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Abstract

Middlemen in Limit Order Markets

A limit-order market enables an early investor to trade with a late investor. But, public news in the interarrival

period creates adverse-selection cost and hampers trade. A high frequency trader (HFT) might restore trade

through its unique ability to quickly update its quote on news arrival. But, HFT entry might in itself worsen

adverse selection if speed is used to adversely select investors’ quotes. This paper studies HFT entry both

theoretically and empirically. The entry of an HFT-friendly new market is used as an instrument. Middlemen

arrival coincides with a 29% reduction in the bid-ask spread and a 13% drop in volume.



Technology revolutionized the way financial assets are traded. Electronic limit order markets enable agents

to automate trading decisions. Computer algorithms are used to either minimize transaction cost when

trading into position (‘working’ an order through time and across markets orto simply profit from buying

and selling securities as a middleman. This latter type is the focus of our study and is often referred to as

high frequency trader (HFT). We study the advent of middlemen both theoretically and empirically.

In principle, a limit order market removes the need for intermediation. Investors who are spaced out in time

(due to a nontrivial opportunity cost of staying on in a market) establish trades through limit orders. For

example, an early investor with low private value for her asset might post alimit sell (‘ask quote’) which

is taken up by a late investor with high private value for the asset. But, if thereis common value process

the late investor might adversely select the early investor (as she is better informed). The early investor

rationally posts a higher limit order to be compensated for this adverse selection cost. If common value

innovations are large enough relative to private values the market hits a no-trade deadlock.

Middlemen can enhance welfare as their speed advantage helps to ‘unlock’ an adverse-selection induced

trade deadlock. High frequency traders stand out by their superior information processing speed established

through efficient algorithms that run on fast computers ‘co-located’ at a market’s server. This creates an edge

in terms of quickly updating limit orders on the arrival of public information. Inthe deadlock example, the

early investor might sell to the middleman who keeps refreshing his limit sell until the late investor arrives.

Middlemen might reduce welfare if their speed creates an adverse selectionrisk for limit order that might not

have otherwise existed. If the late investor is unaware of a common value innovation, trade is not hampered

by adverse selection. If middlemen are introduced in this setting, they create an adverse selection risk for

the early investor and might reduce trade.

The theory develops the arguments for and against middlemen formally. It adds to a vast literature on market

intermediation. Classic models in financial economics assume information asymmetrywhere, rather than

superiorly informed, middlemen are uninformed which was natural for markets where humans intermediate

(see, e.g.,Glosten and Milgrom (1985)andKyle (1985)). Foucault, Röell, and Sandas (2003)introduce

costly monitoring ability for liquidity suppliers and analyze optimal intensity. More recent limit order

models analyze how adverse selection risk affects the choice of an arriving agent to choose between a limit

and a market order (see, e.g.,Hollifield, Miller, Sandås, and Slive (2006)andGoettler, Parlour, and Rajan

(2009)). They do not consider the entry of middlemen.
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The empirical part analyzes the advent of middlemen by exploiting the introduction of an HFT-friendly

trading venue as an instrument. Chi-X started trading Dutch index stocks on April 16, 2007. Unlike the

incumbent market, Euronext, it did not charge limit order modifications, nor executions. Quite the contrary,

limit orders that led to execution received a rebate. The first 77 trading days of 2007 and 2008 are compared

to establish a ‘treatment’ effect. To control for time effects, Belgian index stocks serve as an ‘untreated’

control sample as they had not yet been introduced in Chi-X, yet were trading in Euronext under the same

rules as Dutch stocks.

Post Chi-X, a middleman has entered for Dutch stocks who trades primarily passive (i.e., through limit

orders). One new broker ID (not present in the pre-entry sample) trades very frequently—it is present

in roughly every third trade in Chi-X and in every twelfth trade in Euronext. It is particularly active on

days when most of a stock’s price movement is explained by the index—theR2 of a single-factor CAPM

explains 45% of time variation in middleman participation. What makes this broker anHFT, though, is

that its net position over the trading day is zero almost half of the sample days.A further finding is that

75-80% of its trades were passive. These observations provide empirical support for our theory which

characterizes middlemen as cost-efficient intermediaries. They minimize adverse selection cost by quickly

updating quotes on incoming ‘hard’ information, i.e., information that is easily processed by machines such

as price quotes in the local index, same industry stocks, foreign exchange, etc.

A diff-in-diff analysis (post- minus pre-entry, treated minus untreated) shows that middlemen entry is ac-

companied by an increase in liquidity supply and a drop in volume. Post-entry realized volatility is 64%

higher for (treated) Dutch stocks, which is the same order of magnitude as the 69% higher volatility for

the (untreated) Belgian stocks. This is a reassuring result as it is unlikely that low-frequencyvolatility is

affected by HFT entry. The bid-ask spread did not change for Dutch stocks, but did go up by a significant

35% for Belgian stocks. The diff-in-diff is therefore a 35% reduction in spread. The diff-in-diff analysis

further shows that depth at the best quotes shrank by 13%, but this is second-order relative to the spread

improvement as calibration shows that, net of depth change, the spread declined by 29%. The number of

trades was unaffected by middlemen entry but volume declined by 13% (double-counts due to middleman

intermediation are removed). The volume decline is either due to (i) investors shying away from the market

or to (ii) ‘old’ intermediaries being replaced by HFTs. The results are therefore mixed in terms of how HFT

entry affects welfare—the lower spread appears beneficial, the lower volume is worrisome.
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The diff-in-diff results should be interpreted with care due to potential endogenous timing andselection

bias. Chi-X might have decided to start the system on April 16, 2007, and select Dutch stocks because

these stocks at that time showed particularly high activity and large spreads. If these were transitory effects,

the subsequent volume decline and spread reduction are to be expected irrespective of HFT entry. We

plan to study the size of transitory effects to verify whether (i) timing was indeed endogenous (spread and

volume were temporarily high on April 16, 2007) and (ii) whether the size of these effects could explain the

magnitude of the reported treatment effect.

The empirical findings add to a growing literature on automated trading.Foucault and Menkveld (2008)

study smart routers that investors use to benefit from liquidity supply in multiple markets. Hendershott,

Jones, and Menkveld (2010)use an instrumental variable to show that algorithmic trading (AT) causally

improves liquidity and makes quotes more informative.Chaboud, Chiquoine, Hjalmarsson, and Vega (2009)

relate AT to volatility and find little relation.Hendershott and Riordan (2009)find that both AT demanding

liquidity and AT supplying liquidity makes prices more efficient.

More broadly, our findings contribute to the literature on middlemen in search markets. In Rubinstein

and Wolinsky (1987)andMasters (2007)middlemen may improve allocations because they speed up the

meeting process. Rents are divided via Nash bargaining. Hosios conditionand optimality obtain when

numbers are endogenous. In our model, however, market participation isexogenous. Our paper is closer to

Li (1996) in which where middlemen have an advantage in terms of information in a lemons model. The

contrast is (i) that the quality of the traded good is exogenous, and (ii) thatthe information is not about

independent values but, rather, common values, which we believe to be at the heart of evaluating welfare

effects of HFTs who specialized in speed to minimize being adversely selected on public information. A

unique feature of limit order markets is that late investors cherry pick take-it-or-leave-it offers (i.e., limit

orders) of early investors, leaving the latter with a winner’s curse problem. Closer to home are models on

search in decentralized markets, e.g.,Duffie, Ĝarleanu, and Pedersen (2005), Lagos, Rocheteau, and Weill

(2009), andDuffie, Malamud, and Manso (2009).

The remainder of the manuscript is structured as follows. Section1 develops a static model. Section2

extends the model to a recursive dynamic model. Section3 discusses mechanism design issues. Section4

contains the empirical analysis. Section5 concludes.
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1 One-period model

There is one indivisible security and two agents, a buyer and a seller. In aone-period model, assume that the

private value of the asset to its owner is distributed uniformly according toF (x) = x for x ∈ [0,1] . We refer

to the owner as the seller,S. There is also a buyer,B, whose private value isy, also distributed uniformly on

the unit interval, and independently ofx. The private values are known to each party, privately.

Additionally there is a common valuez, denoting a capital gain or loss on the security that each investor

values in the same way. The asset yields utilityx + z to its owner, and would yieldy+ z to the buyer. The

variablez is the common value, best thought of as the change in the price of the securityfrom one period to

the next. It is the capital gain or loss that any investor experiences if he holds the security. It has distribution

G (z). Since stock prices tend to follow a random walk, we assumeE (z) = 0.

First best allocations and welfare

The first best welfare is that the highest-valuation investor ends up with thesecurity. Realized welfare would

then bez+max(x, y) . Sincez has zero mean, expected welfare would then be

WFIRST BEST=

∫ ∫

max(x, y) dF (x) dF (y) .

In the uniform[0,1] case whereF (x) = x, the quick way to calculate this quantity is to note that the CDF

of the maximum isx2 with a density of 2x. Then

WFIRST BEST= 2
∫ 1

0
x2dx=

2
3
.

Myerson and Satterthwaite (1983)showed that in a bilateral monopoly situation in whichx andy are private

information, we cannot attain first best with any mechanism with a zero budget balance.
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1.1 Version 1: Only middleman has a private signal about z

By far the simpler version of the model to analyze is that in which neitherB nor S has private information

aboutz and in which middlemen who knowz from the outset, bid for the security competitively. We shall

start out without middlemen in the model, and analyze two alternative trading rules, the first being that in

whichS posts an ask thatB must accept or reject, the second being that in whichB posts a bid whichS must

accept or reject. The two cases correspond, formally, to which investorarrives first. In the next subsection

we consider the case when one of the investors is better informed aboutz.1

Following that discussion, we shall introduce competitive middlemen. In this situation, middlemencreate

an adverse-selection problem that otherwise would not exist. The problem is partially resolved by letting

the middlemen supply liquidity in the form of limit orders, or ‘passive’ orders.Nevertheless, trade is lower

than it would be in the absence of middlemen.2

1.1.1 Case 1: S posts an asking price, B accepts or rejects

Since neither party knowsz, both expect to receiveE (z) = 0 from the common value. This leaves only

the private values of the security to bargain over.3 In other words, faced with the ask-price ofp that is

uncorrelated withz (it has to be becauseS has no signal aboutz), B accepts if and only ify > p. ThenS

solves the problem

max
p

[

1− F (p)
]

p+ F (p) x,

which, sinceF (x) = x boils down to the problem maxp∈[0,1] (1− p) p+ px. This leads to the optimal pricing

policy

pa (x) =
1+ x

2
(1)

which is plotted as the red line in Figure1. The shaded area shows the pairs of points(x, y) that result in

trade.
1Welfare turns out to be higher when the more informed investor posts the limit order, and this is the trading convention that we

then would expect to see emerge.
2In the empirical section, we shall find that adverse selection existed before the entry of Chi-X, which is evidence against the

stark assumption that in the absence of middlemen no adverse-selection problems would exist. This is shown in Table2 and in the
diff-in-diff analysis.

3The same would be true if both had a common signals aboutz. In that case both expect to receiveE (z | s) from the common
value, once again leaving only the private values of the securuty to bargain over.

5



Figure 1: Equilibrium offer to sell when σ = 0

The probability of trade in Case 1.—In the case whereF is uniform (as portrayed in the figure), the shaded

area represents one quarter of the unit square. The number of tradesis therefore 1/4. More formally, letting

p (x) = arg maxp
{

p
[

1− F (p)
]

+ xF (p)
}

, the probability of trade is

τ =

∫

[

1− F (p [x])
]

dF (x)

SinceG does not affect p (x), it also does not affectτ.

Welfare in Case 1.—If trade was prohibited, welfare would equalE (x+ z) = E (x) = 1/2. But trade raises

welfare above this level. Expected welfare conditional onx is then

E (welfare| x) = xPr

(

y <
1+ x

2

)

+
1+ 1+x

2

2
Pr

(

y ≥ 1+ x
2

)

= x
1+ x

2
+

1+ 1+x
2

2

(

1− 1+ x
2

)

= x
1+ x

2
+

1+ 1+x
2

2

(

1− 1+ x
2

)
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1
2
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



and therefore

W =
∫ 1

0
E (welfare| x) dx=

1
2















1
2
+

1
3
+ 1− 1

4
(1+ x)3
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∣

∣

∣

∣

∣

∣

1

0


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









=
5
8
= 0.625 (2)
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1.1.2 Case 2: B posts a bid, S accepts or rejects

If B buys the security, the buyer receivesu − p, and zero otherwise. If he did not have to worry about

competition from middlemen,B would solve

max
p

{[

F (p)
]

(y− p)
}

,

with FOC

F = (y− p) f =⇒

pb (y) = y− F (p)
f (p)

which in the uniform case gives us

pb (y) =
y
2

which we illustrate in Figure2.

