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Abstract

This document contains Appendices A-F for the October 2023 version of the paper “Rational

Inattention and the Business Cycle Effects of Productivity and News Shocks.”

A Non-stochastic steady state

The non-stochastic steady state is the solution of the model when total factor productivity eat is

equal to 1 in every period, this is common knowledge, and all variables are constant over time.

Let an upper-case letter without a time subscript denote the value of a variable in the non-

stochastic steady state. Profit maximization implies that αKα−1
i Lφi N

1−α−φ
i = β−1 − 1 + δ and

φKα
i L

φ−1
i N1−α−φ

i = W for each firm i, which determinesKi and Li as functions ofW and parameter

values (including Ni):

Ki =

(
α

β−1 − 1 + δ

) 1−φ
1−α−φ

(
φ

W

) φ
1−α−φ

Ni

Li =

(
α

β−1 − 1 + δ

) α
1−α−φ

(
φ

W

) 1−α
1−α−φ

Ni.

Suppose that Ni is constant across i, Ni = N . It follows that Ki and Li are constant across i,

Ki = K, Li = L. Moreover, Yi, Ii and Di are also constant across i, Yi = Y = KαLφN1−α−φ,

Ii = I = δK, Di = D = Y −WL− I.

Utility maximization implies that V = [β/ (1− β)]D and WC−γj = Lηj for each household j.

Suppose that in the non-stochastic steady state each household holds an equal share of the mutual
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fund, Qj = 1 for each j. Cj and Lj are then constant across j, Cj = C, Lj = L, and the budget

constraint implies that C = WL+D. Combining this equation with D = Y −WL− I yields the

resource constraint Y = C + I.

One can solve the system of equations:

K =

(
α

β−1 − 1 + δ

) 1−φ
1−α−φ

(
φ

W

) φ
1−α−φ

N

L =

(
α

β−1 − 1 + δ

) α
1−α−φ

(
φ

W

) 1−α
1−α−φ

N

W = Lη
(
KαLφN1−α−φ − δK

)γ
for K, L and W for given parameter values (including N). The last equation comes from combining

the equilibrium condition WC−γ = Lη with the resource constraint. One can then compute the

other endogenous variables (Y , I, C, D, and V ) from the equations Y = KαLφN1−α−φ, I = δK,

C = Y − I, D = Y −WL− I, V = [β/ (1− β)]D.

The following steady-state ratios are useful: WL/Y = φ, I/Y = αβδ/ [1− β(1− δ)], C/Y =

1− I/Y , D/Y = 1−WL/Y − I/Y , V/C = [β/ (1− β)] (D/Y )(Y/C) (WL/C and D/C follow).

B Perfect information benchmark

Suppose that all agents have perfect information. Let a lower-case letter denote the log-deviation

of a variable from its value in the non-stochastic steady state. The firms’ first-order conditions

imply that

at + αkt−1 − (1− φ) lt = wt

Etat+1 − (1− α) kt + φEtlt+1 =
γ (Etct+1 − ct)
1− β (1− δ)

.

From the production function, the law of motion of capital and the profit function, we have

yt = at + αkt−1 + φlt

δit = kt − (1− δ) kt−1

(D/Y ) dt = yt − (WL/Y ) (wt + lt)− (I/Y ) it.
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The households’ first-order conditions imply that

γEt (ct+1 − ct) = βEtvt+1 − vt + (1− β)Etdt+1

wt − γct = ηlt.

The resource constraint reads

yt = (C/Y ) ct + (I/Y ) it.

C Expected loss in profit from suboptimal actions

Proposition 1 Let Ei,−1 denote the expectation operator conditioned on information of the decision-

maker of firm i in period −1. Let g denote the functional that is obtained by multiplying the profit

function by βt and summing over all t from zero to infinity. Let g̃ denote the second-order Taylor

approximation of g at the non-stochastic steady state. Let χt, zt and vt denote the following vectors

χt =

 kit

lit

 zt =


at

wt

ct

 vt =


χt

zt

1

 .

Suppose that the decision-maker of firm i knows in period −1 the firm’s initial capital stock, ki,−1.

Suppose also that there exist two constants δ < (1/β) and A ∈ R such that, for each period t ≥ 0,

for τ = 0, 1, and for all m,n ∈ {1, 2, 3, 4, 5, 6},

Ei,−1 |vm,tvn,t+τ | < δtA. (1)

Here vm,t and vn,t denote the mth and nth element of the vector vt. Then the expected discounted

sum of losses in profit when the law of motion for the actions differs from the law of motion for

the optimal actions under perfect information equals

Ei,−1 [g̃ (ki,−1, χ0, z0, χ1, z1, . . .)]− Ei,−1 [g̃ (ki,−1, χ
∗
0, z0, χ

∗
1, z1, . . .)]

=
∞∑
t=0

βtEi,−1

[
1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]
. (2)

The matrices Θ0 and Θ1 are given by

Θ0 = −C−γY

 βα (1− α) 0

0 φ (1− φ)

 Θ1 = C−γY

 0 βαφ

0 0

 . (3)
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The optimal actions under perfect information are given by

χ∗t =

 k∗it

l∗it

 =

 1
1−α−φ

[
Etat+1 − φEtwt+1 − (1− φ) γEt(ct+1−ct)

1−β(1−δ)

]
α

1−φk
∗
it−1 + 1

1−φ (at − wt)

 , (4)

where Et denotes the expectation operator conditioned on the entire history up to and including

period t, and the initial capital stock is given by the initial condition k∗i,−1 = ki,−1.

