Online Appendix to “Rational Inattention and the Business Cycle
Effects of Productivity and News Shocks”

Bartosz Mackowiak Mirko Wiederholt
European Central Bank and CEPR LMU Munich, Sciences Po, and CEPR

October 2023

Abstract

This document contains Appendices A-F for the October 2023 version of the paper “Rational

Inattention and the Business Cycle Effects of Productivity and News Shocks.”

A Non-stochastic steady state

The non-stochastic steady state is the solution of the model when total factor productivity e® is
equal to 1 in every period, this is common knowledge, and all variables are constant over time.
Let an upper-case letter without a time subscript denote the value of a variable in the non-
stochastic steady state. Profit maximization implies that aKf‘_lLfNil_a_(b =pB1—-1+6 and
oK ?Lf_lNil_a_d) = W for each firm ¢, which determines K; and L; as functions of W and parameter
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Suppose that N; is constant across 7, N; = N. It follows that K; and L; are constant across 1,
K; = K, L; = L. Moreover, Y;, I, and D; are also constant across i, Y; = Y = K*L?N1-2=¢
IL,=1=0K,D;=D=Y -WL-1.

Utility maximization implies that V' = [3/ (1 — )] D and WC’;V = L;? for each household j.

values (including V;):

Suppose that in the non-stochastic steady state each household holds an equal share of the mutual



fund, @; = 1 for each j. C; and L; are then constant across j, C; = C, L; = L, and the budget
constraint implies that C' = WL 4+ D. Combining this equation with D =Y — WL — I yields the
resource constraint Y = C + I.

One can solve the system of equations:
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for K, L and W for given parameter values (including N'). The last equation comes from combining
the equilibrium condition W(C ™7 = L" with the resource constraint. One can then compute the
other endogenous variables (Y, I, C, D, and V) from the equations Y = K®LYN'==¢ [ = §K,
C=Y-I,D=Y-WL-I1,V=[8/(1-8)]D.

The following steady-state ratios are useful: WL/Y = ¢, I/Y = apd/[1 — (1 —-10)], C/Y =
1-1/Y,D)Y=1-WL/)Y -1/Y,V/C=[8/(1-p8)](D/Y)Y/C) (WL/C and D/C follow).

B Perfect information benchmark

Suppose that all agents have perfect information. Let a lower-case letter denote the log-deviation
of a variable from its value in the non-stochastic steady state. The firms’ first-order conditions
imply that
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From the production function, the law of motion of capital and the profit function, we have

Eiaip1 — (1 —a) ki + ¢l =

yr = ar + aki_1 + Pl
Oty = ky — (1 — (5) ki_1

(D/Y)dy =ye — (WL/Y) (we + 1) — (I/Y) iy



The households’ first-order conditions imply that
YE (ct41 — a1) = BEwip1 — v + (1 = B) Erdeg

wy — yer = nly.

The resource constraint reads

y = (C/Y)er + (1Y) iy.

C Expected loss in profit from suboptimal actions

Proposition 1 Let E; _1 denote the expectation operator conditioned on information of the decision-
maker of firm i in period —1. Let g denote the functional that is obtained by multiplying the profit
function by Bt and summing over all t from zero to infinity. Let § denote the second-order Taylor

approximation of g at the non-stochastic steady state. Let x¢, z and vy denote the following vectors
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Suppose that the decision-maker of firm i knows in period —1 the firm’s initial capital stock, k; _1.
Suppose also that there exist two constants 6 < (1/5) and A € R such that, for each period t > 0,
for 7 =0,1, and for all m,n € {1,2,3,4,5,6},

E; 1 [UmtVn+r| < 6T A. (1)

Here vy, and v, denote the mth and nth element of the vector vi. Then the expected discounted
sum of losses in profit when the law of motion for the actions differs from the law of motion for

the optimal actions under perfect information equals

E; 13 (ki,—1,X05 20, X1, 21, - - -)] — Ei 1 [ (ki,—1, X05 20, X1 21, - - )]

> 1 * * * *
= Y A'Eiq [2 O = x7) €0 (xe = x7) + (e = x3) ©1 (Xe1 = Xiy1) | - (2)
t=0

The matrices ©g and ©1 are given by

0= oy | Pedt=e 0 o—cv |’ 7 (3)

0 #(1—9) 0 0



The optimal actions under perfect information are given by
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where Ey denotes the expectation operator conditioned on the entire history up to and including

period t, and the initial capital stock is given by the initial condition ki _y = ki —1.

Proof: First, we introduce notation. The profit of firm ¢ in period ¢ depends on three sets of
variables: (i) variables that the decision-maker of firm i chooses in period ¢ (here k;; and l;;), (ii)
variables that the decision-maker chose in the past (here k;;—1), and (iii) variables that the decision-
maker takes as given (here a;, w; and ¢;). The first set of variables is collected in the vector y, the
second set of variables is an element of x;—; for all ¢ > 0 once we define the vector x_1 = (k; —1, 0)/,
and the third set of variables is collected in the vector z;.