The probability of trade in Case 2.—With p (y) = arg maxp {pF (p)} , the probability of trade is

τ =

∫

F
(

p
[

y
])

dF (y)

Again, sinceG does not affect p (y), it also does not affectτ. In the uniform case, the shaded are represents

one quarter of the square. A comparison of the shaded areas in Figures1 and2 shows that they are the same.

The probability of trade is again 1/4.

Welfare in Case 2.—It is easy to show that welfare is again 5/8, just as in (2) of CASE 1.4

4Conditional ony welfare,E (welfare| y), is

yPr(x < y/2) +
1
2

(

1+
y
2

)

Pr(x ≥ y/2) =
1
2

y2 +
1
2

(

1+
y
2

) (

1− y
2

)

=
1
2

(

y2 + 1− y2

4

)

=
1
2
+

1
2

3
4

y2

and overall it is
∫ 1

0
E (welfare| y) dy= 5

8 , same as in (2)
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Figure 2: Equilibrium offer to buy when σ = 0

1.1.3 Case 3: Informed Middlemen post bids and asks

To be an HFT is to have the ability to react to news faster than investors can.5 We now add to the game some

middlemen who, unlikeB andS, knowz from the outset. Presumably the news aboutz is fresh, too fresh for

the investors to have heard it. A middleman’s utility from owning the asset isz. He has zero private value of

holding it. Sincex andy are positive, if the security ends up in the middleman’s hands welfare is lowerex

post in every state of the world.

On the other hand, the presence of middlemen in this environment creates a winner’s curse problem for any

uninformed investor (in this caseB andS) wishing to post a limit order. Being faster, middlemen would

accept an offer to sell whenz is large and reject it whenz is small, and would top an offer to buy that B would

reasonably make. We shall now assume that such private information dissuades investors from posting offers

and opens the door to middlemen to post bids and asks.

The middlemen are competitive. Middlemen their bidspb at a value at which they break even in the sense

that their expected profit from attempting to sell the security equalspb. To calculatepb we work backwards

5Our empirics show that the middleman’s price quotes react faster, and especially so to “hard” information. We also find
middlemen to be more active in more volatile stocks, which is where they can presumably reap the benefits of their superior
capability of tracking hard information.
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from the value of selling the security. Should a middleman,M, procure the security fromS, he can turn

around and try to sell it toB right away. At this pointM is the monopolist andB still the monopsonist. I.e.,

if M’s bid succeeds, the bilateral monopoly situation shifts from being betweenS andB to one between

M andB. But there is a further change: The asymmetric information aboutz has now disappeared:B will

by then have seen the post,pb, and from it he has been able to inferz, becausepb will in equilibrium be a

monotone-increasing function ofz.

At this point, the situation is much the same as it was in Case 1 under whichB andS both had the same

expected value ofz, namelyE (z) = 0. This time, bothM andB have the same value ofz, namely the

realized value ofz which M knew from the start and whichB has been able to infer. Therefore,M’s asking

price will be

pa = z+ u (3)

where

u = arg maxu [1− F (u)] (4)

andM’s willingness to bid forS’s security is

pb = z+ π (5)

where

π = max
u

u [1− F (u)] . (6)

Thereforepb is indeed monotone inzas claimed.

SinceS also knows howpb relates toz, he realizes that if he keeps the security he will get a payoff of x+ z,

whereas if he sells, (5) tells us that he will getz+ π. ThereforeS sells iff x < π.

The probability of trade in Case 3.—In Figure3, the red square contains the(x, y) pairs of the traders that

take part in the M-mediated transfer of securities. The number of trades exceeds this number, however,

because of how the data are collected. Since a saleS→M followed by a saleM→B counts as two separate

trades in the data, the total number of trades that Case 3 predicts is

τ = F (π) + F (π) [1− F (u)] =
1
4
+

1
4

1
2
=

3
8
= 0.375. (7)
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Figure 3: Transfers in Case 3

Figure3 also plots the asking pricep (x) = (1+ x) /2 for Case 1, and for Case 2 the bidp (y) the inverse

of which is 2x. We then find that the agents involved in trades that eventually move the security from one

investor to another in Case 3 are a strict subset of those that trade in Case2, but not a strict subset (though

still a smaller one) of those that trade in Case 1. These are in the upper (red)rectangle. The lower (blue)

rectangle involves an equal number of transfer where the final owner isthe middleman.

Welfare in Case 3.—The averagex of the transferred securities is 1/8 whereas their averagey is 3/4. Of the

1/4 shares sold, half are kept by M and draw no private value. Thus totalnumber of effective transfers is

1/8, and so the welfare gain is18
3
4 −

1
4

1
8 =

1
16, so that total welfare is916 = 0.563.

1.1.4 Feasible strategies

Middlemen are the only agents that in the model can post more than one price or, rather, revise their actions

in light of information received during the period. They can post a bid andif it is accepted, they can turn

around and post an ask. Investors are assumed to be unable to act as fast as to accomplish this. In particular,

investorS can inferz from pb, he cannot then reject the bid, and post an asking price that reflectsz. If S

could do this, he could drive middlemen out of business. The reasoning is similar to that for why in the
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absence of noise traders the informed traders would not want to pay the information cost inGrossman and

Stiglitz (1980)because equilibrium is then fully revealing.

Let us review the logic in Case 1 and Figure1. Sinceπ = 1/4, M’s bid of pb = z+1/4 would be too low to

meet any ofS’s asks which, whenS knowsz, would equalz+ (1+ x) /2. Alternatively, in Case 2 and Figure

2, let M try to enter the game in whichB bids p (y) = y/2. Could he post a bid ofpb and hope to re-sell

the security at a profit? If he succeeds in buying the security at the pricepb, this would mean thaty < 2pb.

Thenpa = arg maxp p
[

F (2pb) − F (p)
]

. Sincepb will not exceed 1/2 in the uniform case, the maximand is

p
([

2pb − p
])

. The FOC is 2pb − 2pa = 0 which implies thatpa = pb. But M cannot possibly break even

this way because the probability of sale atpa is less than unity. Therefore regardless of who posts the limit

order (B or S), M cannot profitably acquire the security with a positive probability.

1.1.5 Summary of Version 1

Let us summarize implications in a table. The bid-ask spread for the situation without middlemen can be

defined as the average ofpa (x) for Case 1 minus the average of thepb (y) in Case 2. That is,6

Spread=
∫

pa (x) dF (x) −
∫

pb (y) dF (y) =
3
4
− 1

4
=

1
2

We consider this to be the “realized spread” caused purely by monopoly power. This would arise even

without any adverse selection.

Summary of Version 1

REGIME # TRADES WELFARE SPREAD

First best 0.50 0.666 - -

No middlemen 0.25 0.625 0.5

Middlemen 0.38 0.563 0.25

The important feature of the summary is that the properties of the distribution ofz have no bearing on the

numbers in the table.
6A smaller number would probably be appropriate if an investor of a giventypex was to post both an ask and a bid.
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(i) In row 1 of the Table, the first-best depends on transferring shares to the larger ofx and y. The

allocations do not depend onz.

(ii) In row 2, the investors cannot forecastz, and simply behave as ifzwere equal to its expected value of

zero. This will cease to be true when we introduce private information about z.

(iii) In row 3, the actions of the middlemen revealz to the traders.

In the next section, we shall find that when we introduce some private information onz, the welfare rankings

of the second and third rows will change

1.2 Version 2: Buyer too has a private signal about z

Version 2 differs from Version 1 mainly in that now an adverse-selection problem exists without middlemen.

This is supposed to capture the reality that whoever posts a limit order and cannot continuously monitor it,

risks having it accepted in an unfavorable state. The investor posting a bidcould be a buyer or a seller. To

keep things simple we shall deal only with the case in which the uninformed agent is the seller.

The severity of the problem depends on the importance ofz relative to that ofx andy. We shall show that in

the absence of informed middlemen this reduces trade and welfare regardless of whether the informed party

(i.e., the seller) or the uninformed party (i.e., the buyer) makes the offer. The welfare conclusions can be

anticipated as summarized in Figure4. On the horizontal axisσ, is the standard deviation ofz.

We conjecture that the effects are monotone inσ, as depicted. This is based on eq. (17) which shows an

upper bound for trade, a bound that converges to zero. As trade converges to zero, welfare converges to its

no-trade level.

Relation to the no-trade results.—The result is closely related to the no-trade theorem (Milgrom and Stokey

(1982)) which states that as long as differences in beliefs arise from differences in signals that come about

as a result of an agreed-upon distribution, one cannot have trade without assuming differences in traders’

utility functions. We can write those preferences asx+ σz for the buyer andy+ σz for the seller, but since

everyone is risk neutral, we can divide payoffs byσ without affecting incentives or equilibrium. Then the
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Figure 4: Welfare and middlemen involvement

preferences arez+ x/σ andz+y/σ respectively. Asσ gets large, the preferences become identical and equal

to z and trade disappears.

1.2.1 Case 1A: Seller posts limit order

As in Case 1 above,S meetsB who, as before, values the security aty+ z, wherey is drawn independently

from F. The difference is that nowB knowsz.

The owner makes the non-owner a take-it-or leave it offer of p, and the (possibly new) owner remains in the

market, and the non owner leaves for ever.

The prospective buyer knows more than the seller about the common valuez. In support of this assumption,

our data show that the effect of a trade is to change the long-run value of the security, i.e., it has a long-run

impact on the price – see Table1 and the detailed discussion of it.

B accepts an offer atP iff y+ z> p. ThenS solves

max
p

∫ ∞

−∞

[

p
[

1−G (p− y)
]

+

∫ p−y

−∞
(x+ z) g (z) dz

]

dF (y) .
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Differentiating and cancelling the termpg(p− y) which appears twice, we get the FOC

1−
∫ ∞

−∞
G (p− y) dF (y) =

∫ ∞

−∞
(x− y) g (p− y) dF (y) . (8)

Normally distributed x, y and z.—We suppose thatx andy ∼ N (1,1) , and thatz ∼ N
(

0, σ2
)

. We wish to

vary the parameterσ which, when it gets larger relative to the unit variance ofx andy, worsens the adverse-

selection problem. Sincey andz are independent, their sums ≡ (y+ z) is normal, with variance 1+ σ2.

Let

φ (u) =
1
√

2π
e−u2/2 and Φ (u) =

∫ u

−∞
φ (s) ds

be the standard normal density and CDF. We shall hold the variances ofx andy at unity. Then

F (y) = Φ (y− 1) , f (x) = φ (x− 1) , G (z) = Φ
( z
σ

)

, and g (z) =
1
σ
φ

( z
σ

)

(9)

We then can write

v (x) ≡ max
p

∫ ∞

−∞
{
[

1− Φ
( p− y
σ

)]

· p+
∫ p−y

−∞

x+ z
σ

φ

( z
σ

)

dz}φ (y− 1) dy. (10)

The FOC w.r.t.p is

0 =
∫ ∞

−∞

[

1− Φ
( p− y
σ

)

+

( x− y
σ

)

φ

( p− y
σ

)]

φ (y− 1) dy. (11)

Now let p (x) be the optimal price and

τ (x) =
∫ ∞

−∞

[

1− Φ
( p− y
σ

)]

φ (y− 1) dy (12)

be the probability that the offer of a type-x seller is accepted.

Lemma 1 Under the normality assumptions in (9), the probability that the buyer accepts the offer of seller

x can be expressed as

τ (x) =

(

1
1+ σ2

p (x) + α2 − x

)

α
√

2πσ
exp

(

p2 − 1
2σ2

(

p+ σ2

1+ σ2

))

, (13)
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whereα is defined as

α = m̄+ [1− F (k)] (k+ ∆) = m̄+
[1− F (k)]2

f (k)
=

β

1− β
[1− F (k)]2

f (k)
. (14)

We now use the Lemma to prove our result that the adverse-selection problem destroys trade in the absence

of middlemen.

Proposition 2 Under the normality assumptions in (9),

lim
σ→∞

τ (x) = 0 for all x ∈ R (15)

Proof. As σ → ∞ if, for eachx, p/σ → +∞, then (15) follows because then by (12) τ (x) → 0 because

Φ
(

p−y
σ

)

→ 1 for eachy. Conversely, ifp/σ is bounded, then so isC and thereforeB→ 0 [whereC is defined

in (56)]. And in this case , the term1
1+σ2 p in (57) is also bounded, and thereforeB→ 0 =⇒ τ (x)→ 0.

