certain centralized

clearinghouses (Roth (1991) and Kagel and Roth (2000)). Within the context of couples, however, an

alternative may simply be to consider a weaker approximate notion of stability such as a requirement that

the number of blocking coalitions be small. Under our assumptions it is obvious that there always exists

a matching that is approximately stable in the above sense.35 What is more remarkable and interesting

is that the markets we study have exactly stable matchings, and our analysis provides conditions for this

fact.

Another question involves the interpretation of preferences. As we have emphasized, the analysis we

undertake is after applicants interview for positions. This is perhaps the major reason why applicants’

rank order lists are short in a large market. A richer, but substantially different, model could consider

a two-stage game where participants have imperfect information about their preferences and first decide

where to interview. This type of analysis could provide a way to endogenize the short rank order

lists of applicants. While interesting, we expect this sort of analysis to require a completely different

framework, one that should perhaps first focus on the decision problem of where to apply, before adding

the complications of how to participate in a matching market with couples.36

A further topic for research is how decentralized markets might be organized to handle couples better.

For instance, Niederle and Roth (2009a,b) study how the rules regarding exploding offers influence market

outcomes. The issues here would involve the formal and informal rules by which couples search for two

positions, and by which offers and responses are made, so as to increase the efficiency of the market in

34For instance, a stable matching was found over 95 percent of the time in a market with 20,000 doctors in which 4-8
percent of them were members of couples, numbers similar to those in the NRMP. See also Biró and Irving (2010), for
simulations and analysis related to a special case of the couples problem that arises in a medical labor market in Scotland,
in which hospitals rank all applicants (including the individual members of couples) according to a common exam score.
Biro and Irving show that the problem of determining if a stable matching exists remains computationally hard even in this
special case, but simulations show that the probability of the set of stable matchings being empty is low when the proportion
of couples is low.

35To see this point, consider a matching that is stable in the sub-market composed of hospitals and single doctors only
while keeping all couples unmatched. Clearly the number of coalitions that may block this matching is at most the sum of
the lengths of the rank order lists over all couples, which is small in large markets under our maintained assumptions.

36Related to this, another issue is to examine whether couples may have an incentive to manipulate by pretending to be
singles or vice versa (as in Klaus et al. (2007)), or even whether a dual-career joint career problem encourages doctors to
get married.
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finding matches when some applicants are looking for pairs of positions.

In summary, labor markets in which the pool of applicants includes two-career households have proved

challenging to study even as they have become more common, and have demanded adaptation in labor

market rules and institutions. While many open questions remain, the results of the present paper suggest

that some of the potential problems that couples and market designers face may become more tractable

in large markets.
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A Appendix (Not for publication)

A.1 Formal Definitions

A.1.1 Definition of Responsive Preferences

Let h ∈ H and κh be a positive integer. We say that preference relation �h is responsive with capacity

κh if

(1) For any D� ⊆ D with |D�| ≤ κh, d ∈ D \D� and d� ∈ D�, D� ∪ d \ d� �h D� if and only if d �h d�,

(2) For any D� ⊆ D with |D�| ≤ κh and d� ∈ D�, D� �h D� \ d� if and only if d� �h ∅, and

(3) ∅ �h D� for any D� ⊆ D with |D�| > κh.

A.1.2 Definition of Individual Rationality

A matching µ is individually rational if

(1) µ(s)Rs∅ for every s ∈ S,

(2) µ(c)Rc(∅, ∅) for every c ∈ C, and

(3) Chh(µ(h)) = µ(h) for every h ∈ H.37

A.2 An Alternative Definition of Stability

We offer an alternative definition of stability from the one presented in the main text. This alternative

definition, which we call strong stability, allows for larger coalitions to block a matching. A strongly

stable matching is also stable according to the definition in the main text. In the proof of Theorem 1,

we establish a more general result for strong stability, and this implies existence of a stable matching as

defined in the main text.

In the definition of strong stability, we consider two cases of a block as follows:

(1) A couple-hospital pair (c, h) ∈ C ×H is a block of µ if

(a) (h, h)Pcµ(c),

(b) f,m ∈ Chh(µ(h) ∪ c) where c = (f,m).

(2) A group of doctors D� and hospital h is a block of µ if

(a) there is no couple (f,m) such that {f,m} ⊆ D�,

37When there is a couple (f,m) with {f,m} ⊆ µ(h), we adopt a notational convention that Chh(µ(h)) means Chh(µ(h)∪
(f,m)\{f,m}), that is, we let hospital h to consider the existing couple as a whole when choosing the most preferred subset
of doctors. Similar conventions will be used elsewhere when the choice involves a couple who are matched as a whole at the
given matching.
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(b) D� ⊆ Chh(µ(h) ∪D�),38

(c) for all s ∈ D� ∩ S, we have hPsµ(s),

(d) i. for all f ∈ D�∩F where c = (f,m) ∈ C, (h, h�)Pcµ(c) for some h� andm ∈ Chh�(µ(h�)∪m),

ii. for all m ∈ D� ∩ M where c = (f,m) ∈ C, we have (h�, h)Pcµ(c) for some h� and f ∈
Chh�(µ(h�) ∪ f).

A matching is strongly stable if it is individually rational and there is no block as defined by conditions

(1) and (2) above.

This definition allows for a couple assigned to a hospital to be blocked by two doctors (who are either

single or are a member of a couple). If one of the blocking doctors is a couple member, we require that

the member’s partner is chosen by another hospital over its assignment and that the couple together

prefer this assignment to their current assignment.

The motivation for this definition is to allow certain joint deviations to happen, but rule out more

complicated deviations involving larger groups. When a couple member is part of a blocking coalition

of doctors D� and hospital h, our interpretation is that hospital h is the “initiating” blocker, and any

hospital h� involved to satiate the other member of a couple is a passive blocker. The reason we consider

this definition is to stay close to pairwise stability, but still accommodate this particular type of blocking

pair is that we think that blocking coalitions of larger size are less likely to form due to coordination

issues among members. This definition also keeps the notation less burdensome, but our main existence

result continues to hold when we allow larger sets of blocking coalitions to form or employ the core as

our solution concept.

Since the definition of strong stability allows for coalitions of doctors who are single or couple members

to be part of blocking pairs, a strongly stable matching is stable, but not vice versa. Moreover, if each

hospital has one position, strong stability is equivalent to unit-capacity stability.

Finally, strong stability is equivalent to the standard definition of (pairwise) stability when there is

no couple. To see this last point, first observe that condition (1) in the definition of strong stability is

irrelevant if there is no couple, as are conditions (2a) and (2d). The remaining conditions (2b) and (2c)

are equivalent to the nonexistence of a blocking pair under the assumption that hospital preferences are

responsive. Thus this, together with individual rationality, is equivalent to the standard pairwise stability

concept.

A.3 Proof of Theorem 1

Let (H,S,C, (�h)h∈H , (Ri)i∈S∪C) be a matching market.

