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A1. Empirical Analaysis

In this Appendix, we complement our empirical results from the main text.

Forward and yield curve data. — In Figure A1 in this appendix, we show the
counterpart of Figure 1 from the main text for the 1, 3 and 6-months horizon
(see Section I.A). Again we find that the interest rate differentials based on the
forward-discount and based on yield curve data, in periods where both time series
are available, line up very well.

Baseline VAR. — In Figure A2 in this appendix, we report impulse responses
of all variables to the monetary policy shock in our baseline VAR (see Section
I.A). We find that our cleansed measure of Romer and Romer shocks produces
sensible results for all variables included in the VAR. The upper-left panel shows
that industrial production declines and displays a distinct hump-shaped pattern,
familiar from earlier work on the monetary transmission mechanism (Christiano
et al., 1999). We observe a maximum effect after about one year, when industrial
production has declined approximately 0.7 percent relative to its pre-shock level.
The upper-right panel shows the response of the consumer price index. Initially,
prices adjust sluggishly. We observe a significant decline of prices only after
about 8-10 months, again a familiar finding of earlier studies. However, the price
level continues to decline markedly afterwards. The middle-left panel shows the
response of the unemployment rate. Unemployment raises markedly after the
shock, with a maximum effect of a 0.2 percentage points higher unemployment
rate about 1 year after the shock. The middle-right panel shows the commodity
price index. It declines markedly following the shock, by about 2 percent after 2
years. In turn, the panels in the last row show the responses of the interest rate
differential and the spot exchange rate, and have been discussed in the main text
(see Section I.B).

Excess returns following interest-rate surprises. — In Section IV we have
shown that monetary policy shocks trigger delayed overshooting of the USD
whereas unconditional interest-rate surprises do not. Consistent with this pattern,
there are positive excess returns on the USD following monetary policy shocks,
but excess returns are small following interest-rate surprises. We show this in Fig-
ure A3 in this appendix. The left panel shows excess returns following monetary
policy shocks. The response is rather volatile, driven by the fact that our sample
is (much) shorter than in Section I implying that the estimated response of the
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Figure A1. Comparing Market-Based and Yield-Curve-Implied Forwards.

Note: USD-GBP 1, 3 and 6-months interest rate differential, implied by forward exchange rate data
versus implied by yield curve data.

USD is rather volatile (see Figure 7, the upper-left panel). Nonetheless, our result
from our baseline sample in Figure 2 is again detectable: that excess returns are
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Figure A2. Responses to Monetary Policy Shocks

Note: Sample: 1976:1–2007:12. Identification based on RR shocks within hybrid VAR, see Section
I.A for details. Solid lines represent point estimate, shaded areas indicate 90 percent confidence bands.
Horizontal axis measures time in months. Vertical axis measures deviation from pre-shock level in
percentage points (interest differential and unemployment rate) or in percent (for the other variables).

large and positive (about 2 percent) in the first periods after the shock.

In turn, the right panel in Figure A3 shows the response of excess returns
following unconditional interest-rate surprises. In contrast to the response to
monetary policy shocks, we find that excess returns are not different from zero in
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Monetary policy shock Interest rate surprise

Figure A3. Response of Excess Return

Note: Monetary policy shock (left) and interest-rate surprise (right). Empirical responses given by blue
solid line (point estimate) and shaded area (confidence bounds). Model prediction given by red dashed
line and bounds represented by red shaded area for interest-rate surprises. The horizontal axis measures
time in months. Vertical axis measures deviation from pre-shock level in percent.

the first periods after the shock. Excess returns start to fluctuate about 1 year
after the shock, however, this is again driven by the fact that we estimate a very
volatile USD response following interest-rate surprises on this short sample (see
Figure 7, the upper-right panel).
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A2. Model Appendix

In this Appendix we describe the non-linear model in some detail, and we
present details on the log-linearization. The model is based on Gaĺı and Mona-
celli (2005). More details on the foundations of the model can be found in this
paper.

Firm problem. There is a continuum of identical final good firms, indexed
j ∈ [0, 1]. Firm j′s technology is

(A.1) Yjt = AtejtHjt,

where Yjt is output, At is TFP (common to all firms), ejt is worker effort, and
Hjt is the number of workers employed by firm j.
We assume that all firms have common information (see Melosi (2017) for a

model in which firms have dispersed information), that TFP At is unobserved by
firms, and that worker effort ejt is equally unobserved by firms.
We divide each period into two stages. In the first stage, firms hire workers by

taking as given i) the downward sloping demand that they face for their goods ii)
the perceived level of TFP, assuming that worker effort in the production stage
will be equal to 1. Specifically, firms’ problem is given by

(A.2) max
P̃jt

EP
t

∞∑
k=0

ζkρt,t+kCjt+k

[
P ∗
jt −

Wt+k

EP
t+kAt+k

]
,

where P̃jt is the optimal reset price, ζ ∈ (0, 1) is the Calvo-probability of keeping
a posted price for another period, Wt is the nominal wage, Cjt is households’
demand, and ρt,t+k is households’ stochastic discount factor. Note that firms’
(expected) marginal cost is given byWt/E

P
t At, where we assume that firms expect

workers to work with an effort of one in each period (EP
t ejt = 1).