The next steps are word for word identical to steps “Second” to “Seventh” in proof of Proposition
2 in online Appendix D of Mackowiak and Wiederholt (2015). The reason is that these steps only
require that the payoff in period ¢ depends only on own current actions (collected in y;), own
previous-period actions (collected in x;—1), and variables that the decision-maker takes as given
(collected in z¢) and that the initial condition k; —; and the vector v satisfy conditions (40)-(42)
in online Appendix D of Mackowiak and Wiederholt (2015). The payoff in period ¢ in Proposition
1 is profit, whereas the payoff in period ¢ in online Appendix D of Mackowiak and Wiederholt
(2015) is period utility, but in both cases this payoff depends only on own current actions (), own
previous-period actions (x:—1), and variables that the decision-maker takes as given (z;). Conditions
(40)-(41) in online Appendix D of Mackowiak and Wiederholt (2015) are satisfied because of the
assumption in Proposition 1 that the decision-maker knows the initial condition x_;. Condition (42)
in online Appendix D of Mac¢kowiak and Wiederholt (2015) is equal to condition (1) in Proposition
1. These steps “Second” to “Seventh” yield equation (2), where © is defined as the Hessian matrix
of second derivatives of g with respect to x; evaluated at the non-stochastic steady state and divided
by ¢, ©1 is defined as the Hessian matrix of second derivatives of g with respect to y; and Y1
evaluated at the non-stochastic steady state and divided by %, and x; is defined as the actions

that the decision-maker would take if he or she had perfect information in every period ¢ > 0.



Eighth, the functional g in Proposition 1 is the discounted sum of profit

(o]
g (X—17X07 20, X1, %15 - - ) = Zﬁtf (Xt7 Xt—1, Zt) )
t=0

where the function f is the profit function

I (Xt xt—1,2t) = C Ve 1Y {e&t+akiz—1+¢lit _ ¢€wt+lit + <61 _al " 5) [(1 —9) ekit—1 _ ekn] } )

Computing the matrices ©g and ©; for this functional g yields equation (3).
Ninth, we characterize the optimal actions under perfect information. Formally, the process

{xi}i2, is defined by the initial condition x*; = (k; 1, 0)" and the optimality condition
VE>0: Ey [0+ O_1x;_1 + OoX; + O1xi41 + ozt + Prze41] = 0. (5)

Here 6y is defined as the vector of first derivatives of g with respect to x; evaluated at the non-
stochastic steady state and divided by 3%, ©_; is defined as the matrix of second derivatives of
g with respect to x; and y;_; evaluated at the non-stochastic steady state and divided by A,
®d is defined as the matrix of second derivatives of g with respect to x: and z; evaluated at the
non-stochastic steady state and divided by 3%, ®; is defined as the matrix of second derivatives of
g with respect to x; and 2,1 evaluated at the non-stochastic steady state and divided by 3%, and
E; denotes the expectation operator conditioned on the entire history up to and including period .
See the step “Fourth” in proof of Proposition 2 in online Appendix D of Maé¢kowiak and Wiederholt
(2015). Computing the vector 6y and the matrices ©_;, ®g, and ®; for the functional g defined in

the previous step yields

0 0 0
Oy = ©_,=C7Y
0 ap 0
« 6]
Dy = CY 0 YT 11% B, = CY af 0 V31155
o —0 0 0 0 0

Substituting the equations for 6y, ©_1, &g, ®1, Op, O1, x+ and z; into equation (5) yields

Ei(ci41 —c
Eraper — (1 — o) kjy + ¢Ely 0 = W (6)

at + aky_y — (1= @)l = wy. (7)



Equations (6)-(7) are the usual optimality conditions for capital and labor. Equation (6) states
that the profit-maximizing capital input equates the expected marginal product of capital to the
cost of capital. Equation (7) states that the profit-maximizing labor input equates the marginal
product of labor to the wage. Rearranging equations (6)-(7) yields the closed-form solution (4) for
the actions that the firm would take in period t if the firm had perfect information in every period

t>0.
Proposition 2 Under condition (1), we have

- 1 * * * *
Y BB [2 (xt = x#) ©0 (xe = x7) + (xt = x¢) ©1 (X1 — Xi41)
t=0

PO -Grl.  ®

= —C_7YZBtEi7,1 ) (ki — k’ft)Q +

t=0

where G = liy — &kit_l and =17, — ﬁk;‘t_l.

Proof: First, we have

% (xe — x7) ©0 (xt — x7) + Ot — X7) ©1 (Xe1 — Xi41)
= ooy | Pl g ez QBT e B (ke — k) (s — L) | (9)

2 2
because x; = (kit,lir)'s x; = (k},1%) and the matrices ©p and ©; are given by equation (3).

Second, define

e
Git = lit — ﬂkitqa
and
* * « *
Git = liy — 1—o o it—1-
This definition implies
* * « *
Lt — Uy = Git — G + 1—¢ (kitfl - kit—l) .