Lower bound on p.—Sinceτ ≥ 0 and sinceB is strictly positive, (57) implies that

p (x)

1+ σ2
≥ x− α2 (16)

Upper bound onτ.—In (12),

τ (x) = Pr(y+ z≥ p (x)) = Pr(y− 1+ z≥ p (x) − 1) = 1− Φ
(

p (x) − 1
1+ σ

)

= Φ

(

1− p (x)
1+ σ

)

where the last equality follows because for anyu ∈ R, Φ (−u) = 1− Φ (u). Now from (16),

p (x) ≥
(

1+ σ2
) (

x− α2
)

=
(

1+ σ2
)

x−
(

1+ σ2
)

α2 =
(

1+ σ2
)

x− σ2

and therefore

τ (x) ≤ Φ
(

1− σ2 (x− 1) − x
1+ σ

)

= Φ

















−

(

1+ σ2
)

(x− 1)

1+ σ

















(17)

which, for x to the right of the mean, gives us an estimate of the rate at whichτ (x) converges to zero.

This rate forms the basis for the dashed red line the welfare gains to trade in Figure 4 in the absence of

15



middlemen. As trade converges to zero, welfare converges to its no-tradelevel.

1.2.2 Case 2A: Buyer posts limit order

In this case the offer is made by the informed agent, and it therefore partially reveals the statez to the seller.

The seller’s expectations thus depend on the buyer’s equilibrium strategy. The buyer of course recognizes

that fact, and this leads to a fixed-point problem for the equilibrium bidding strategy

We imagine, then, that in the absence of middlemen the buyer can post a limit order at the start of the period.

It will turn out that the buyer’s bid, will be a monotone function ofu ≡ y+ z, thereby allowing the seller to

infer u while deciding on whether or not to accept the bid. He will, in other words, condition his beliefs on

u. The distribution ofzconditional onu is Normal, with mean

E (z | u) =
σ2

1+ σ2
(u− 1) . (18)

Let p denote the buyer’s bid. In equilibrium, the bid will be a function

p = h (u)

that will turn out to be strictly monotone and, hence, invertible. Upon seeing the offer at p, the seller will

form the expectation ofz that we shall denote by

Z (p) ≡ E
(

z | u = h−1 [

p
]

)

=
σ2

1+ σ2

(

h−1 [

p
]

− 1
)

(19)

(using (18)) and he will accept this offer iff x+ Z (p) < p, i.e., iff

x < p− Z (p) . (20)

The buyer’s decision problem.—The buyer understands that his offer influences the seller’s beliefs aboutz,

16



via (20). If he buys the security, the buyer receivesu− p, and zero otherwise. The buyer’s problem then is

max
p
{F (p− Z (p)) (u− p)}

The FOC is

F (p− Z (p)) = (u− p) f (p− Z (p))
(

1− Z′ (p)
)

(21)

where, upon using (19), we find that

Z′ (p) =
σ2

1+ σ2

dh−1

dp
(22)

Equilibrium.—Nash equilibrium requires that the buyer’s expectations about the strategy that the seller uses

should be self-fulfilling. This requires, in turn, that

∂h−1

∂p
=

1
dp/du

or simply that

h′ (u) = h′ (u) (23)

wheredp/du = h′ (u) is the optimal response of the seller to a change inu. This response obtained as a

comparative static result in (21) taking Z (p) as determined – via (19) – by the seller’s expectationsh. In

other words, we seek a fixed point forh.

The previous section showed that asσ gets large, the asking price of the uninformed goes to plus infinity

for eachu. Now we shall show that under the same conditions, the bid of the informed buyer converges to

minus infinity for eachu, so that there is again no trade

Proposition 3 Under the normality assumptions in (9), for each u∈ R,

lim
σ→∞

p (u) = −∞

The proof goes as follows. Letr (s) = F (s) / f (s) , and

(a) substitute forZ from (19) into (21) and

17



(b) substitute forZ′ (p) from (22) noting thatdh−1

dp = 1/h′ (u) = 1/p′ (u)

so that the latter reads

r

(

p− σ2

1+ σ2
(u− 1)

)

− (u− p)

(

1− σ2

1+ σ2

1
p′ (u)

)

= 0 (24)

Now (24) must hold for allu. The solutionp = h (u) is, unfortunately, not linear.7 Equilibrium then satisfies

the first-order differential equation

1
u− p

r

(

p− σ2

1+ σ2
(u− 1)

)

= 1− σ2

1+ σ2

1
p′ (u)

(25)

i.e.,
du
dp
=

1+ σ2

σ2

[

1− 1
u− p

r

(

p− σ2

1+ σ2
(u− 1)

)]

(26)

Now it is simpler to study the behavior of the variable

s= u− p > 0, (27)

where the inequality follows because it is optimal for the seller to bid strictly less than his value. Then (26)

implies
ds
dp
=

1
σ2
− 1

s
r

(

σ2

1+ σ2
(1− s) +

p

σ2

)

(28)

Analysis of the ODE(28).—We now proceed informally and analyze a sequence of first-order differential

equations indexed by the parameterσ.

LEMMA: Let the ODE
ds
dp
= ψσ (s, p)

admit a solutionsσ (p). For any compact setA ⊂ R2 let

lim
σ→∞

sup
s∈A
|ψσ (s, p) − ψ∞ (s, p)| = 0 (29)

and let the family(ψσ) be uniformly Lipshitz continuous onA . Then if the solutions∞ (p) exists, then the

7Suppose that it were linear so thatp = a+bu=⇒ p′ (u) = b Then sincer is nonlinear, we would have to haveb = σ2/
(

1+ σ2
)

=

p′ (u) which would imply thatr = 0, and this is impossible except in the limit asp→ −∞.
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sequence of solutions(sσ (p)) converges pointwise tos∞ (p) on A.

[Theproof of the lemma is not included]

If we confine attention to the region wheres is bounded away from zero then condition (29) is satisfied and

the convergence
ds
dp
→ −1

s
r (1− s) < 0 (30)

is uniform. Therefore we shall study the properties of the limiting ODE given by the RHS of (30) and then

apply the lemma to infer something about the sequence of solutions asσ gets large.

Let Φ andφ denote the standard normal CDF and density.F is the normal distribution with mean and

variance one, andf the corresponding density, andr = F/ f . Then

r (1− s) =
Φ (−s)
φ (−s)

=
1− Φ (s)
φ (s)

>
s

1+ s2

where the last inequality follows from a well-known inequality concerning Mill’s ratio (Baricz (2008), eq.

1.1). Combining this inequality with (30)

lim
σ→∞

ds
dp

< − 1
1+ s2

Therefore

s> 0 =⇒ du
dp

< 0⇐⇒ dp
du

< 0

s ∈ (−1,0] =⇒ du
dp

< 1

Now fix u atu0 and suppose limσ→∞ p (u0) existed. Let

s0 = u0 − lim
σ→∞

p (u0)

faster thanu, which means that there exists a valueu1 ≥ u0 + s0, such thatp (u1) > u1, which would

contradict (27).8

8Of course oncesapproaches zero, the uniform convergence assumptions in (29) fail, and the argument needs to be stated more
carefully.
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Although the informed agent can extract the rents, he cannot commit to an function that relates the bid toz.

The lack of commitment can be seen as an inability to use a contract the terms of which are indexed toz. If

the buyer could commit to an indexed contract, he would do so. Such contracts are not much traded so there

must be a force outside our model that prevents that from happening.

For that reason, welfare in the absence of middlemen declines overall asσ rises from zero to infinity, and

that is why the dashed red line in Figure4 must slope down roughly as shown in the figure. On the other

hand we have not proved that the decline is monotonic.

1.2.3 Case 3A: Middlemen in the game

Middlemen operate precisely as in Case 3, and the equilibrium is precisely thatdescribed in that case. That

is to say, equations (3) - (6) hold here as well and the allocations are precisely the same. The reason isthat

competition at the bidding stage revealsz to B anyway, and therefore no asymmetry remains at the stage

where the ask-pricepa is determined.

For that reason, welfare in the presence of middlemen does not depend on the properties of the distribution

G, and that is why the solid blue line in Figure4 is flat.

2 Dynamics

We now show that the results extend to an infinite number of periods. We beginwith a situation where there

are just two investors in the game at any one time, labelled againS (the beginning-of-period owner of the

asset) andB, the potential buyer.

Sequencing of events in a period

1. S observesx, B observesy andz separately

2. S makes an offer (an “ask”), orB makes a bid

3. Offer is accepted or rejected

4. The (possibly new) owner stays in the market, the other leaves for good
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5. Owner collectsx+ z (or y+ z), and draws a newx′ (or y′)

Everyone is risk neutral and lives for ever and discounts the future withfactorβ.

The i.i.d. assumption.—Because of the near random walk of prices, the assumption of an i.i.d. common

value seems innocuous. We shall also assume, however, that the variablex, the private value that is inde-

pendent over investors and i.i.d. with distributionF (x) .

The i.i.d. assumption is convenient. In reality,x andy are likely to be autocorrelated. In our model, they are

uncorrelated between periods but do not change (i.e., are perfectly autocorrelated) within the period, and we

allow the security to be transferred within the period, in time for another investor to enjoy his currently high

private value. Therefore we think ofβ partially as an inverse index of how autocorrelated the private values

are per unit of time.

2.0.4 Case 1B

We now look at the regime where in each period posted offers are ask prices posted byS. Since the owner

does not seez when making the offer and sincez is i.i.d., the state isx. Let v (x) again be the lifetime PV of

holding the asset today and drawingx utility if it is not sold, or collectingP if the offer is accepted. Denote

the continuation value by

v̄ ≡ β
∫

v (x) dF (x) .

The buyer accepts an offer atP if has drawn a valuey satisfying

y+ z+ v̄ ≥ P. (31)

The probability that (31) holds, conditional on(z,P) is

1− F (P− z− v̄) . (32)

Then

v (x) = max
P

∫

[P [1− F (P− z− v̄)] + F (P− z− v̄) (x+ z+ v̄)] dG(z) . (33)

Equilibrium.—It is two functionsv (x) andP (x) satisfying and (33).
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Analysis.—We can re-write (33) as

v (x) = max
P

∫

[

Pr(z≥ P− v̄− y) P+ Pr(z< P− v̄− y) {Ex+ z+ v̄ | y, z< P− v̄− y}
]

dF (y)

= max
p

∫

{
[

1−G (p− y)
]

· (p+ v̄) +G (p− y) E[x+ z+ v̄ | y, z< p− y]}dF (y)

= max
p

∫

{
[

1−G (p− y)
]

· (p+ v̄) +
∫ p−y

−∞
(x+ z+ v̄) g (z) dz}dF (y)

= v̄+max
p

∫

{
[

1−G (p− y)
]

· p+
∫ p−y

−∞
(x+ z) g (z) dz}dF (y) .

where, in the second line,p ≡ P− v̄ is the markup over ¯v. Differentiating and cancelling the termpg(p− y),

we get the same FOC analyzed in the static Case 1A, namely (8), and the results on the disappearance of

trade in (15) follow.

2.0.5 Case 2B: Buyer posts limit order

The informed agent makes the offer in this case, and it therefore partially reveals the statez to the seller. Let

P denote the buyer’s bid, and let

p = P− v̄

once again denote the markup over ¯v, just as in Case 1B As in Case 2A, the equilibrium bid will be a

monotone, invertible functionp = h (u). Upon seeing the offer atp, the seller will form the expectation of

z that we shall denote byZ (p) as in (19), which uses the assumption of normality and, hence (18)). and he

will accept this offer iff

x+ Z (p) + v̄ < P,

i.e., iff (20) holds. The rest of the analysis in Case 2A then goes through.

2.0.6 Case 3B: Middlemen

We now introduce middlemen into the above environment.

Timing.—Middlemen are faster9 and can post a limit order first and then try to re-sell the security in the

9Although we do not have the middleman’s quotes, Chi-X is more hospitable inthe sense of allowing free unlimited cancellations

22



sameperiod. A low-x investor-owner can wait for the next period in the hope that the new drawx′ will be

higher. Indeed, since the draws are i.i.d., he has as high chance of gettinga good draw tomorrow as the

chance of the arriving investor having the good draw ofy today. Butx′ is discounted andy is not, and this is

where the middleman can add value.

If he fails to sell a security he has bought, the middleman collectszand enters the next period as the security’s

owner, in which case his only action is to post an order to sell. Faced with an order to buy, the seller must

either accept it or hold on to the security for the remainder of the period. Asbefore, the seller cannot react to

a middleman’s offer within the period and post a limit order instead reflecting the information in thatorder,

so that any limit order the seller posts cannot incorporate the knowledge ofz.