In the second stage, production takes place. To the extent that firms misper-
ceived the productivity of their workers (EP

t At ̸= At), the market clears via an
adjustment in worker effort (ejt ̸= 1). While we assume that worker effort is not
verifiable by firms, we still allow for the possibility that firms extract a signal on
the effort exerted by the workers (and thus on the level of TFP). We assume that
the signal is given by

(A.3) ς̃1,t =
1 + φ

φ+ θ
at + ηt,

where we denote at = log(At). The signal is the same for all firms, in line with
our assumption that firms have common information.
As is well known, up to first order, the firms’ problem implies a New Keynesian
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Phillips curve

(A.4) πt = βEP
t πt+1 + λ

(
wt − pt − log

(
ϵ− 1

ϵ

)
− EP

t at

)
,

where λ ≡ (1−ζ)(1−βζ)/ζ and where ϵ > 1 denotes the elasticity of substitution
between varieties. Here we use lower-case letters to denote the log of upper-case
letters, and we define πt ≡ pt − pt−1 as inflation of goods produced domestically.
Due to the linearity of expectations, the linearization is not affected by the pres-
ence of incomplete information.

Household problem. The problem of households is standard. Households
obtain utility from consumption and disutility from working. Households’ period
utility is U(Ct) − V (Ht). The price of consumption is PC

t (the consumer price
index, or CPI). The price of labor is Wt. The labor supply curve, in linearized
terms, is given by

(A.5) wt − pCt = θct + φht,

where θ > 0 denotes households’ risk aversion (assumed to be constant, and equal
to the inverse elasticity of inter temporal substitution), and where φ > 0 denotes
households’ inverse Frisch elasticity of labor supply (assumed to be constant as
well). Moreover, households’ Euler equation, in log-linear terms, is given by

(A.6) ct = EP
t ct+1 − θ−1

(
it − EP

t π
C
t+1 − ρ

)
,

where we define ρ ≡ − log(β). In equation (A.6), we assume that households
and firms share the same information set, as expectations are given by EP

t . This
assumption can be justified on the grounds that firms are owned by the house-
holds, such that households have access to firms’ information. This assumption
also makes the model easier to solve. Melosi (2017) considers a model in which
households’ and firms’ information sets are not identical.

An identical Euler equation holds also in the foreign country. We assume that
the domestic country is small, implying that domestic developments have no
bearing on the equilibrium in the rest of the world. We also abstract from shocks
in the foreign country. By implication, consumption and prices in the foreign
country are constant. As a result, the Euler equation simply becomes i∗ = ρ.

We introduce home-bias in consumption by assuming that households consume
a steady-state share ω ∈ (0, 1) of imported varieties. The elasticity of substitution
between foreign and domestic goods is denoted σ > 0. The price of domestic
goods is Pt, the price of foreign goods in domestic currency is StP

∗ - the nominal
exchange rate times the price of foreign goods in foreign currency, which is a
constant.
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These assumptions imply three equilibrium conditions (see Gaĺı and Monacelli,
2005, for details). First, market clearing for domestically-produced goods is given
by

(A.7) yt = −σ(pt − pCt ) + (1− ω)ct + ω(1− ω)σ(st + p∗ − pt) + ωy∗.

In this equation, we use that the domestic country is small, such that imports
account for a negligible fraction of consumption in the foreign country (implying
the market clearing condition c∗ = y∗ in the foreign country).
Second, the CPI, in linear terms, is given by the following expression

(A.8) pCt = (1− ω)pt + ω(st + p∗).

It is given by a weighted average between the price of domestically produced
goods and imported goods.
Third, in the presence of complete international financial markets, domestic

consumption is linked to the level of prices via the condition

(A.9) θ(ct − y∗) = (1− ω)(st + p∗ − pt).

This is the so-called risk sharing condition implied by the assumption of complete
financial markets (Backus and Smith, 1993).

Market clearing. Goods market clearing is given by (A.7). Labor market
clearing implies yt = EP

t at + ht. Asset market clearing follows residually.

