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Abstract

There are seven sections in this online Appendix (all references are in the paper). The

first section considers rebate contracts with unconditional transfer in the rent-shifting setup

of Aghion and Bolton (1987). The section also considers the case of unconditional transfers

subject to an exogenous limit. Section 2 provides details of the no-contract payoffs in the

naked-exclusion setting of Rasmusen et al. (1990) and Segal and Whinston (2000). Section

3 considers rebate contracts with unconditional transfers in the naked-exclusion setup. It

also explores how unconditional transfers can be used to extract rents rather than to exclude

efficient entrants. Section 4 extends the naked-exclusion analysis of rebates to a world of

unknown entry costs, both with and without unconditional transfers. Section 5 considers

rebates with unconditional transfers in the downstream-competition setup of Simpson and

Wickelgren (2007) and Asker and Bar-Isaac (2014). As in the previous section, it also covers

the use of unconditional transfers to extract rents. Section 6 analyze the downstream pricing

game between a retailer carrying only E’s products, and a vertically integrated firm selling

I’s product, when discrimination between different segments of demand is not possible.

Finally, Section 7 presents a model of a single buyer with a downward-sloping demand.

1 Unconditional transfers in rent shifting

We first show how unconditional transfers restore the full anticompetitive potential of rebate

contracts in the rent-shifting setup of Aghion and Bolton (1987), and then, look at how that

potential gets diminished as we impose an exogenous limit on those transfers.

∗Ide: Stanford GSB (eide@stanford.edu); Montero: PUC-Chile Economics (jmontero@uc.cl); Figueroa: PUC-

Chile Economics (nfigueroa@uc.cl).
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1.1 Unconditional transfers in rebate contracts

A fundamental issue raised by Proposition 1 in the paper is what explains that I can write an

anticompetitive exclusive but not an anticompetitive rebate. Both contracts are signed on date

1 before E shows up, so the difference lies in when exclusivity is committed. The exclusive

does so ex-ante by committing B on date 1 to pay a penalty in case the exclusivity is breached.

The rebate, by contrast, does so ex-post by rewarding B only after the exclusivity is observed.

Another way to put it is that under an exclusive, B does not benefit at all from the downward

pressure that penalty D exerts on E’s offer because the penalty goes directly to I, whereas under

a rebate, B is the one that directly benefits from E’s low offer (i.e., lower than cI), and nothing

in the contract commits B to share all or part of this benefit with I. This, however, suggests

a way for I to amend the rebate contract (r,R) and restore its anticompetitive potential:

Lemma 1. I can implement the anticompetitive outcome of Aghion-Bolton (see expression (3)

in the paper) with the rebate contract (r,R, Z), where Z is an unconditional transfer from B to

I that is agreed at the time the rebate contract is signed on date 1. I has flexibility to write this

anticompetitive rebate from the one with the lowest unconditional transfer (r = v, R = λ(v−c̃E),

Z = λ(v − c̃E)− πNCB ), to the one with the highest (r = c̃E , R = 0, Z = v − c̃E − πNCB ).

Proof. Since Z is unconditional, I’s problem is to maximize (x ≡ r −R/λ)

EπI(r,R, Z) = Z + (1− λ)(r − cI) + λ(x− cI)[1−G(x)] (1)

subject to r ≤ v and v − r + R − Z ≥ πNCB . Since this latter participation constraint will be

binding, replacing R = λ(r−x) in it and substituting Z = v− (1−λ)r−λx−πNCB in (1) leads

to

EπI(r,R, Z) = v − cI − πNCB + λ(cI − x)G(x) = (1− λ)(v − cI) + λ(cI − x)G(x)

and solving for x yields (3) in the paper. The rest of the proof follows from the fact that Z and

r ≤ v are freely chosen from any combination that satisfies Z + (1− λ)r = v − λc̃E − πNCB .�

By committing B to make an unconditional transfer at the time the contract is signed, I

can now offer an exclusionary rebate with large rewards ex-post, i.e., r − R/λ < cI , without

sacrificing profits, i.e., EπI(r,R, Z) > πNCI .1 By trading ex-post rewards for ex-ante transfers,

I can now extract rents from those entrants that decide to enter (cE ≤ c̃E) while leaving B with

1In a previous version of the paper, we show this is the only way to amend the (r,R) contract to obtain the

Aghion-Bolton outcome.
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enough to sign the contract. As long as I and B have some uncertainty about cE , extracting

rents from E will not be perfect and some exclusion will necessarily occur.2

Whether the transfers required in Lemma 1 are feasible to implement in practice is not

obvious, which may explain why we rarely see them, if at all. Leaving aside cases that do not

require these transfers (see Section V in the paper), good reasons may restrict their use, such

as limited liability and asymmetric information. Since I has some flexibility to design these

rebates, as Lemma 1 indicates, we now show how the optimal contract (r,R, Z) varies as we

(exogenously) restrict the value of Z (see also Ide and Montero 2015).