Analyzing this requires some non-trivial modifications becauseM will acquire the security fromS and not

succeed in selling it toB. In that case,M enters the next period as the security’s owner. Case 3 analyzed

only the case in which the initial owner wasS. Now we need to also cover the case in which the initial owner

is M. Accounting for this turns out to lower the welfare benefits from middlemen roughly by a factor of five

over those reported in Figure4, from 12 percent to 2.5 percent. Nevertheless, whenσ is large, these benefits

are still positive.

If M is surrounded by other competitive middlemen who have no idea who owns the security, he then will

face bids,pb given in (5), with a slightly modified version ofu andπ originally given in (4) and (6) which

we shall now derive. The modifications must recognize thatS, B, andM all have continuation values.

The middleman’s selling decision.—If he has managed to acquire the security at an earlier date, or even at

the start of the period in question, then he will offer it for sale to the arriving investor10 at the price that we

shall denote byP. Let m(z) be the value of owning the security in statez. Let

m̄= β
∫

m(z) dG(z) (34)

be the expected present value of carrying the asset into the next period. There is no asymmetric information

and faster, as the speed comparison Table3 and Table4 both show. See the discussion of those tables. These tables reveal a speed
difference between Chi-X and Euronext, and this is indirect evidence of ourmodeling assumption concerning the speed of the
middleman.

10We assumeM sells toB, and not to other middlemen because middlemen are all the same. SinceM always asks for more than
his own continuation value, no other middlemen would accept the offer and their presence in the game does not affect the resulting
ask price.
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aboutz at this stage. Faced with the ask priceP, the buyer accepts the middleman’s offer iff

y+ z+ v̄ > P

If he owns a security, the middleman tries to sell it, and his valuem(z) solves the decision problem

m(z) = max
P̂
{[1− F (P− z− v̄)] P+ F (P− z− v̄) (z+ m̄)}

= z+ m̄+max
P
{[1− F (P− z− v̄)] (P− z− m̄)}

= z+ m̄+max
p

{[

1− F (p− z)
]

(p− z+ ∆)
}

(35)

wherep = P− v̄, and where

∆ = v̄− m̄ (36)

is the difference in the two parties’ continuation values of ownership where, as before, v̄ = β
∫

v (x) dF (x).

The FOC is

k = −∆ + 1− F (k)
f (k)

, (37)

where

k = p− z

is a constant. In (35) we see that

m(z) = z+ α, (38)

whereα is a constant is defined as in (14). Combining (35) and (34),

m̄= βm̄+
[1− F (k)]2

f (k)

=
β

1− β
[1− F (k)]2

f (k)

Bid-ask spread.—The middlemen’s bid is

m(z) = z+ α (39)
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while the ask isP = p+ v̄ = z+ k+ v̄. Therefore the ask minus the bid, or the bid-ask spreadS is

S = k+ v̄− α = −∆ + 1− F (k)
f (k)

+ v̄− m̄− [1− F (k)]2

f (k)

=
F (k) [1− F (k)]

f (k)
,

wherek solves (37).

For instance ifF is uniform on[0,1], k = (1− ∆) /2 so that

m̄=
1
2

β

1− β
(1+ v̄− m̄)2

The investor-owner’s value.—If the asset is in the investor’s hands when the period starts, then middlemen

(there are at least two) compete by posting orders to buy. Bertrand competition among the middlemen drives

the bids to equalm(z). The owner thereby infersz from the price. He sells iff

x+ z+ v̄ < m(z)⇔ x < α − v̄

and thereby obtains the reward ofm(z). If he does not sell, his reward isx+ z+ v̄. Therefore

v (x) =
∫

max(m(z) , x+ z+ v̄) dG(z)

=

∫

[z+max(α, x+ v̄)] dG(z)

= max(α, x+ v̄) (40)

Therefore on average the value is

1
β

v̄ = αF (a− v̄) + [1− F (α − v̄)] (v̄+ E (x | x ≥ α − v̄))

Ownership transitions.—To figure out welfare we shall need the stationary fraction of time that the security

is in the hands of investors as opposed to in the hands of middlemen. LetIt denote the ownership status, i.e.,
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let

It =



















1 if the date-t owner is initially an investor

0 if the date-t owner is initially a middleman

It follows a first-order Markov process. The transition from 1 to 0 occurs if the middleman’s buy offer is

accepted but his sell offer is then rejected. The probability that a seller accepts a middleman’s buy offer is

F (α − v̄), and the probability that the buyer then rejects the middleman’s sell offer isF (k). Thus the 1→ 0

transition has probabilityF (α − v̄) F (k). The matrix of transition probabilities can therefore be written as

It+1

0 1

It

0

1





















F (k) 1− F (k)

F (k) F (α − v̄) 1− F (k) F (α − v̄)





















(41)

Therefore the stationary probability, call itλ, of being in stateI = 1 satisfies

λ = λ (1− F (k) F (α − v̄)) + (1− λ) [1− F (k)] ,

i.e., 0 = −λF (k) F (α − v̄) + [1− F (k)] − λ [1− F (k)] , so that the fraction of time the investor has the

security is

λ =
1− F (k)

1− F (k) [1− F (α − v̄)]
, (42)

and the fraction of time a middleman has it is

1− λ = F (k) F (α − v̄)
1− F (k) [1− F (α − v̄)]

. (43)

Welfare

Welfare is a weighted average of the welfare levels of the middleman and the investor owner. The weights

are the stationary probabilities that the asset will be in the hands of the one orthe other type. The common

value is enjoyed by whomever owns the security and therefore we can omit itfrom the welfare calculations.
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Now x is i.i.d., and so it is uncorrelated with the ownership state. Therefore welfareis

W = λ
∫

max(α, x+ v̄) dF (x) + (1− λ) U

where

U =
(

1+ βF (k) + β2F (k)2 + ...
)

∫

k
(x+ v̄) dF (x)

=
1

1− βF (k)

∫

k
(y+ v̄) dF (y)

therefore

W = λ
∫ ∞

−∞
max(α, x+ v̄) dF (x) +

1− λ
1− βF (k)

∫ ∞

k
(x+ v̄) dF (x)

Evidently, W does not depend on the properties of the distributionG. Anticipating a bit, this is why the

dashed line in Figure4 is flat, i.e., independent ofσ which is the variance of the distributionG (z).

The remainder of this subsection will recognize the ownership transitions in (41) and the stationary prob-

abilities (42) and (43) for the ownership fractions in steady state. The utility of agents in each statewill,

however, be evaluated under the assumption thatβ = 0. In what follows, the middleman will be on the

passive side of each trade, which our data support – see Table2 in which this was true for 80% of all trades

our middleman was in.

Middleman’s selling decision.—Sinceβ = 0, on the RHS of (35) we set∆ = v̄ = m̄ = 0 and collect an

expected payoff of

m(z) = z+max
p

{

(p− z)
[

1− F (p− z)
]}

= z+ π

with π as defined in (6) of case 3. the optimal decision – a limit order to sell a unit – is just as it was in Case

3 and eq. (3), i.e., pa = z+ u. WhenF (y) = y, the FOC is 2(p− z) = 1,

pa = z+
1
2

(44)

andπ = 1/4. This then becomes the expected value of acquiring the security for all themiddlemen at the

start of the period.
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Middleman’s buying decision.—Sinceπ = 1/4, (5) implies

pb = z+
1
4
. (45)

Welfare.—This part is different in the multi-period context.

(A) If the period starts with the middleman owning the security, then welfare is

welfare=



















y if there is a sale

0 if not

and expected welfare is

WMID OWNS =

∫ 1

1/2
ydy=

3
8

(46)

Since the RHS of (46) is less than the RHS (47), welfare is less if we condition on a middleman starting out

as the owner.

(B) If the period starts out with the investor owning the security, then

welfare=



















3/8 if there is a sale

(1+ 1/4) /2 if not

A sale occurs with probability 1/4 and therefore expected welfare is

WINV OWNS =
1
4

(

3
8

)

+

(

3
4

)

1
2

(

5
4

)

=
9
16
. (47)

Now in (42) and (43), F (k) = 1/2 andF (α − v̄) = 1/4 and so the fraction of the time that the investor holds

the security is

λ =
1/2

1− 1
2

3
4

=
4
5
,

and the fraction of time a middleman has it is 1/5. Therefore average welfare in the long run is

W∗ =

(

4
5

)

WINV OWNS +

(

1
5

)

WMID OWNS =
21
40
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which means that

W∗ −WNO TRADE =
1
40

This is about two and half times smaller than the difference of 0.563-0.5=0.063 that is implied by the static-

model results reported in Figure4.

First-best welfare.—Allocating the asset to the highest-value investor at all times yieldsWFIRST BEST =
∫ 1
0

max(x, y) dydx= 2
3. Therefore relative to what first-best gains would be, the gains that middlemen bring

about in the multiple-period case are

W∗ −WNO TRADE

WFIRST BEST−WNO TRADE
=

1/40
2/3− 1/2

=
6
40
= 15%. (48)

3 Mechanism-design issues

In our model, middlemen add value by removing the winner’s curse problem facing an ordinary investor

posting a limit order such as the offer thatS posts in cases 1A and 1B. Nevertheless, middlemen deliver

only 15%-33% of the possible welfare gains depending on whether we consider the static model or the

dynamic model.Myerson and Satterthwaite (1983)showed that first-best welfare is unattainable under any

mechanism. The theory of auctions with resale (e.g.,Haile (2003)) deals, in related contexts, with some of

the issues raised below. Our discussion here is brief and quite informal.

Endogenizing the participation of middlemen.—A fuller discussion of optimal mechanisms probably re-

quires thinking about how the numbers of investors and middlemen are determined. That would require

including a cost an investor would need to bear for keeping track ofz more or less continuously. This is

beyond the ordinary investor for it requires the development of programs and the acquisition of expensive

hardware. Algorithmic traders have made the needed investment and can therefore post limit orders that they

can quickly cancel and readjust when news aboutzarrives. We then could figure out whether the number of

middlemen is optimal or whether a smaller or larger number is needed.

Why not z-contingent contracts?—One way to improve allocations is to have state-contingent pricing. In our

model trading in which prices were indexed onzwould overcome the adverse selection problem that traders

face and eliminate the positive role of middlemen. Therefore our model perhaps overestimates the welfare
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benefits from middlemen because in their absence, alternative arrangements would emerge. In international

portfolio theory, covered interest parity is one result of the availability of insurance of exchange-rate risk.

The analog here would be to have prices bez-contingent (seeBlack (1995)). In practice, however, this is

unlikely to completely remove HFTs competitive edge for at least two reasons.First, whereas the index is

a natural candidate to ‘peg’ an order to, there are many sources of public information that might be relevant

for a stock’s fundamental value. Identifying all of them and establishing their correlation is an art. Second,

correlations might be time-varying and quote updating therefore required modeling skill (see, e.g., the DCC

model proposed byEngle (2002)). Nevertheless, our logic implies that if middlemen were taxed or if their

activities were curtailed in some other way, we would presumably see a rise in the trading of derivatives on

the ‘hard’ components ofz, whatever those may be.

More competition among the informed agents?—Another way to achieve optimality is to introduce compe-

tition among the informed agents. If several investors, all knowingx andz, were in the market continuously,

we would expect a near-optimal outcome. But at the frequency of microseconds and even of seconds, the

investor market is quite thin – on Euronext and Chi-X combined we observe atrade only once every 6 sec-

onds. One would need to interrupt trading for even longer if one wanted toto ensure enough investors would

be present to achieve a near-competitive outcome in which the security endsup with whomever values it

the most. Moreover, few investors would even then have up-to-date information aboutz and an efficient

outcome would be unlikely. In other words, even at lower trading frequencies, middlemen are likely to be a

valuable source of liquidity.

Inventories by several middlemen.—We have stressed the alternative mechanism of middlemen providing

the liquidity. We have done so under some restrictive assumptions. The mechanism we have modeled in

section 3 has competition at the bidding stage – At the bid in (45), the middleman earns zero rents. Could

competition also be introduced at the ask stage? The ask-price in (44) maximizes the owner’s rent. If more

than just one middleman were to own a unit of the asset then the ask price wouldpresumably be lower. This

would introduce several effects that affect welfare in more than one direction.

(i) Competition among middlemen not just at the bidding stage but also at the ask stage, would lower pa

below 1/2 in states in which it was common knowledge among middlemen that they both were in possession

of a unit to sell. This would be good for welfare;

(ii ) The effect of (i) is to lower the value to a middleman of buying the asset, and it would lowerpb below
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1/4 and this would reduce trade and welfare;

(iii ) If the middlemen were collectively to hold a larger inventory, this would lower welfare because it would

raise the fraction of the time that a security was held by a middleman drawing a zero private value from it.