Substituting the last equation into equation (9) yields

1
5 (e — Xi) 0 (xe — x7) + (xe — X7) ©1 (Xe1 — Xi41)

— B0 (g — g)? — 2029 (¢ — (3)?
— * * o’ * 2
= C7Y | —ad (G — Cy) (kit—l o kit—l) N 2(17—(@5) (kit_l B kit_l)

042 *
+BO‘¢ (klt - k;kt) (Cit+1 - ;Jrl) + % (kzt - kit)2
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Multiplying by Bt and summing over all ¢ from zero to T yields
SR
> B [2 (xt = xi) €0 (xt = xi) + (xt = xi) ©1 (X1 — Xi41)
t=0

T T
(1 a - ) 88 (ke - k) - S5 3 5 (G- )

_'_BT% (kir — k)? + BadBT (kir — ki) (Gr1 — Ciryr)

= CY

)

where we have used k7 _; = k; 1 and the fact that several terms on the right-hand side cancel.

Taking the expectation EF; _1 and the limit as T" — oo yields

= 1 * * * *
> BB [2 (xt = x2) ©0 (xt = x7) + (xt = x7) ©1 (X1 — Xi41)
t=0
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Under condition (1) the two infinite sums on the right-hand side of the last equation converge to
an element in R and the third and fourth term on the right-hand side of the last equation equal

Zero.

D Additional numerical results for Section 4

We report here additional numerical results that help develop intuition about optimal signals in
an economy with news shocks. We consider the version of the model from Section 4.1 in the paper
with labor as the only variable input, a = 0. All parameters have the same values as in Section
4.1 unless otherwise indicated. We solved for the rational inattention equilibrium in Section 4.1.
Here we suppose that a measure zero of firms are subject to rational inattention and other firms
(and all households) have perfect information. We study the attention problem of the rationally
inattentive firms.

In the first experiment, we vary h in the law of motion for productivity, a; = pas—1 + o¢_p,
between h = 0 and h = 6. Appendix Table 1 reports how the optimal signal changes. With h =0
the optimal signal is on the current optimal action [}, S;; = [}, + i, where 9 follows a Gaussian
white noise process with standard deviation o, = 0.0191. With A > 1 the optimal signal has non-

zero weights on &, ..., €;_(3_1) because all elements of the state vector & = (l;"t, Elyeees at,(h,l))/ help



predict future optimal actions. For example, with h = 2 the optimal weight on &; is 0.0045 and the
optimal weight on ;1 is 0.0059 (with the weight on [}, normalized to one). The largest weight is
always on €;_(;_1), the innovation useful for predicting the optimal action in period t + 1,742, ....
The weights decline monotonically from &;_;_1) to &, the innovation useful for predicting the
optimal action in period ¢t + h,t + h + 1,.... For a given marginal cost A, the chosen amount of
attention falls with h (because the marginal benefit of attention falls with k). Appendix Table 1
also reports the impulse response of labor input on impact as a fraction of the maximum response
under perfect information. The impulse response on impact decreases with h, approaching zero as
h rises. The more distant is the change in productivity, the weaker is the response of the action on
impact of a news shock.

In the second experiment, we set h = 1 (a; = pas—1 + oe,—1) and we vary p, adjusting o to
keep constant the unconditional variance of the optimal action [}, (as p rises the optimal action
becomes more persistent while its unconditional variance remains unchanged). The state vector is
&= (1, &¢)". The optimal signal has a non-zero weight on &, and we find that the weight on &; falls
with p. See Appendix Table 2. With a more persistent productivity process, learning about the
innovation ; becomes less important relative to learning about the current state of productivity a;.
In addition, (i) the expected profit loss declines with p, and (ii) there is a non-monotonic relation
between p and the chosen amount of attention (as p falls the quality of tracking deteriorates, but
the marginal value of attention may go up or down). See also Proposition 3 in Mackowiak and
Wiederholt (2009).

In the third experiment, we add another MA term in the law of motion for productivity. As an
example, we suppose that productivity follows the process ary1 = pa; + wer—1 + oer—3. Information
about productivity becomes available h = 4 periods in advance and, if 7 # 0, additional information
becomes available in an intermediate period (two periods in advance). Appendix Table 3 shows
what happens to the optimal signal as we vary 7 (we adjust o to keep constant the unconditional
variance of the optimal action). The state vector is & = (1%, &, €1-1,6t_2,6¢-3) . As T rises, it is
optimal to increase the weights on €; and €;_1 and to decrease the weights on £;_9 and &;_3 in the
signal. Appendix Table 3 also reports the response of labor input on impact of a news shock as
a fraction of the maximum response under perfect information. This ratio rises with 7, indicating

that the action becomes more front-loaded.



In the fourth experiment, we assume that productivity is driven by two orthogonal shocks, a
standard productivity shock and a news shock: a; = pa;—1 + o1€14 + 026241, Where €1, and €9
follow independent Gaussian white noise process with unit variance, o1 > 0, oo > 0, and h > 1.
The profit-maximizing labor input [}, is still proportional to a; (equation (20) in the paper). Focus
on h = 1. The optimal signal is a one-dimensional signal about the vector (I}, e2¢)’, or equivalently
(at,eat)’ . The only difference to the case when productivity follows the process a; = par—1+ o1
is that the signal is on (at, €2¢)’ instead of (at,e¢)’. To begin, let us split the variance of productivity
equally between the component driven by the first shock (1) and the component driven by the
second shock (e9¢), and solve the attention problem. We find that labor input l;; rises on impact
of a positive news shock. The impulse response of l;; to £9; (Appendix Figure 1, middle-left panel)
is very similar to the impulse response of l;; to €; in the case with a; = pa;—1 + oe;—1 (Appendix
Figure 1, middle-right panel, reproduced from the lower-left panel of Figure 1 in the paper). The
response of I;; on impact of a news shock equals 0.16 as a fraction of the maximum response under
perfect information; the same ratio equals 0.15 in the case when productivity follows the process
at = pag—1 + 0€¢—1.