38When there is a couple (f,m) with {f,m} ⊆ µ(h), then we adopt a notational convention that Chh(µ(h) ∪D�) means
Chh(µ(h) ∪ (f,m) \ {f,m} ∪D�), that is, we let hospital h consider the existing couple as a whole when choosing the most
preferred subset of doctors. A similar convention will be used elsewhere when the choice involves a couple who are matched
as a whole at the given matching.
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Step 1: Doctor-Proposing Deferred Acceptance Algorithm

Apply the doctor-proposing deferred acceptance algorithm to the sub-market without couples: (H,S, (�h

)h∈H , (Rs)s∈S).

Step 2: Sequential Couples Algorithm

Algorithm 2. Sequential Couples Algorithm

(1) Initialization:

Let matching µ be the output of the deferred acceptance algorithm in the sub-market without

couples.

(2) Iterate through couples: set C0 = C, i = 0 and B = ∅.

(a) If Ci is empty, then go to Step 3. Otherwise, pick some couple c = (f,m) ∈ Ci. Let

Ci+1 = Ci\c and increment i by one.

(b) Let couple c apply to their most preferred pair of hospitals (h, h�) ∈ H × H that has not

rejected them yet.

i. If such a hospital (pair) does not exist, modify matching µ such that couple c is unassigned

and then go to Step 2a.

ii. If such a hospital (pair) exists, then if either hospital h or hospital h� has previously been

applied to by a member (or both members) of any couple different from c, then terminate

the algorithm.

iii. Otherwise,

A. If h = h� �= ∅ and {f,m} ⊆ Chh(µ(h)∪c), then modify matching µ by assigning (f,m)

to hospital h and having h reject

(µ(h) ∪ f ∪m) \ Chh(µ(h) ∪ c).

Add the rejected single doctors (if any) to B and go to Step 2a.

B. If h �= h�, f ∈ Chh(µ(h) ∪ f), and m ∈ Chh�(µ(h�) ∪m), then modify matching µ by

assigning f to h and m to h�, having hospital h reject

(µ(h) ∪ f) \ Chh(µ(h) ∪ f),

and having hospital h� reject

(µ(h�) ∪m) \ Chh�(µ(h�) ∪m).

Add the rejected single doctors (if any) to B and go to Step 2a.
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C. Otherwise, let hospital h and hospital h� reject the application by couple c and go to

Step 2b.

(3) Iterate through rejected single doctors: set B1 = B and j = 1.

Round j:

(a) If Bj is empty, then terminate the algorithm.

(b) Otherwise, pick some single doctor s in Bj . Let Bj+1 = Bj\s and increment j by one.

Iterate through the rank order lists of single doctors:

i. If single doctor s has applied to every acceptable hospital, then modify matching µ such

that s is unassigned and go to Step 3a.

ii. If not, then let ĥ be the most preferred hospital ranked by single doctor s among those

which s has not yet applied to previously (either in the doctor-proposing deferred accep-

tance algorithm or within this algorithm.)

iii. If there is no couple member who has ever applied to hospital ĥ, then there are three

cases:

A. If hospital ĥ has a vacant position and s is acceptable to ĥ, then modify matching µ

such that single doctor s is assigned to ĥ and go to Step 3a.

B. If either hospital ĥ prefers each of its current mates to single doctor s and there is no

vacant position or s is unacceptable to ĥ, then ĥ rejects s and go to Step 3(b)i.

C. If hospital ĥ prefers single doctor s to one of its current mates and there is no vacant

position, then modify matching µ such that s is assigned to ĥ. Hospital ĥ rejects the

least preferred doctor currently assigned there:

(µ(ĥ) ∪ s) \ Ch
ĥ
(µ(ĥ) ∪ s).

With abuse of notation, denote this rejected doctor s and go to Step 3(b)i.

iv. If there is a couple member who has ever applied to hospital ĥ previously within this

algorithm, then terminate the algorithm.

The sequential couples algorithm terminates at Step 2(b)ii (when a couple member proposes to a

hospital which has already been proposed to by another couple), Step 3a (when all couples and single

doctors are assigned), or Step 3(b)iv (when a single doctor proposes to a hospital which was previously

applied to by a couple member). We say that the algorithm succeeds if it terminates at Step 3a.

Lemma 1. If the sequential couples algorithm succeeds, then the resulting matching is stable.

The proof of this lemma is similar to the proof of the existence of a stable matching by Gale and

Shapley (1962) in the college admissions model. The main difference is that when the sequential couples
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algorithm succeeds, we must verify that there are no blocking pairs including pairs which may involve

members of a couple.

Proof of Lemma 1. We prove that the matching that results when the sequential couples algorithm suc-

ceeds is strongly stable (defined in Section A.2). Establishing this fact implies that the matching is stable

since a strongly stable matching is a stable matching.39

Suppose that Algorithm 2 succeeds, producing matching µ. First, µ is individually rational since all

doctors who are single or couple members have applied only to acceptable hospitals (hospital pairs for

couples), and hospitals have accepted only acceptable doctors only up to their capacities in each step of

Algorithms 1 and 2.

Next, to show that there is no block of matching µ, fix a hospital h ∈ H \ ∅.

(1) Suppose that there exists no couple (f,m) ∈ C such that {f,m} ⊆ µ(h).

(a) Assume, for contradiction, that there exists a set of doctors D� ⊆ D such that hospital h and

D� block µ, where there is no couple (f,m) ∈ C such that {f,m} ⊆ D�. Since doctor d is part

of a block,

dPh∅ for every d ∈ D�.

There are two cases to consider depending on whether D� contains any single doctors.

i. Suppose that there is a single doctor in D�. Then each single doctor s ∈ D�∩S is rejected

by hospital h at some point of either Algorithm 1 or 2 since hPsµ(s). The tentative

assignment of hospital h at a step when single doctor s is rejected, denoted µ̃(h), satisfies

|µ̃(h)| = κh and dPhs for all d ∈ µ̃(h),

because sPh∅. Since, at each of later steps of both Algorithms, hospital h replaces a

tentatively matched doctor only when a more preferred doctor applies, it follows that

|µ(h)| = κh and dPhs for all d ∈ µ(h).

This contradicts the assumption that hospital h and D� block matching µ.

ii. Suppose there are no single doctors in D�. Then there exists a member of some couple in

D�. Without loss of generality, assume that there is some f ∈ D� where c = (f,m) ∈ C.

Since (h, h�)Pcµ(c) for some h� ∈ H, couple c was rejected by the hospital pair (h, h�) at

some point of Algorithm 2. Let µ̃(h) and µ̃(h�) be the tentative assignments for hospital

h and hospital h� at that step, respectively. Because couple c was rejected at this step, it

follows that either

|µ̃(h)| = κh and dPhf for all d ∈ µ̃(h),

39Since the rest of the analysis builds on this lemma, this stronger result allows us to extend our main results when we
replace stability with strong stability as the solution concept.
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or h� �= ∅ and we have that

|µ̃(h�)| = κh� and dPh�m for all d ∈ µ̃(h�).