Proof: First, we introduce notation. The profit of firm i in period t depends on three sets of

variables: (i) variables that the decision-maker of firm i chooses in period t (here kit and lit), (ii)

variables that the decision-maker chose in the past (here kit−1), and (iii) variables that the decision-

maker takes as given (here at, wt and ct). The first set of variables is collected in the vector χt, the

second set of variables is an element of χt−1 for all t ≥ 0 once we define the vector χ−1 = (ki,−1, 0)′,

and the third set of variables is collected in the vector zt.

The next steps are word for word identical to steps “Second” to “Seventh” in proof of Proposition

2 in online Appendix D of Maćkowiak and Wiederholt (2015). The reason is that these steps only

require that the payoff in period t depends only on own current actions (collected in χt), own

previous-period actions (collected in χt−1), and variables that the decision-maker takes as given

(collected in zt) and that the initial condition ki,−1 and the vector vt satisfy conditions (40)-(42)

in online Appendix D of Maćkowiak and Wiederholt (2015). The payoff in period t in Proposition

1 is profit, whereas the payoff in period t in online Appendix D of Maćkowiak and Wiederholt

(2015) is period utility, but in both cases this payoff depends only on own current actions (χt), own

previous-period actions (χt−1), and variables that the decision-maker takes as given (zt). Conditions

(40)-(41) in online Appendix D of Maćkowiak and Wiederholt (2015) are satisfied because of the

assumption in Proposition 1 that the decision-maker knows the initial condition χ−1. Condition (42)

in online Appendix D of Maćkowiak and Wiederholt (2015) is equal to condition (1) in Proposition

1. These steps “Second” to “Seventh” yield equation (2), where Θ0 is defined as the Hessian matrix

of second derivatives of g with respect to χt evaluated at the non-stochastic steady state and divided

by βt, Θ1 is defined as the Hessian matrix of second derivatives of g with respect to χt and χt+1

evaluated at the non-stochastic steady state and divided by βt, and χ∗t is defined as the actions

that the decision-maker would take if he or she had perfect information in every period t ≥ 0.
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Eighth, the functional g in Proposition 1 is the discounted sum of profit

g (χ−1, χ0, z0, χ1, z1, . . .) =
∞∑
t=0

βtf (χt, χt−1, zt) ,

where the function f is the profit function

f (χt, χt−1, zt) = C−γe−γctY

{
eat+αkit−1+φlit − φewt+lit +

(
α

β−1 − 1 + δ

)[
(1− δ) ekit−1 − ekit

]}
.

Computing the matrices Θ0 and Θ1 for this functional g yields equation (3).

Ninth, we characterize the optimal actions under perfect information. Formally, the process

{χ∗t }
∞
t=0 is defined by the initial condition χ∗−1 = (ki,−1, 0)′ and the optimality condition

∀t ≥ 0 : Et
[
θ0 + Θ−1χ

∗
t−1 + Θ0χ

∗
t + Θ1χ

∗
t+1 + Φ0zt + Φ1zt+1

]
= 0. (5)

Here θ0 is defined as the vector of first derivatives of g with respect to χt evaluated at the non-

stochastic steady state and divided by βt, Θ−1 is defined as the matrix of second derivatives of

g with respect to χt and χt−1 evaluated at the non-stochastic steady state and divided by βt,

Φ0 is defined as the matrix of second derivatives of g with respect to χt and zt evaluated at the

non-stochastic steady state and divided by βt, Φ1 is defined as the matrix of second derivatives of

g with respect to χt and zt+1 evaluated at the non-stochastic steady state and divided by βt, and

Et denotes the expectation operator conditioned on the entire history up to and including period t.

See the step “Fourth” in proof of Proposition 2 in online Appendix D of Maćkowiak and Wiederholt

(2015). Computing the vector θ0 and the matrices Θ−1, Φ0, and Φ1 for the functional g defined in

the previous step yields

θ0 =

 0

0

 Θ−1 = C−γY

 0 0

αφ 0


Φ0 = C−γY

 0 0 γ α
β−1−1+δ

φ −φ 0

 Φ1 = C−γY

 αβ 0 −γ α
β−1−1+δ

0 0 0

 .

Substituting the equations for θ0, Θ−1, Φ0, Φ1, Θ0, Θ1, χt and zt into equation (5) yields

Etat+1 − (1− α) k∗it + φEtl
∗
it+1 =

γEt (ct+1 − ct)
1− β (1− δ)

(6)

at + αk∗it−1 − (1− φ) l∗it = wt. (7)
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Equations (6)-(7) are the usual optimality conditions for capital and labor. Equation (6) states

that the profit-maximizing capital input equates the expected marginal product of capital to the

cost of capital. Equation (7) states that the profit-maximizing labor input equates the marginal

product of labor to the wage. Rearranging equations (6)-(7) yields the closed-form solution (4) for

the actions that the firm would take in period t if the firm had perfect information in every period

t ≥ 0.

Proposition 2 Under condition (1), we have

∞∑
t=0

βtEi,−1

[
1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]

= −C−γY
∞∑
t=0

βtEi,−1

βα
(

1− α− αφ
1−φ

)
2

(kit − k∗it)
2 +

φ (1− φ)

2
(ζit − ζ∗it)

2

 , (8)

where ζit ≡ lit − α
1−φkit−1 and ζ∗it ≡ l∗it − α

1−φk
∗
it−1.

Proof: First, we have

1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)
= C−γY

[
−βα (1− α)

2
(kit − k∗it)

2 − φ (1− φ)

2
(lit − l∗it)

2 + βαφ (kit − k∗it)
(
lit+1 − l∗it+1

)]
(9)

because χt = (kit, lit)
′, χ∗t = (k∗it, l

∗
it)
′ and the matrices Θ0 and Θ1 are given by equation (3).