1.2 Restricted unconditional transfers

In this section we look at the design of rebate contracts but under the assumption that uncon-

ditional transfers are subject to some exogenous limit. I’s problem can be written as (recall

that F = 0)

max
r,x,Z

EπI = (1− λ)(v − cI) + λ(x− cI)[1−G(x)] + Z

subject to r ≤ v, Z ≤ Z̄(θ) and

v − (1− λ)r − λx− Z ≥ πNCB

where θ ∈ [0,+∞) is some parameter that captures how problematic is for I to demand an

unconditional transfer from B on date 1. For instance, θ could represent some limited liability

faced by retail buyers, or the presence of asymmetric information (Ide and Montero 2015), to

name a few. For generality we allow Z̄(θ) to take any value, even negative, which would make

it a slotting allowance. We assume that the larger the θ the more difficult is for I to demand

an unconditional transfer so that limθ↓0 Z̄(θ) = +∞, limθ↑∞ Z̄(θ) = −∞, and Z ′(θ) < 0.

Let us first define

θ̄ : Z̄(θ̄) = λ(v − c̃E)− πNCB
¯̄θ : Z̄(¯̄θ) = λ(v − c◦E)− πNCB

where c̃E = cI −G(c̃E)/g(c̃E) < cI , and c◦E = cI + [1−G(c◦E)]/g(c◦E) ∈ (cI , v).

It can be shown that the optimal rebate contract (r∗, x∗, Z∗) will depend on θ as follows:

2This partial-exclusion result connects nicely with a recent paper by Calzolari and Denicolo (2015). In their

model, partial exclusion arises because it helps the incumbent to leave less information rents with privately

informed buyers. Here, it arises because it helps the incumbent to extract more entry rents.
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1. If θ ≤ θ̄ (i.e. λ(v − c̃E)− πNCB ≤ Z̄(θ)), then
{
r∗ ≤ v, x∗ = c̃E , Z

∗ ≤ Z̄(θ)
}

such that

(1− λ)r∗ + Z∗ = v − λc̃E − πNCB

2. If θ̄ < θ < ¯̄θ (i.e. λ(v − c◦E)− πNCB < Z̄(θ) < λ(v − c̃E)− πNCB ), then{
r∗ = v, x∗ = v −

(
Z̄(θ) + πNCB

λ

)
, Z∗ = Z̄(θ)

}
Notice moreover that there exists a unique θ̂ ∈

(
θ̄, ¯̄θ
)

given by Z̄(θ̂) = λ(v−cI)−πNCB > 0

such that for all θ ≥ θ̂ the contract is not anticompetitive (x∗ ≥ cI).

3. If ¯̄θ ≥ θ (i.e. Z̄(θ) ≤ λ(v − c◦E)− πNCB ), then
{
r∗ = v, x∗ = c◦E , Z

∗ = Z̄(θ)
}

.

To demonstrate that these are indeed the optimal rebate contracts, write first the Lan-

grangean of I’s problem

L = (1− λ)(v − cI) + λ(x− cI)[1−G(x)] + Z + µ1(v − (1− λ)r − λx− Z − πNCB )

+ µ2(Z̄(θ)− Z) + µ3(v − r)

to obtain the first order conditions

∂L
∂r

= (1− λ)(1− µ1)− µ3 = 0 (2)

∂L
∂x

= λ[1−G(x)− g(x)(x− cI)− µ1] = 0 (3)

∂L
∂Z

= 1− µ1 − µ2 = 0 (4)

∂L
∂µ1

= v − (1− λ)r − λx− Z − πNCB ≥ 0 and µ1
∂L
∂µ1

= 0 (5)

∂L
∂µ2

= Z̄(θ)− Z ≥ 0 and µ2
∂L
∂µ2

= 0 (6)

∂L
∂µ3

= v − r ≥ 0 and µ3
∂L
∂µ3

= 0 (7)

with µ1, µ2, µ3 ≥ 0. Depending on the value of θ, we can now characterize three candidates for

the optimum.