We can also split the variance of productivity unequally between the two shocks. The key
qualitative finding is unchanged: I; rises on impact of a positive news shock. The quantitative
findings (the impulse response of l;; to 9;, and the impact ratio) change little, whether we split
the variance 90-10 in favor of the news shock or 10-90 against the news shock. The impact ratio
falls slightly when the relative variance of the news shock rises — the impact ratio is 0.15 in the
90-10 case and 0.17 in the 10-90 case. Since we assume a p close to 1, the incentive to learn about
a; dominates the incentive to learn about the news shock and therefore the optimal signal changes
little with the relative variance of the two shocks.

So far we assumed that, after choosing the signal process in period —1, the agent receives a
sequence of signals in period —1 such that the conditional second moments are independent of time.
See the discussion of problem (10)-(16) in Section 3.2 in the paper. In the fifth experiment, we
resolve problem (10)-(16) having dropped this assumption. We use the methodology of Afrouzi and

'For any h > 1 we can write IJ, = [J;, 4172, where 7, follows an AR(1) process driven by the standard productivity
shock and [}, follows an ARMA(1,h) process driven by the news shock. The optimal signal is a one-dimensional
signal about the state vector with equal weights on [j;; and [lj5;. See also Mackowiak, Matéjka, and Wiederholt

(2018), Section 4.4.



Yang (2021) to compute the steady-state conditional variance of & given Z;;_1, the steady-state
conditional variance of & given Z;;, and the implied action. This approach allows for transitional
dynamics in the conditional second moments. As before in this appendix, we study the version
of the model from Section 4.1 (we also continue to suppose that only a measure zero of firms are
subject to rational inattention). We compare: (i) the impulse response of labor input to a news
shock with the assumption about the initial sequence of signals made earlier, and (ii) the analogous
impulse response without this assumption. The two impulse responses are identical in the limit
as the discount factor § approaches 1. The question is by how much the two impulse responses
differ in this model for the value of the discount factor we have assumed, 8 = 0.99. The lower
panel in Appendix Figure 1 shows the comparison (h = 1 on the left and h = 4 on the right; in
each case, the line with circles is the baseline and the line with asterisks is the solution allowing
for the transitional dynamics). The two impulse responses are almost identical; the agent who
solves the attention problem allowing for the transitional dynamics chooses to process slightly less
information in the steady state. Thus, the two solutions differ very little quantitatively and the

qualitative result is unchanged: Labor input rises on impact of a positive news shock.

E Additional numerical results for Section 5

We report additional numerical results for the rational inattention equilibrium from Section 5.
Shimer (2009) emphasizes that the labor wedge is countercyclical in the data. In this model,
the labor wedge equals (y; — l;) — (yer + nly), i.e., the gap between the marginal product of labor
and the marginal rate of substitution between consumption and leisure, in the aggregate economy.
Conditional on a positive news shock (A > 1), in the RI equilibrium the labor wedge is negative
so long as productivity remains unchanged — the labor wedge is countercyclical (the reason is that
output and employment rise but consumption rises more strongly). Once productivity increases, the
labor wedge turns positive because output then rises strongly — the labor wedge becomes procyclical.
See Appendix Figure 2 for the equilibrium impulse response of the labor wedge with h = 0, h = 2,
and h = 4. The result that the labor wedge is procyclical once productivity changes may depend on
the assumption of a linear disutility of labor (n = 0) which we make for computational tractability

(to make it easier to find the fixed point of the model).
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In Section 5 we set o = 0.33 and ¢ = 0.65, implying nearly constant returns to scale in capital
and labor. It is interesting to ask what happens when the sum « + ¢ is further below 1. We
resolved for the RI equilibrium with A = 2 assuming o« = 0.3 and ¢ = 0.6. A given mistake in
the choice of capital or labor input becomes more costly (both non-zero elements in ©, equation
(8) in the paper, increase), which raises the firms’ incentive to pay attention. In parallel, both
profit-maximizing inputs become less responsive to productivity (the variance of each element in
xf, equation (9) in the paper, decreases), which lowers the firms’ incentive to pay attention. We
find that in equilibrium the second effect dominates, firms reduce their attention, and the impulse
responses of employment and output on impact of a positive news shock are positive, like in Figure
4 in the paper.

