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A1 Proofs

First, we formally establish our earlier contention that k̂ is independent of level-0
beliefs and of the value of the constant γ.

Lemma A.1. Fix β and weight system ω. Let k̂(β, ω, a, γ) be the optimal sophis-
tication level given the constant term γ and level-0 beliefs a. Then k̂(β, ω, a, γ) =
k̂(β, ω, 1, 0).

Proof. Write Tγ(a, ω, β) as the realized value of y given the datum (β, ω, a, γ).
From equation (2) we have

Tγ(a, ω, β)−
γ

1− β
= γ +

βγ

1− β

∑
k≥0

ωk −
βγ

1− β

∑
k≥0

βkωk + βa
∑
k≥0

βkωk −
γ

1− β

=
γ

1− β
−
(

γ

1− β

)
β
∑
k≥0

βkωk + βa
∑
k≥0

βkωk −
γ

1− β

= T0

(
a− γ

1− β
, ω, β

)
.

(A1)

Next, let ϕ(β, k, a, γ) be the forecast of a k-level agent. Then

ϕ(β, k, a, γ) = γ

(
1− βk

1− β

)
+ βka.

Also, let ϕε(β, k, a, γ) = |ϕ(β, k, a, γ)− Tγ(a, ω, β)| be the associated forecast
error.

Now observe that

argmin
k∈N

ϕε(β, k, a, 0) = argmin
k∈N

∣∣∣∣∣aβk − aβ
∑
n≥0

βnωn

∣∣∣∣∣ = argmin
k∈N

|a|

∣∣∣∣∣βk − β
∑
n≥0

βnωn

∣∣∣∣∣
= argmin

k∈N

∣∣∣∣∣βk − β
∑
n>0

βnωn

∣∣∣∣∣ = argmin
k∈N

ϕε(β, k, 1, 0).

(A2)
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Unified Model

Also, by (A1) we have that

ϕε(β, k, a, γ) = ϕε(β, k, a− ȳ, 0),

where ȳ = γ(1− β)−1, so that

argmin
k∈N

ϕε(β, k, a, γ) = argmin
k∈N

ϕε(β, k, a− ȳ, 0). (A3)

Putting (A2) and (A3) together yields

argmin
k∈N

ϕε(β, k, a, γ) = argmin
k∈N

ϕε(β, k, 1, 0),

which completes the proof.

Stability of unified dynamics. The strategy is to show that adaptive dy-
namics lead to convergence for any sequence of weights. Some notation is needed.
Given a system of weights ω = {ωi}i≥0, let

Tγ(a, ω, β) = γ

(
1 +

β

1− β

∑
k≥0

(1− βk)ωk

)
+ β

∑
k≥0

βkωka (A4)

Now fix any sequence of weight systems {ωt}t≥0 =
{
{ωit}i≥0

}
t≥0

, and define the

following recursion:

at = at−1 + ϕ (Tγ (at−1, ωt−1, β)− at−1) . (A5)

We have the following result.

Lemma A.2. Let ϕ ∈ (0, 1].
1. If |β| < 1 then at → 0.

2. If β > 1 then |at| → ∞.

Proof. First, observe that (A1) and (A5) imply

at −
γ

1− β
= at−1 −

γ

1− β
+ ϕ

(
Tγ (at−1, ωt−1, β)−

γ

1− β
−
(
at−1 −

γ

1− β

))
= at−1 −

γ

1− β
+ ϕ

(
T0

(
at−1 −

γ

1− β
, ωt−1, β

)
−
(
at−1 −

γ

1− β

))
,

which shows that it suffices to prove the results for γ = 0. We drop the subscript
on T .

Now assume |β| < 1, and observe that for any ω,∣∣∣∣∣β∑
k≥0

βkωk

∣∣∣∣∣ ≤ |β|
∑
k≥0

|βk|ωk ≤ |β|
∑
k≥0

|β|ωk ≤ β2. (A6)

Next, write the recursion (A5) as

at =

(
1− ϕ

(
1− β

∑
k≥0

βkωkt−1

))
at−1 ≡ At−1at−1.
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By equation (A6),

−1 < 1− ϕ(1 + β2) ≤ At−1 ≤ 1− ϕ(1− β2) < 1.

It follows that

|at| =

(
t∏

n=1

At−n

)
|a0| → 0,

establishing item 1.
Now let β > 1. The same reasoning as in (A6), but with the inequalities

reversed, yields

β
∑
k≥0

βkωk ≥ β2.

It follows that
At ≥ 1− ϕ+ ϕβ2 = 1 + ϕ(β2 − 1) > 1,

and the result follows.

Proof of Theorem 1. The result is immediate: since Lemma A.2 holds for any
sequence of weight systems, it holds in particular for whatever system of weights
is produced by the unified dynamics.

Stability of the replicator dynamic. We begin with three lemmas.

Lemma A.3. Suppose γ = 0.

1. If |β| < 1 then k < k̂(y) implies that there exists δ ∈ (0, 1) such that
|y| < (1− δ)|aβk|.

2. If β > 1 then k < k̂(y) implies that there exists δ > 0 such |y| > (1+δ)|aβk|.

Proof. Assume |β| < 1. If |y| < |aβ k̂| we are done, so assume |aβ k̂| ≤ |y|. Let
δ = 1/2(1− |β k̂−k|). We claim 2|y| < |aβ k̂|+ |aβ k̂−1|. Indeed, by the optimality of
k̂,

|y| − |aβ k̂| = |y − aβ k̂| < |y − aβ k̂−1| = |aβ k̂−1| − |y|.

Thus we compute

|y| <
1

2

(
|aβ k̂|+ |aβ k̂−1|

)
≤ 1

2

(
|aβ k̂|+ |aβk|

)
=

1

2

(
|β k̂−k|+ 1

)
|aβk| = (1− δ)|aβk|.

Now assume β > 1. We may also assume, without loss of generality, that a > 0.
Let δ = 1/2(|β k̂−k| − 1). If y > aβ k̂ we are done, so assume aβ k̂ ≥ y. It follows
that

aβ k̂ ≥ y >
a

2

(
β k̂ + βk

)
=

1

2

(
β k̂−k + 1

)
aβk = (1 + δ)aβk,

where the second inequality follows from the definition of k̂.

Lemma A.4. Let γ = 0 and {yt}t≥1 be generated by the replicator, initialized

with weights {ωn0}n∈N and beliefs a. Let k̆ ≥ 1 and suppose there exists N > 0
such that t ≥ N implies k̂(yt) > k̆. Then limt→∞ ωnt = 0 for all n ≤ k̆.
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Proof. Let t ≥ N . First suppose |β| < 1. Since k̂(yt) > k̆, it follows from Lemma

A.3 that (1− δ)|aβ k̆| > |yt|, for some δ ∈ (0, 1). Thus n ≤ k̆ implies

|aβn − yt| ≥ |aβn| − |yt| > |aβn| − (1− δ)|aβ k̆| > 0.