1. Candidate 1: µ∗1 > 0, and µ∗2 = µ∗3 = 0

Either from (2) or (3) we get µ∗1 = 1 > 0. Moreover from (3):

G(x) + g(x)(x− cI) = 0 =⇒ x∗ = c̃E
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From (6) and (7) we get r∗ ≤ v and Z∗ ≤ Z̄(θ). And from (5) we have

(1− λ)r∗ + Z∗ = v − λc̃E − πNCB

Finally, since r∗ ≤ v, this latter implies that

Z∗ = v − λc̃E − πNCB − (1− λ)r∗ ≥ λ(v − c̃E)− πNCB

and since Z∗ ≤ Z̄(θ), this requires

Z̄(θ) ≥ λ(v − c̃E)− πNCB

2. Candidate 2: µ∗1, µ
∗
2, µ
∗
3 > 0

(5), (6) and (7) imply that Z∗ = Z̄(θ), r∗ = v, and

x∗ = v −
(
Z̄(θ) + πNCB

λ

)
(8)

Moreover (2), (3) and (4) give µ∗2 = 1− µ∗1, µ∗3 = (1− λ)(1− µ∗1) and

µ∗1 = 1−G(x∗)− g(x∗)(x∗ − cI)

Finally, for this to be indeed the optimum we require that µ∗1 ∈ (0, 1), but this is the case

whenever c̃E < x∗ < c◦E . Combining the latter with (8) we get that

λ(v − c◦E)− πNCB < Z̄(θ) < λ(v − c̃E)− πNCB

3. Candidate 3: µ∗1 = 0, and µ∗2, µ
∗
3 > 0

From (2) and (4) we get µ∗3 = (1− λ) > 0, and µ∗2 = 1 > 0. Moreover from (3)

1−G(x)− g(x)(x− cI) = 0 =⇒ x∗ = c◦E

and from (6) and (7) we get r∗ = v and Z∗ = Z̄(θ). Finally from (5) we get

v − (1− λ)r − λx− Z − πNCB ≥ 0 =⇒ Z̄(θ) ≤ λ(v − c◦E)− πNCB

Depending on the value of Z̄(θ), one of these three candidates will characterize the optimum,

as stated in the lemma. The first candidate applies when the transfer restriction is not binding

(θ ≤ θ̄), so I can achieve the Aghion-Bolton outcome. In the region where θ is above θ̄ the

transfer restriction becomes active and I must distort the effective price upwards, leading to a

less anticompetitive outcome. And when θ reaches θ̂ ∈
(
θ̄, ¯̄θ
)

the rebate contract is not longer
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anticompetitive. Notice though, that at θ̂ the scheme still entails a positive, but substantially

small, unconditional transfer. A further tightening of the transfer restriction, for example to

Z̄(θ) = 0, forces I to raise the effective price even further, which is when we arrive to our result

that (r,R) contracts in the rent-shifting model of Aghion-Bolton cannot be anticompetitive (see

Proposition 1 in the paper).

2 No-contract payoffs in the naked-exclusion setup

In the absence of contracts, I and E compete in the spot market as in the rent-shifting setup.

In addition, it can be established that if I does not contract with B1 and B2 on date 1, then E

is indifferent between making offers to either of the two buyers or going directly to the spot on

date 4. In either case, the no-contract payoffs are: πNCI = (1−λ)(v−cI), πNCE = λ(cI−cE)−F ,

and πNCBi = λ(v − cI)/2 for i = 1, 2.

To formally show that E cannot do better, notice that the maximum available surplus for a

“coalition” of E and the two buyers (EBB) is VEBB = λ(v− cE)−F . The question now is how

that surplus gets divided between E and the buyers. In particular, can a “sub-coalition” of E

and one of the buyers appropriate all of it by exploiting the other buyer? Suppose on date 2 E

makes simultaneous public price offers wE1 and wE2 to both buyers B1 and B2, respectively

(sequential offers do not change the result). There are three relevant cases to consider. The

first is when both offers are slightly below cI . It is clearly an equilibrium for both buyers to

accept because E will enter in any case, which secures each buyer at least λ(v − cI)/2. The

second is when both offers are above cI , in which case the equilibrium is for each of the two

buyers to reject, regardless of what the other does, because they know they can always get

λ(v − cI)/2. The most interesting case is when E offers the pair wE1 < cI < wE2 such that

πE = λ(wE1− cE)/2 +λ(wE2− cE)/2−F > πNCE = λ(cI − cE)−F , which would be E’s payoff

in case both buyers accept, and

πE = λ(wE1 − cE)/2 + λ(cI − cE)/2− F < 0,

which would be E’s payoff in case only B1 accepts but he enters anyway. If E could commit

not to renegotiate with B1, then B2 would, in equilibrium, accept any offer wE2 ≤ v − ε to

make sure E enters. But the problem is that B2 anticipates that if she rejects, E and B1 will

renegotiate the terms of B1’s offer to make sure E enters, which in turn makes B2’s rejection a

best response. Anticipating buyers’ equilibrium responses, E gains nothing from making offers
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on date 2.3

3 Unconditional transfers in naked exclusion

We now considers rebate contracts with unconditional transfers in the naked-exclusion setup

of Rasmusen et al (1990) and Segal and Whinston (2000b). We first study how unconditional

transfers can be use to restore the full anticompetitive potential of rebates (i.e., can replicate

the work of exclusives) and then how they can also be used to extract rents.