Since, at each of later steps, both hospital h and hospital h� (if h� �= ∅) replace a tentatively

matched doctor only when a more preferred doctor applies, it follows that either

|µ(h)| = κh and dPhf for all d ∈ µ(h),

or h� �= ∅ and we have that

|µ(h�)| = κh� and dPh�m for all d ∈ µ(h�).

This contradicts the assumption that f ∈ D� and D� block matching µ with hospital h.

(b) Consider a couple c = (f,m) such that (h, h)Pcµ(c). By definition of Algorithm 2, the couple

was rejected by the hospital pair (h, h) at some point in the Algorithm. Denote the matching

at that point by µ̃. It follows that

Chh(µ̃(h) ∪ c) = µ̃(h) and f,m /∈ µ̃(h).

Since the sequential couples algorithm succeeds, no other doctor applies to hospital h after

the step where couple c is rejected by (h, h). As a result,

µ(h) = µ̃(h).

Therefore,

f,m /∈ µ(h) and µ(h) = Chh(µ(h) ∪ c),

which contradicts the assumption that couple c and hospital h block matching µ.

(2) Suppose that there exists a couple (f,m) ∈ C such that {f,m} ⊆ µ(h) and there is a block of

matching µ involving hospital h. The assumption that the sequential couples algorithm succeeds

implies that there is no couple c �= (f,m) and h� ∈ H such that (h, h�)Pcµ(c) or (h�, h)Pcµ(c). This

is because the algorithm terminates in Step 3 if two or more distinct couple members apply to

the same hospital during the algorithm. Thus, the set of doctors D� that blocks matching µ with

hospital h is composed solely of single doctors. This means that

sPh∅ for every s ∈ D�, (1)

hPsµ(s) for every s ∈ D�, (2)

for otherwise a single doctor s is not part of a block. Let µ̃ be the matching that is the result of
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the doctor-proposing deferred acceptance algorithm in the sub-market excluding couples. Then

hRsµ̃(s) for every s ∈ D�, (3)

because otherwise, in light of (2), single doctor s will have applied to hospital h in Step 3 of the

sequential couples algorithm, causing the algorithm to fail. Moreover,

µ(h) �h µ̃(h), (4)

because otherwise hospital h would not have accepted new applicants in Step 2 of the sequential

couples algorithm, resulting in matching with µ(h). Furthermore,

dPhs for every d ∈ µ̃(h) ∩ µ(h) and s ∈ D�, (5)

because

(a) for any s ∈ D�∩ µ̃(h), single doctor s was rejected in Step 2 of the sequential couples algorithm

at the instance when the couple (f,m) applied to hospital h. We now show dPhs. Suppose, to

the contrary, that sRhd for some d ∈ µ̃(h) ∩ µ(h). Then sPhd because s �= d and preferences

are strict. This relation and responsiveness of �h imply

µ(h) ∪ s \ d �h µ(h).

Moreover,

µ(h) ∪ s \ d ∈ A(µ̃(h) ∪ (f,m)).

These facts contradict

µ(h) = Chh(µ̃(h) ∪ (f,m)),

which follows from the definition of the sequential couples algorithm. Hence,

dPhs for all d ∈ µ̃(h) ∩ µ(h).

(b) for any s ∈ D�\ µ̃(h), relation (3) implies hPsµ̃(s), so stability of matching µ̃ in the sub-market

without couples (which coincides with both our stability definition in Section 3.1 and strong

stability definition in Appendix A.2) implies

dPhs for all d ∈ µ̃(h).
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Let µ�(h) be the assignment for hospital h when D� and hospital h block matching µ. That is,

µ�(h) = Chh(µ(h) ∪D�). (6)

Relation (6) and the definition of Chh(·) imply

µ�(h) �h µ(h). (7)

Relations (1) and (2) imply that

|µ(h)| = κh.

Therefore, to block matching µ with D�, hospital h should reject some doctors in µ(h). If any

doctor d ∈ µ̃(h) ∩ µ(h) is rejected while some s ∈ D� is accepted to produce µ�(h), then

µ�(h) ∪ d \ s �h µ�(h)

by responsiveness of �h and relation (5), but this contradicts (6). Hence, relation (5) implies that

it should be exactly couple (f,m) that is rejected by hospital h when hospital h and D� block µ(h).

Since (f,m) is the only couple in µ(h) and it is not in µ�(h),

µ�(h) ⊆ µ̃(h) ∪D� ⊆ S.

Since hRsµ̃(s) for every single doctor s ∈ µ�(h) by relation (3) and µ�(h) ⊆ S, it follows that

µ̃(h) �h µ�(h), (8)

because otherwise matching µ̃ would be unstable in the sub-market without couples. Applying

relations (4), (8), and then (7), we obtain

µ(h) �h µ̃(h) �h µ�(h) �h µ(h),

a contradiction.

The rest of our argument uses Lemma 1 to compute how often Algorithm 2 succeeds when singles

and couples draw their preferences according to the processes described in Section 4.1.

In the next two steps of the proof, we define versions of the deferred acceptance algorithm and the

sequential couples algorithm in which single doctors draw their preferences iteratively within the steps

of the algorithms. This representation of the two algorithms proves useful for our analysis.

47



Step 3: Define Stochastic Deferred Acceptance Algorithm

Algorithm 3. Stochastic Doctor-Proposing Deferred Acceptance Algorithm

(1) Initialization: Let l = 1. For every s ∈ S, let As = ∅ and order the single doctors in an arbitrarily

fixed manner.

(2) Choosing the applicant:

(a) If l ≤ |S|, then let s be the lth single doctor and increment l by one.

(b) If not, then terminate the algorithm.

(3) Choosing the applied:

(a) If |As| ≥ k, then return to Step 2.

(b) If not, select hospital h randomly from distribution Pn until h /∈ As, and add h to As.

(4) Acceptance and/or rejection:

(a) If hospital h prefers each of its current mates to single doctor s and there is no vacant position,

then hospital h rejects single doctor s. Go to Step 3.

(b) If hospital h has a vacant position or it prefers single doctor s to one of its current mates,

then hospital h accepts single doctor s. Now if hospital h had no vacant position before

accepting single doctor s, then hospital h rejects the least preferred doctor among those who

were matched to hospital h. Let this doctor be s and go to Step 3. If hospital h had a vacant

position, then go back to Step 2.

As records hospitals that single doctor s has already drawn from Pn. When |As| = k is reached, As

is the set of hospitals acceptable to single doctor s.

Let µ be the matching that is produced when Algorithm 3 terminates. Under the doctor proposing

deferred acceptance algorithm, a single doctor’s application to her tth most preferred hospital is indepen-

dent of her preferences after (t+1)th choice on. Therefore matching µ is stable for the market consisting

of single doctors, any of their realized preference profiles which could follow from completing the draws

for random preferences, the hospitals and their (arbitrarily fixed) preferences.