Using this estimate in the replicator yields, and that r′ > 0, we have, for s ≥ 1,

ωnt+s = (1− r (|aβn − yt+s−1|))ωnt+s−1

<
(
1− r

(
|aβn| − (1− δ)|aβ k̆|

))
ωnt+s−1

<
(
1− r

(
|aβn| − (1− δ)|aβ k̆|

))s
ωnt−1.

Because r(0) ≥ 0 it follows that ωnt+s → 0 as s→ ∞.
Now suppose β > 1, and assume, without loss of generality, that a > 0. Since

k̂(yt) > k̆, it follows from Lemma A.3 that aβ k̆(1 + δ) < yt. Thus n ≤ k̆ implies

|aβn − yt| = yt − aβn ≥ (1 + δ)aβ k̆ − aβn > 0.

The argument now proceeds analogously to the case |β| < 1.

Lemma A.5. If xn is an integer sequence and lim inf xn = x < ∞ then there
exists N > 0 such that n ≥ N implies xn ≥ x.

Proof. The result is trivial if x = −∞ so assume otherwise. Let x̂k = infn≥k xn.
Then x̂k is a non-decreasing integer sequence converging to x. Now simply choose
N so that |x̂N − x| < 1.

We are now ready to prove the main result.

Proof of Theorem 2. By Lemma A.1 we may assume γ = 0. To thin
notation, let k̂t = k̂(yt). It is helpful to introduce the relation ≻: for y ∈ R and
m(y), n(y) ∈ N, write m(y) ≻ n(y) when the level-m forecast is superior to the
level-n forecast, i.e.,

m(y) ≻ n(y) ⇐⇒ |y − aβm(y)| < |y − aβn(y)|.

Now set k̃ = lim inf k̂t.
We consider the cases β > 1 and |β| < 1 separately, however, we note that

for each case it suffices to show k̃ = ∞. To see this, first consider the case β > 1,
and note that without loss of generality we may assume a > 0. Let ∆ > 0 and
pick m so that aβm > ∆. Since k̃ = ∞ it follows that k̂t → ∞, so pick t̂ so that
t ≥ t̂ =⇒ k̂t > m. Finally, for n ≥ 1 let Ωl

t (n) =
∑

k<n ωkt, and note that, by

Lemma A.4, k̃ = ∞ implies Ωl
t (n) → 0 as t→ ∞. Thus

lim
t→∞

yt = lim
t→∞

aβ
∑
n∈N

βnωnt ≥ lim
t→∞

(
1− Ωl

t (m)
)
aβm+1 = aβm+1 > ∆.

Now suppose |β| < 1. By Lemma A.4, if k̂t → ∞ then all the weights are
driven to zero. If all the weights are driven to zero then yt → 0: indeed, writing,
ωmax
t = maxi∈N ωit, we have

|yt| =

∣∣∣∣∣aβ∑
n∈N

ωntβ
n

∣∣∣∣∣ ≤ ωmax
t |aβ|

∑
n∈N

|βn| → 0,
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Unified Model

since ωmax
t → 0 as t→ ∞.

Our proof strategy is to assume k̃ < ∞ and derive a contradiction. To this
end, it suffices to find some M > 0 so that t ≥ M implies the existence of
m(yt) > k̃ with m(yt) ≻ k̃, as this contradicts the definition of k̃ as the limit
infimum of the k̂t.

First, the easy case: β > 1; and again assume a > 0. Then yt ≥ (1 −
Ωl
t(k̃))aβ

k̃+1, and, by Lemmas A.4 and A.5, limt→∞Ωl
t(k̃)) = 0. It follows that

eventually, k̃ + 1 ≻ k̃, which is the desired contradiction.
Now, assume |β| < 1, and let N be chosen as in Lemma A.5. The desired

contradiction is developed in three steps.

Step 1. We establish the following claim:

Claim. Given ε > 0 there exists M(ε) > 0 so that t ≥ M(ε) ≥ N implies

|yt| < |aβ|k̃+1(1 + ε).

Proof of claim. We know that for all t ≥ N we have k̂t ≥ k̃. It follows that, for
k̃ ≥ 1,

|yt| ≤ |aβ|
∑
k<k̃

|β|kωkt + |aβ|
∑
k≥k̃

|β|kωkt

< |aβ|Ωl
t

(
k̃
)
+ |a||β|k̃+1

(
1− Ωl

t

(
k̃
))

.

By Lemma A.4 we have that Ωl
t

(
k̃
)
→ 0 as t→ ∞, which establishes the claim.

Step 2. We now prove the result when 0 < β < 1. Choose 2ε < β−1− 1 so that

(1 + ε)βn+1 <
1

2

(
βn+1 + βn

)
.

Let M(ε) = M be chosen as in Step 1, and assume t ≥ M. There are two cases.

Case 1: a > 0. It follows that yt > 0. Then

0 < yt < aβk̃+1(1 + ε) <
1

2

(
aβ k̃+1 + aβ k̃

)
,

which implies that k̃ + 1 ≻ k̃, the desired contradiction.

Case 2: a < 0. In this case yt < 0. Then

0 > yt > aβk̃+1(1 + ε) >
1

2

(
aβ k̃+1 + aβ k̃

)
,

which implies that k̃ + 1 ≻ k̃, the desired contradiction.

Step 3. Finally, we prove the result when −1 < β < 0. Choose ε < (2|β|)−1(1−
|β|)2 and choose M(ε) as in Step 1. Now notice that

1 + ε < (2|β|(n+1))−1
(
|β|n + |β|n+2

)
,

for any n ≥ 1. It follows that

2|β|k̃+1(1 + ε) < |β|k̃+2 + |β|k̃, or
0 < |β|k̃+1(1 + ε)− |β|k̃+2 < |β|k̃ − |β|k̃+1(1 + ε). (A7)

Let t ≥M . There are two cases.
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Unified Model

Case 1: k̂t ̸= k̃ (mod 2). In this case sign(yt) = −sign(aβ k̃), whence k̃ + 1 ≻ k̃.