3.1 Using unconditional transfers for exclusion

Unlike in Rasmusen et al (1990) and in Segal and Whinston (2000b), the reason I fails to

implement a divide-and-conquer strategy with rebates is because the unlucky buyer (B2) can

no longer be used to finance the rebates going to the lucky buyer (B1). Given that rebates do

not lock up buyers ex-ante, E has always the opportunity on date 2 to make counter offers to

fight off exclusion. Moreover, because B2 anticipates that she will be fully exploited by I, she

is ready to give up almost her entire surplus to E, forcing I to offer even larger rewards to lock

up B1, so large that they are not profitable. In other words, if I tries to exploit B2 in the first

place E will do likewise, so the same (ex-post) rents coming from B2 that I is using to pay for

the rebate to B1 are also used by E to induce B1 to switch. As with Lemma 1, however, there

is a way for I to go around this funding problem and deter E’s entry:

Proposition 2.

Lemma 3. In the naked-exclusion setup of multiple buyers and scale economies, I can profitably

deter E’s entry with a pair of discriminatory rebate contracts (ri, Ri, Zi) for i = 1, 2, where Zi

is an unconditional transfer from Bi to I that is agreed at the time the rebate contract is signed

on date 1.

Proof. It is easy to see that I can replicate the exclusionary outcome of Proposition 2 in the

paper with no offer to B2 and a rebate offer (r1 ≤ v,R1, Z1) to B1, the lucky buyer, that

satisfies both

(v − r1 +R1)/2− Z1 ≥ πNCB1 (9)

3Note that if in fact E could commit not to renegotiate with B1, then buyers outside options would be smaller,

on average, which would make exclusion a bit cheaper for I.
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and “the no-switching” condition (7) in the paper for wE1 = 2F/λ+ 2cE − v. To foreclose E’s

entry at minimum cost, πNCB1 , I will set (9) to equality.�

Again, an unconditional transfer from the lucky buyer is what allows the incumbent to offer

very competitive rewards ex-post, making it impossible for E to persuade that buyer to switch.

But if such large unconditional transfers are feasible to implement, one can go further and ask

if I can do better than just deterring E’s entry.

3.2 Using unconditional transfers for rent extraction

We now establish the form of the most profitable rebate contracts I can offer when unconditional

transfers have no restrictions. Consistent with the exclusives in Innes and Sexton (1994) and

Spector (2011, section 4) that include breach penalties as vehicles to transfer rents, I can write a

pair of efficient discriminatory (ri, Ri, Zi) contracts and pocket the entire social surplus, except

for πNCB1 + ε. By locking up just one retailer, B1, I can fully exploit B2 while simultaneously

extracting all of E’s efficiency rents. This non-exclusionary result, however, is clearly not robust.

For instance, rent extraction would be incomplete when cE is unknown, in which case, again,

there will be exclusion of some efficient entrants even when (ri, Ri, Zi) contracts are at hand.

We leave that case for the next section.

When I is free to charge unconditional transfers to buyers on date 1, he will optimally let E

to come in with rebate offers (r1, x1, Z1) and (r2, x2, Z2) that share the following characteristics:

(i) Z1 = ((1 − λ)(v − r1) + λ(cI − x1))/2 − ε, (ii) Z2 = (v − (1 − λ)r2 − λx2)/2, (iii) λ(x1 −

cE)/2 + λ(x2 − cE)/2− F = 0, (iv) ri ≤ v, (v) xi ≥ cE , and (vi) x1 < 2cE − cI + 2F/λ.

Note first that independently of whether Bj accepts or not, and irrespective of E’s entry,

if Bi accepts I’s offer she gets v − ri + Ri = v − (1 − λ)ri − λxi ex-post, and therefore,

v − (1 − λ)ri − λxi − Zi ex-ante. If, however, Bi rejects I’s offer, her payoff does depend on

whether Bj accepts or not. If both buyers reject, we are in the no-contract benchmark where

each gets πNCBi = λ(v − cI)/2. But if Bi rejects and Bj accepts, her payoff will ultimately

depend on the offers that E will present to each of them on date 2. Since xi ≥ cE for both i and

j, E will find it optimal to slightly undercut the terms of the rebate contract of the “captive”

buyer (Bj in this case) with a price offer slightly below xi. As for E’s offer to the free buyer,

notice that Bj’s outside option depends on xi. In fact, if λ(xi − cE)/2 + λ(cI − cE)/2−F ≥ 0,

Bj’s outside option is λ(v − cI)/2 because if she rejects E’s offer, E will still find it optimal to

enter. But if λ(xi − cE)/2 + λ(cI − cE)/2 − F < 0, Bj’s outside option is zero, because if she
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rejects, E will not enter.