It is interesting to compare the RI equilibrium with the PI equilibrium of the version of the
model with adjustment costs. With a quadratic investment adjustment cost, firms want to smooth
investment. In the PI equilibrium with A > 1, investment rises on impact of a positive news
shock but consumption falls. Jaimovich and Rebelo (2009) add two further assumptions (variable
capital utilization, and a new class of preferences) to obtain comovement. In the PI equilibrium with
h = 0, the first-order autocorrelations of employment, investment, and output become positive, but
the first-order autocorrelation of consumption growth becomes negative. With a quadratic labor
adjustment cost, the firms’ optimal labor input becomes a function of expected future productivity.
This is a complimentary mechanism to the one in the RI equilibrium, where the optimal labor
input depends on current productivity but the optimal signal confounds current and expected future
productivity. We find that the PI equilibrium of the model with a quadratic labor adjustment cost is
similar to the RI equilibrium analyzed thus far, for a particular choice of the parameter governing
the size of the adjustment cost.? With h = 0 the first-order autocorrelations of employment,
investment, and output growth become positive and are approximately in line with the data. With
h > 1 the impulse responses of employment and output to a positive news shock become positive
on impact, while the impulse response of investment is approximately zero. Some differences from

the RI equilibrium stand out, however. The PI model with a labor adjustment cost cannot match

*With a quadratic labor adjustment cost, the period ¢ profit of firm i is given by equation (2) in the paper minus
a parameter times (L;t/Lit—1 — 1)2 WiLii. With a quadratic investment adjustment cost, on the right-hand side of

the law of motion for capital (equation (1) in the paper) we subtract a parameter times (l;1/Ki—1 — 5)2 Kii_1.
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a positive coefficient in the Coibion-Gorodnichenko regression (the model predicts a coefficient of
zero). Furthermore, the rational inattention model makes a specific prediction about the outcome

of the comparative static experiment in Section 5.3 of the paper.

F Expected loss in utility from suboptimal actions

This appendix contains the derivation of objective (21) in the paper. Throughout this appendix,
we assume that the household chooses asset holdings, ¢;;, and hours worked, ;;, in every period ¢.

First, using the flow budget constraint to substitute for consumption in the utility function and
expressing all variables in terms of log-deviations from the non-stochastic steady state yields the

following expression for the period utility of household j in period t:

clt= . . . v 1=y 1
f (qjta ljt7 q]'tfla dta Vg, ’UJt) = 1_ ~y wwewt+ljt + ('L}Dedt—’—qﬁ_1 - ervt (e%t - eqﬁ_l)] - 1— ~y
1+n
_ 1L+ JAemhT (10)
n

The period utility of household j in period ¢ depends on three sets of variables: variables that the
household chooses in period ¢ (gj; and lj), a variable that the household chose in period t — 1
(gje—1), and variables that the household takes as given (d;, v, and wy).

Next, the following two propositions show that, after the second-order Taylor approximation of
f at the non-stochastic steady state, the loss in the expected discounted sum of period utility due

to suboptimal actions is given by expression (21) in the paper.

Proposition 3 Let F/; 1 denote the expectation operator conditioned on information of household
j in period —1. Let g denote the functional that is obtained by multiplying the period utility function
(10) by Bt and summing over all t from zero to infinity. Let § denote the second-order Taylor

approximation of g at the non-stochastic steady state. Let x+, z¢ and o+ denote the following vectors

dy Xt
qjt

Xt = l Zt = on ot = 2t
it

! Wi 1

Let om and on ¢ denote the mth element and the nth element of the vector o;.
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Suppose that household j knows in period —1 its initial share in the mutual fund, q; —1. Suppose
also that there exist two constants 06 < (1/8) and A € R such that, for each period t > 0, for all
m,n € {1,2,3,4,5,6}, and for 1 =0,1,

Ej _1|omt0nt+r| < 0'A. (1)

Then, after the second-order Taylor approximation of f at the non-stochastic steady state, the
loss in expected utility when the law of motion for the actions differs from the law of motion for

the optimal actions under perfect information is given by

E; 119 (gj,—1, X0, 20, X15 215 - - -)] — Ej—1 G (qj,—15 X0» 20, X1 21, - - )]

- 1 * * * *
= E B'E; [2 (x¢e = x7) ©0 (xt — xi) + (xe — x7) O1 (xe41 — Xig1) | » (12)
t=0

where the matrices ©g and ©1 are given by

W —ywpw
0, =C"" Ty v ) (13)

—ywyww  ww (wwy + 1) 0 0

o ol 'yw‘z, (% + 1) — YWy wWw
0= —

and the sequence of optimal actions under perfect information, denoted {x;};°, is given by: the

saving function

WV = v+ G— (1= B8) Y BB G + <1 i “WD iﬂ > AT Eilren],  (14)
s=t s=1

the optimality condition for labor supply
1 * * * *
v |wv qut_l —qj | Tww (wt + ljt) +wpdi | +nlj = wy, (15)
and the initial condition for the household’s share in the mutual fund
Q;",—l = gj,-1- (16)

Here E; denotes the expectation operator conditioned on the entire history up to and including
period t, (s = ww (1 + %) ws + wpds and rs41 = Pusyr — vs + (1 — B)dst1, and wy, ww and wp

denote the steady-state ratios V/C, WL/C and D/C, respectively.

Proof: First, the period utility of household j in period ¢ depends on three sets of variables:

variables that the household chooses in period t (g;; and [j;), a variable that the household chose
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in period t — 1 (gji—1), and variables that the household takes as given (d;, v; and wy). The first
set of variables is collected in the vector y¢, the second set of variables is an element of y;_1 for all
t > 0 once one defines the vector x_1 = (gj—1, ())'7 and the third set of variables is collected in the
vector z;. Hence, the period utility of household j in period ¢ depends only on the vectors x, xt—1
and z.