Case 2: k̂t = k̃ (mod 2). If yt < 0 then aβ k̃ is negative. Next, note that if yt ≥
aβ k̃+2 then k̃ + 2 ≻ k̃, which is a contradiction. Thus

aβ k̃ < −|aβ k̃+1|(1 + ε) < yt < aβk̃+2 < 0,

where the first inequality follows from (A7). Thus

|aβ k̃+2 − yt| <
∣∣∣aβ k̃+2 + |aβ k̃+1|(1 + ε)

∣∣∣
= |aβ k̃+1|(1 + ε)− |aβ k̃+2|

= |a|
(
|β k̃+1|(1 + ε)− |β k̃+2|

)
< |a|

(
|β k̃| − |β k̃+1(1 + ε)|

)
= |aβ k̃| − |aβ k̃+1(1 + ε)|

< |aβ k̃| − |yt| =
∣∣∣aβ k̃ − yt

∣∣∣ ,
which implies k̃ + 2 ≻ k̃.

Now suppose yt > 0, so that aβ k̃ is positive. Thus

aβ k̃ > |aβ k̃+1|(1 + ε) > yt > aβk̃+2 > 0,

where the reasoning is as above. Thus

|yt − aβ k̃+2| <
∣∣∣|aβ k̃+1|(1 + ε)− aβ k̃+2

∣∣∣
= |aβ k̃+1|(1 + ε)− |aβ k̃+2|

= |a|
(
|β k̃+1|(1 + ε)− |β k̃+2|

)
< |a|

(
|β k̃| − |β k̃+1(1 + ε)|

)
= |aβ k̃| − |aβ k̃+1(1 + ε)|

< |aβ k̃| − |yt| =
∣∣∣aβ k̃ − yt

∣∣∣ ,
so that k̃ + 2 ≻ k̃, completing the proof of step 3.

Proof of Theorem 3. Lemma A.2 establishes items 1 and 2, and so we focus
here only on item 3. Also, as demonstrated in the proof of Lemma A.2, we may
assume γ = 0. We recall the notation Ω = ∪̇n∆n and ψβ : Ω → R, given by
ψβ(ω) = β

∑
k β

kωk, and that Ω is endowed with the direct-limit topology.
The dynamic system for at may be written

at = (1− ϕ+ ϕψβ(ω)) at−1 ≡ A(β, ω, ϕ)at−1.

It follows that |A(β, ω, ϕ)| < 1 =⇒ at → 0 and |A(β, ω, ϕ)| > 1 =⇒ |at| → ∞.
We compute

|A(β, ω, ϕ)| < 1 ⇐⇒ −1 < 1− ϕ+ ϕψβ(ω) < 1 ⇐⇒ 1− 2ϕ−1 < ψβ(ω) < 1, and

|A(β, ω, ϕ)| > 1 ⇐⇒ 1− ϕ+ ϕψβ(ω) < −1 or 1− ϕ+ ϕψβ(ω) > 1

⇐⇒ ψβ(ω) < 1− 2ϕ−1 or ψβ(ω) > 1.
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This completes the proof of items 3(a) - 3(c).
To establish item 3(d) we start by showing that ψβ is continuous. Let ψnβ

be the restriction of ψβ to ∆n ⊂ Ω. It suffices to show that ψnβ : ∆n → R is
continuous for each n ∈ N. To see this, let U ⊂ R be open. Then

ψ−1
β (U) = ∪n

(
ψ−1
β (U) ∩∆n

)
= ∪n

((
ψnβ
)−1

(U) ∩∆n
)
= ∪n

((
ψnβ
)−1

(U)
)
.

Assuming ψnβ : ∆n → R is continuous, we have that
(
ψnβ
)−1

(U) is open in ∆n,

whence open in Ω. Thus ψ−1
β (U) is a union of open sets in Ω, which establishes

the continuity of ψβ.
Next we demonstrate surjectivity of ψβ. Let z ∈ R. Since β < −1 we can find

an n ∈ N with n ≥ 1 so that β2n+1 < z < β2n. By continuity there is ε ∈ (0, 1/2)
such that

(1− ε)β2n+1 + εβ2n < z < εβ2n+1 + (1− ε)β2n.

For α ∈ (0, 1) let ω(α) ∈ ∆2n+1 ⊂ Ω be given by

ωk(α) =


α if k = 2n+ 1
1− α if k = 2n
0 else

and note that α → ωα continuously maps (0, 1) into ∆2n+1, whence into Ω. Let
Ψβ : (0, 1) → R be Ψβ(α) = ψβ(ω(α)). It follows that Ψβ is continuous and

Ψβ(ε) = (1− ε)β2n+1 + εβ2n < z < εβ2n+1 + (1− ε)β2n = Ψβ(1− ε)

By the intermediate value theorem there is an α ∈ (ε, 1− ε) so that z = Ψβ(α) =
ψβ(ω(α)), which establishes surjectivity.

Now let
Ωs = ψ−1

β

(
(1− 2ϕ−1, 1)

)
Ωu = ψ−1

β

(
(−∞, 1− 2ϕ−1) ∪ (1,∞)

)
.

Both sets are open by the continuity of ψβ, and from items 3(a) and 3(b) we have
that ω ∈ Ωs implies yt → ȳ and ω ∈ Ωu implies |yt| → ∞. Thus parts (i) and (ii)
of item 3(d) are established.

Finally, let Ω0 = Ω \ (Ωs ∪Ωu). We must show that Ω0 is no-where dense, i.e.
that the interior of the closure of Ω0 is empty. To this end, notice that

Ω0 = ψ−1
β ({−1}) ∪̇ψ−1

β ({1}) ≡ Ω−
0 ∪̇Ω+

0 .

Since ψβ is continuous, it follows that Ω±
0 are closed. Since no-where denseness is

closed under finite unions, it suffices to show that the interiors of Ω±
0 are empty.

Thus let ω ∈ Ω+
0 . Let N ∈ N so that ω ∈ ∆N . Since β < −1 and ψβ(ω) = 1 there

is an even n ∈ N and an odd m ∈ N, with n,m ≤ N and such that ωn, ωm ̸= 0.
For k ∈ N with k ≥ 2, define ωk ∈ ∆N ⊂ Ω as follows:

ωki =


(1− k−1)ωn if i = n
ωm + k−1ωn if i = m
ωi else

Note that ωk is the same weight system as ω except that some of the weight
associated with the positive forecast βn is shifted to the negative forecast βm.
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Because the model itself has negative feedback, this means that the implied value
of y is larger for weight system ωk than it is for weight system ω. More formally,
k ≥ 2 implies that ψβ(ω

k) > 1, which implies that ωk ∈ Ωu. Now notice that, as
a sequence in ∆N , we have ωk → ω. Owing to the construction of the direct-limit
topology, we have that ωk → ω in Ω as well. Thus, given an arbitrary element
ω ∈ Ω+

0 we have constructed a sequence in Ωu converging to it, and since Ωu∩Ω+
0

is empty, we conclude that ω is not in the interior of Ω+
0 . So the interior of Ω+

0 is
empty, and since Ω+

0 is closed, we conclude that Ω+
0 is nowhere dense. The same

argument applies to Ω−
0 , which shows that Ω0 = Ω−

0 ∪̇Ω+
0 is no-where dense.