These outside options can be summarized in the following payoff matrix:

B1 \ B2 Accept Reject

Accept λ(v − cI)/2 + ε, 0 λ(v − cI)/2 + ε, 0

Reject λ(v − cI)/2, 0 λ(v − cI)/2, λ(v − cI)/2

Notice that the reason B2 gets zero if she rejects and B1 accepts (upper-right corner) is because

(vi) leads to λ(x1 − cE)/2 + λ(cI − cE)/2− F < 0. Similarly, the reason B1 gets λ(v − cI)/2 if

she rejects but B2 does not (lower-left corner) is because

λ(x2 − cE) + λ(cI − cE)/2− F = λ(cI − cE)/2− λ(x1 − cE)/2 > 0

where the equality follows from (iii) and the inequality from x1 < cI , which follows directly from

the efficient-entry condition and (vi). Hence, in equilibrium both buyers accept the contract

(if B2 rejects makes no difference), E enters and slightly undercuts both terms. Equilibrium

payoffs, as of date 1, are πI = v− cI + λ(cI − cE)−F − λ(v− cI)/2− ε, πB1 = λ(v− cI)/2 + ε,

πB2 = 0 and πE = 0. Since I must leave B1 with at least πNCBi , he cannot improve upon these

rebate contracts.

Finally, notice that characteristics (i)-(vi) accommodate to different rebate contracts; for

example, the pair (r1 = v, x1 = cE , Z1 = λ(cI − cE)/2− ε) and (r2 = v, x2 = cE + 2F/λ, Z2 =

λ(v − cE)/2− F ). Note that Z2 < 0, an slotting allowance, but it is easy to construct another

example with Z2 > 0 by simply lowering the list price r2 accordingly. In any case, with any of

these contracts I pockets all the social surplus but πNCB1 + ε, which is what he needs to give up

in order to induce B1 to sign.

4 Unknown entry costs in naked exclusion

In this section we look at the work of rebate contracts in a naked-exclusion setup, both with and

without unconditional transfers, when cE is unknown on date 1; very much as in a rent-shifting

setting.

4.1 Rebates without unconditional transfers

To simplify matters assume that cE is distributed according to the cumulative function G(·)

over [v − 2F/λ, cI − F/λ], so that λ(v − cE)/2 − F ≤ 0 and 0 ≤ λ(cI − cE) − F for any

9



realization of cE . That is, irrespective of cE : (i) E needs to serve both buyers to find it

profitable to enter the market, and (ii) entry is always efficient. This interval is well defined

because v − 2F/λ < cI − F/λ, or λ(v − cI) < F .

Consider the scenario where I offers just one rebate contract, say (r1, x1) to B1. E will find

it profitable to enter whenever

λ(x1 − cE)/2 + λ(v − cE)/2− F ≥ 0 =⇒ χ ≡ v + x1
2
− F

λ
≥ cE

as B2 gets charged v for each unit. Therefore, the probability of entry is G(χ). Anticipating

this, I’s expected profit is

EπI =

(
1

2

)
G(χ)(1− λ)(r1 + v − 2cI) +

(
1

2

)
[1−G(χ)](r1(1− λ) + λx1 + v − 2cI)

= (1− λ)

(
v + r1

2
− cI

)
+ λ[1−G(χ)]

(
χ−

[
cI −

F

λ

])
But I’s no-contract payoff is πNCI = (1− λ)(v − cI), so

EπI − πNCI = −(1− λ)

(
v − v + r1

2

)
+ λ[1−G(χ)]

(
χ−

[
cI −

F

λ

])
Since r1 ≤ v, a necessary condition for a rebate contract to be profitable (EπI − πNCI ≥ 0) is

that χ > cI − F/λ, that is, that entry must be inefficient.

Finally it is easy to see that I cannot improve upon offering a second contract. If I goes on

and offers B2 the contract (r2, x2), in addition to the contract (r1, x1) to B1, then he will end

up extracting (1 − λ)r2 and r2 − R2 from B2 in the event of entry and no-entry, respectively,

which is less than what he is currently extracting, (1− λ)v and v, respectively. Hence the new

entry cutoff χ′ ≡ (x1 + x2)/2 − F/λ will have to be set even higher for I to be able to profit

from the contract.