Second, define

ζit = lit −
α

1− φ
kit−1,

and

ζ∗it = l∗it −
α

1− φ
k∗it−1.

This definition implies

lit − l∗it = ζit − ζ∗it +
α

1− φ
(
kit−1 − k∗it−1

)
.

Substituting the last equation into equation (9) yields

1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)

= C−γY


−βα(1−α)

2 (kit − k∗it)
2 − φ(1−φ)

2 (ζit − ζ∗it)
2

−αφ (ζit − ζ∗it)
(
kit−1 − k∗it−1

)
− α2φ

2(1−φ)
(
kit−1 − k∗it−1

)2
+βαφ (kit − k∗it)

(
ζit+1 − ζ∗it+1

)
+ βα2φ

1−φ (kit − k∗it)
2

 .
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Multiplying by βt and summing over all t from zero to T yields

T∑
t=0

βt
[

1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]

= C−γY

 −βα
2

(
1− α− αφ

1−φ

) T∑
t=0

βt (kit − k∗it)
2 − φ(1−φ)

2

T∑
t=0

βt (ζit − ζ∗it)
2

+βT βα2φ
2(1−φ) (kiT − k∗iT )2 + βαφβT (kiT − k∗iT )

(
ζiT+1 − ζ∗iT+1

)
 ,

where we have used k∗i,−1 = ki,−1 and the fact that several terms on the right-hand side cancel.

Taking the expectation Ei,−1 and the limit as T →∞ yields

∞∑
t=0

βtEi,−1

[
1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]

= C−γY

 −βα
2

(
1− α− αφ

1−φ

) ∞∑
t=0

βtEi,−1 (kit − k∗it)
2 − φ(1−φ)

2

∞∑
t=0

βtEi,−1 (ζit − ζ∗it)
2

+ βα2φ
2(1−φ) lim

T→∞
βTEi,−1 (kiT − k∗iT )2 + βαφ lim

T→∞
βTEi,−1 (kiT − k∗iT )

(
ζiT+1 − ζ∗iT+1

)
 .

Under condition (1) the two infinite sums on the right-hand side of the last equation converge to

an element in R and the third and fourth term on the right-hand side of the last equation equal

zero.

D Additional numerical results for Section 4

We report here additional numerical results that help develop intuition about optimal signals in

an economy with news shocks. We consider the version of the model from Section 4.1 in the paper

with labor as the only variable input, α = 0. All parameters have the same values as in Section

4.1 unless otherwise indicated. We solved for the rational inattention equilibrium in Section 4.1.

Here we suppose that a measure zero of firms are subject to rational inattention and other firms

(and all households) have perfect information. We study the attention problem of the rationally

inattentive firms.

In the first experiment, we vary h in the law of motion for productivity, at = ρat−1 + σεt−h,

between h = 0 and h = 6. Appendix Table 1 reports how the optimal signal changes. With h = 0

the optimal signal is on the current optimal action l∗it, Sit = l∗it + ψit, where ψit follows a Gaussian

white noise process with standard deviation σψ = 0.0191. With h ≥ 1 the optimal signal has non-

zero weights on εt, ..., εt−(h−1) because all elements of the state vector ξt =
(
l∗it, εt, ..., εt−(h−1)

)′
help
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predict future optimal actions. For example, with h = 2 the optimal weight on εt is 0.0045 and the

optimal weight on εt−1 is 0.0059 (with the weight on l∗it normalized to one). The largest weight is

always on εt−(h−1), the innovation useful for predicting the optimal action in period t+ 1, t+ 2, ....

The weights decline monotonically from εt−(h−1) to εt, the innovation useful for predicting the

optimal action in period t + h, t + h + 1, .... For a given marginal cost λ, the chosen amount of

attention falls with h (because the marginal benefit of attention falls with h). Appendix Table 1

also reports the impulse response of labor input on impact as a fraction of the maximum response

under perfect information. The impulse response on impact decreases with h, approaching zero as

h rises. The more distant is the change in productivity, the weaker is the response of the action on

impact of a news shock.

In the second experiment, we set h = 1 (at = ρat−1 + σεt−1) and we vary ρ, adjusting σ to

keep constant the unconditional variance of the optimal action l∗it (as ρ rises the optimal action

becomes more persistent while its unconditional variance remains unchanged). The state vector is

ξt = (l∗it, εt)
′. The optimal signal has a non-zero weight on εt, and we find that the weight on εt falls

with ρ. See Appendix Table 2. With a more persistent productivity process, learning about the

innovation εt becomes less important relative to learning about the current state of productivity at.

In addition, (i) the expected profit loss declines with ρ, and (ii) there is a non-monotonic relation

between ρ and the chosen amount of attention (as ρ falls the quality of tracking deteriorates, but

the marginal value of attention may go up or down). See also Proposition 3 in Maćkowiak and

Wiederholt (2009).

In the third experiment, we add another MA term in the law of motion for productivity. As an

example, we suppose that productivity follows the process at+1 = ρat+πεt−1 +σεt−3. Information

about productivity becomes available h = 4 periods in advance and, if π 6= 0, additional information

becomes available in an intermediate period (two periods in advance). Appendix Table 3 shows

what happens to the optimal signal as we vary π (we adjust σ to keep constant the unconditional

variance of the optimal action). The state vector is ξt = (l∗it, εt, εt−1, εt−2, εt−3)
′. As π rises, it is

optimal to increase the weights on εt and εt−1 and to decrease the weights on εt−2 and εt−3 in the

signal. Appendix Table 3 also reports the response of labor input on impact of a news shock as

a fraction of the maximum response under perfect information. This ratio rises with π, indicating

that the action becomes more front-loaded.
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In the fourth experiment, we assume that productivity is driven by two orthogonal shocks, a

standard productivity shock and a news shock: at = ρat−1 + σ1ε1t + σ2ε2,t−h, where ε1t and ε2t

follow independent Gaussian white noise process with unit variance, σ1 > 0, σ2 > 0, and h ≥ 1.