Full statement and proof of Proposition 1. Recall that k̂ is defined
explicitly as a function of yt. However, both yt and E

k
t−1yt are affine functions of

level-0 beliefs a. In particular, if γ = 0 then

k̂(a) = min argmin
k∈N

|βka− β
∑

k ωka|, (A8)

which further implies that k̂ is independent of a. It is straightforward to show
this result continues to hold with γ ̸= 0, and, in fact, k̂ is independent of the
value of γ. Thus, we may view k̂ = k̂(β, ω). We have the following result.

Proposition 1′ (Optimal forecast levels). Let K ≥ 1 and ωK = {ωn}Kn=0 be a

weight system with weights given as ωn = (K + 1)−1. Let k̂ = k̂
(
β, ωK

)
.

1. Suppose 0 < β < 1.

(a) K → ∞ =⇒ k̂ → ∞ and k̂/K → 0.

(b) β → 1− =⇒ k̂ →

{
K
2
+ 1 if K is even

K+1
2

if K is odd

(c) β → 0+ =⇒ k̂ →
{

1 if K = 1
2 if K ≥ 2

2. Suppose −1 < β < 0.

(a) K → ∞ =⇒ k̂ → ∞ and k̂/K → 0.

(b) β → 0− =⇒ k̂ →
{

1 if K = 1
3 if K ≥ 2

(c) β → −1+ =⇒ k̂ → ∞.

3. Suppose β < −1

(a) K → ∞ =⇒ k̂ → ∞ and k̂/K → 1

(b) β → −1− =⇒ k̂ →
{

1 if K is even
0 if K is odd

(c) β → −∞ =⇒ k̂ → K + 1.

Before proceeding to the proof, some preliminary work is required. By Lemma
A.1 we may assume γ = 0 and a = 1. Recall from Section 4.2 our notation for
uniform weights: for K ∈ N, ωK = {ωn}Kn=0 with ωn = (K +1)−1. It follows that

y = β
∑

kβ
kωk =

β
K+1

∑
kβ

k =
β(1−βK+1)
(K+1)(1−β) ≡ ψ (K, β) .

8



Unified Model

When it does not impede clarity, we make the identifications k̂ = k̂
(
β, ωK

)
and

ψ = ψ (K, β).
It is helpful to define k∗ as the continuous counterpart to k̂. For β > 0 our

definition for k∗ corresponds to the first order condition for minimizing (βk −
ψ(K, β))2 for k ∈ R+. However, care must be taken to accommodate β < 0. We
define k∗ as follows:

k∗ (K, β) =
log
(
ψ (K, β)2

)
log(β2)

. (A9)

Of course if β, and hence ψ, are positive then we can dispense with the squared
terms in the definition.

Now define ⌊·⌋ to be the usual floor function, i.e. for x ∈ R, ⌊x⌋ is the largest
integer less than or equal to x. Define ⌊·⌋odd and ⌊·⌋even and the odd and even
floors, respective, which take the obvious meaning, e.g. ⌊x⌋even is the largest even
integer less than or equal to x. Finally, ⌈·⌉, ⌈·⌉even, and ⌈·⌉even have the analogous
definitions. Define

k∗low =


⌊k∗⌋ if 0 < β < 1

⌊k∗⌋odd if − 1 < β < 0 or if β < −1 and ψ < 1+β
2

⌊k∗⌋even if β < −1 and ψ > 0

and define k∗high analogously using the ceiling functions. The following result links

k∗ and k̂.

Lemma A.6. If k∗ ≥ 0 then k̂ ∈ {k∗low, k∗high}.

Proof. We begin with the following observations on the parity of k̂.1 Recall
that 0 is taken as even.

1. If −1 < β < 0 then k̂ is odd.
2. If β < −1 and ψ < 1+β

2
then k̂ is odd.

3. If β < −1 and ψ > 0 then k̂ is even.
These items may be established as follows. Note that −1 < β < 0 implies ψ < 0,
whence there is an odd n ∈ N so that ψ < βn < 0, making n superior to any even
forecast level. If β < −1 and ψ < 1+β

2
then the level 1 forecast is superior to any

even forecast level. If β < −1 and ψ > 0 then the level 0 forecast is superior to
any odd forecast level.

Next, note that k∗ < 0 if and only if −1 < ψ < 1 and β < −1. Now, for
α ∈ R+ define ϕ(α, β) as follows:

ϕ(α, β) =

{
(β2)

α
2 if ψ > 0

β (β2)
α−1
2 if ψ < 0

This function has the following properties:
(a) If k̂ ≥ 1 and if non-zero k ∈ N has the same parity as k̂ then βk = ϕ(k, β):

in this way ϕ extends our notion of forecast level to all positive reals.
(b) ϕ(k∗, β) = ψ.

1The parity of n ∈ N is its equivalence class mod 2. Thus n and m have the same parity if
they are either both even or both odd.
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To establish item (a), first suppose k̂ is even. Since k̂ ≥ 1 it follows that ψ > 0.
Let k = 2m for m > 0. Then ϕ(k, β) = (β2)m = βk. Next suppose k̂ is odd. Let

k = 2m + 1. If 0 < β < 1 then ψ > 0, so that ϕ(k, β) = (β2)
2m+1

2 = β2m+1. Let
β < 0. If −1 < β < 0 then ψ < 0. If β < −1 then k̂ odd implies ψ < 0. Thus
k = 2m + 1 implies ϕ(k, β) = β(β2)m = β2m+1. To establish item (b), observe
that ψ > 0 implies

log ϕ(k∗, β) = (k∗/2) log β2 = (1/2) logψ2 = logψ

and ψ < 0 implies ϕ(k∗, β) < 0, and

log (−ϕ(k∗, β)) = log
(
β2
) 1

2
(
β2
) k∗−1

2 = log
(
β2
) k∗

2 = (k∗/2) log β2 = log (−ψ) .

We turn now to the body of the proof of Lemma A.6, in which we use the
following notation: k1 ≺ k2 if β

k1 is strictly inferior to βk2 as a forecast of ψ. The
strategy is as follows: show that k < ⌊k∗⌋ =⇒ k ≺ ⌊k∗⌋, and that k > ⌈k∗⌉
implies that k ≺ ⌈k∗⌉, with floor and ceiling functions adjusted for parity as
needed.
Case 1: 0 < β < 1. Since ψ < β in this case, we have that k∗ ≥ 1 and k̂ ≥ 1.
Also α > 0 implies ϕα(α, β) < 0. Thus if k1 < ⌊k∗⌋ and k2 > ⌈k∗⌉ then

ϕ(k1, β) > ϕ(⌊k∗⌋, β) ≥ ϕ(k∗, β)︸ ︷︷ ︸
ψ

≥ ϕ(⌈k∗⌉, β) > ϕ(k2, β).