4.2 Rebates with unconditional transfers

Assume again that cE distributes according to G(·) over [v− 2F/λ, cI −F/λ]. Suppose I offers

only one contract, say (r1, x1, Z1) to B1. The main difference with the previous section is

that now I can use the unconditional transfer Z1 to extract rents from B1. Since buyers can

communicate and coordinate their actions, I must leave B1with no less than her no-contract

payoff, that is, (v − (1 − λ)r1 − λx1)/2 − Z1 ≥ πNCB1 = λ(v − cI)/2. Since this constraint is

binding, we can rewrite I’s expected payoff as

EπI = (2(v − cI)− λG(χ)[v + x1 − 2cI ]) /2− λ(v − cI)/2

= (v − cI)− λG(χ)

(
χ−

[
cI −

F

λ

])
− λ(v − cI)/2 (10)
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Differentiating (10) with respect to χ yields

dEπI
dχ

= G′(χ)

(
χ−

[
cI −

F

λ

])
+G(χ) = 0 (11)

which implies that χ∗ < cI − F/λ. This optimal rebate contract blocks moderately efficient

entrants, i.e., cE ∈ [χ∗, cI − F/λ].

This result follows the Aghion-Bolton logic for a single buyer. The only difference is that

now the IB1 coalition acts as a monopoly over the EB2 coalition, since EB2 needs B1 to

enter. Because buyers cannot sign binding commitments ex-ante, I can get B1 to sign for not

less than her outside option πNCB1 . Notice again that I cannot do better by offering a second

contract since in any case must leave one of the buyers, say Bi, with no less than πNCBi .

5 Unconditional transfers in downstream competition

We now considers rebate contracts with unconditional transfers in the downstream-competition

setup of Simpson and Wickelgren (2007) and Asker and Bar-Isaac (2014). We first study how

unconditional transfers can be use to restore the full anticompetitive potential of rebates and

then how they can also be used to extract rents.

5.1 Using unconditional transfers for exclusion

Following the results in the rent-shifting and naked-exclusion settings (Lemmas 1 and 2 above),

the obvious question is whether exclusion can again be restored by introducing unconditional

transfers. In rent-shifting and naked-exclusion, unconditional transfers were less a problem for

retailers because they could perfectly anticipate the monopoly rents available to pay for these

transfer ex-post. Here it is not that simple, because Bertrand competition tends to dissipate

those rents, so a retailer anticipating zero profits ex-post will not be willing to commit to any

payment up-front. As the next proposition establishes, however, I can get around this problem

with the proper contract design.

Lemma 4. In the downstream-competition setup of Bertrand competitors, I can profitably deter

E’s entry with a pair of discriminatory rebate contracts (ri, Ri, Zi) for i = 1, 2.

Proof. This proof follows directly from the discussion at the end of the proof of Proposition

5 in the paper. Suppose on date 1 that I approaches B1 with a rebate offer (r1, R1, Z1) with

an effective price r1 − R1 slightly below E’s break-even price cE + F/λ. At the same time, he
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offers B2 a uniform price in the form of a rebate offer (r2, R2, Z2) with R2 = 0 (Z1 and Z2

are defined shortly). It is clear that if B1 accepts the rebate and conforms to the exclusivity,

E will not enter because he cannot use B2 to compete with B1’s marginal cost of r1 − R1 in

the contestable portion of the retail market (notice, as discussed in the proof of Proposition 7,

that the same applies if I offers nothing to B2 on date 1). On the other hand, since retailers’

outside options are zero, by setting r1 = r2 = v, Z1 = R1 − ε, and Z2 = −ε, I can induce

both buyers to sign for as little as ε → 0. B2 is willing to sign because her outside option is

zero. And having observed B2 doing so (or at least the offer she received), B1 is also willing to

sign and commit to the unconditional transfer Z1 because she understands that B2’s contract

commits I to sell units to B2 at price r2 = v, nothing less, which is what allows B1 to pocket

R1 = Z1+ε ex-post. B1 also understands that any later effort by I to renegotiate B2’s contract

to expropriate part or all of these ex-post rents is fruitless because she can always sell I’s units

for as low as r1 − R1. Finally, it is easy to compute that with these rebates, I obtains an

ex-ante payoff of v − cI − 2ε > (1 − λ)(v − cI) = πNCI , which is exactly what he obtains with

the exclusives of Proposition 4.�

Notice that, due to the intense downstream competition, I just needs to make one of the

retailers (B1) aggressive enough in the contestable segment for E not to enter. But since this

benefits B1 greatly, as she can now charge v for all units, I uses the unconditional transfer