Policies.—Aside from taxes on HFTs, on cancelled offers, other restrictions have been used. For instance,

the NYSE follows the practice of selling people the right to be the sole possessors of information for a while

– e.g., information about the whole book and not just about the best quotes; the product is called “Open

Book.”

4 Empirical results

4.1 Background

The European Union aimed to create a level playing field in investment services when it introduced the

Markets in Financial Instruments Directive(MIFID) on November 1, 2007. For markets, MIFID created

competition between national exchanges and it allowed new markets to enter.

Instinet pre-empted MIFID when it launched the trading platform Chi-X (Chi-X) on April 16, 2007, for

Dutch and German index stocks.11 At the end of 2007, it allowed a consortium of the world largest brokers

to participate in equity through minority stakes.12 Before Chi-X Instinet had successfully introduced the

product as ‘Island’ in the U.S. which distinguished itself from others through fast-execution and subsidiza-

tion of passive orders (see fee discussion below). Eventually Instinetsold the U.S. license to NASDAQ but

kept the international license which led to Chi-X.

In the first 77 trading days of 2008, our sample period, Chi-X traded British, Dutch, French, German, and

Swiss local index stocks. It had captured 4.7% of all trades and was particularly strong in Dutch stocks with

a share of 13.6%. Volume-wise, Chi-X overall market share was 3.1% andits Dutch share was 8.4%. Chi-X

started off particularly strong for the stocks studied in this manuscript.

11“Chi-X Successfully Begins Full Equity Trading, Clearing and Settlement,”Chi-X press release, April 16, 2007.
12These brokers were: BNP Paribas, Citadel, Citi, Credit Suisse, Fortis, Getco Europe, Ltd, Goldman Sachs, Lehman Brothers,

Merrill Lynch, Morgan Stanley, Optiver, Sociét́e Géńerale and UBS (op. cit. footnote14).
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Prior to Chi-X entry, Euronext was by far the main venue for trade in Dutchstocks. Its trading platform ran

in much the same way as the Chi-X platform and competition focused on fees andspeed (see discussion

below). Dutch stocks also traded as ADRs in the U.S. and in the Xetra system run by the German Stock

Exchange. They did not yet trade in NASDAQ OMX, Turquoise, or BATS-Europe which entered later on a

business model similar to Chi-X: subsidies on passive orders and a fast system.

The broker identified as a middleman in this study was a substantial participant inChi-X. In our sample

period, it participated in 10.8 million of the 99.2 million Chi-X trades. It was particularly active in Dutch

stocks with participation in 1.7 million out of 8.6 million Chi-X trades.

Fee structure. In our sample period, Chi-X did not charge for limit order submissions and cancellations.

Quite the opposite, it paid 0.2 basis points if the order becomes the passive side of a trade. If however

the order is ‘marketable’ and executes against a standing limit order upon arrival it gets charged 0.3 basis

points. For example, in the stock of limit sell orders in the book, the one with the lowest price becomes

the prevailing ‘ask’ quote. If a limit buy order arrives with a price (weakly) higher than this ask price, it

immediately executes against this limit sell and a transaction is recorded. For simplicity, in this example

it is assumed that orders are of the same size. For a detailed description of the generic limit-order market

mechanism we refer toBiais, Hillion, and Spatt (1995).

Euronext on the other hand charges a fixed fee ofe1.20 per trade which for an average size trade of

∼e25,000 (see Table1) is effectively 0.48 basis points. Highly active brokers benefit from volume dis-

counts that can bring the fixed fee down toe0.99 per trade (∼0.40 basis points). In addition, Euronext

charges an ‘ad valorem’ fee of 0.05 basis points. The act of submitting an order or cancelling it is not

charged (i.e., only executions get charged without an aggressive/passive distinction). But, if on a daily basis

the cancellation-to-trade ratio exceeds 5, all orders above the thresholdget charged ae0.10 fee (∼0.04 basis

points).

In terms of post-trade costs, Chi-X clears and settles through EMCF which claims to be over 50% cheaper

than other European clearing houses including the ones used by Euronext.13

System speed. In a April 7, 2008 press release Chi-X celebrates its first anniversary. It claims to run one

of the fastest platforms in the industry with a system response time (often referred to as ‘latency’) of two

13See, “EMCF cuts clearing fees”, The Trade News, 4/24/08.
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milliseconds. This is “up to 10 times faster than the fastest European primary exchange.”14

Overall, Chi-X appears to be particularly friendly venue for the middleman type that is central to the theory.

Its fees are lowest across the board and particularly low for a strategy that relies on passive orders that get

cancelled and resubmitted upon the arrival of public news. Its speed advantage allows one to do so quick

enough in order not to be picked off.

4.2 Data, Approach, and Summary statistics

Data. The main sample consists of trade and quote data on Dutch index stocks for both Chi-X and Euronext

from January 1 through April 23, 2008. The quote data consist of best bid and ask price and the associated

depth. The trade data contain transaction price, size, and an anonymized broker ID for both sides of the

transaction. The broker ID anonymization is done for each market separately and broker IDs can therefore

not be matched across markets—say the first market uses 1,2,3,. . . and thesecond one uses a,b,c,. . . . The

time stamp is to the second in Euronext and to the millisecond in Chi-X. In the analysis, Chi-X data is

aggregated to the second in order to create a fair comparison across markets.

In a final analysis we aim to identify the net effect of middlemen introduction through a difference-in-

difference analysis (see Section4.6). The instrument is essentially the introduction of Chi-X and the advent

of the identified middleman to the market. A first step in identifying such effect is to collect and analyze

the exact same data for Euronext in the first 77 trading days in 2007 whenthere was no Chi-X, nor was the

middleman broker ID active in the Euronext data (comparing the same period in2007 and 2008 avoids the

impact of calendar effects).15 This is the ‘treated’ sample. To control for all that changed comparing 2007

with 2008, Belgian index stocks are analyzed as the ‘untreated’ sample as Chi-X had not yet been introduced

(as a matter of fact, Chi-X introduced Belgian stocks on April 24, 2008 which motivates the choice of our

main sample period). Other than the absence of Chi-X, Belgian stocks tradedin the same way as Dutch

stocks as Euronext operated its trading system across its four markets (Belgium, France, the Netherlands,

and Portugal). In terms of the actual data, the Belgian sample only differs from the Dutch sample in that it

lacks broker IDs on transactions.
14“Chi-X Europe Celebrates First Anniversary,” Chi-X press release, April 7, 2008.
15This makes the pre-entry period run through April 20, 2007. This appears at odds with the Chi-X effective date of April 16,

2007, but in the data no trade materialized in the Chi-X system until after April20, 2007.
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The list of all stocks that are analyzed in this study is included as an appendix. It contains security name,

isin code, and weight in the local index.

Finally, a dataset with quotes from the highly active index futures market is used to track changes in both

the Dutch AEX index AEX and the Belgian BEL20 index.

Approach. The analysis was done in two steps (i) to make it feasible (the entire dataset contains roughly

100 million event records) and (ii) to do proper statistical inference. The first step calculates all variables of

interest for each stock-day. For example, it calculates the time-weighted quoted half spread (ask minus bid

divided by two) for Heineken on January 2, 2008. To make activity measures comparable across stocks, we

convert, e.g., the number of shares traded to aeamount by multiplying it with the average transaction price in

the sample period. The second step is a panel data analysis on the ‘box’ withall stock-day results. Standard

errors are based on residuals that are clustered by day so as to avoid ‘double counting’ in the presence of

commonality and to explicitly recognize heteroskedasticity. The results are presented as weighted-averages

across stocks where the weight corresponds to the stock’s weight in thelocal index (see appendix with the

list of all stocks). Also, results are reported separately for large and small stocks where the cutoff is the

median index weight.

[insert Table1 here]

Summary statistics. Table1 presents summary statistics to illustrate Chi-X role in the trading of Dutch

stocks. It leads to a couple of observations.

(i) Chi-X managed to obtain a nontrivial market share within one year of its existence. Chi-X’ share of

overall volume is 8.4% its share of trades is 13.6%. Its performance is particularly strong for large

stocks.

(ii) The use of Chi-X in addition to Euronext leads to a substantial improvementof liquidity supply. The

average quoted half spread is 3.70 basis points for Euronext and 5.09 basis points for Chi-X. Average

depth ise108,100 for Euronext ande48,500 for Chi-X. The wider spread and lower depth in Chi-X

does not necessarily imply that investors who demand liquidity/immediacy only focus on Euronext.

The results are, for example, consistent with Chi-X always having a strictlybetter price on one side of
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the market, i.e., a strictly lower ask or a strictly higher bid. To assess Chi-X’ contribution to liquidity

supply one might calculate the lowest ask across markets minus the highest bid—the inside spread—

and compare it to the Euronext spread. The inside spread is, effectively, what investors with ‘smart

routers’ pay (seeFoucault and Menkveld (2008)).

The inside spread however might lead one to overestimates liquidity supply improvement as the av-

erage Chi-X depth is lower than Euronext depth. To control for depth, we define the ‘generalized’

inside spread which adjusts both the bid and the ask quote for potentially betterprices in Chi-X. For

example, the adjusted ask ise29.995 if the Euronext ask ise30.00 with depthe100,000 and the

Chi-X’ ask ise29.99 with depthe50,000. The generalized inside spread is a conservative measure

as it calculated for transaction sizes that consume full Euronext depth; smaller transaction sizes imply

an even tighter spread.

The generalized inside spread is 2.86 basis points, which is a significant 1.02 basis points (-23%)

lower than the Euronext-only spread of 3.70 basis points. A conservative t-value of this differential

assumes perfect correlation and therefore equals 3.92. The differential is statistically significant for

both large stocks (-24%) and small stocks (-16%).

(iii) A standard effective spread decomposition shows that, by far, its largest component is adverse se-

lection (91%) which thus supports the focus on information asymmetry in the theoretical model. The

effective spread is defined as the transaction price minus the midquote—the average of the bid and ask

quote—at the time of trade. It can be decomposed into a component that is compensation for being

adversely selected and the orthogonal component which is gross profitto the passive order submitter.

A standard decomposition relies on ‘waiting out’ the time it takes until prices reflect the long-term

information in the trade (see, e.g.,Glosten (1987)) which we set to 30 minutes. Overall, we find that

the average effective spread is 3.04 basis points which is the sum of a significant 2.78 adverse selec-

tion (91%) and an insignificant 0.26 basis points gross profit (9%). The adverse-selection component

is higher for small stocks.

4.3 Caught on tape! a middleman

The anonymization scheme by market makes simple matching of broker IDs across markets impossible.

Instead, we match pairs of broker IDs and find that one combination (say broker 7 and broker d) achieves
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mean-reversion in net position within the day. Also, both broker IDs trade very frequently. It thus matches

the SEC’s defition of ‘high frequency trader’ and appears to fit the profile of the middleman in our main

theory.

[insert Figure5 here]

Figure5 illustrates the middleman’s trading by plotting inventory in ING stock throughout January 30, 2008

assuming she starts off at zero. This inventory at any particular point in time is thus defined as the number of

shares bought minus the number of shares sold since the start of the trading day. The two top graphs plot this

inventory by market and show that the middleman is quite active and runs into positions of almost 40,000

shares. Yet, these time series also appear nonstationary which, by market,would not qualify these broker

IDs as middlemen. But, if summed across markets, which is the bottom graph, the pattern does exhibit

high-frequency mean-reversion and it seems that we did catch a middleman.Although hard to see from the

graph, the inventory at the end of the day is exactly zero shares.

[insert Table2 here]

In Table2, Panels A and B generate statistics in support of the conjecture that the broker IDs underlying

Figure5 represent a middleman. Panel A reports that on almost half (0.46) of the stock-days in the sample

the middleman’s change in inventory across the day is exactly zero. On average, this daily inventory change

ise-56,000. Panel B shows that the middleman trades 1.40 times per minute in Euronext and 0.96 times per

minute in Chi-X. She trades an averagee32,000 per minute in Euronext ande21,000 per minute in Chi-X.

The average open-to-close inventory change is therefore of the same magnitude as the amount she trades in

a minute which supports strong inventory mean-reversion. She is a substantial market participant as, based

on these numbers, she is a counterparty in every third trade in Chi-X (35.6%) and every fourteenth trade

(7.7%) in Euronext. Disaggregating across small and large stocks, it appears her participation rate is the

same in Chi-X but substantially lower in Euronext. She also seems less eager tocarry positions overnight as

the fraction of days with a zero inventory change is 0.60 as opposed to 0.33for large stocks.