Thus k1 ≺ ⌊k∗⌋ and k2 ≺ ⌈k∗⌉.
Case 2: −1 < β < 0. Since β < ψ < 0 in this case, we have that k∗ ≥ 1. Also
α > 0 implies ϕα(α, β) > 0. Also ψ < 0 so that k̂ is necessarily odd. Thus if
⌊k∗⌋odd ≥ 1 and if ki are odd with k1 < ⌊k∗⌋odd and k2 > ⌈k∗⌉odd, then

ϕ(k1, β) < ϕ(⌊k∗⌋odd, β) ≤ ϕ(k∗, β)︸ ︷︷ ︸
ψ

≤ ϕ(⌈k∗⌉odd, β) < ϕ(k2, β).

Thus k1 ≺ ⌊k∗⌋odd and k2 ≺ ⌈k∗⌉odd.
Case 3: β < −1 and ψ < 1+β

2
. Then k∗ ≥ 1 and k̂ is odd. Also α > 1 implies

ϕα(α, β) < 0. Thus if ⌊k∗⌋odd > 1 and if ki are odd with k1 < ⌊k∗⌋odd and
k2 > ⌈k∗⌉odd, then

ϕ(k1, β) > ϕ(⌊k∗⌋odd, β) ≥ ϕ(k∗, β)︸ ︷︷ ︸
ψ

≥ ϕ(⌈k∗⌉odd, β) > ϕ(k2, β).

Thus k1 ≺ ⌊k∗⌋odd and k2 ≺ ⌈k∗⌉odd.
Case 4: β < −1 and ψ > 0. Then k∗ ≥ 0 (by assumption) and k̂ is even.
Also α > 0 implies ϕα(α, β) > 0. Thus if ⌊k∗⌋even > 2 and if ki are even with
k1 < ⌊k∗⌋even and k2 > ⌈k∗⌉even, then

ϕ(k1, β) < ϕ(⌊k∗⌋, β) ≤ ϕ(k∗, β)︸ ︷︷ ︸
ψ

≤ ϕ(⌈k∗⌉even, β) < ϕ(k2, β).

Thus ⌊k∗⌋even > 2 implies k1 ≺ ⌊k∗⌋even and k2 ≺ ⌈k∗⌉even. If ⌊k∗⌋even = 2 then

1 ≡ β0 < β2 = ϕ(⌊k∗⌋even, β) ≤ ϕ(k∗, β)︸ ︷︷ ︸
ψ

≤ ϕ(⌈k∗⌉even, β) < ϕ(k2, β).

If ⌊k∗⌋even = 0 < k∗ then

1 ≡ β0 < ϕ(k∗, β)︸ ︷︷ ︸
ψ

≤ ϕ(⌈k∗⌉even, β) < ϕ(k2, β).

10
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Finally, if k∗ = 0 then k̂ = k∗.
We now turn to the proof of Proposition 1. We note that if K = 0 then

k∗ = k̂ = 1 regardless of the value of β, so this case is excluded.

Proof of Proposition 1. The arguments for the limits involving K → ∞ will
rely directly on the behavior of k∗. The arguments involving limits in β require
additional analysis. Define

∆(k1, k2, β) =
(
βk1 − ψ(β)

)2 − (βk2 − ψ(β)
)2
,

and note that k1 ≺ k2 when ∆(k1, k2, β) > 0 and k2 ≺ k1 when ∆(k1, k2, β) < 0,
where the ordering here is as defined in the proof of Lemma A.6. The proof
strategy for limiting values of β has three steps:

1. Compute the relevant limiting value of k∗.
2. Use Lemma A.6 to determine a finite set K̂ of possible limiting values for
k̂.

3. Expand ∆ around the limiting value of β and use the expansion to pairwise
compare the elements of the K̂.

A final comment before proceeding: Many of the arguments below include tedious
symbolic manipulation, and we have relegated much of this work to Mathematica.
Whenever Mathematica is relied upon to reach a conclusion, we state this reliance
explicitly. As an example, the code used for the first result is included below. All
code is available upon request.
Case 1: 0 < β < 1. The following Mathematica code establishes that K → ∞
implies k∗ → ∞ and k∗/K → 0.
psi[K_, beta_] := beta/(K + 1) Sum[beta^(k - 1), {k, 1, K + 1}];

kstar[K_, beta_] := Log[psi[K, beta]^2]/Log[beta^2];

Module[{limK, limKk, assume},

assume = {0 < beta < 1};

limK = Limit[kstar[K, beta], K -> \[Infinity], Assumptions -> And @@ assume];

limKk = Limit[kstar[K, beta]/K, K -> \[Infinity], Assumptions -> And @@ assume];

Print["Limit of kstar as K -> infinity is " <> ToString@limK];

Print["Limit of kstar/K as K -> infinity is " <> ToString@limKk];

];

Lemma A.6 then implies the same limits for k̂, thus proving item 1(a).
Turning to item 1(b), using Mathematica, we find that β → 1− implies k∗ →

K/2 + 1. Suppose K is odd. It follows that β near (and below) 1 implies ⌊k∗⌋ <
k∗ < ⌈k∗⌉, whence

k̂ ∈ {⌊k∗⌋, ⌈k∗⌉} =

{
K + 1

2
,
K + 3

2

}
.

Using Mathematica, we find that near β = 1,

∆

(
K + 1

2
,
K + 3

2
, β

)
=

1

12
(K − 1)(K + 3)(β − 1)3 +O

(
|β − 1|4

)
,

so that when K ≥ 3 and β is near and below 1, we conclude that ∆ < 0, so that
k̂ = 1/2(K + 1). When K = 1 a direct computation shows ∆ = 0, so that both
⌊k∗⌋ and ⌈k∗⌉ yield the same forecast. Our tiebreaker, then, chooses k̂ = 1.

Now suppose K is even. Then for β near and below 1 we know that k∗ is
near K/2 + 1 ∈ N. Unfortunately, we do not know if k∗ approaches its limit
monotonically. Thus we can only conclude that for β near and below 1 we have

k̂ ∈
{
K

2
,
K + 2

2
,
K + 4

2

}
.

11
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Using Mathematica, we find that near β = 1,

∆

(
K

2
,
K + 2

2
, β

)
= (β − 1)2 +O

(
|β − 1|3

)
∆

(
K + 2

2
,
K + 4

2
, β

)
= −(β − 1)2 +O

(
|β − 1|3

)
.