The profit-maximizing labor input l∗it is still proportional to at (equation (20) in the paper). Focus

on h = 1. The optimal signal is a one-dimensional signal about the vector (l∗it, ε2t)
′, or equivalently

(at, ε2t)
′.1 The only difference to the case when productivity follows the process at = ρat−1 +σεt−1

is that the signal is on (at, ε2t)
′ instead of (at, εt)

′. To begin, let us split the variance of productivity

equally between the component driven by the first shock (ε1t) and the component driven by the

second shock (ε2t), and solve the attention problem. We find that labor input lit rises on impact

of a positive news shock. The impulse response of lit to ε2t (Appendix Figure 1, middle-left panel)

is very similar to the impulse response of lit to εt in the case with at = ρat−1 + σεt−1 (Appendix

Figure 1, middle-right panel, reproduced from the lower-left panel of Figure 1 in the paper). The

response of lit on impact of a news shock equals 0.16 as a fraction of the maximum response under

perfect information; the same ratio equals 0.15 in the case when productivity follows the process

at = ρat−1 + σεt−1.

We can also split the variance of productivity unequally between the two shocks. The key

qualitative finding is unchanged: lit rises on impact of a positive news shock. The quantitative

findings (the impulse response of lit to ε2t, and the impact ratio) change little, whether we split

the variance 90-10 in favor of the news shock or 10-90 against the news shock. The impact ratio

falls slightly when the relative variance of the news shock rises – the impact ratio is 0.15 in the

90-10 case and 0.17 in the 10-90 case. Since we assume a ρ close to 1, the incentive to learn about

at dominates the incentive to learn about the news shock and therefore the optimal signal changes

little with the relative variance of the two shocks.

So far we assumed that, after choosing the signal process in period −1, the agent receives a

sequence of signals in period −1 such that the conditional second moments are independent of time.

See the discussion of problem (10)-(16) in Section 3.2 in the paper. In the fifth experiment, we

resolve problem (10)-(16) having dropped this assumption. We use the methodology of Afrouzi and

1For any h ≥ 1 we can write l∗it = l∗i1t+l
∗
i2t, where l∗i1t follows an AR(1) process driven by the standard productivity

shock and l∗i2t follows an ARMA(1,h) process driven by the news shock. The optimal signal is a one-dimensional

signal about the state vector with equal weights on l∗i1t and l∗i2t. See also Maćkowiak, Matějka, and Wiederholt

(2018), Section 4.4.
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Yang (2021) to compute the steady-state conditional variance of ξt given Iit−1, the steady-state

conditional variance of ξt given Iit, and the implied action. This approach allows for transitional

dynamics in the conditional second moments. As before in this appendix, we study the version

of the model from Section 4.1 (we also continue to suppose that only a measure zero of firms are

subject to rational inattention). We compare: (i) the impulse response of labor input to a news

shock with the assumption about the initial sequence of signals made earlier, and (ii) the analogous

impulse response without this assumption. The two impulse responses are identical in the limit

as the discount factor β approaches 1. The question is by how much the two impulse responses

differ in this model for the value of the discount factor we have assumed, β = 0.99. The lower

panel in Appendix Figure 1 shows the comparison (h = 1 on the left and h = 4 on the right; in

each case, the line with circles is the baseline and the line with asterisks is the solution allowing

for the transitional dynamics). The two impulse responses are almost identical ; the agent who

solves the attention problem allowing for the transitional dynamics chooses to process slightly less

information in the steady state. Thus, the two solutions differ very little quantitatively and the

qualitative result is unchanged: Labor input rises on impact of a positive news shock.

E Additional numerical results for Section 5

We report additional numerical results for the rational inattention equilibrium from Section 5.

Shimer (2009) emphasizes that the labor wedge is countercyclical in the data. In this model,

the labor wedge equals (yt − lt) − (γct + ηlt), i.e., the gap between the marginal product of labor

and the marginal rate of substitution between consumption and leisure, in the aggregate economy.

Conditional on a positive news shock (h ≥ 1), in the RI equilibrium the labor wedge is negative

so long as productivity remains unchanged – the labor wedge is countercyclical (the reason is that

output and employment rise but consumption rises more strongly). Once productivity increases, the

labor wedge turns positive because output then rises strongly – the labor wedge becomes procyclical.

See Appendix Figure 2 for the equilibrium impulse response of the labor wedge with h = 0, h = 2,

and h = 4. The result that the labor wedge is procyclical once productivity changes may depend on

the assumption of a linear disutility of labor (η = 0) which we make for computational tractability

(to make it easier to find the fixed point of the model).
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In Section 5 we set α = 0.33 and φ = 0.65, implying nearly constant returns to scale in capital

and labor. It is interesting to ask what happens when the sum α + φ is further below 1. We

resolved for the RI equilibrium with h = 2 assuming α = 0.3 and φ = 0.6. A given mistake in

the choice of capital or labor input becomes more costly (both non-zero elements in Θ, equation

(8) in the paper, increase), which raises the firms’ incentive to pay attention. In parallel, both

profit-maximizing inputs become less responsive to productivity (the variance of each element in

x∗t , equation (9) in the paper, decreases), which lowers the firms’ incentive to pay attention. We

find that in equilibrium the second effect dominates, firms reduce their attention, and the impulse

responses of employment and output on impact of a positive news shock are positive, like in Figure

4 in the paper.