Step 4: Define Stochastic Sequential Couples Algorithm

Suppose that at the conclusion of Algorithm 3, we obtain matching µ. The stochastic sequential

couples algorithm is a version of Algorithm 2 where single doctor preferences are drawn iteratively,

and is defined as follows:

Algorithm 4. Stochastic Sequential Couples Algorithm
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(1) Initialization:

(a) Keep all preference lists generated in Algorithm 3. Also, for each single doctor s ∈ S, let As

be the set generated at the end of Algorithm 3. Let the matching µ be the initial matching of

the algorithm.

(b) For each couple c = (f,m) ∈ C, construct the couples’ preferences Pc according to the process

defined in Section 4.1.

(2) Iterate through couples, set C0 = C, i = 0, and B = ∅.

(a) If Ci is empty, then go to Step 3. Otherwise, pick some couple c = (f,m) ∈ Ci. Let

Ci+1 = Ci\c and increment i by one.

(b) Let couple c apply to their most preferred pair (h, h�) ∈ H × H that has not rejected them

yet.

i. If such a hospital (pair) does not exist, modify matching µ such that couple c is unassigned

and then go to Step 2a.

ii. If such a hospital (pair) exists, then if either hospital h or hospital h� has previously been

applied to by a member (or both members) of any couple different from c, then terminate

the algorithm.

iii. Otherwise,

A. If h = h� �= ∅ and {f,m} ⊆ Chh(µ(h)∪c), then modify matching µ by assigning (f,m)

to hospital h and having h reject

(µ(h) ∪ f ∪m) \ Chh(µ(h) ∪ c).

Add the rejected single doctors (if any) to B and go to Step 2a.

B. If h �= h�, f ∈ Chh(µ(h) ∪ f), and m ∈ Chh�(µ(h�) ∪m), then modify matching µ by

assigning f to h and m to h�, having hospital h reject

(µ(h) ∪ f) \ Chh(µ(h) ∪ f),

and having hospital h� reject

(µ(h�) ∪m) \ Chh�(µ(h�) ∪m).

Add the rejected single doctors (if any) to B and go to Step 2a.

C. Otherwise, let hospital h and hospital h� reject the application by couple c and go to

Step 2b.

49



(3) Iterate through rejected single doctors, set B1 = B and j = 1.

Round j:

(a) If Bj is empty, then terminate the algorithm.

(b) Otherwise, pick some single doctor s in Bj . Set Bj+1 = Bj\s and increment j by one.

Iterate through the single doctor’s rank order list (call this iteration “Round j”)

i. If |As| ≥ k, then go to Step 3a.

ii. If not, select hospital ĥ randomly from distribution Pn until ĥ �∈ As, and add ĥ to As.

iii. If there is no couple member who has ever applied to hospital ĥ, then there are three

cases:

A. If hospital ĥ has a vacant position, then modify matching µ such that single doctor s

is assigned to ĥ and go to Step 3a.

B. If either hospital ĥ prefers each of its current mates to single doctor s and there is no

vacant position or s is unacceptable to ĥ, then ĥ rejects s and go to Step 3(b)i.

C. If hospital ĥ prefers single doctor s to one of its current mates and there is no vacant

position, then modify matching µ such that s is assigned to ĥ. Hospital ĥ rejects the

least preferred doctor currently assigned there

(µ(ĥ) ∪ s) \ Ch
ĥ
(µ(ĥ) ∪ s).

With abuse of notation, denote this rejected doctor s and iterate through her rank

order list by going to Step 3(b)i.

iv. If there is a couple member who has ever applied to hospital ĥ before, then terminate the

algorithm.

The algorithm above terminates at Step 2(b)ii or Step 3a or Step 3(b)iv. Similarly to Algorithm 2,

we say that Algorithm 4 succeeds if it terminates at Step 3a.

To establish Theorem 1, we investigate how often the algorithm succeeds, as single doctors draw

hospitals from distribution Pn and couples draw hospitals from Qn. First observe for any random

market in a regular sequence,

Pr[Algorithm 2 succeeds] = Pr[Algorithm 4 succeeds].

That is, the probability of the algorithm’s success is identical whether random preferences are drawn

at once in the beginning or they are drawn one at a time during the execution of the algorithm.40

40This property is called the principle of deferred decisions. See Motwani and Raghavan (1996).
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The latter expression is useful since we can investigate the procedure step by step, utilizing conditional

probabilities and conditional expectations. Thus we focus on the behavior of Algorithm 4 as the market

size grows in the remainder of the proof.

Let Yn be a random variable which counts the number of hospitals that are listed on no single doctor’s

preference list at the end of Algorithm 3.41 The next step of the argument provides a lower bound on Yn

at the conclusion of Algorithm 3.

Step 5: A large number of hospitals have vacancies

Lemma 2. For any n > 4k,

E[Yn] ≥
n

2
e−16λk.

Proof. We order the hospitals in terms of decreasing popularity with respect to Pn: label H =

{h1, h2, . . . , hn} with ph�
≥ ph�+1

for all � ∈ {1, . . . , n − 1}. If hospitals have equal popularity, we

order them in some fixed manner. Let the probability mass for the first k hospitals be:

π =
k�

�=1

ph�
.

Fix a single doctor and denote her ith most preferred hospital by h(i), if it has been drawn at the

conclusion of Algorithm 3. For any i ≤ k, the definition of π implies

i−1�

j=1

ph(j)
≤ π.

Thus for any i ≤ k, the conditional probability that h is not the single doctor’s ith choice given the events

that her first (i− 1) choices are h(1), . . . , h(i−1), her i
th choice is drawn, and h(j) �= h for all j ≤ i− 1, is

bounded from below by

1− ph

1−
�

i−1
j=1 ph(j)

≥ 1− ph
1− π

. (9)

Let Eh be the event that h /∈ As for every s ∈ S at the end of Algorithm 3. Since at most λnk draws are

made in total by all single doctors from Pn in Algorithm 3, inequality (9) implies that

Pr(Eh) ≥
�
1− ph

1− π

�λnk

. (10)

If hospital index � > k, there are at least � − k hospitals in H \ {h1, . . . , hk} that are at least as

41We abuse notation and denote a random variable and its realization by the same letter when there is no confusion.
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popular as h� according to Pn, so we obtain

π + (�− k)ph�
≤ 1

⇐⇒ ph�
≤ 1−π

�−k
. (11)

The last two inequalities, (10) and (11), imply

Pr(Eh�
) ≥

�
1− 1

�− k

�λnk

. (12)

We next show that for any � > 2k,

�
1− 1

�− k

�λnk

≥ e−2λnk/(�−k). (13)

To see that (13) holds, first note that

�
1− 1

�− k

�λnk

≥ e−2λnk/(�−k) ⇐⇒ 1− 1

�− k
− e−2/(�−k) ≥ 0.

Now, define a function g(x) = 1 − x − e−2x. This function g is concave, and g(0) = 0 and g(1/2) =

1/2− 1/e > 0. Therefore g(x) ≥ 0 for any x ∈ [0, 1/2]. Since � > 2k and k is a positive integer, we have

�− k > k ≥ 1. Since �− k is an integer, we obtain �− k ≥ 2 and hence 1/(�− k) ∈ [0, 1/2]. Therefore

1− 1/(�− k)− e−2/(�−k) = g(1/(�− k)) ≥ 0,

establishing inequality (13).