Panel C of Table2 reports that most often the middleman is at the passive side of a transaction. In Chi-X,

78.8% of her transactions was another broker’s aggressive order executing against her limit orders waiting
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in the book. In Euronext, it was slightly lower, 74.0%. The standard errors, 0.7% and 1.0% respectively,

show that this is a structural pattern as the distance to 50% is statistically significant. This predominant use

of passive orders in addition to the inventory mean-reversion is consistent with dynamic inventory control

models that have been proposed for market makers (see, e.g.,Ho and Stoll (1981), Amihud and Mendelson

(1980), andHendershott and Menkveld (2009)). These models predict an intermediary to skew her quotes

opposite to the direction of her inventory in order to mean-revert. This couldexplain why Chi-X quotes,

where our middleman is in every third trade, often features strictly better prices on one side of the market

only (see the discussion on the ‘generalized inside spread’ in Section4.2). Interestingly, disaggregation

across large and small stocks shows that the middleman is less passive for small stocks in Euronext (52.7%)

which, along with her high fraction of days that she ‘goes home flat’, indicates that she often willingly pays

the half spread to keep inventory close to zero.

Panel D of Table2 reveals adverse selection is a relatively smaller component of the effective spread when

the middleman is on the passive side of the trade relative to when she is not. Thepanel conditions the

effective spread decomposition on whether or not the middleman was on the passive side of the trade.

The middleman effective spread is 3.47% on average, which is significantly higher than the nonmiddleman

effective spread of 2.96$ (conservativet-value is 3.92). The adverse-selection cost, however, is 2.75 basis

points for middleman trades which is not significantly different from the 2.81 basis points for nonmiddleman

trades. The remainder is gross profits to the passive side of the trade or so-call realized spread. It is 0.72

basis points for middleman trades which is significantly higher than the 0.15 basispoints for nonmiddleman

trades (t value is 1.97). Testing against zero reveals that gross profits are only significantly positive if the

middleman is on the passive side of the trade. In relative terms, adverse selection is 79% of the effective

spread for middleman trades vs. 95% for nonmiddleman trades. We note that this result should not be

interpreted as evidence that the middleman is bad for the market as she appears to have significantly positive

gross profits on her passive orders. First off, trading conditions might be worse when the middleman is

on the passive side, e.g., volatility might be higher—Section4.5 will provide evidence for this conjecture.

But, any judgement on whether the middleman is good or bad for liquidity supply or trading in general is

deferred until the diff-in-diff analysis of Section4.6.
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4.4 Information-processing speed

This section studies the theory’s conjecture that the middleman has superior information-processing speed

which makes her a cost-efficient limit-order submitter. The idea is that a fast computer with enormous

processing power can follow all relevant public news and quickly cancel and resubmit limit orders to reflect

it. This reduces the adverse-selection cost associated with limit orders. The theory captures this idea by

allowing the middleman to condition her price on the common value innovationz.

The middleman’s ability to avoid picking-off risk in real markets is not perfect as not all (public) information

is ‘hard’. We believe the middleman is particularly well-positioned to quickly do the‘statistics’ and infer-

ence a security’s change in fundamental value by tracking price series that correlate with it, e.g., the index

level, same industry stocks, foreign exchange rate, etc. We label such information ‘hard’ information. The

middleman is at a disadvantage for ‘soft’ information which is, for example, anassessment of the quality of

a new management team, the value of a new patent, etc.

The econometric challenge is to test the prediction that the middleman’s quotes reveal hard information on

a stock’s fundamental value before anyone can pick her off. A data limitation is that her quotes are not

observed. Instead, we conjecture that Chi-X quotes are more revealingof middleman quotes than Euronext

quotes as Chi-X is the most friendly venue for their activity (see passive order and speed discussion in

Section4.1). The identified middleman’s higher participation rate in Chi-X supports it. Midquotes in the

highly active index futures market are used to trace an important piece of hard information that matters for

a security’s fundamental value.

We believe the most appropriate analysis of whether Chi-X (read: middlemen)quotes are more likely to

reflect hard information inbetween trades requires a cointegration model that identifies the information in

the trade. But, leading up to such model we first perform two analyses on the raw data to measure (i) the

speeed with which both markets’ quotes reveal index futures information and (ii) to what extent their quote

updates inbetween trades correlate with the long-term information in the trade.

[insert Table3 here]

Simple raw data analysis. Table3 shows that Chi-X quotes are more responsive to changes in the Dutch

index futures market than are Euronext quotes. A natural and simple approach is to consider all events where
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the index future midquote changes and count how often a stock midquote adjusts in the same second. This

comparison, however, includes ‘mechanical’ stock midquote changes thatare the result of executions that

knock off stale quotes rather than the result of quote updates. It is for this reason that the analysis further

conditions down on index changes that are not accompanied by stock transactions one second before, during,

or one second after the change. The results show that same-second Chi-X stock quote updates happen three

times more often than Euronext quote updates and their correlation with the index change is significantly

more positive. Both these observations are statistically significant.

[insert Table4 here]

Panel A of Table4 shows that Chi-X quote updates appear more informed than Euronext quote updates.

First, midquote changes strictly inbetween trades are calculated16, i.e., the log midquote one second after

trade (t-1) is subtracted from the log midquote one second prior to tradet (prices are expressed as log prices

whenever price changes are analyzed throughout the study). Theseare then correlated with the long-term

information revealed in the trade interval which is proxied by transaction price (t+10) minus transaction

price (t-1). This correlation is 0.050 for Chi-X quote updates which is significantly higher than the Euronext

correlation of 0.013. A drawback of this approach is that it does not recognize and strip out transient effects

in quotes due to, e.g., dynamic inventory control. And, it cannot assess to what extent an informational

advantage reflects ‘hard’ information. This is why we turn to a cointegrationapproach.

A cointegration model. A cointegration model is proposed to gauge quote update informativeness in

both the Euronext and the Chi-X market. The approach extendsHasbrouck (1995)to include the market

index so that quote informativeness can be decomposed into an index-correlated part (hard information)

and a remainder part (which arguably is a mix of hard and soft information). This enables us to quantify

Chi-X quote informativeness and compare it to Euronext quote informativeness. Moreover, it allows for to

decompose any such differential into an index and a nonindex differential to test the conjecture that Chi-X

quote informativeness is particularly strong for hard information.

The cointegration model is defined as:

∆pt ≔ [indext midquoteeuronextt− midquotechi xt− trade pricet]
′ (49)

16The transaction clock used in this table aggregates across markets; it does not distinguish between Chi-X and Euronext trades.
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wheret runs over the transaction clock,t− indicates that the quote snapshot is taken one second prior to the

transaction,indexis the midquote price in the local index futures,trade pricet is the transaction price, and

midquoteXt− indicates the midquote price in marketX.

pt = ϕ1∆pt−1 + ϕ2∆pt−2 + · · · + β(A′pt−1) + εt (50)
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The vector error correction termβA′pt−1 in equation (50) reflects the presence of two random walks, one

associated with the market index and the other with the security’s ‘efficient price’. This common efficient

price disciplines differentials across both midquote price series and the trade price series to be stationary

with mean zero. Price changes are assumed to be covariance stationary which implies that they can be

expressed as a vector moving average (VMA):

∆pt = θ1εt−1 + θ2εt−2 + · · · = θ(L)εt (51)

whereL is the lag operator. The two random walks now show up in the coefficient polynomialθ(L) evaluated

at 1 which reflects the long-term response of prices to an error term impulse. This matrix has rank 2, i.e.,

the second, third, and fourth row are equal as all three are security prices that in the long-term agree on what

the current shock’s impact is on the efficient price. A useful econometric proxy for this efficient price is the

best long-term linear forecast of prices conditional on all historical price information up until and including

time t:

ft ≔ lim
t→∞

E∗[pt+k|pt, pt−1, . . . ] (52)

where the asterisk indicates that it is the bestlinear forecast.Hasbrouck (2007, Ch.8)shows that the forecast

innovation from (t-1) to t for the efficient price is:

∆ ft = [θ(1)]2εt (53)

where [.] i indicates ‘theith row of the matrix in brackets’.

The forecast innovations∆ ft are a natural measure for the theory’s common value changes in between trades

and linear projections allows for further analysis of these common-value innovations. For ease of exposition,
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let Px(y) be the best linear projection of the random variabley on random variablex. In regression terms,

Px(y) ≔ x′β (54)

whereβ is the coefficient of a standard linear regression ofy on x. The projections allow for the following

analysis.

(i) Quote informativeness inbetween is naturally measured by the variance of the efficient price projection

onto the quote innovation, e.g.,var(Pe(∆ ft)) wherePe projects onto the Euronext quote innovation

[ε]2. In other words, how much information in the intertrade interval can be learned from obtaining

a market’s quote update? This measure is zero in aGlosten and Milgrom (1985)type of model and

equal to the full∆ ft variance if liquidity demanders are uninformed.

(ii) The variance of efficient price changes (as measured by∆ ft) and its projection onto quote innovations

can be decomposed into an index-correlated component (hard information) and an orthogonal com-

ponent. For example,var(Pm◦Pe(∆ ft)) wheremcorresponds to [ε]1 indicates how much of Euronext

quote informativeness reflects the index innovation. If Euronext quote updates are uncorrelated with

index innovations this measure is zero.P−m is defined to be the orthogonal part, i.e.,y = (Pm+P−m)(y)

by construction.

Panel B of Table4 provide empirical support for Chi-X quotes being significantly more informative on

hard information. The proxy for such information is the index-correlated part of efficient price changes

which amounts to 42% (=100%*4.02/9.48). By Roll’s standards these firms are large and this percentage

corresponds to his finding that most large U.S. firm are in the 40% to 50% range (seeRoll (1988, p.545)).

Projecting efficient price changes onto Euronext and Chi-X quotes reveals that Chi-Xquotes are more infor-

mative (3.83 vs 3.54 basis points squared) but this difference is not significant. If, however, this differential

is decomposed into index and nonindex components, Chi-X is significantly moreinformative on the index

component (0.30 vs. 0.05 basis points squared with at value of 5.0 for the differential).

Disaggregating according to large and small stocks reveals a cross-sectional heterogeneity as Chi-X quotes

are significantly more informative for large stocks, but significantly less informative for small stocks. For

large stocks, Chi-X quote innovations reveal 3.70 basis points squared of the intertrade innovation which

is a significant 28% higher than the 2.90 basis points squared for Euronext. For small stocks on the other
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hand, Chi-X quote updates reveal 4.60 basis points squared which a significant 37% lower than Euronext

the informativeness of Euronext quote updates. Decomposing according to index and nonindex information

reveals that Chi-X quote appear significantly more informative on the index part for both types of stocks,

but are significantly less informative on the nonindex for small stocks. Forlarge stocks the nonindex part is

not significantly different across markets (although Chi-X informativeness is slightly higher for this part).

4.5 Middleman participation: which stocks and when?

[insert Table5 here]

This section studies middleman participation in both the cross-section (through ‘between’ correlations) and

in the time dimension (through ‘within’ correlations). Table5 presents these correlations of various trading

variables which lead to the following observations.

[insert Figures6 here]

The relative size of hard information as proxied by the ‘R2 of a single factor CAPM’ correlates positively

with middleman trade participation (0.67 between and 0.46 within) and Chi-X shareof trades (0.64 between

and 0.23 within). Figure6 illustrates the 0.46 within correlation by plotting middleman participation against

the size of hard information. It reveals that this strong correlation does not appear to be driven by outliers

and is based on considerable time variation in both variables, double-digit percentages. The increase in

Chi-X share of trades is not surprising given that it is a middleman’s preferred habitat (low fees and a

fast system). The table also shows that middleman participation correlates positively with Chi-X trade

share (0.89 between and 0.41 within) which is further evidence that the relationship between Chi-X and

middlemen appears symbiotic.

[insert Figure7 here]

The differential between Chi-X and Euronext price-quote informativeness correlates positively with the

relative amount of hard information (0.64 between and 0.23 within). A market’s price-quote informativeness

is defined as the predictive power of midquote price changes for the amount of information that is revealed
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inbetween trades. The methodology is based on linear projections (Pe − Pi)(∆ f ) and a cointegration model

(see Section4.4). Figure7 illustrates the cross-sectional relationship by plotting the size of hard information

against both market’s price-quote informativeness for each stock. Theblack dots represent Chi-X, the white

dots represent Euronext, and dot size corresponds to stock’s overall volume. The graph leads to the following

two observations. First, black dots appear to be above white dots on the right-hand side of the graph, below

them on the left-hand side. This illustrates the positive between-correlation of hard information size and

Chi-X minus Euronext price-quote informativeness. Second, dot size isgenerally larger on the right-hand

side of the graph. Hard information is relatively more important for active stocks.