It follows that near and below β = 1 we have K
2
, K+4

2
≺ K+2

2
.

For item 1(c), using Mathematica, we find that β → 0+ implies k∗ → 1, so that
for small positive β, k̂ ∈ {1, 2}. Also, β → 0+ =⇒ ψ → 0, so k̂ ̸= 0. Using
Mathematica, we find that near β = 0,

∆ (1, 2, β) = (2− 4(1 +K)−1)(β − 1)2 +O
(
|β − 1|3

)
, (A10)

so that k̂ = 2 for K ≥ 2. When K = 1 we again find ∆ = 0, so that k̂ = 1.
Case 2: −1 < β < 0. We establish item 2(a) by direct analysis, and noting that
it suffices to study the behavior of k∗. Noting that −1 < ψ < 0, we compute

logψ2 = 2 log(−ψ) = log

(
β

β − 1

)
+ log

(
1− βK+1

)
− log(1 +K) → −∞ (A11)

K−1 logψ2 = K−1 log

(
β

β − 1

)
+K−1 log

(
1− βK+1

)
−K−1 log(1 +K) → 0 (A12)

Since k∗ = logψ2/ log β2 and log β2 < 0 we see that by equation (A11) k∗ → ∞,
and that by equation (A12) k∗/K → 0.

Turning to item 2(b), using Mathematica we find that β → 0− implies k∗ → 1,
and since β ∈ (0, 1), we know that ψ < 0 so that k̂ is odd. It follows that for β
is near and below 0 we have k̂ ∈ {1, 2}. The expansion (A10) then shows that
k̂ = 3 for K ≥ 2. Also as before, K = 1 implies ∆ = 0, so that k̂ = 1. Finally, for
item 2(c), we find using we find that β → −1+ implies k∗ → ∞, and the result
follows.
Case 3: β < −1. We establish item 3(a) by direct analysis. First, observe that
β < −1 implies

|ψ(K, β)| =
(

β

β − 1

)(
(β2)

K+1
2 + (−1)K+1

K + 1

)
By L’Hopital’s rule, the function f(x) = (2α)−1(xα + β) diverges to infinity as
α → ∞ for x > 1 and for any β ∈ R, which shows that |ψ(K, β)| → ∞ asK → ∞.

It follows that logψ2 → ∞, and thus k∗ and k̂ go to infinity as K → ∞. Next
note

k∗

K
=
K−1 log(β − 1)−1β +K−1 log

(
(β2)

K+1
2 + (−1)K+1

)
−K−1 log(K + 1)

log(−β)
.

It follows that

lim
K→∞

k∗

K
= lim

K→∞
(K log(−β))−1 log

(
(β2)

K+1
2 + (−1)K+1

)
. (A13)

Let g(x) = α−1 log(x
α−1
2 + β), for β ∈ R and x > 1. Then

lim
α→∞

g(x) = lim
α→∞

x
α−1
2 log(x)

2
(
x

α−1
2 + β

) = log(x)/2.
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It follows that

K−1 log
(
(β2)

K+1
2 + (−1)K+1

)
→ log(β2)/2 = log(−β),

which, when combined with (A13), yields the result.
Turning now to item 3(b), note that if K is odd then ψ → 0, so that k̂ → 0.

If K is even then ψ → −(K +1)−1 ∈ (0, 1), so that k̂ → 1. Finally, for item 3(c),
using Mathematica, we find that β → −∞ implies k∗ → K + 1. By Lemma A.6
we know

lim
β→−∞

k̂ ∈ {K − 1, K + 1, K + 3}.

Again using Mathematica we find that if K ≥ 2 then

lim
β→−∞

∆(K − 1, K + 1) = lim
β→−∞

∆(K + 1, K + 3)−∞,

so that eventually K + 1, K + 3 ≺ K − 1. If K = 1, then ∆(K − 1, K + 1) = 0
and so by our tie-breaker, k̂ = 0.

A2 Simulated dynamics of the unified model

To illustrate how convergence is achieved under different specifications of the
unified dynamics, we consider a variety of special cases operating under a range
of feedback parameters β. In this section, without loss of generality, we set γ
at zero, so that ȳ = 0 (equivalently, the dynamics for y and a may be viewed
as in deviation form). We take the parametric form of the rate function for the
replicator dynamics to be given by r(x) = 2/π tan−1 (αx), with α > 0. Finally, all
simulations are initialized with a0 = 1 and ωk0 = 1/4 for k = 0, 1, 2, 3.

Figure A1: Simulated dynamics with positive feedback
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β = 0.95, α = 1.0 , and ϕ = 0.1
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Notes: Simulation of replicator dynamics only (top) and unified dynamics (bottom). In the left
panels the solid black curves denote y and in the bottom left panel the dashed red curve identifies
a. In the right panels ωn0 = 1/4 for n = 0, 1, 2, 3, and the time paths for these four weights are
distinguished by plot-style: red dotted, blue dash-dot, dashed magenta and solid black, respectively.

We start with with the stable positive feedback case 0 < β < 1: see Figure
A1, where β = 0.95 and α = 1. Upper row corresponds to replicator dynamics
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(ϕ = 0) and bottom row to unified dynamics (ϕ = 0.1): we omit results associated
with adaptive dynamics as they simply show monotonic convergence of a and y
to ȳ.

Under replicator dynamics, y exhibits monotone convergence to ȳ, as the
weight distribution shifts to higher k-level forecasts. The upper-right panel pro-
vides the dynamics of agents’ weights. The time paths for weights ωn0 = 1/4,
n = 0, 1, 2, 3, are distinguished by plot-style: red dotted, blue dash-dot, dashed
magenta and solid black, respectively. As the replicator adds higher forecast lev-
els, the associated paths are graphically identified in an analogous fashion by
repeating the styles mod four. Under replicator dynamics, lower-level forecasts
gradually fall out of favor and are replaced by higher-level forecasts.

Under unified dynamics, convergence is now much faster, and also faster than
the adaptive dynamics case. The optimal k appears to stall out at k̂ = 5 because,
as the estimate at → 0, higher-level forecasts provide limited to no additional
value.

Figure A2: Simulated dynamics with negative feedback.
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Notes: Simulation of replicator dynamics only (top) and unified dynamics (bottom). ωn0 = 1/4 for
n = 0, 1, 2, 3, and the time paths for these four weights are distinguished by plot-style: red dotted,
blue dash-dot, dashed magenta and solid black, respectively.

We now turn to the negative feedback case, with −1 < β < 0. The results
associated with adaptive dynamics are unexceptional. Figure A2 provides the
results for β = −0.5. Under replicator dynamics, the behavior of y is non-
monotonic: the upper-left panel, shows oscillatory convergence of y induced by
the negative feedback. The behavior of k̂ reflects these oscillations: when y crosses
zero, k̂ rises sharply to drive down (in magnitude) the optimal forecast β k̂.