Z1 to extract this benefit while maintaining the large rebate R1 that prevents E’s entry in the

first place. In a way, this is similar to what happens in naked exclusion —where exclusion did

not require I to lock up both retailers— but for a very different reason. In naked exclusion

it was due to scale economies, while here it is due to the intense retail competition. Also, as

in rent shifting and naked exclusion, the introduction of unconditional transfers is what allows

I to offer large rewards ex-post; but unlike there, I needs here to purposefully soften retail

competition to make sure retailers can recover those unconditional payments later. The way to

do this is by offering one retailer (B2) a rebate contract under such unfavorable conditions that

she cannot compete; a contract that she is nevertheless willing to take for virtually nothing,

precisely because of the intense retail competition.

5.2 Using unconditional transfers for rent extraction

In this section we look at I’s problem when unconditional transfers are not used to foreclose

E’s entry but to extract efficiency rents from him. Suppose B1 is the retailer approached
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by E to enter the market. Consider the following pair of rebate contracts that I will offer

both buyers on date 1, respectively (r1, R1, Z1) and (r2, R2, Z2, q2 ≤ q̄), where: (i) r1 = v,

(ii) r1 − R1 = cE + F/λ + 2ε, (iii) Z1 = λR1 − ε, (iv) r2 = v, (v) r2 − R2 < r1 − R1, (vi)

Z2 = (1− λ)R2 − ε, and (vii) q2 ≤ 1− λ, i.e., B2 can at most buy 1− λ from I.

To see why these pair of contracts allow I to extract E’s entry rents, notice first that the

worst entry scenario for E is to approach B1, which according to (v) is the buyer with the

higher effective price r −R, with a price offer that slightly undercuts (ii), that is

wE1 = cE + F/λ+ ε

This leaves E with virtually nothing as ε→ 0. B1 accepts this offer, since it is ε more attractive

than I’s current offer (ii), and becomes the only one selling to the contestable portion. This

latter is possible because the quantity limit (vii) prevents B2 from selling to the contestable

portion given that she is already selling 1 − λ units to the non-contestable portion (note B1

cannot compete in the non-contestable portion because (iv) and the fact that she gave up the

rebate R1 once she accepted E’s offer). Thus, B1 pockets an ex-post rent equal to λ(v−wE1),

so her profit as of date 1, i.e., her profit net of the unconditional transfer (iii), is ε(1+λ). On the

other hand, B2 sticks to the exclusivity selling at v to the non-contestable portion, obtaining

a profit net of the up-front (vi) equal to ε. Hence, I gets the full social surplus using the list

prices in (i) and (iv) and letting ε→ 0.

Notice that this works for I as long as he can impose the quantity limit (vii) in B2’s contract,

which seems odd; if anything, rebate contracts typically include deeper discounts as buyers sell

more, as opposed to the radical price increase suggested by (vii). The problem is that in the

absence of that limit there is no way for I to extract rents from E because B1 and B2 will

always compete for the contestable units, preventing the retail price from going all the way to

v.

6 Downstream pricing: retailer vs. vertically integrated firm

In this section we prove the claim made in the Appendix of the paper, that when price discrim-

ination between contestable and non-contestable consumers in the downstream market is not

possible, equilibrium profits of a vertically integrated firm selling I’s products (denoted BI) are

always equal to (1−λ)(v− cI), when facing a retailer carrying only E’s products (denoted BE)

that has marginal cost/wholesale price wE ≤ cI .
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First, it is clear that no pure strategy equilibrium exists. Indeed, let pE and pI be the

prices set by BE and BI respectively. If pE < pI , then BE has incentives to rise its price; if

wE < pI < pE , BE has the incentive to undercut I’s price; if pI ≤ pE = wE , BI prefers to sell

1− λ units a price v, given that wE ≤ cI < ĉ ≡ cI + (1− λ)(v − cI). And if pI = pE = v then

BI has incentives to undercut BE ’s price. Hence all possible candidates for a pure-strategy

equilibrium are discarded. By a similar argument, it is also easy to see that both firms must be

randomizing in equilibrium: if BI plays pI with probability 1 (w.p.1), then BE has incentives

to play pE = pI − ε w.p.1, but if so, then BI undercuts E if pI > ĉ; or raises its price to v if

pI < ĉ.