The next six steps are word for word identical to the steps “Second” to “Seventh” in proof of
Proposition 2 in online Appendix D of Mac¢kowiak and Wiederholt (2015). Conditions (40)-(41) in
online Appendix D of Mackowiak and Wiederholt (2015) are satisfied because of the assumption
in Proposition 3 that household j knows in period —1 its initial share in the mutual fund, ¢; _1.
Condition (42) in online Appendix D of Mackowiak and Wiederholt (2015) is equal to condition
(11) in Proposition 3. These steps “Second” to “Seventh” yield equation (12), where Oy is defined
as the Hessian matrix of second derivatives of g with respect to x; evaluated at the non-stochastic
steady state and divided by 3¢, ©1 is defined as the Hessian matrix of second derivatives of g with
respect to x; and y;y1 evaluated at the non-stochastic steady state and divided by 3¢, and the
process {x; }1— is defined as the sequence of actions that the household would take if it had perfect
information in every period ¢ > 0.

Eighth, the functional g in Proposition 3 is the discounted sum of period utility

o0
g (X*l?XO,ZOaXI,Zb .. ) = Zﬁtf (Xtathlyzt) )

t=0
where the function f is the period utility function
ct _ _ _ N 1
I (Xtathla Zt) = T wwewt+ljt + wDedt+q1t—l — wye (eq]t _ e‘l]t—l)] _ ﬁ
1+
LT e
1+4+mn

Computing the matrices ©p and 04 for this functional g yields equation (13).
Ninth, we characterize the optimal actions under perfect information. Formally, the process

X: ji—n 18 defined by the initial condition x*; = (¢ —1,0)", the optimality condition
jftooo'dﬁ d by the initial diti * 4, 0), th imali diti
Vt>0: Ey [0+ O-1x;_1 + OoX; + O1x141 + ozt + Prz41] =0, (17)

and the condition that the vector g; with x; = x; satisfies condition (11). See the step “Fourth”

in proof of Proposition 2 in online Appendix D of Mackowiak and Wiederholt (2015). Here 6 is
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defined as the vector of first derivatives of g with respect to x; evaluated at the non-stochastic
steady state and divided by ¢, ©_1 is defined as the matrix of second derivatives of g with respect
to x¢ and y;_1 evaluated at the non-stochastic steady state and divided by B¢, ®¢ is defined as the
matrix of second derivatives of g with respect to x: and z; evaluated at the non-stochastic steady
state and divided by ¢, ®; is defined as the matrix of second derivatives of g with respect to x; and
241 evaluated at the non-stochastic steady state and divided by %, and E; denotes the expectation
operator conditioned on the entire history up to and including period t. Computing the vector 6y

and the matrices ©_1, @y, and @ for the functional g defined in the previous step yields

to = 0 O, =0 VW‘Q/% 0
0 —’ywvwwé 0
By = iy | WPWV e wwey By — 1 | WPV + Bwp  Pwy  —ywwwy
—YWpWW 0 —'ngv + ww 0 0 0

Substituting the equations for 6y, ©_1, ®g, ®1, Op, O1, X+ and z; into equation (17) yields

1, ) \
wy <IBth—1 - th> +ow (w+15,) + wpdy
r 1, ., . 1
= Ei|wy 5%t~ Gitn +ww (Wit + ) +wpdes | — ;Et [r41] (18)
and
[ 1 * * * *
v |wy (ﬁqjt—l - th> + ww (we +13) + wat] +nljy = we, (19)

where we have used the definition

Tep1 = Por — v + (1 — B) dsa. (20)

Equation (18) is the combination of the usual Euler equation and the flow budget constraint.
Equation (19) is the combination of the usual optimality condition for labor supply and the flow
budget constraint. Equation (20) is the return on the mutual fund.

Tenth, we show that equations (18)-(19) and condition (11) imply the saving function (14). For

this purpose, it is useful to write equations (18)-(19) as
x . 1
cje = B[] — ;Et [re+1] (21)

and

v+l = wy, (22)
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where the variable cj»t is defined as

k 1 * * *
Cjp = wy (qut_l - qjt> + ww (wy + ljt) + wpd;. (23)

Using equation (22) to substitute for [}, in the definition (23) and rearranging yields the equation

7Y L, « 1
(1 + wwn) Cjt = WVECIjt—l — Wy (g T ww (1 + 77) wy + wpdy, (24)

which implies

~ t+N 1 t+N 1
(1 i “Wn) 2 A = gt + 3B [WW (1 i 77) e “’Dds} —wr BN g

s=t s=t

Taking the expectation Fy [-] on both sides of the last equation yields

t+N N
i s 1, B 1 .
(1 +ww;;> > B R[] = v g1t > B, [WW <1 i 77) v was] —Ei [wv B ajn]
s=t s=t

Taking the limit as N — oo and using condition (11), which implies A}i_{nOOBN E; [q]’.‘t N N} =0, yields