It is interesting to compare the RI equilibrium with the PI equilibrium of the version of the

model with adjustment costs. With a quadratic investment adjustment cost, firms want to smooth

investment. In the PI equilibrium with h ≥ 1, investment rises on impact of a positive news

shock but consumption falls. Jaimovich and Rebelo (2009) add two further assumptions (variable

capital utilization, and a new class of preferences) to obtain comovement. In the PI equilibrium with

h = 0, the first-order autocorrelations of employment, investment, and output become positive, but

the first-order autocorrelation of consumption growth becomes negative. With a quadratic labor

adjustment cost, the firms’ optimal labor input becomes a function of expected future productivity.

This is a complimentary mechanism to the one in the RI equilibrium, where the optimal labor

input depends on current productivity but the optimal signal confounds current and expected future

productivity. We find that the PI equilibrium of the model with a quadratic labor adjustment cost is

similar to the RI equilibrium analyzed thus far, for a particular choice of the parameter governing

the size of the adjustment cost.2 With h = 0 the first-order autocorrelations of employment,

investment, and output growth become positive and are approximately in line with the data. With

h ≥ 1 the impulse responses of employment and output to a positive news shock become positive

on impact, while the impulse response of investment is approximately zero. Some differences from

the RI equilibrium stand out, however. The PI model with a labor adjustment cost cannot match

2With a quadratic labor adjustment cost, the period t profit of firm i is given by equation (2) in the paper minus

a parameter times (Lit/Lit−1 − 1)2WtLit. With a quadratic investment adjustment cost, on the right-hand side of

the law of motion for capital (equation (1) in the paper) we subtract a parameter times (Iit/Kit−1 − δ)2Kit−1.
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a positive coefficient in the Coibion-Gorodnichenko regression (the model predicts a coefficient of

zero). Furthermore, the rational inattention model makes a specific prediction about the outcome

of the comparative static experiment in Section 5.3 of the paper.

F Expected loss in utility from suboptimal actions

This appendix contains the derivation of objective (21) in the paper. Throughout this appendix,

we assume that the household chooses asset holdings, qjt, and hours worked, ljt, in every period t.

First, using the flow budget constraint to substitute for consumption in the utility function and

expressing all variables in terms of log-deviations from the non-stochastic steady state yields the

following expression for the period utility of household j in period t:

f (qjt, ljt, qjt−1, dt, vt, wt) =
C1−γ

1− γ

[
ωW e

wt+ljt + ωDe
dt+qjt−1 − ωV evt (eqjt − eqjt−1)

]1−γ
− 1

1− γ

−L
1+η

1 + η
e(1+η)ljt . (10)

The period utility of household j in period t depends on three sets of variables: variables that the

household chooses in period t (qjt and ljt), a variable that the household chose in period t − 1

(qjt−1), and variables that the household takes as given (dt, vt and wt).

Next, the following two propositions show that, after the second-order Taylor approximation of

f at the non-stochastic steady state, the loss in the expected discounted sum of period utility due

to suboptimal actions is given by expression (21) in the paper.

Proposition 3 Let Ej,−1 denote the expectation operator conditioned on information of household

j in period −1. Let g denote the functional that is obtained by multiplying the period utility function

(10) by βt and summing over all t from zero to infinity. Let g̃ denote the second-order Taylor

approximation of g at the non-stochastic steady state. Let χt, zt and %t denote the following vectors

χt =

 qjt

ljt

 zt =


dt

vt

wt

 %t =


χt

zt

1

 .

Let %m,t and %n,t denote the mth element and the nth element of the vector %t.

12



Suppose that household j knows in period −1 its initial share in the mutual fund, qj,−1. Suppose

also that there exist two constants δ < (1/β) and A ∈ R such that, for each period t ≥ 0, for all

m,n ∈ {1, 2, 3, 4, 5, 6}, and for τ = 0, 1,

Ej,−1 |%m,t%n,t+τ | < δtA. (11)

Then, after the second-order Taylor approximation of f at the non-stochastic steady state, the

loss in expected utility when the law of motion for the actions differs from the law of motion for

the optimal actions under perfect information is given by

Ej,−1 [g̃ (qj,−1, χ0, z0, χ1, z1, . . .)]− Ej,−1 [g̃ (qj,−1, χ
∗
0, z0, χ

∗
1, z1, . . .)]

=
∞∑
t=0

βtEj,−1

[
1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]
, (12)

where the matrices Θ0 and Θ1 are given by

Θ0 = −C1−γ

 γω2
V

(
1
β + 1

)
−γωV ωW

−γωV ωW ωW (ωWγ + η)

 Θ1 = C1−γ

 γω2
V −γωV ωW

0 0

 , (13)

and the sequence of optimal actions under perfect information, denoted {χ∗t }
∞
t=0, is given by: the

saving function

ωV q
∗
jt = ωV q

∗
jt−1 + ζt − (1− β)

∞∑
s=t

βs−tEt [ζs] +

(
1 + ωW

γ

η

)
1

γ
β

∞∑
s=t

βs−tEt [rs+1] , (14)

the optimality condition for labor supply

γ

[
ωV

(
1

β
q∗jt−1 − q∗jt

)
+ ωW

(
wt + l∗jt

)
+ ωDdt

]
+ ηl∗jt = wt, (15)

and the initial condition for the household’s share in the mutual fund

q∗j,−1 = qj,−1. (16)

Here Et denotes the expectation operator conditioned on the entire history up to and including

period t, ζs ≡ ωW

(
1 + 1

η

)
ws + ωDds and rs+1 ≡ βvs+1 − vs + (1− β) ds+1, and ωV , ωW and ωD

denote the steady-state ratios V/C, WL/C and D/C, respectively.