Suppose then that BI and BE randomize according to the pdf (cdf) hI(·) and hE(·) (HI(·)

and HE(·)) respectively, denote σi the support of Hi(·), and let ri ≡ inf σi and Ri ≡ supσi

(Ri ≤ v, for i = I, E obviously). It is clear that in any equilibria, equilibrium profits must

satisfy π∗BI
≥ (1−λ)(v− cI) and π∗BE

> 0. The first inequality comes from the fact that BI can

always charge pI = v and sell at least 1−λ units. The second, from the fact that BE can always

charge wE < pE < ĉ and prevent being undercut by BI , earning therefore λ(pE − wE) > 0.

We now claim that π∗BI
= (1 − λ)(v − cI). Suppose not. Then it must be that π∗BI

>

(1− λ)(v − cI). This in turn means that:

π∗BI
≡ πI(pI) = (1−λ)(pI−cI)+[1−HE(pI)]λ(pI−cI) > (1−λ)(v−cI) , for all pI ∈ σI (12)

But since (1 − λ)(pI − cI) ≤ (1 − λ)(vI − cI), this is only possible if 1 − HE(pI) > 0 for all

pI ∈ σI . This latter is only possible if RI < RE or if RI = RE and hE(·) has an atom over RE .

The first case immediately leads to a contradiction, since it would imply that BE earns zero

profit when playing RE , which contradicts π∗BE
> 0. The same is true if RI = RE = R, hE(·)

has an atom over R, but hI(·) is atomless at R. Finally, it neither can be that RI = RE = R

and both hE(·) and hI(·) have an atom at R, since either BI or BE (depending on the tie-rule)

will not play R, as playing R − ε gives (almost) the same profit, but avoid the tie altogether,

strictly increasing profit. Hence 1−HE(pI) > 0 for all pI ∈ σI leads to a contradiction, which

implies that π∗BI
= (1− λ)(v − cI).

7 Single buyer with downward sloping demand

In this section we show that our non-exclusionary results (Propositions 1, 3, and 5 in the

paper) do not depend on the full-surplus extraction over the non-contestable segment that
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follows from the unit-demand model. Let then Q(p) be B’s downward sloping demand and

P (q) the corresponding inverse demand. Suppose also that E is sufficiently small that can

supply at most λ < Q(cI) units. The timing of the game is as before (see section II of the

paper).

Note first that to just block the entry of a rival of cost x, the discount contract must leave B

with at least
∫ λ
0 (P (q)−x)dq, which is the most E can transfer B by pricing at cost his λ units.

A simple discount contract that implements this outcome is a two-part tariff (x, T ), where x

is the unit price and T =
∫ Q(x)
λ (P (q) − x)dq is the (conditional) fixed fee equal to area ABD

in Figure 1 (market-share and quantity-discount contracts work equally well; see, for example,

Kolay et al. 2004). Thus, if I offers the two-part-tariff contract (x, T ) with x < cI , his payoff

will be ∫ Q(x)

λ
(P (q)− cI)dq

when cE < x, since he will only be selling Q(x)− λ units, and∫ Q(x)

λ
(P (q)− cI)dq + λ(x− cI)

when cE ≥ x, since he will now be selling Q(x) units.

Putting things together, I’s expected payoff reduces to∫ Q(cI)

λ
(P (q)− cI)dq +

∫ Q(x)

Q(cI)
(P (q)− cI)dq + λ(x− cI)[1−G(x)] (13)

which differs from expression (6) in the proof of Proposition 1 in the paper only in the extra

term in the middle, which captures the profit loss from selling additional units at an effective

price x below cI . This loss adds to the loss of selling λ units below cost when x < cI and E does

not enter, which happens with probability 1−G(x). As in (6), the first term in (13) captures

the residual monopoly profit, that is, I’s largest possible payoff when B has already λ units in

her pocket.

Even without computing the best possible discount contract that I could offer B —which

would require to know agents’ outside options—, it is clear from (13) that I will never offer an

anticompetitive one, that is, one with an effective price x < cI . Now, to see whether I will still

find it profitable to offer a two-part tariff (x, T ) with x = cI , we would need to know his outside

option. If, in the absence of a contract the competition in the spot market is in nonlinear

prices, then there is no reason for I to offer a discount contract because he can always secure

the residual monopoly profit in the spot anyway. If, however, competition is in linear prices, it
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is then profitable for I to offer the discount contract because he would otherwise obtain strictly

less than
∫ Q(cI)
λ (P (q)− cI)dq.4

Figure 1: Downward Sloping Demand

A

B D
x

cI

λ Q(cI) Q(x)
q

p

Q(p)

1

4In the unit-demand case it was never profitable to offer the contract (r,R) because I always secured (1 −

λ)(v − cI) in the spot regardless of whether competition was in linear or non-linear prices. The mixed strategy

equilibrium for the linear case can be found in an earlier version of the paper.
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