By Theorem 2, k̂ → ∞. However, unlike the positive feedback case, here
this convergence is not monotone. Figure A2 also gives the results for unified
dynamics. Because adaptive dynamics drives level-0 forecasts to zero there is
faster convergence, with weaker oscillatory behavior, than under the replicator.

Finally, we turn to the case in which β < −1. We remark that, in this case, ȳ
is not stable under eductive learning as shown in Guesnerie (1992): if all agents
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Figure A3: Simulated dynamics with large negative feedback.
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Notes: Simulation of replicator dynamics only (top) and unified dynamics (bottom). ωn0 = 1/4 for
n = 0, 1, 2, 3, and the time paths for these four weights are distinguished by plot-style: red dotted,
blue dash-dot, dashed magenta and solid black, respectively.

are fully rational and have common knowledge of the structure they are unable to
coordinate on the REE. However, as indicated by Corollary 1, when β < −1 the
REE is stable under adaptive dynamics provided the gain is sufficiently small.

In the replicator-only case, the dynamics can be unstable or can exhibit com-
plex behavior. For example, the top panel of Figure A3 provides a simulation with
β = −2.0 and α = 0.05. Note that k̂ oscillates between 0 and 1, which drives ωnt
to zero for n ≥ 2. The evolution of y appears to converge to an 11-cycle, which,
we observe, is not centered at zero.2 The bottom row of Figure A3 exhibits
the corresponding simulation with unified dynamics. The addition of adaptive
dynamics pushes level-0 expectations towards zero, which when combined with
replicator dynamics leads to rapid convergence to the REE.

A3 Summary Statistics and Additional Experimental Re-
sults

Table A1 reports summary statistics for the experiment. In total, 372 individ-
uals participated in 62 experimental markets. All T1 and T2 treatments were
conducted in May and June of 2018 at the UNSW Sydney BizLab. Two sessions
for each treatment were scheduled with the aim of testing at most five markets in
each session. Participant no-shows account for the different number of markets
across the treatments.3 All T3 treatments were conducted in March of 2019 at
the University of Sydney’s Experimental Lab. Eight sessions were held with the
aim of testing at most four markets in each session.4 Again, no-shows account

2We find numerically that there are at least two stable 11-cycles.
3Subjects were recruited using ORSEE (see Greiner, 2015).
4The different session sizes at the University of Sydney reflect lab capacity constraints due

to equipment issues and subject recruitment limitations. Christopher Gibbs left UNSW for
Sydney in July of 2018, causing a the delay between experiments.
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Table A1: Summary statistics

Treatments Markets Participants Treatment Values Payments Time Use (min)

(62) (372) Feedback Annoucements Total Pay Pay Efficiency Tutorial Total

T1 x A1 6 36 -0.9 1 $20.31 81% 9.5 64.9
T1 x A2 7 42 -0.9 1 $18.68 75% 7.4 71.0
T1 x A3 7 42 -0.9 2 $17.76 71% 8.2 75.3
T2 x A1 7 42 -2 1 $14.52 58% 8.8 66.7
T2 x A2 7 42 -2 1 $13.30 53% 8.2 84.9
T2 x A3 8 48 -2 2 $11.17 45% 7.6 80.4
T3 x A2 9 54 0.5 1 $17.62 70% 8.2 57.2
T3 x A3 11 66 0.5 2 $18.18 73% 8.2 61.7

Notes: Pay efficiency is the total possible pay for accurate forecasts divided by the maximum pay of $25 per
session, which does not include show-up payments or top-ups.

for the different number of experimental markets across treatments.
Figure A4 shows the average price observed across all treatments relative to

the REE price. Figure A5 shows the individual price predictions for all indi-
viduals with outliers indicated by X’s. The individual forecasts illustrate both
the diversity and uniformity that can occur depending on the expectational feed-
back in the market. As predicted by the simulations shown in Section 4.3, all the
|β| < 1 cases show convergence to the REE initially and after the announcements,
whereas both convergence and non-convergence is observed when β < −1.

We observed more outliers in individual predictions in this study than were
observed, for example, in Bao and Duffy (2016). However, we also have more
than double the participants. Some outliers are easily explained as “fat finger”
errors where an extra zero is added to a forecast. Others reflect participants with
a penchant for anarchy who consistently typed in nonsensical forecasts. In fact,
we identify two anarchists who repeatedly typed in the highest price permitted
just to see what would happen. One of these anarchists actually provided a nice
natural experiment within our laboratory experiment, which we discuss in detail
in Section A4 below.

When classifying individual forecasts without cutoffs, we chose to not classify
35 out of the 18,367 forecasts from our analysis (5 of which occurred in announce-
ment rounds out of 517 observations in total).5 Nearly half of the total outliers
forecasts were submitted by just 3 (out of the 372) participants in the study.
The outlier predictions on average were for a price of 391, which is nearly 200
larger than any plausible price in any treatment. If these outliers were classified
as level-k, then most are classified as an REE prediction (e.g. in a positive feed-
back treatment when level-k forecasts converge from below the REE price and
the outlier is above the REE price) or a level-0 prediction (e.g. when convergence
starts from above an REE price and level-k deductions are closer to the REE
price), which is clearly not in keeping with what the classification is attempting
to achieve.6

5The odd number of observations is due to two markets that did not complete the experi-
ment. One market in a T2×A1 treatment ended early when a participant withdrew from the
experiment. The other was a T2×A2 treatment that ended a short time after the announce-
ment when a student kicked a power cord knocking out two computers with players in the same
market. The data up to that point was saved, but there was no way to let the students pick up
where they left off.

6Inclusion of these outliers actually makes some of our results stronger. For example, with
respect to the result reported in Table A4, the forecast errors generated by some of these outliers
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Figure A4: Average market price relative to REE
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Figure A5: Individual participant predictions
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Notes: The ‘X’s denote forecasts that are larger than the top axis shown in the graph. The maximum value the program
would allow a participant to predict is 500.
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Table A2 provides an overall breakdown of the data, including the outliers, to
provide a sense of how far away most forecasts are from the model predictions.
The table shows three measures of the root squared difference between a subjects
submitted forecast and the nearest level-k model implied forecast, where the level-
k forecasts are constructed using the standard assumptions given in Section 5.2 in
the main text. The root mean squared error/difference (RMSE) for the classifica-
tions are quite large. This is almost entirely due to outliers and a minority group
of the submitted forecasts. The root median squared error/difference (RMedSE)
shows that the majority of forecasts are with one unit of a level-k forecast overall
and within 4 units in announcement rounds. The final statistic reported in the
table is the 70th percentile of root squared differences. This statistic is chosen
because we found that approximately 70% of participants chose a level-k forecast
in an announcement round when we use a cutoff value of ± 4.5 for pooled data
(see Table 2 in the main text). The column illustrates a treatment-by-treatment
breakdown of that classification.