Proof: First, the period utility of household j in period t depends on three sets of variables:

variables that the household chooses in period t (qjt and ljt), a variable that the household chose
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in period t − 1 (qjt−1), and variables that the household takes as given (dt, vt and wt). The first

set of variables is collected in the vector χt, the second set of variables is an element of χt−1 for all

t ≥ 0 once one defines the vector χ−1 = (qj,−1, 0)′, and the third set of variables is collected in the

vector zt. Hence, the period utility of household j in period t depends only on the vectors χt, χt−1

and zt.

The next six steps are word for word identical to the steps “Second” to “Seventh” in proof of

Proposition 2 in online Appendix D of Maćkowiak and Wiederholt (2015). Conditions (40)-(41) in

online Appendix D of Maćkowiak and Wiederholt (2015) are satisfied because of the assumption

in Proposition 3 that household j knows in period −1 its initial share in the mutual fund, qj,−1.

Condition (42) in online Appendix D of Maćkowiak and Wiederholt (2015) is equal to condition

(11) in Proposition 3. These steps “Second” to “Seventh” yield equation (12), where Θ0 is defined

as the Hessian matrix of second derivatives of g with respect to χt evaluated at the non-stochastic

steady state and divided by βt, Θ1 is defined as the Hessian matrix of second derivatives of g with

respect to χt and χt+1 evaluated at the non-stochastic steady state and divided by βt, and the

process {χ∗t }
∞
t=0 is defined as the sequence of actions that the household would take if it had perfect

information in every period t ≥ 0.

Eighth, the functional g in Proposition 3 is the discounted sum of period utility

g (χ−1, χ0, z0, χ1, z1, . . .) =
∞∑
t=0

βtf (χt, χt−1, zt) ,

where the function f is the period utility function

f (χt, χt−1, zt) =
C1−γ

1− γ

[
ωW e

wt+ljt + ωDe
dt+qjt−1 − ωV evt (eqjt − eqjt−1)

]1−γ
− 1

1− γ

−L
1+η

1 + η
e(1+η)ljt .

Computing the matrices Θ0 and Θ1 for this functional g yields equation (13).

Ninth, we characterize the optimal actions under perfect information. Formally, the process

{χ∗t }
∞
t=0 is defined by the initial condition χ∗−1 = (qj,−1, 0)′, the optimality condition

∀t ≥ 0 : Et
[
θ0 + Θ−1χ

∗
t−1 + Θ0χ

∗
t + Θ1χ

∗
t+1 + Φ0zt + Φ1zt+1

]
= 0, (17)

and the condition that the vector %t with χt = χ∗t satisfies condition (11). See the step “Fourth”

in proof of Proposition 2 in online Appendix D of Maćkowiak and Wiederholt (2015). Here θ0 is
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defined as the vector of first derivatives of g with respect to χt evaluated at the non-stochastic

steady state and divided by βt, Θ−1 is defined as the matrix of second derivatives of g with respect

to χt and χt−1 evaluated at the non-stochastic steady state and divided by βt, Φ0 is defined as the

matrix of second derivatives of g with respect to χt and zt evaluated at the non-stochastic steady

state and divided by βt, Φ1 is defined as the matrix of second derivatives of g with respect to χt and

zt+1 evaluated at the non-stochastic steady state and divided by βt, and Et denotes the expectation

operator conditioned on the entire history up to and including period t. Computing the vector θ0

and the matrices Θ−1, Φ0, and Φ1 for the functional g defined in the previous step yields

θ0 =

 0

0

 Θ−1 = C1−γ

 γω2
V

1
β 0

−γωV ωW 1
β 0


Φ0 = C1−γ

 γωDωV −ωV γωWωV

−γωDωW 0 −γω2
W + ωW

 Φ1 = C1−γ

 −γωDωV + βωD βωV −γωWωV

0 0 0

 .

Substituting the equations for θ0, Θ−1, Φ0, Φ1, Θ0, Θ1, χt and zt into equation (17) yields

ωV

(
1

β
q∗jt−1 − q∗jt

)
+ ωW

(
wt + l∗jt

)
+ ωDdt

= Et

[
ωV

(
1

β
q∗jt − q∗jt+1

)
+ ωW

(
wt+1 + l∗jt+1

)
+ ωDdt+1

]
− 1

γ
Et [rt+1] (18)

and

γ

[
ωV

(
1

β
q∗jt−1 − q∗jt

)
+ ωW

(
wt + l∗jt

)
+ ωDdt

]
+ ηl∗jt = wt, (19)

where we have used the definition

rt+1 ≡ βvt+1 − vt + (1− β) dt+1. (20)

Equation (18) is the combination of the usual Euler equation and the flow budget constraint.

Equation (19) is the combination of the usual optimality condition for labor supply and the flow

budget constraint. Equation (20) is the return on the mutual fund.