Moreover, for any � > 2k,

e−2λnk/(�−k) ≥ e−4λnk/�. (14)

Combining inequalities (12), (13), and (14), we obtain:

Pr(Eh�
) ≥ e−4λnk/�.

Using this inequality, for any n > 4k, we have

E[Yn] =
n�

�=1

Pr(Eh�
) ≥

n�

�=2k

e−4λnk/� ≥
n�

�=�n/2�+1

e−8λnk/� ≥ n

2
e−16λk,

where �x� is the largest integer not greater than x.
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Step 6: Algorithm 4 succeeds with high probability.

Let C̄ = bna denote the upper bound on the number of couples in the random market Γ̃n.

Lemma 3. For any sufficiently large n and any matching µ,

Pr

�
Algorithm 4 succeeds

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rkC̄

E[Yn]

�2C̄

,

if the conditioning event has a strictly positive probability.

Proof. First, consider the event that Algorithm 4 does not terminate at Step 2(b)ii so that the algorithm

reaches Step 3. For that event to happen it is enough for the following event to happen: for any two

doctors d, d� ∈ F ∪ M with d �= d�, there is no hospital h ∈ H that is listed by both d and d� as an

acceptable hospital. This is sufficient because our assumption on ρ implies that at most one couple

member will apply to h.

Suppose {d1, ..., d�−1} ∈ F ∪ M are such that there exists no h ∈ H listed by any pair of doctors

in {d1, ..., d�−1} ∈ F ∪ M . Furthermore, fix a doctor d� ∈ F ∪ M \ {d1, ..., d�−1} and assume that her

first i − 1 choices {h(1), h(2), . . . , h(i−1)} have no intersection with hospitals listed by the set of doctors

{d1, ..., d�−1}. The conditional probability that her ith choice h(i) does not have an overlap with any of

the previously picked hospital is at least

1−
�

h:h is listed by some doctor in {d1,...,d�−1}

qh −
i−1�

j=1

qh(j)
. (15)

Condition (4) of Definition 1 implies that

qh ≤ rqh� for all h, h� ∈ H.

Adding these inequalities across hospitals h� ∈ H, we have

nqh ≤ r
�

h�∈H
qh� for each h.

As a result,

qh ≤
r
�

h�∈H qh�

n
≤ r

n
.

53



Since there are at most C̄ couples and each member of a couple lists at most k distinct hospitals, expression

(15) is bounded from below by

1− 2kC̄r

n
. (16)

Recall that there are at most C̄ couples and each member of the couple lists at most k distinct

hospitals. Expression (16) implies that the probability that for any d, d� ∈ F ∪M with d �= d�, there is

no hospital h ∈ H that is listed by both d and d� as one of their acceptable hospitals is at least

�
1− 2kC̄r

n

�2kC̄

, (17)

which is positive for n sufficiently large. Expression (17) provides a lower bound of the probability that

the algorithm does not terminate at Step 2(b)ii so that the algorithm reaches Step 3.

Next, we consider what happens in Step 3 assigning single doctors in the set B, conditional on the

same events assumed so far and in addition that all couples are tentatively matched without the algorithm

being terminated at Step 2(b)ii.

Condition (4) of Definition 1 implies that

ph� ≥ ph/r for any h, h� ∈ H.

Also observe that there are at most 2kC̄ hospitals that are listed by a couple member in F ∪M . Denote

this set of hospitals by H1 and note that

�

h∈H1

qh ≤ 2kC̄r ·min
h∈H

{qh}.

Moreover, there are at least Yn−2kC̄ hospitals (which is positive if n is sufficiently large and Yn > E[Yn]
2 )

with vacant positions and not listed by any couple member at the beginning of Step 3 (since there are at

least Yn hospitals with vacant positions at the beginning of Step 2 and at most 2C̄ hospitals are listed

by couple members). Denote this set of hospitals by H2 and note that

�

h∈H2

qh ≥ (Yn − 2kC̄) ·min
h∈H

{qh}.

We are interested in computing the probability that Round 1 of Step 3 ends at 3(b)iiiA as a single

doctor applies to some hospital with vacant positions not listed by any couple member (rather than

applying to a hospital that is listed by a couple member). This probability is bounded below by:

1−
�

h∈H1
qh�

h∈H1
qh +

�
h∈H2

qh
≥ 1− 2kC̄

Yn−2kC̄
r

+ 2kC̄
> 1− 2kC̄

E[Yn]/2−2kC̄
r

+ 2kC̄
. (18)
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Now assume that all Rounds 1, . . . , j − 1 end at Step 3(b)iiiA. Then there are still at least Yn −
2kC̄ − (j− 1) hospitals with a vacant position and not listed by any couple member at the end of Round

j − 1. This follows since at most j − 1 hospitals have had their positions filled at Rounds 1, . . . , j − 1

among those hospitals that are not listed on any single doctor’s preference list at the end of Algorithm 3.

Following the steps analogous to those leading to inequality (18), we can compute that Round j, initiated

by some single doctor in Bj , ends at Step 3(b)iiiA with probability of at least

1− 2kC̄
Yn−2kC̄−(j−1)

r
+ 2kC̄

> 1− 2kC̄
E[Yn]/2−2kC̄−(j−1)

r
+ 2kC̄

.

There are at most 2C̄ rounds in Step 3 because at most 2C̄ single doctors can be displaced by couples

in Step 2, so |B| ≤ 2C̄. Hence Algorithm 4 succeeds with conditional probability of at least

2C̄�

j=1

�
1− 2kC̄

E[Yn]/2−2kC̄−(j−1)
r

+ 2kC̄

�
≥

�
1− 2kC̄

E[Yn]/2−2kC̄−(2C̄−1)
r

+ 2kC̄

�2C̄

≥
�
1− 2kC̄

E[Yn]/4r

�2C̄

, (19)

where the first inequality follows from Lemma 2, the assumption that n is sufficiently large and each

j ≤ 2C̄, and the second inequality holds since E[Yn]/2− 4kC̄ ≥ E[Yn]/4 > 0, which follows from Lemma

2 and the assumption that n is sufficiently large.

As a result, relations (17) and (19) imply

Pr

�
Algorithm 4 succeeds

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rkC̄

E[Yn]

�2C̄

.

We utilize the following mathematical result (see Lemma 4.4 of Immorlica and Mahdian (2005) for a

proof).

Lemma 4. Var[Yn] ≤ E[Yn] for every n ∈ N.
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Step 7: Proof of Theorem 1

Proof of Theorem 1. We obtain that

Pr

�
Yn ≤ E[Yn]

2

�
≤ Pr

�
Yn ≤ E[Yn]

2

�
+ Pr

�
Yn ≥ 3E[Yn]

2

�

= Pr

�
|Yn − E[Yn]| ≥

E[Yn]

2

�
≤ Var[Yn]

(E[Yn]/2)2
≤ 4

E[Yn]
, (20)

where the first inequality holds since any probability is nonnegative, the equality is an identity, the second

inequality results from Chebyshev inequality, and the last inequality follows from Lemma 4.