Equilibrium conditions from the text. We now show how to obtain the
equilibrium conditions presented in Section II in the main text.
We first derive a relationship between consumption and output. Combining

(A.7)-(A.9) yields

yt =
1

1− ω
(ϖct + (1− ω −ϖ)y∗),

where we define ϖ ≡ 1 + ω(2 − ω)(σθ − 1). In what follows, we assume that
σ = θ−1, the so-called Cole-Obstfeld condition. In this case, the previous equation
simplifies

(A.10) ct = (1− ω)yt + ωy∗.

To derive the Phillips curve, equation (8), from the main text, we first express
the real wage wt− pt in terms of economic activity. Using equations (A.5), (A.8),
(A.9) and labor market clearing yt = EP

t at + ht, we can write

wt − pt =
θ

1− ω
ct + φ(yt − EP

t at)−
θω

1− ω
y∗.
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Inserting (A.10) to replace ct, this becomes

(A.11) wt − pt = (φ+ θ)yt − φEP
t at.

We next define potential output as the level of output when prices are flexible
and in the presence of complete information. Under these two assumptions, (A.4)
implies that

wt − pt = log

(
ϵ− 1

ϵ

)
+ at.

Combining this with (A.11), we obtain

(A.12) ynt =
1

φ+ θ

(
log

(
ϵ− 1

ϵ

)
+ (1 + φ)at

)
.

Inserting (A.11) in the Phillips curve (A.4) yields

πt = βEP
t πt+1 + λ

(
(φ+ θ)yt − φEP

t at − log

(
ϵ− 1

ϵ

)
− EP

t at

)
.

Taking conditional expectations in (A.12) to replace EP
t at yields the Phillips curve

(8) from the main text, where we define κ ≡ λ(φ+ θ).

To derive equation (9) in the main text, simply combine equations (A.9) and
(A.10).

Equation (10) in the main text merely defines the real exchange rate qt.

To derive the uncovered interest parity (UIP) condition, equation (11), from
the main text, first combine (A.8) and (A.9) to obtain a relationship between ct,
pCt and st

θ(ct − y∗) = st + p∗ − pCt .

Inserting this in the Euler equation (A.6), and using that ρ = i∗ directly yields
the result.

To derive the forward exchange rate, equation (13), from the main text, note
that the Euler equation on an h-period bond in foreign currency is given by

ct = EP
t ct+h − θ−1

(
hi∗ + EP

t st+h − st − (EP
t p

C
t+h − pCt )− hρ

)
.

In turn, the Euler equation on an h-period forward contract on foreign currency
is given by

ct = EP
t ct+h − θ−1

(
hi∗ + fh

t − st − (EP
t p

C
t+h − pCt )− hρ

)
.

Combining both yields equation (13).

Equation (14) is the combination of equations (4) and (13). We may use
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equation (4) to define the excess return, because covered interest parity is satisfied
in our model.
The Taylor rule, equation (12), is given by the linear expression defined in the

main text.
We assume that ut and ynt , where ynt is defined in equation (A.12), follow the

stochastic processes given in equations (15) and (16).
To define the natural interest rate, equation (17), in the main text, we derive

the dynamic IS curve of the model. First combine the Euler equation (A.6) and
market clearing (A.10)

yt = EP
t yt+1 −

1

(1− ω)θ

(
it − EP

t π
C
t+1 − ρ

)
.

Next, use equation (A.8) to replace pCt

yt = EP
t yt+1 −

1

(1− ω)θ

(
it − EP

t ((1− ω)πt+1 + ω∆st+1)− ρ
)
.

Using the UIP condition, equation (11) (which we derived earlier above), and
using that i∗ = ρ, this can be written as

yt = EP
t yt+1 − θ−1

(
it − EP

t πt+1 − ρ
)
.

The natural interest rate is defined as the real rate when prices are fully flexible
and there is complete information. In this case, output equals potential output
yt = ynt . Using this in the previous equation, and rearranging for it − EF

t πt+1,
yields

rnt = ρ+ θEF
t ∆ynt+1.

The signal ς1,t, which is equation (18) in the main text, is given by combining
equations (A.3) and (A.12)

ς̃1,t =
1 + φ

φ+ θ
at + ηt = ynt − 1

φ+ θ
log

(
ϵ− 1

ϵ

)
+ ηt.

Defining ς1,t ≡ ς̃1,t + (1/(φ+ θ)) log((ϵ− 1)/ϵ) yields the result.
Finally, the signal ς2,t, which is equation (19) in the main text, is a direct

implication of combining equations (12) and (17), both of which we derived before.
This completes the description of the equilibrium conditions of the model.
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