Tenth, we show that equations (18)-(19) and condition (11) imply the saving function (14). For

this purpose, it is useful to write equations (18)-(19) as

c∗jt = Et
[
c∗jt+1

]
− 1

γ
Et [rt+1] (21)

and

γc∗jt + ηl∗jt = wt, (22)
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where the variable c∗jt is defined as

c∗jt ≡ ωV
(

1

β
q∗jt−1 − q∗jt

)
+ ωW

(
wt + l∗jt

)
+ ωDdt. (23)

Using equation (22) to substitute for l∗jt in the definition (23) and rearranging yields the equation(
1 + ωW

γ

η

)
c∗jt = ωV

1

β
q∗jt−1 − ωV q∗jt + ωW

(
1 +

1

η

)
wt + ωDdt, (24)

which implies(
1 + ωW

γ

η

) t+N∑
s=t

βs−tc∗js = ωV
1

β
q∗jt−1 +

t+N∑
s=t

βs−t
[
ωW

(
1 +

1

η

)
ws + ωDds

]
− ωV βNq∗jt+N .

Taking the expectation Et [·] on both sides of the last equation yields(
1 + ωW

γ

η

) t+N∑
s=t

βs−tEt
[
c∗js
]

= ωV
1

β
q∗jt−1+

t+N∑
s=t

βs−tEt

[
ωW

(
1 +

1

η

)
ws + ωDds

]
−Et

[
ωV β

Nq∗jt+N
]
.

Taking the limit as N →∞ and using condition (11), which implies lim
N→∞

βNEt

[
q∗jt+N

]
= 0, yields

(
1 + ωW

γ

η

) ∞∑
s=t

βs−tEt
[
c∗js
]

= ωV
1

β
q∗jt−1 +

∞∑
s=t

βs−tEt

[
ωW

(
1 +

1

η

)
ws + ωDds

]
.

Next, using equation (21) and the law of iterated expectations yields

∞∑
s=t

βs−tEt
[
c∗js
]

=
1

1− β
c∗jt +

1

γ

1

1− β

∞∑
s=t+1

βs−tEt [rs] .

Combining the last two equations and solving for c∗jt yields

c∗jt =
ωV

1 + ωW
γ
η

1− β
β

q∗jt−1 +
1

1 + ωW
γ
η

(1− β)

∞∑
s=t

βs−tEt

[
ωW

(
1 +

1

η

)
ws + ωDds

]

−1

γ

∞∑
s=t+1

βs−tEt [rs] .

Finally, substituting equation (24) into the last equation and rearranging yields

ωV q
∗
jt = ωV q

∗
jt−1 +

[
ωW

(
1 +

1

η

)
wt + ωDdt

]
− (1− β)

∞∑
s=t

βs−tEt

[
ωW

(
1 +

1

η

)
ws + ωDds

]

+

(
1 + ωW

γ

η

)
1

γ

∞∑
s=t+1

βs−tEt [rs] .
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Proposition 4 Under condition (11), we have

∞∑
t=0

βtEj,−1

[
1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]

=
∞∑
t=0

βtEj,−1

[
1

2
(x̃t − x̃∗t )

′ Θ̃ (x̃t − x̃∗t )
]
, (25)

where x̃t, Θ̃ and x̃∗t are defined as

x̃t =

 ωV (qjt − qjt−1)

γ
[
ωV

(
1
β qjt−1 − qjt

)
+ ωW ljt

]
+ ηljt

 , (26)

Θ̃ = −C1−γγ


(

1− 1
1+ η

ωW γ

)
1
β 0

0 1
1+ η

ωW γ

1
γ2

 , (27)

and

x̃∗t =

 ζt − (1− β)
∑∞

s=t β
s−tEt [ζs] +

(
1 + ωW

γ
η

)
1
γβ
∑∞

s=t β
s−tEt [rs+1]

wt − γ (ωWwt + ωDdt)

 . (28)

Proof: First, the period t term on the left-hand side of equation (25) equals

1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)

= C1−γ



−1
2γω

2
V

(
1
β + 1

)(
qjt − q∗jt

)2
+γωV ωW

(
qjt − q∗jt

)(
ljt − l∗jt

)
−1

2ωW (ωWγ + η)
(
ljt − l∗jt

)2
+γω2

V

(
qjt − q∗jt

)(
qjt+1 − q∗jt+1

)
−γωV ωW

(
qjt − q∗jt

)(
ljt+1 − l∗jt+1

)


(29)

= C1−γ



−1
2

(
γ − γ2ωW

γωW+η

) (
x̃1,t+1 − x̃∗1,t+1

)2
−1

2
ωW

γωW+η

(
x̃2,t − x̃∗2,t

)2
+1

2

(
γ − γ2ωW

γωW+η

)
ω2
V

[(
qjt+1 − q∗jt+1

)2
− 1

β

(
qjt − q∗jt

)2]
+1

2

(
γ2ωW
γωW+η

1
β

)
ω2
V

[(
qjt − q∗jt

)2
− 1

β

(
qjt−1 − q∗jt−1

)2]
−
(

γωW
γωW+η

)
ωV

[(
qjt − q∗jt

) (
x̃2,t+1 − x̃∗2,t+1

)
− 1

β

(
qjt−1 − q∗jt−1

) (
x̃2,t − x̃∗2,t

)]


. (30)

Equation (29) follows from the definition of χt, Θ0 and Θ1 in Proposition 3. Equation (30) follows

from the definition of x̃t in Proposition 4. Here x̃1,t and x̃2,t denote the first element and the second
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element of x̃t, respectively. Equation (29) is easy to verify by substituting the definition of χt, Θ0

and Θ1 into the left-hand side of equation (29). Equation (30) is easy to verify by substituting the

definition of x̃t into the right-hand side of equation (30).