By Lemma 3 we have

Pr

�
Algorithm 4 succeeds

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rkC̄

E[Yn]

�2C̄

.

This inequality holds for any matching µ that is produced at the end of Algorithm 3. Therefore, we

have the same lower bound for the probability conditional on Yn > E[Yn]/2 but not on µ. That is,

Pr

�
Algorithm 4 succeeds

���� Yn >
E[Yn]

2

�
≥

�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rkC̄

E[Yn]

�2C̄

. (21)

Thus we obtain

Pr [Algorithm 4 succeeds] ≥ Pr

�
Yn >

E[Yn]

2

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rkC̄

E[Yn]

�2C̄

≥
�
1− 4

E[Yn]

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rkC̄

E[Yn]

�2C̄

≥
�
1− 8e16λk

n

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 16rkC̄e16λk

n

�2C̄

, (22)

where the first inequality follows from the fact that probabilities are non-negative and (21), the second

inequality results from (20), and the last inequality is obtained by Lemma 2.

The first term on the right-hand side of inequality (22),
�
1− 8e16λk

n

�
, converges to one as long as

n → ∞. Consider the second term,
�
1− 2kC̄r

n

�2kC̄
. Recall there exists b > 0 such that C̄ < bna for any
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n. Thus, for any n,

�
1− 2kC̄r

n

�2kC̄

>

�
1− 2kbnar

n

�2kbna

=

�
1− 2kbr

n1−a

�2kbn1−a
n
2a−1

≥ (e−2kbr)2kbn
2a−1

. (23)

where the last line follows from the inequality that
�
1− α

x

�x ≥ e−α when x, α > 0. Since a ∈ [0, 1/2), the

term n2a−1 → 0 as n → ∞ and hence the last expression of inequality (23) converges to one as n → ∞.

Similarly, the third term of the right-hand side of inequality (22),
�
1− 16rkC̄e

16λk

n

�2C̄
, can be bounded

as

�
1− 16rkC̄e16λk

n

�2C̄

>

�
1− 16rkbnae16λk

n

�2bna

=

�
1− 16rkbe16λk

n1−a

�2bn1−a
n
2a−1

≥ (e−16rkbe16λk)2bn
2a−1

. (24)

Because a ∈ [0, 1/2), the last expression of inequality (24) converges to one as n → ∞, which concludes

the proof.

Speed of convergence Suppose that the number of couples is bounded along the sequence of random

markets (which is equivalent to a = 0 in the definition of a regular market). By inequality (22), the

probability that there does not exist a stable matching decreases with rate of convergence of O(1/n) as

n → ∞. It is an open question whether this rate of convergence is tight.

Number of vacancies Since the proof of Theorem 1 finds a bound of the probability by focusing on

the event in which Yn > E[Yn]
2 ≥ n

4 e
−16λk, the following claim follows immediately.

Proposition 1 (A large number of hospitals with vacancies). There exists a constant β > 0 such that

(1) the probability that, in a sub-market without couples, the doctor-proposing deferred acceptance algo-

rithm produces a matching in which at least βn hospitals have at least one vacant position converges

to one as n approaches infinity, and

(2) the probability that the sequential couples algorithm succeeds and at least βn hospitals have at least

one vacant position in the resulting matching converges to one as n approaches infinity.
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A.4 Proof of Theorem 2

We consider incentives for single doctors, couples, and hospitals in the following subsections and then

combine the results to obtain the proof of Theorem 2. Let Pr[E] be the probability of the event E.

A.4.1 Definition of the mechanism ϕ

Algorithm 5. Mechanism ϕ

(1) Initialization:

Let matching µ be the output of the deferred acceptance algorithm in the sub-market without

couples. Set C0 = C, B0 = ∅, i = 0.

(2) Iterate through couples:

(a) If Ci is empty, then go to Step 3. Otherwise, pick some couple c = (f,m) ∈ Ci according to

some prespecified deterministic rule. Let Ci+1 = Ci\c and Bi+1 = Bi, and increment i by

one.

(b) Let couple c apply to their most preferred pair of hospitals (h, h�) ∈ H × H that has not

rejected them yet.

i. If such a hospital (pair) does not exist, modify matching µ such that couple c is unassigned

and then go to Step 2a.

ii. If such a hospital (pair) exists,

A. If h = h� �= ∅ and {f,m} ⊆ Chh(µ(h)∪c), then modify matching µ by assigning (f,m)

to hospital h and having h reject

(µ(h) ∪ f ∪m) \ Chh(µ(h) ∪ c).

Add the rejected single doctors (if any) to Bi. If a member of a couple c is rejected,

then have the other member of c withdraw from the currently matched hospital (if

any), and update Ci by adding c. Then go to Step 2a.

B. If h �= h�, f ∈ Chh(µ(h) ∪ f), and m ∈ Chh�(µ(h�) ∪m), then modify matching µ by

assigning f to h and m to h�, having hospital h reject

(µ(h) ∪ f) \ Chh(µ(h) ∪ f),

and having hospital h� reject

(µ(h�) ∪m) \ Chh�(µ(h�) ∪m).
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Add the rejected single doctors (if any) to Bi. If a member of a couple c is rejected,

then have the other member of c withdraw from the currently matched hospital (if

any), and update Ci by adding c. Go to Step 2a.

C. Otherwise, let hospital h and hospital h� reject the application by couple c and go to

Step 2b.

(3) Iterate through rejected single doctors:

(a) If Bi and Ci are both empty, then terminate the algorithm.

(b) Otherwise, if Bi is empty and Ci is not, then go to Step 2.

(c) Otherwise, pick some single doctor s in Bi. Let Bi+1 = Bi\s and Ci+1, and increment i by

one.

Iterate through the rank order lists of single doctors:

i. If single doctor s has applied to every acceptable hospital, then modify matching µ such

that s is unassigned and go to Step 3a.

ii. If not, then let ĥ be the most preferred hospital ranked by single doctor s among those

which s has not yet applied to while running the doctor-proposing deferred acceptance

algorithm or previously within this algorithm, and:

A. If hospital ĥ prefers not to keep single doctor s, that is, if s /∈ Ch
ĥ
(µ(ĥ)∪ s), then let

ĥ reject s and go to Step 3(c)i.

B. If hospital ĥ prefers to keep single doctor s, that is, if s ∈ Ch
ĥ
(µ(ĥ)∪ s), then modify

matching µ such that s is assigned to ĥ and ĥ rejects doctor(s)

(µ(ĥ) ∪ s) \ Ch
ĥ
(µ(ĥ) ∪ s).

If a single doctor is rejected, denote this rejected doctor s and go to Step 3(c)i. If a

member of a couple c is rejected, then have the other member of c withdraw from the

currently matched hospital (if any), update Ci by adding c, and go to Step 3a.

This algorithm terminates in a finite number of steps. We define ϕ to be the mechanism that, given

all reported preferences and capacities, produces the matching reached at the end of this algorithm.