[insert Figure8 here]

Figure8 replots Figure7 but decomposes price-quote informativeness into an index-related part(top graph)

and an orthogonal part (bottom graph). It illustrates that Chi-X price-quote informativeness is higher than

Euronext quote informativeness across all stocks for the hard information (black dots are generally above

with dots in the top graph) and results are mixed for the nonindex part which islikely to be a combination of

hard and soft information. The latter result illustrates that it is not only indexinformation that drives Chi-X

quote efficiency.

4.6 The counterfactual: what if middlemen had not been introduced?

As we cannot rerun trading in the first 77 days of 2008 without Chi-X andthe identified middleman, we

revert to a diff-in-diff approach as a second best. As discussed in Section4.2, additional data have been

collected to create a pre-event sample of the first 77 trading days of 2007to compare before and after Chi-X

introduction. This difference for the ‘treated’ sample is then compared to the difference for an untreated

sample of Belgian stocks. Belgium is a natural choice as it a neighboring country whose stocks also trade in

the Euronext system. The difference in difference (‘∆ Dutch -∆ Belgian’) identifies a treatment effect.

[insert Table6 here]

The diff-in-diff results of Table6 (Panel A) reveal that Chi-X introduction raises liquidity supply, does not

affect the number of trades, and lowers trading volume. Before discussing these results, we like to point out
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that the comparison across Dutch and Belgian stocks is not perfect as thelatter typically trade less actively,

3.71 vs. 11.05 trades per minute in the post-event period. Yet, volatility increase is comparable across

markets; realized volatility increases slightly less for Dutch stocks (64% vs. 69%) whereas the increase of

intertrade volatility based on the cointegration model is not significantly different across markets (41% vs

39%). Bearing this in mind, the table leads to the following observations:

(i) The generalized inside spread which equals the Euronext spread in the absence of Chi-X has in-

creased by 35% in Belgian stocks (reflecting the higher volatility), yet stayed put for Dutch stocks

(0%). The treatment effect is a significant 35%. Depth at this quote has declined by 13% more

for Dutch stocks but we consider this effect to be second order as this decrease does not undo the

large price discount. If one were to transact the 13% at one tick behind thebest price quote this

implies a 175% worse price17 and the overall effect is thus still a spread improvement of 100%*(1-

(0.87*0.65+0.13*0.65*1.75))=29%. The significant treatment effect of minus 13% for effective spread

further supports a general increase in liquidity supply on the introduction of Chi-X/ middlemen.

(ii) The number of trades in Dutch stock increases by 53% which is not significantly different from the in-

crease of 55% witnessed for Belgian stocks. The number of trades in Dutch stocks has been corrected

for double-counting of trades due to the presence of the new middleman thathas been identified (see

Table2). In other words, if a security that in the past traded directly between investor A and B now

travels via the middleman this would artificially inflate trade activity.

(iii) Volume increases by only 5% for Dutch stocks, which is a significant 15%less than the 21% increase

in Belgian stocks. Again, this volume was corrected for double-counting.

5 Conclusion

We model high-frequency traders in electronic markets. We base this conclusion on the introduction of

Chi-X, an HFT-hospitable market, and on being able to compare the post Chi-X entry change in the trading

of Dutch stocks which do trade on Chi-X, and similar Belgian stocks that do not. We showed evidence that

17This calculation is based on a one cent tick size and an average share price of∼e20 which imply a 5 basis points worse price
on a one tick move. This is a 175% increase relative to the 2.86 basis points average half spread (see Table1).
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middlemen are better informed about recent news than the average investor, in that their reaction times were

faster and in the right direction.

Being better informed, middlemen still can make a positive or a negative contribution to welfare. On the

one hand, they can raise welfare by solving a pre-existing adverse-selection problem. In that case their entry

should be accompanied by a rise in trade and a fall in bid-ask spreads. Our simple model indicates that in

this case and they can raise welfare by up to 30% of the gap between its equilibrium level and its first-best

level. On the negative side, they can create or exacerbate a pre-existingadverse-selection problem, in which

case bid-ask spreads should rise and trade declines.

Our evidence on the welfare contribution of middlemen is mixed. On the one hand, middlemen’s participa-

tion lowers bid-ask spreads but, on the other, it also lowers volume. The net effect is uncertain.

Our theoretical analysis and the mixed evidence on welfare suggest that there is room for optimal market

design. Regulators and market operators should think carefully about how adverse-selection risk affects the

various participants. For example, the speed privilege that HFTs can buyinto, co-location, might require a

differentiated order-fee schedule. Passive orders submitted through this pipe might optimally be rewarded

more whereas aggressive orders might have to be charged more. The reason is that passive orders come with

the positive externality of liquidity supply to others whereas aggressive orders have a negative externality of

creating adverse selection for non-co-located participants. The latter is,in spirit, similar to the old NYSE

market structure where specialists were not allowed to have a live data feed of market-index information

into their system. Also, markets might want to enable limit-order submitters to peg theirorder to, e.g., the

market index (cf.Black (1995)).
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Appendix II: List of all stocks

This table lists all stocks that have been analyzed in this manuscript. It reports the official isin code, the company’s name, and the index weight
which has been used throughout the study to calculate (weighted) averages.

Dutch index stocks/ ‘treated’ sample Belgium index stocks/ ‘untreated’ sample
isin code security name index weighta isin code security name index weighta

NL0000303600 ing groep 22.3% BE0003801181 fortis 17.5%
NL0000009470 royal dutch petrol 20.1% BE0003565737 kbc 15.8%
NL0000009538 kon philips electr 12.1% BE0003796134 dexia 13.5%
NL0000009355 unilever 11.3% BE0003793107 interbrew 9.5%
NL0000303709 aegon 7.5% BE0003470755 solvay 6.5%
NL0000009082 koninklijke kpn 7.4% BE0003797140 gpe bruxel.lambert 5.7%
NL0000009066 tnt 4.8% BE0003562700 delhaize group 5.4%
NL0000009132 akzo nobel 4.2% BE0003810273 belgacom 4.4%
NL0000009165 heineken 3.0% BE0003739530 ucb 4.1%
NL0000009827 dsm 2.4% BE0003845626 cnp 2.9%
NL0000395903 wolters kluwer 2.2% BE0003775898 colruyt 2.3%
NL0000360618 sbm offshore 1.2% BE0003593044 cofinimmo 2.2%
NL0000379121 randstad 1.1% BE0003764785 ackermans and van haaren 2.2%
NL0000387058 tomtom 0.6% BE0003678894 befimmo-sicafi 2.1%

BE0003826436 telenet 2.1%
BE0003735496 mobistar 1.5%
BE0003780948 bekaert 1.1%
BE0003785020 omega pharma 1.0%

a: The index weights are based on the true index weights of December 31, 2007. The weights are rescaled to sum up to 100%
as only stocks are retained that were a member of the index throughout the sample period. This allows for fair comparisons
through time.
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Table 1: Summary statistics

This table provides summary statistics on a sample of 14 Dutch index stocks that trade both in the
incumbent market Euronext and in the entrant Chi-X (Chi-X). The sample runs from Jan 1, 2008 through
April 23, 2008. The table reports weighted averages where weights arebased on a stock’s local index
weight. Time-clustered standard errors account for commonality and heteroskedasticity and are reported in
parentheses.

variable (units) large small all
Euronext volume (e1000/min) 524.4

(19.9)
128.1

(4.3)
466.6
(17.4)

Chi-X volume (e1000/min) 49.4
(2.0)

4.5
(0.2)

42.8
(1.8)

Chi-X share volume (%) 8.6 3.4 8.4

Euronext #trades (/min) 19.03
(0.62)

9.30
(0.21)

17.61
(0.55)

Chi-X #trades (/min) 3.16
(0.12)

0.57
(0.03)

2.78
(0.10)

Chi-X share #trades (%) 14.2 5.7 13.6

Euronext time-weighted quoted half spread (basis points) 3.47
(0.07)

5.00
(0.14)

3.70
(0.08)

Chi-X time-weighted quoted half spread (basis points) 3.44
(0.10)

14.76
(0.98)

5.09
(0.20)

time-weighted generalized inside half spreada (basis points) 2.63
(0.18)

4.20
(0.24)

2.86
(0.18)

Euronext time-weighted quoted depth (e1000) 121.4
(2.4)

30.6
(0.3)

108.1
(2.0)

Chi-X time-weighted quoted depth (e1000) 53.3
(1.2)

21.0
(1.1)

48.5
(1.0)

trade-weighted effective half spread (basis points) 2.89
(0.06)

3.90
(0.10)

3.04
(0.06)

trade-weighted adverse selection, 30 min (basis points) 2.62
(0.14)

3.74
(0.21)

2.78
(0.14)

trade-weighted realized spread, 30 min (basis points) 0.28
(0.14)

0.16
(0.17)

0.26
(0.13)

N=1078 (14 stocks, 77 days)
a: defined as a Chi-X adjusted Euronext half spread in the sense that it is the cost of demanding the full Euronext depth
but re-routing (part of) the order to Chi-X if Chi-X has strictly better prices; it is a ‘generalized’ inside spread since it
controls for depth; for example, the adjusted ask ise29.995 if the Euronext ask ise30.00 with depthe100,000 and the
Chi-X’ ask ise29.99 with depthe50,000
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Table 2: Caught on tape! a middleman

This table produces statistics on middleman trading for Dutch index stocks fromJanuary 1 through April 23,
2008. The middleman is discovered as a combination of an anonymous Chi-X broker ID and an anonymous
Euronext broker ID that achieves high-frequency trading and mean-reversion in inventory across markets.
Figure5 plots middleman inventory for a single stock on a representative day to illustrateher trading. Time-
clustered standard errors account for commonality and heteroskedasticity and are reported in parentheses.

large small all
Panel A: middleman inventory
average net change in middleman inventory (e1000) −75.6

(93.3)
55.1
(19.6)

−56.5
(79.8)

standard deviation net change in middleman inventory (e1000) 1,417.2
(186.7)

298.4
(33.5)

1,314.6
(172.3)

fraction of days with zero net change in inventory 0.33 0.60 0.46

Panel B: middleman activity
middleman Euronext volume (e1000/min) 36.8

(1.8)
4.3
(0.3)

32.0
(1.6)

middleman Chi-X volume (e1000/min) 24.2
(1.8)

1.9
(0.2)

21.0
(1.6)

middleman Euronext #trades (/min) 1.56
(0.07)

0.43
(0.03)

1.40
(0.06)

middleman Chi-X #trades (/min) 1.09
(0.08)

0.19
(0.02)

0.96
(0.07)

middleman participation rate Euronext trades (%) 8.2
(0.3)

4.8
(0.3)

7.7
(0.3)

middleman participation rate Chi-X trades (%) 35.7
(1.8)

35.2
(2.3)

35.6
(1.8)

Panel C: middleman order types
middleman relative use of passive orders in Euronext (%) 78.6

(0.8)
53.5
(2.7)

74.9
(0.9)

middleman relative use of passive orders in Chi-X (%) 76.9
(0.5)

84.8
(0.8)

78.0
(0.5)

Panel D: middleman vs nonmiddleman effective spread and its decomposition
middleman trade-weighted effective half spread (basis points) 3.25

(0.06)
4.72
(0.11)

3.47
(0.07)

nonmiddleman trade-weighted effective half spread (basis points) 2.81
(0.06)

3.81
(0.10)

2.96
(0.06)

middleman trade-weighted adverse selection, 30 min (basis points) 2.54
(0.17)

3.98
(0.66)

2.75
(0.17)

nonmiddleman trade-weighted adverse selection, 30 min (basis points) 2.64
(0.15)

3.78
(0.21)

2.81
(0.14)

middleman trade-weighted realized spread, 30 min (basis points) 0.72
(0.17)

0.74
(0.62)

0.72
(0.16)

nonmiddleman trade-weighted realized spread, 30 min (basis points) 0.17
(0.14)

0.03
(0.17)

0.15
(0.13)

N=1078 (14 stocks, 77 days)
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Table 3: Speed comparison across markets

This table compares Euronext and Chi-X in terms of how quickly their price quotes for stocks reflects
changes in the Dutch local index (AEX) future. A natural approach is to consider all events where the index
future midquote (the average of the bid and ask quote) changes and count how often the stock midquote is
adjusted in the same second. This comparison, however, includes ‘mechanical’ stock midquote changes that
are the result of executions that knock off stale quotes rather than quote updates. It is for this reason that
the analysis further conditions down on index future midquote updates that show no stock transactions one
second before, during, or one second after the index futures quote update. The sample Dutch index consists
of Dutch index stocks from January 1 through April 23, 2008. Time-clustered standard errors account for
commonality and heteroskedasticity and are reported in parentheses.