[e.9] (e 9]
_ « 1, _ 1
<1 + ww;;> ZBS 'Ey [¢},] = WVBth—l + ZBS 'E, [ww <1 + 77) ws + waS] .
s=t

s=t

Next, using equation (21) and the law of iterated expectations yields

= 1 1 &
Y B TE ¢ = ——=ci+——— > BTEr.
s=t 1-8 71_6s:t+1
Combining the last two equations and solving for c;t yields
wy 1-5 1 = o : 1
= g ——(1- ST'E 1+ - d
Cjt ]_—|—ww% ﬁ qjt_1+1—|—ww%( B);B t |WW +17 Wg + wpdg
1 o0
—= > BTE[r].
i

Finally, substituting equation (24) into the last equation and rearranging yields
* * 1 - s—t 1
Wy Qi = WvQ_q + lww [ 1+ ; wy +wpde | — (1 — ,B) Z,@ Ey lww [ 1+ E wWs + wpds

s=t
- <1 + wwD L > BT

s=t+1
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Proposition 4 Under condition (11), we have

o 1 * * *
> B'Ej {2 (xt = xi) Q0 (xt = xi) + (xt = x1)" ©1 (xe1 —
t=0

- SB[ e ),
t=0

where Ty, © and z} are defined as

v (¢t — gjt—1)
v [Wv (%%-1 - th) + lejt} + nlje

1———1 |1 0
(:) = —Cl_’y’}/ < 1+°"‘:’7> /8

0 L%
1+wwv o

Ty =

9

and

IL‘t ==
wy — v (wwwg + wpdy)

Proof: First, the period ¢ term on the left-hand side of equation (25) equals

1 *
(e —x) ©0(xe — X)) + (xt — x7) ©1 (Xe+1 — Xig)

2
i 1,2 (1 )2 i
—swt (5+1) (00— i.)
Hwyww <th - q;ﬁ) <ljt - l;%)
P
1- *
= O —ew (wowy + ) (e 15,)
Wi <th - q;}) <th+1 - q;-‘tH)
| —ywvww <<Ijt - q;-}) (ljtJrl - l;tH) |
[ 1 2 =, Sk 2
2 ('Y - WZJ;%) (Z1641 — xl,tJrl)
1 I~ ~x )2
2 wu})/y‘;v—f—n (%2775 - xQ,t)
1 1 ’Y ww * 2 1 * 2
=C7 +3 7V~ Jon Qt+1 — Qg1 ) — 5\t — it

1 'y ww 1 2 1 * 2
T2 \Fow+n B Gt = %) — 5 \Gt-1~ G

G = (1= B) Y, BB G+ (L ww]) 28X, 8 Eulr]

| - <73;Jﬂn> wv [(qjt - q}%) (5727t+1 ~T341) — 5 (qjt—l - q}“t—1> (%2 — ‘%E,t)} |

(25)

(26)

(27)

(28)

. (30)

Equation (29) follows from the definition of x¢, ©¢ and ©; in Proposition 3. Equation (30) follows

from the definition of Z; in Proposition 4. Here Z1; and Z2; denote the first element and the second
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element of 74, respectively. Equation (29) is easy to verify by substituting the definition of x¢, ©q
and ©; into the left-hand side of equation (29). Equation (30) is easy to verify by substituting the
definition of Z; into the right-hand side of equation (30).

Second, multiplying equations (29) and (30) by 8¢, summing over all ¢ = 0,1,2,...,T, and

using the fact that equation (16) implies ¥1 9 — Z7 § = wy (qjo - q;-‘O) yields

T
1 \
>4 [2 (xe = X7) ©0 (xe = xi) + (xe = x3)' €1 (xes1 xtﬂ)]
t=0
T 1 Y2w 1 2 1 w 2
cl t{—( —W>g:~ —w ) oW (G, — 7 ]
;6 2 \" " qow 1 B( Le = %) 27ww+77( 2~ 23)

2
1 _ Ylew = 4k
27 ’wa—l—??) ($1,T+1 ‘rl,T+1>
1 Yww 2 * 2
+5 (7 — ww+n> Wy, (QjT+1 - qJ'T+1>
2
1( Yww 1Y, 2 (.,
+3 (www+n 5) Wy (qJT qu)
_ YYw o — ¥ - _ ¥
I ('waﬂ?) wv <qu qu) (”’”1 x2vT+1> ]

Third, taking the expectation E;_; [-] on both sides of the last equation and taking the limit

+C1= 8T

as T — oo yields

. 1 * * * *
Z rBtE',fl [2 (xt — Xt)/ O (xt — xt) + (xt — Xt)/ O (Xt+1 - Xt+1):|
t=0

o0

_ 1 'yzww 1 . o2 1wy 5 e N2

20172 ‘E. [—( —>m — 7 — (T4 — T4
tzoﬁ 2 Yww +1 5( b l’t) 2’YWW+77( 2t Q’t)

_ 9 -
_1 _ Ylww = 4k
2 ('7 ww+n) (xl,TH xl,T+1)
2
1 _ YPuw 2 , o
+3 ('V 'yww+77> wy (qJT+1 qu+1>
2
1( YPww 1Y, 2 ( &
T3 (VWW—W B) wy <‘1JT qu)