A.4.2 Incentives for Single Doctors

Fix the preference Rs of single doctor s that is realized from the distribution described in Section 4.1

(we simply say “Rs is realized” in the remainder of the paper whenever there is no confusion). Define

ϕ(R�
s) to be a random variable which is the matching produced by mechanism ϕ, where a single doctor s

reports R�
s and the reported preferences of all other doctors and hospitals are stochastic following Section

4.1. Our first incentive result for ϕ is about preference manipulations by single doctors.
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Proposition 2. Given δ > 0, there exists an n0 such that for every n > n0, in random market Γ̃n, for

any single doctor s ∈ Sn, and every pair Rs and R�
s of preferences,

Pr
�
ϕ(R�

s)(s)Psϕ(Rs)(s)
�
< δ.

Proof. Given random market Γ̃ = (H,S,C, �̃H , k,P,Q, ρ) that follows assumptions in Section 4, define

ψ(R�
s) to be a random variable which is the matching produced by the doctor-proposing deferred accep-

tance algorithm on the sub-market (H,S, �̃H , k,P) that consists of only hospitals and single doctors,

where single doctor s reports R�
s.

Let us begin by recalling a classic result that the doctor-proposing deferred acceptance algorithm is

strategy-proof for single doctors:

Result 1. (Dubins and Freedman, 1981; Roth, 1982)

ψ(Rs)(s)Rsψ(R
�
s)(s),

for any single doctor s ∈ S and for any preference relations Rs and R�
s (and for all realized preferences

of other agents).

Lemma 5. For any sufficiently large n, in random market Γ̃n, for any single doctor s ∈ Sn, preference

R�
s, and matching µ,

Pr

�
ψ(R�

s)(s) = ϕ(R�
s)(s)

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

,

if the conditioning event has a strictly positive probability.

Proof. First, consider the event that all couples are tentatively matched without Algorithm 4 being

terminated at Step 2(b)ii so that the algorithm reaches Step 3, and no couple applies to hospital ψ(R�
s)(s)

during Step 2. For that event to happen it is enough for the following event to happen: for any two

doctors d, d� ∈ F ∪ M with d �= d�, there is no hospital h ∈ H that is listed by both d and d� as an

acceptable hospital and no d ∈ F ∪M draws ψ(R�
s)(s) from Qn. Following the steps leading to expression

(17), this happens with at least probability

�
1− 2kC̄r

n

�2kC̄

. (25)

Next, consider what happens when we assign single doctors in the set B, conditional on Yn > E[Yn]
2 ,

Algorithm 3 produces matching µ, and that all couples are tentatively matched without the algorithm

terminating at Step 2(b)ii.
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Observe that ph� ≥ ph/r for any h, h� ∈ Hn by assumption. Also observe that there are at most 2C̄

hospitals that are tentatively matched to a couple member d ∈ F ∪M while there are at least Yn−2C̄−1

hospitals with vacant positions at the beginning of Step 3 (since there are at least Yn − 1 hospitals with

vacant positions at the beginning of Step 2 (the −1 accounts for a position possibly filled by s) and at

most 2C̄ hospitals have their positions filled in Step 2). Following the steps analogous to those leading

to inequality (18), we can compute that Round 1 of Step 3 ends at 3(b)iiiA as a single doctor applies to

some hospital with vacant positions (rather than applying to a hospital that is tentatively matched to a

couple member), with probability at least

1− 2C̄ + 1
Yn−2C̄−1

r
+ 2C̄ + 1

> 1− 2C̄ + 1
E[Yn]/2−2C̄−1

r
+ 2C̄ + 1

.

Now assume that all Rounds 1, . . . , j− 1 end at Step 3(b)iiiA. Then there are still at least Yn− 2C̄ −
(j − 1) − 1 hospitals with a vacant position. This follows since at most j − 1 hospitals have had their

positions filled at Rounds 1, . . . , j − 1 among those hospitals that are not listed on any single doctor’s

preference list at the end of Algorithm 3. Following the steps analogous to those leading to inequality

(18), we can compute that Round j initiated by some single doctor in Bj ends at Step 3(b)iiiA with

probability of at least

1− 2C̄ + 1
E[Yn]/2−2C̄−(j−1)−1

r
+ 2C̄ + 1

.

Since there are at most 2C̄ rounds (because this is the maximum number of single doctors who could

have been displaced by couples in Step 2), Algorithm 4 succeeds with conditional probability of at least

�
1− 2C̄ + 1

E[Yn]/4r

�2C̄

. (26)

Recall that the algorithm underlying ϕ coincides with the sequential couples algorithm if the latter

succeeds. This fact together with the arguments leading to expressions (25) and (26) imply

Pr

�
ψ(R�

s)(s) = ϕ(R�
s)(s)

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

.

To prove Proposition 2 first note that, by Result 1 we have

Pr[ϕ(Rs)(s)Rsϕ(R
�
s)(s)] ≥ Pr [ψ(Rs)(s) = ϕ(Rs)(s) and ψ(R�

s)(s) = ϕ(R�
s)(s)] . (27)
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By Lemma 5 we have

Pr

�
ψ(R�

s)(s) = ϕ(R�
s)(s)

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

.

This inequality holds for any matching µ that is produced at the end of Algorithm 3. Therefore, we

have the same lower bound for the probability conditional on Yn > E[Yn]/2 but not on µ. That is,

Pr

�
ψ(R�

s)(s) = ϕ(R�
s)(s)

���� Yn >
E[Yn]

2

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

. (28)

By the fact that probabilities are nonnegative and inequalities (28) and then (20), we obtain

Pr [ψ(R�
s)(s) = ϕ(R�

s)(s)]

≥ Pr

�
Yn >

E[Yn]

2

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

≥
�
1− 4

E[Yn]

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

.

By Lemma 2, the last expression converges to one as n → ∞. By an analogous argument, we can

establish similar convergence for Rs. Therefore the right hand side of inequality (27) converges to one.42

This fact completes the proof of Proposition 2.

A.4.3 Incentives for Couples

Our next incentive result is about preference manipulations by couples. Fix the preferences Rf and

Rm of couple c = (f,m) that are realized from the distribution described in Section 4.1 (we simply say

“(Rf , Rm) is realized” in the remainder of the paper whenever there is no confusion). Define ϕ(R�
c) to be

a random variable which is the matching produced by mechanism ϕ, where a couple c reports a preference

relation R�
c and the reported preferences of all other doctors and hospitals are stochastic following Section

4.1.

Proposition 3. Given δ > 0, there exists n0 such that the following holds: For any n > n0, any

42Here we use a the fact that if sequences of events (Fn)
∞
n=1 and (Gn)

∞
n=1 satisfy Pr(Fn) → 1 and Pr(Gn) → 1 as n → ∞,

then Pr(Fn ∩Gn) → 1 as n → ∞.
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c = (f,m) ∈ Cn and any preference relations Rc and R�
c,

Pr[ϕ(R�
c)(c)Pcϕ(Rc)(c)] < δ.