large small all
count of Euronext and index futures quote change in same second (/day) 426

(24)
637
(40)

457
(25)

count of Chi-X and index futures quote change in same second (/day) 1256
(52)

1257
(58)

1256
(50)

correlation Euronext quote change and index futures quote change 0.33
(0.01)

0.16
(0.01)

0.31
(0.01)

correlation Chi-X quote change and index futures quote change 0.46
(0.02)

0.15
(0.01)

0.41
(0.01)

14 stocks, 77 days
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Table 4: Euronext and Chi-X quote informativeness

This table analyzes to what extent midquote (the average of the bid and ask quote) updates inbetween trades
reveal the information that arrives in the intertrade intervals. The observation clock runs in transaction time.
Panel A correlates log midquote changes strictly inbetween trades with the information revealed in the trade
interval which is proxied by the the log trade price (t+10) minus log trade price (t-1). Panel B is based on
cointegration model which stacks all price series of interest into a single price vector

∆pt ≔ [indext midquoteeuronextt− midquotechi xt− trade pricet]
′

wheret runs over the transaction clock,t− indicates that the quote snapshot is taken one second prior to
the transaction,index is the midquote in the local index futures,trade pricet is the transaction price, and
midquoteXt− indicates the midquote in marketX. The price series is modeled as a vector error correction
model (VECM) to capture cointegration:

pt = ϕ1∆pt−1 + ϕ2∆pt−2 + · · · + β(A′pt−1) + εt

β′ =

(

0 β22 β32 β42

0 β21 β31 β41

)

A′ =

(

0 1 −1 0
0 1 0 −1

)

TheβA′pt−1 reflects the presence of two random walks, one associated with the marketindex and the other
with the security’s ‘efficient price’ which is naturally defined as

ft ≔ lim
t→∞

E∗[pt+k|pt, pt−1, . . . ]

where the asterisk indicates that it is the bestlinear forecast (seeHasbrouck (2007, Ch.8)). The extent to
which Chi-X and Euronext quotes reveal efficient prices and whether it is the index or the nonindex compo-
nent is established through linear projection of∆ ft on the price innovation vectorεt wherePm denotes a pro-
jection on the first element which captures the market-index innovation (andP−m is its residual),Pe projects
onto the second element which is the Euronext quote innovation, andPc projects onto the third element
which is the Chi-X quote innovation. The sample Dutch index consists of Dutch index stocks from January
1 through April 23, 2008. Time-clustered standard errors account for commonality and heteroskedasticity
and are reported in parentheses.

large small all
Panel A: correlations based on raw dataa

correlation Euronext midquote return and long-term price impact of (signed) trade 0.007
(0.003)

0.046
(0.003)

0.013
(0.003)

correlation Chi-X midquote return and long-term price impact of (signed) trade 0.052
(0.004)

0.039
(0.003)

0.050
(0.003)

Panel B: cointegration analysisa

overall efficient price innovation
variance efficient price innovation inbetween trades,∆ f 8.19

(0.49)
16.98
(1.16)

9.47
(0.58)

variance efficient price innovation correlated with market index,Pm(∆ f ) 3.74
(0.28)

5.66
(0.51)

4.02
(0.30)

variance efficient price orthogonal to market index,P−m(∆ f ) 4.45
(0.28)

11.32
(0.75)

5.45
(0.33)

- continued on next page -
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- continued from previous page -
large small all

efficient price innovation correlated with the Euronext midquote return
variance efficient price innovation inbetween trades,Pe(∆ f ) 2.90

(0.17)
7.25
(0.45)

3.54
(0.21)

variance efficient price innovation correlated with market index,Pm ◦ Pe(∆ f ) 0.05
(0.00)

0.08
(0.01)

0.05
(0.00)

variance efficient price orthogonal to market index,P−m ◦ Pe(∆ f ) 2.85
(0.17)

7.18
(0.45)

3.48
(0.21)

efficient price innovation correlated with the Chi-X midquote return
variance efficient price innovation inbetween trades,Pc(∆ f ) 3.70

(0.17)
4.60
(0.44)

3.83
(0.20)

variance efficient price innovation correlated with market index,Pm ◦ Pc(∆ f ) 0.33
(0.02)

0.14
(0.02)

0.30
(0.02)

variance efficient price orthogonal to market index,P−m ◦ Pc(∆ f ) 3.37
(0.16)

4.47
(0.43)

3.53
(0.19)

14 stocks, 77 days
a: based on midquotes that are sampled strictly inbetween trades (i.e. one second after the last trade and one second ahead of
the next trade) in order to avoid spurious correlation due a trade knocking off the best bid or ask quote
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Table 5: Correlation daily variables

This table presents correlations for a panel dataset of trading variablesthat are calculated by stock-day. It distinguished ‘between’ and ‘within’
correlations which study variable interdependence in the cross-section and through time, respectively. The within correlation is based on time
means:xi =

1
T

∑T
t=1 xit . The between correlation is based on dayt’s deviation relative to the time mean:x∗it = xit − xi . The sample Dutch index

consists of Dutch index stocks from January 1 through April 23, 2008.Standard errors are reported in parentheses (within correlation standard
errors account for commonality and heteroskedasticity).

variable (units) corr type

variance
eff price
innova-
tion

middle-
man
partic-
ipation
rate

#trades
Chi-X
share
#trades

middle-
man
relative
use of
passive
orders

Chi-X
minus Eu-
ronext quote
informa-
tiveness,
(Pc−Pe)(∆ f )

relative size index componenta (%) betweenb −0.50
(0.27)

0.67∗
(0.27)

0.55∗
(0.27)

0.75∗∗
(0.27)

0.07
(0.27)

0.64∗
(0.27)

withinc 0.13
(0.10)

0.46∗∗
(0.05)

−0.09
(0.08)

0.13∗∗
(0.04)

0.04
(0.07)

0.23∗∗
(0.08)

variance eff price innovation inbetween trades,∆ f betweenb −0.73∗∗
(0.27)

−0.62∗
(0.27)

−0.61∗
(0.27)

−0.64∗
(0.27)

−0.88∗∗
(0.27)

withinc 0.15∗∗
(0.05)

0.55∗∗
(0.12)

−0.15∗
(0.07)

0.03
(0.06)

−0.04
(0.08)

middleman participation rate (%) betweenb 0.64∗
(0.27)

0.89∗∗
(0.27)

0.53∗
(0.27)

0.78∗∗
(0.27)

withinc 0.11∗
(0.05)

0.41∗∗
(0.05)

0.08
(0.05)

0.20∗∗
(0.05)

#trades (/min) betweenb 0.73∗∗
(0.27)

0.34
(0.27)

0.40
(0.27)

withinc 0.01
(0.06)

−0.05
(0.07)

−0.29∗∗
(0.06)

Chi-X share #trades (%) betweenb 0.23
(0.27)

0.67∗
(0.27)

withinc −0.15∗∗
(0.05)

0.05
(0.04)

middleman relative use of passive orders (%) betweenb 0.52∗
(0.27)

withinc −0.02
(0.04)

14 stocks, 77 days
a: size of the index component in the efficient price innovation
b: based on the time means:xi =

1
T

∑T
t=1 xit

c: based on dayt’s deviation relative to the time mean:x∗it = xit − xi

∗/∗∗: significant at a 95/99% level
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Table 6: Diff-in-diff analysis trading variables

This table compares trading variables based on Dutch index stocks beforeand after the introduction of Chi-X and the advent of
middlemen (e.g., the ID of the middleman we identified in Table2 did appear in the pre-event period). It compares the first 77
trading days of 2007 (through April 20) and 2008 (through April 23).This serves as the ‘treated’ sample. The same comparison
is done for Belgian index stocks which creates an ‘untreated’ sample as Chi-X had not yet been introduced. Belgium is a natural
choice as it a neighboring country whose stocks also trade in the Euronext system. A diff-in-diff analysis then identifies the treatment
effect. The percentage change was determined based on the log series. Time-clustered standard errors account for commonality and
heteroskedasticity and are reported in parentheses.
variable (units) Netherlands/‘treated’ Belgium/‘untreated’ diff-in-diffa

pre post ∆ pre post ∆ ∆∆

Panel A: Full sample
20-min realized volatility (bp/min) 3.9

(0.1)
7.6
(0.3)

64%∗∗
(4%)

4.1
(0.1)

8.3
(0.4)

69%∗∗
(4%)

−4%∗
(2%)

volatility efficient price innovation inbetween trades,∆ f (bp) 1.9
(0.0)

2.9
(0.1)

41%∗∗
(3%)

3.5
(0.1)

5.0
(0.1)

39%∗∗
(3%)

2%
(2%)

time-weighted generalized inside half spreada (basis points) 2.93
(0.03)

2.86
(0.18)

0%
(2%)

5.00
(0.08)

6.86
(0.16)

35%∗∗
(2%)

−35%∗∗
(2%)

time-weighted quoted depth (e1000) 213
(2)

108
(2)

−62%∗∗
(2%)

67
(1)

46
(0)

−49%∗∗
(2%)

−13%∗∗
(2%)

trade-weighted effective half spread (basis points) 2.61
(0.02)

3.04
(0.06)

13%∗∗
(2%)

3.99
(0.07)

5.07
(0.12)

27%∗∗
(2%)

−13%∗∗
(1%)

trade-weighted adverse selection, 30 min (basis points) 1.89
(0.09)

2.78
(0.14)

32%∗∗
(6%)

3.16
(0.11)

5.23
(0.22)

54%∗∗
(5%)

−21%∗∗
(7%)

#trades (/min) 11.05
(0.34)

20.39
(0.63)

59%∗∗
(3%)

3.71
(0.12)

6.89
(0.21)

55%∗∗
(3%)

3%
(2%)

#trades after removing middleman’s trades (/min) 11.05
(0.34)

19.80
(0.61)

56%∗∗
(3%)

3.71
(0.12)

6.89
(0.21)

55%∗∗
(3%)

0%
(2%)

volume (e1000/min) 446
(16)

509
(18)

10%∗
(4%)

72
(2)

100
(4)

21%∗∗
(4%)

−10%∗∗
(2%)

volume after removing middleman’s volume (e1000/min) 446
(16)

496
(18)

8%
(4%)

72
(2)

100
(4)

21%∗∗
(4%)

−13%∗∗
(2%)

#observations 4746, 14+18=32 stocks, 77+77=154 days
a: defined as the Netherlands differential (post minus pre) minus the Belgium differential
∗/∗∗: significant at a 95/99% level (only applied to differentials)
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Figure 5: Middleman inventory

These graphs plot the middleman’s intraday inventory for ING stock on January 30 starting her off with zero
shares (by assumption). They plot inventory both by market (top two graphs) and aggregated across markets
(bottom graph). The middleman is discovered as a combination of an anonymous Chi-X broker ID and
an anonymous Euronext broker ID that achieves high-frequency trading and mean-reversion in inventory
across markets. The graphs illustrate this trading pattern for one stock-day and Table2 produces middleman
statistics for the full sample.
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Figure 6: Scatter plot of middleman activity versus amount of hard information

This figure contains a scatter plot of the trade participation by the identified middleman (see Table2) against a proxy for the relative importance
of ‘hard’ information defined as any public information that can be processed by machines (e.g., price changes in the index futures, same
industry stocks, foreign exchange rate). The conjecture is that middlemenoperating with fast machines have an edge when such information
is a larger part of total information. A proxy for the relative size of hard information is the ‘R2’ of a regression of stock return on index return.
This proxy is constructed for each stock-day in the sample based on the cointegration model results of Table4. Middleman trade participation
is also calculated for each stock-day. Both variables are demeaned by stock to only focus on the time variation (and not have the results be
driven by unobserved heterogeneity across stocks). The scatterplot of these series thus illustrates the within correlation presented in Table5.
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Figure 7: Chi-X and Euronext price-quote informativeness in the cross-section

This figure graphs Chi-X and Euronext price-quote informativeness against a proxy for the relative importance of ‘hard’ information defined
as any public information that can be processed by machines (e.g., price changes in the index futures, same industry stocks, foreign exchange
rate). Price quote informativeness is defined as the predictive power ofmidquote (average of the bid and ask quote) price changes for the
amount of information that is revealed inbetween trades. The methodology is based on linear projections (Pe − Pi)(∆ f ) and a cointegration
model (see Section4.4). The variables are calculated as averages per stock and the graphs represent dispersion in the cross-section. The size
of the dot corresponds to average stock volume.
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Figure 8: Price quote informativeness: index vs nonindex component

This figure decomposes the bottom graph of Figure7 into the price-quote informativeness of the index-
correlated component of the predictability and an orthogonal component.
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