_ YW R 5 Ak
(Ww+n) wv (qJT qu) (xz’T“ xlT“) |

1= i TE.
O 5 B

Condition (11) implies that the second term on the right-hand side of the last equation equals zero.
Fourth, the definition (26) and equations (14)-(15) imply equation (28).
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Appendix Table 1: Varying h in the law of motion for productivity

Coefficient in the optimal signal on

Labor input on
Attention, impact as fraction

h & €1 €10 €3 €4 Ei5 o bits per  of maximum labor

period input with perfect
information

0 0 0 0 0 0 0 0.0191 0.216 0.26

1 0.0055 0 0 0 0 0 0.0195 0.211 0.15

2 0.0045 0.0059 0 0 0 0 0.0200 0.201 0.09

3 0.0037 0.0051 0.0063 0 0 0 0.0205 0.192 0.06

4 0.0031 0.0044 0.0056 0.0065 0 0 0.0212 0.183 0.04

5 0.0027 0.0039 0.0050 0.0060 0.0067 0 0.0219 0.175 0.03

6 0.0022 0.0034 0.0045 0.0056 0.0064 0.0069 0.0227 0.168 0.02

Productivity follows the law of motion a; = pa;.4 + O€4.

The only variable input is labor, a = 0, and parameter values are as in Section 4.1.

A measure zero of firms are subject to rational inattention. Other firms and all households have perfect information.
The table reports how the optimal signal and the labor input based on the optimal signal vary with h.

Appendix Table 2: Varying the persistence of productivity

Attention,
o) Coefficient in the optimal signal on ¢, Oy bits per Expected profit loss
period
0.5 0.0110 0.0303 0.216 2.00E-05
0.6 0.0099 0.0271 0.234 1.79E-05
0.7 0.0087 0.0244 0.242 1.55E-05
0.8 0.0074 0.0219 0.239 1.29E-05
0.9 0.0055 0.0195 0.211 9.55E-06
0.95 0.0041 0.0181 0.172 7.14E-06

Productivity follows the law of motion a; = pa; + o€, with h =1,

The only variable input is labor, a = 0, and parameter values are as in Section 4.1 except as otherwise indicated.

A measure zero of firms are subject to rational inattention. Other firms and all households have perfect information.
The table reports how the optimal signal varies with p.

The value of ¢ is adjusted so that the unconditional variance of the optimal action is constant across the rows.

The last column gives the per period expected profit loss at the solution as a fraction of steady-state output.

Appendix Table 3: An extra term in the law of motion for productivity*

Coefficient in the optimal signal on

Att.ent|on, Labor input on impact as fraction of
m & E Et2 &3 % bits per - imum labor input with perfect information
period

0 0.0031 0.0044 0.0056 0.0065 0.0212 0.183 0.04
0.002 0.0036 0.0051 0.0052 0.0062 0.0203 0.220 0.05
0.004 0.0040 0.0057 0.0046 0.0057 0.0197 0.247 0.06
0.006 0.0043 0.0062 0.0038 0.0049 0.0194 0.265 0.07
0.008 0.0046 0.0065 0.0027 0.0036 0.0192 0.270 0.08

*Productivity follows the law of motion a, = pa;4 + e, + Ogy.

The only variable input is labor, a = 0, and parameter values are as in Section 4.1 except as otherwise indicated.

A measure zero of firms are subject to rational inattention. Other firms and all households have perfect information.
The table reports how the optimal signal and the labor input based on the optimal signal vary with .

The value of o is adjusted so that the unconditional variance of the optimal action is constant across the rows.



0.15

0.1

0.05

0.4

0.2

0.6

0.4

0.2

Signal to a news shock (h = 2)

Appendix Figure 1: Additional impulse responses for Section 5 and Appendix D

—&&— Rational inattention equilibrium

8 12

Labor to a news shock (h =1)

PI equilibrium, model with two shocks
—&— Rational inattention, model with two shocks

5 10

Labor to a news shock (h =1)

Pl equilibrium
—&— Rl baseline
—#—— Rl with transitional dynamics

5 10

0.6

0.4

0.2

Labor to a news shock (h = 2)

—S— Rl equilibrium, lower volatility

——— Rl equilibrium, higher volatility

8 12

Labor to a news shock (h =1)

Pl equilibrium, baseline model

—&&— Rational inattention, baseline model

5 10

Labor to a news shock (h =4)

Pl equilibrium
—&S— Rl baseline
—#—— RI with transitional dynamics

5 10




0.3

0.2

0.1

0.3

0.15

0.4

0.2

Appendix Figure 2: Impulse responses for Appendix E

Labor wedge to a productivity shock
| |

Perfect information equilibrium

Labor wedge to a news shock (h =4)

—&— Rational inattention equilibrium | |
e —u e oo —9 ]
4 8 12
Labor wedge to a news shock (h = 2)
I I I
Perfect information equilibrium |
—&&— Rational inattention equilibrium
o = = o i~ = <) ]
| | |
4 8 12

— Perfect information equilibrium
—&— Rational inattention equilibrium

i

12



	Appendix Tables for RBC.pdf
	Appendix Tables