Proof. Let Rc and R�
c be arbitrary preferences of couple c. Denote by ϕ̂(R�

c) the first tentative assign-

ments of couple c in Algorithm 5 under report R�
c. Note that in that step, for any R�

c, couples receive

their most preferred hospitals according to R�
c among those that choose them if c applies. As a result,

ϕ̂(Rc)(c)Rcϕ̂(R�
c)(c). Therefore, it suffices to demonstrate that

Pr
�
ϕ̂(Rc)(c) = ϕ(Rc)(c), ϕ̂(R

�
c)(c) = ϕ(R�

c)(c)
�
> 1− δ.

We begin by proving a result similar to Lemma 5.

Lemma 6. For any sufficiently large n, R�
c and µ,

Pr

�
ϕ̂(R�

c)(c) = ϕ(R�
c)(c)

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rC̄

E[Yn]

�2C̄

(29)

if the conditioning event has a strictly positive probability.

Proof. First, consider the event that all couples except for c are tentatively matched without displacing

members of any other couple. Following steps analogous to those leading to expression (17), this happens

with at least probability

�
1− 2kC̄r

n

�2kC̄

. (30)

Next, we consider what happens when we assign single doctors in the set B, conditional on Yn > E[Yn]
2

and the event that all couples except for c are tentatively matched without displacing members of any

other couple. Following steps analogous to those leading up to inequality (19), the set of single doctors

in B do not displace any assigned couples with conditional probability of at least

�
1− 2C̄

E[Yn]/4r

�2C̄

. (31)

By relations (30) and (31) and rearranging terms we obtain inequality (29), completing the proof.

To prove Proposition 3 recall that

Pr[ϕ(Rc)(c)Rcϕ(R
�
c)(c)] ≥ Pr [ϕ̂(Rc)(c) = ϕ(Rc)(c), ϕ̂(R�

c)(c) = ϕ(R�
c)(c)] . (32)
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By Lemma 6 we have

Pr
�
ϕ̂(R�

c)(c) = ϕ(R�
c)(c) | Yn >

E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rC̄

E[Yn]

�2C̄

.

This inequality holds for any matching µ that is produced at the end of Algorithm 3. Therefore, we

have the same lower bound for probability conditional on Yn > E[Yn]/2 but not on µ. That is,

Pr

�
ϕ̂(R�

c)(c) = ϕ(R�
c)(c)

���� Yn >
E[Yn]

2

�
≥

�
1− 2kC̄r

n

�2kC̄

·
�
1− 8rC̄

E[Yn]

�2C̄

. (33)

By the fact that probabilities are nonnegative and inequalities (33) and then (20), we obtain

Pr [ϕ̂(R�
c)(c) = ϕ(R�

c)(c)] ≥ Pr

�
Yn >

E[Yn]

2

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

≥
�
1− 4

E[Yn]

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

.

By Lemma 2, the last expression converges to one as n → ∞. By an analogous argument, we can

establish similar convergence for Rc. Therefore the right hand side of inequality (32) converges to one.

This fact completes the proof of Proposition 3.

A.4.4 Incentives for Hospitals

Define ϕ(��
h
) to be a random variable which is the matching produced by mechanism ϕ when a hospital

reports responsive preference ��
h
and the reported preferences of all other hospitals and doctors are

stochastic following Section 4.1.

Proposition 4. Given δ > 0, there exists an n0 such that for any n > n0, in random market Γ̃n, for all

hospitals h ∈ Hn, for any pair of preferences �h and ��
h
,

Pr[ϕ(��
h
)(h) �h ϕ(�h)(h)] < δ.

Proof. Define ψ(��
h
) to be a random variable which is the matching produced by the doctor-proposing

deferred acceptance algorithm in which the only doctors in the market are single, and hospital h reports

��
h
while the preferences of doctors are stochastic (and hence the matching is a random variable).

Lemma 7. Given δ� > 0, there exists an n0 such that for any n > n0, for all h ∈ Hn,�h and ��
h
,

Pr[ψ(�h)(h) �h ψ(��
h
)(h)] > 1− δ�.
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Proof. Lemma 10 of Kojima and Pathak (2009) implies this result.

Lemma 8. For any sufficiently large n, h ∈ Hn, ��
h
and µ,

Pr

�
ψ(��

h
)(h) = ϕ(��

h
)(h)

���� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

if the conditioning event has a strictly positive probability.

Proof. The proof is analogous to the one for Lemma 5 where we replace ϕ(R�
s)(s) with hospital h through-

out, so we omit it.

To complete the proof, observe that

Pr[ϕ(�h)(h) �h ϕ(��
h
)(h)] ≥ Pr[ϕ(�h)(h) = ψ(�h)(h), ψ(�h)(h) �h ψ(��

h
)(h), ψ(��

h
)(h) = ϕ(��

h
)(h)].

By Lemma 8 we have

Pr

�
ψ(��

h
)(h) = ϕ(��

h
)(h)

����� Yn >
E[Yn]

2
and Algorithm 3 produces µ

�

≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

.

This inequality holds for any matching µ that is produced at the end of Algorithm 3. Therefore, we

have the same lower bound for the probability conditional on Yn > E[Yn]/2 but not on matching µ. That

is,

Pr

�
ψ(��

h
)(h) = ϕ(��

h
)(h)

�� Yn >
E[Yn]

2

�
≥
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

. (34)

By the fact that probabilities are nonnegative and inequalities (34) and then (20), we obtain

Pr [ψ(��
h
)(h) = ϕ(��

h
)(h)] ≥ Pr

�
Yn >

E[Yn]

2

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

≥
�
1− 4

E[Yn]

�
·
�
1− 2kC̄r

n

�2kC̄

·
�
1− 4r(2C̄ + 1)

E[Yn]

�2C̄

.

By Lemma 2, the last expression converges to one as n → ∞. A similar convergence result can be

obtained for �h in lieu of ��
h
. These inequalities and Lemma 7 complete the proof of Proposition 4.
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A.4.5 Proof of Theorem 2

Fix ε > 0. By Propositions 2, 3 and 4, there exists n0 such that for any random market Γ̃n in the

sequence with n > n0, any player, any of her true and misreported preferences, and any other report of

preferences, the probability that she is made better off by that misreporting of preferences when every

other player is reporting true preferences is less than

δ = ε

�
max{ sup

n∈N,D�⊆Dn,h∈Hn,uh∈Uh

uh(D
�), sup

n∈N,s∈Sn,h∈Hn,us∈Us

us(h), sup
n∈N,c∈Cn,h,h�∈Hn,uc∈Uc

uc(h, h
�)}

�−1

,

where this bound is well-defined and positive by Condition (5) of Definition 2. This observation imme-

diately shows that

E[ui(ϕi(σi(ui), σ
∗
−i(u−i)))] ≤ E[ui(ϕi(σ

∗(u)))] + �,

for any i, any type ui, and any strategy σi, completing the proof.
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Figure A1: Number of Programs in Each Geographic Region (2003)
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