Second, multiplying equations (29) and (30) by βt, summing over all t = 0, 1, 2, . . . , T , and

using the fact that equation (16) implies x̃1,0 − x̃∗1,0 = ωV

(
qj0 − q∗j0

)
yields

T∑
t=0

βt
[

1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]

= C1−γ
T∑
t=0

βt
[
−1

2

(
γ − γ2ωW

γωW + η

)
1

β

(
x̃1,t − x̃∗1,t

)2 − 1

2

ωW
γωW + η

(
x̃2,t − x̃∗2,t

)2]

+C1−γβT



−1
2

(
γ − γ2ωW

γωW+η

)(
x̃1,T+1 − x̃∗1,T+1

)2
+1

2

(
γ − γ2ωW

γωW+η

)
ω2
V

(
qjT+1 − q∗jT+1

)2
+1

2

(
γ2ωW
γωW+η

1
β

)
ω2
V

(
qjT − q∗jT

)2
−
(

γωW
γωW+η

)
ωV

(
qjT − q∗jT

)(
x̃2,T+1 − x̃∗2,T+1

)


. (31)

Third, taking the expectation Ej,−1 [·] on both sides of the last equation and taking the limit

as T →∞ yields
∞∑
t=0

βtEj,−1

[
1

2
(χt − χ∗t )

′Θ0 (χt − χ∗t ) + (χt − χ∗t )
′Θ1

(
χt+1 − χ∗t+1

)]

= C1−γ
∞∑
t=0

βtEj,−1

[
−1

2

(
γ − γ2ωW

γωW + η

)
1

β

(
x̃1,t − x̃∗1,t

)2 − 1

2

ωW
γωW + η

(
x̃2,t − x̃∗2,t

)2]

+C1−γ lim
T→∞

βTEj,−1



−1
2

(
γ − γ2ωW

γωW+η

)(
x̃1,T+1 − x̃∗1,T+1

)2
+1

2

(
γ − γ2ωW

γωW+η

)
ω2
V

(
qjT+1 − q∗jT+1

)2
+1

2

(
γ2ωW
γωW+η

1
β

)
ω2
V

(
qjT − q∗jT

)2
−
(

γωW
γωW+η

)
ωV

(
qjT − q∗jT

)(
x̃2,T+1 − x̃∗2,T+1

)


. (32)

Condition (11) implies that the second term on the right-hand side of the last equation equals zero.

Fourth, the definition (26) and equations (14)-(15) imply equation (28).
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h εt εt-1 εt-2 εt-3 εt-4 εt-5 σψ

Attention, 
bits per 
period

Labor input on 
impact as fraction 
of maximum labor 
input with perfect 

information

0 0 0 0 0 0 0 0.0191 0.216 0.26
1 0.0055 0 0 0 0 0 0.0195 0.211 0.15
2 0.0045 0.0059 0 0 0 0 0.0200 0.201 0.09
3 0.0037 0.0051 0.0063 0 0 0 0.0205 0.192 0.06
4 0.0031 0.0044 0.0056 0.0065 0 0 0.0212 0.183 0.04
5 0.0027 0.0039 0.0050 0.0060 0.0067 0 0.0219 0.175 0.03
6 0.0022 0.0034 0.0045 0.0056 0.0064 0.0069 0.0227 0.168 0.02

Productivity follows the law of motion at = ρat-1 + σεt-h.
The only variable input is labor, α = 0, and parameter values are as in Section 4.1.
A measure zero of firms are subject to rational inattention. Other firms and all households have perfect information.
The table reports how the optimal signal and the labor input based on the optimal signal vary with h .

σψ

Attention, 
bits per 
period

0.0303 0.216
0.0271 0.234
0.0244 0.242
0.0219 0.239
0.0195 0.211
0.0181 0.172

Productivity follows the law of motion at = ρat-1 + σεt-h with h  = 1.

The only variable input is labor, α = 0, and parameter values are as in Section 4.1 except as otherwise indicated.
A measure zero of firms are subject to rational inattention. Other firms and all households have perfect information.
The table reports how the optimal signal varies with ρ.
The value of σ  is adjusted so that the unconditional variance of the optimal action is constant across the rows.
The last column gives the per period expected profit loss at the solution as a fraction of steady-state output.

π εt εt-1 εt-2 εt-3 σψ

Attention, 
bits per 
period

0 0.0031 0.0044 0.0056 0.0065 0.0212 0.183
0.002 0.0036 0.0051 0.0052 0.0062 0.0203 0.220
0.004 0.0040 0.0057 0.0046 0.0057 0.0197 0.247
0.006 0.0043 0.0062 0.0038 0.0049 0.0194 0.265
0.008 0.0046 0.0065 0.0027 0.0036 0.0192 0.270

*Productivity follows the law of motion at = ρat-1 + πεt-2 + σεt-4.
The only variable input is labor, α = 0, and parameter values are as in Section 4.1 except as otherwise indicated.
A measure zero of firms are subject to rational inattention. Other firms and all households have perfect information.
The table reports how the optimal signal and the labor input based on the optimal signal vary with π .
The value of σ  is adjusted so that the unconditional variance of the optimal action is constant across the rows.

Appendix Table 1: Varying h  in the law of motion for productivity

Expected profit loss

Appendix Table 2: Varying the persistence of productivity

2.00E-05

Coefficient in the optimal signal on

0.5

ρ Coefficient in the optimal signal on εt

0.0110

0.0055
0.0074
0.0087
0.0099

Coefficient in the optimal signal on

Appendix Table 3: An extra term in the law of motion for productivity*

0.95
0.9
0.8
0.7
0.6

0.0041

Labor input on impact as fraction of 
maximum labor input with perfect information

0.04

0.06

0.08

1.79E-05
1.55E-05
1.29E-05
9.55E-06
7.14E-06

0.05

0.07
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