Table A2: Classification of predictions using counterfactual forecast rules

All observations Announcement periods only

Treatment RMSE RMedSE 70th Pctl RMSE RMedSE 70th Pctl

T1 x A1 14.92 0.31 0.57 73.61 1.00 2.35
T1 x A2 10.53 0.36 0.64 7.78 1.49 4.90
T1 x A3 9.73 0.37 0.78 28.97 1.70 4.35
T2 x A1 9.59 0.30 0.73 7.29 4.00 5.00
T2 x A2 21.78 0.36 1.05 7.34 3.00 5.56
T2 x A3 3.97 0.50 1.32 5.39 3.00 5.00
T3 x A1 22.53 0.50 1.00 12.04 2.00 9.07
T3 x A2 14.72 0.44 1.00 28.07 2.01 5.00

Notes: This table shows how well laboratory participants’ forecasts can be classified using a coun-
terfactual forecast. For each subject we construct Level-0, 1, 2, 3, and REE forecasts based on the
observed market data available to participants at each point in time. We calculate the difference
between this forecast and the observed forecast submitted by the participant. We classify the subject
as Level-0, 1, 2, 3, or REE based on which comparison yields the lowest squared error. The table
reports the root mean (RMSE), median (RMedSE), and 70th percentile of the squared difference
between the submitted forecast and the nearest counterfactual forecast. The 70th percentile is shown
because we were able to classify 70% of forecasts in announcement periods using a ±4.5 cutoff when
the data is pooled.

move the results in favor of the unified model.
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Figure A6: Comparing the unified model to experimental data
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Notes: Survey participants’ forecasts are classified as Level-0, 1, 2, 3, or consistent with the REE forecast by comparing to the model implied forecasts. The time path of observed ωn for n = 0, 1, 2, 3
are distinguished by plot-style: red dotted, blue dash-dot, magenta dash and black solid, respectively. The corresponding median forecasts, Et−1y

k
t , of the participants use the same style format. The

final column shows average market prices observed (solid black) laid over all individual forecasts. We omitted some outliers from the the final column of figures, which are shown in Figure A5 for clarity.
The omitted forecasts are included in the calculations in the first two columns.
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Figure A6 provides the same data breakdown for A2 treatments that we pro-
vided for A3 treatments in Figure 2 in the main text. We find similar results
here. We identify heterogeneous forecasts that display level-k depths of reason-
ing in announcement rounds with median individual and mean market dynamics
closely matching what was predicted in Section 4.3 in the main text.

There are some additional points of interest in Figure A6 worthy of comment.
First, results from our simulations could be interpreted as suggesting that the
relative proportions of level-k agents would converge over time: see, e.g. Figure
A10. This conclusion is in contrast with the first column of Figure A6. However,
the failure to observe convergence in the experiment is, for a variety of reasons,
to be expected. Most salient is that the simulation is non-stochastic, modeling a
continuum of agents, whereas the experiment included explicit stochasticity and
only a small number of agents in each market, and lasted fewer rounds.

Second, in the T3 treatment we observed one market that had a significant
departures in price from the REE after a period of convergence to the REE. You
can see the individual forecasts in the third graph on the right of the last row.
There is a group of individual forecasts that rise for many periods prior to the
announcement in period 20. This market is what causes the spike in the median
level-0 forecast that can be seen in the middle figure on the bottom row of Figure
A6. The cause of this divergence is an anarchist player. This player’s actions
provide a nice case study for the unified model. For the five players who are
attempting to play the game normally, the market has both large unobserved
shocks and announced shocks.

A4 An Anarchist Anecdote

Figure A7 and A8 provide some detail on this anarchist’s market. The first graph
in the top left of Figure A7 shows the market price and the individual forecasts of
the market participants. The anarchist is shown in red. The market converged to
the REE by period 7. The anarchist then decided in period 9 to enters a price of
500, which was the largest price that the program would allow. The next figure
shows the result. The price increased and a significant forecast error was realized
by all other market participants. The anarchist struck again in round 14 and this
time repeatedly enter a price of 500 for four consecutive rounds (ending in round
17). As before, there is a significant forecast error realized by all other players
in the period the anarchists defects. However, the players quickly adapt to this
unexplained rise in the price and the average forecast error falls over the next
four periods. Importantly, we see all players switching to a forecast that lines
up well with an adaptive forecast, consistent with the assumptions of the unified
model. When the anarchist switches strategy in round 18, another large forecast
error is generated, which causes yet another clear change in the strategy choices
among the other participants.

The final figure in the top row of A7 layers onto the individual expectations
the implied level-0, 1, 2, and 3 forecasts using our standard assumptions from
Section 5.2. The bottom row of figures in A7 zooms in on the period of interest
and plots the implied path of a single level-k forecast on each graph for clarity. It
is immediately apparent that each large forecast error generates a shift in behavior
by the non-anarchist players. Each shift in behavior is well-captured by one of
the level-k deductions.
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Figure A7: An Anarchist Anecdote
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Notes: These figures show data from a T3×A2 treatment experimental market, where one player decided to actively sabotage the market. The anarchist’s forecasts are shown in red. The time path of
the implied level-0, 1, 2, and 3 forecasts are distinguished by plot-style: red dotted, blue dash-dot, magenta dash and black solid, respectively. The REE forecast is black dotted. The market price is the
solid thick black line.
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To see this, start by looking at period 10. Recall that there is no information
that the participants have to suggest why the price suddenly moved in period
9. All participants trend follow in period 10 and revise their forecasts up. But
the anarchist reverses course and provides a reasonable forecast in period 10, this
generates another sizable forecast error. For period 11, the other participants
switch strategies again. They appear to revise up their depth of reasoning and
predict that market price will again fall. Both level-1 and level-2 predictions,
which are based on the average price for rounds 9 and 10, explain nearly all the
variation in forecasts chosen in this period. This switch by participants to a
higher level strategy in period 11 generates a low forecast error and the subjects
appear to maintain these strategies in the subsequent periods leading the market
to converge.

When the anarchists strikes again in period 14, the remaining participants
are quick to revise their depth of reasoning down to level-0. Forecast errors fall
when switching to this strategy so they maintain the level-0 strategy. When the
anarchists stop choosing 500 and reverts to choosing a normal strategy, another
large forecast error is realized by the other market participants. This leads to a
change in strategy in the next round. The revised strategies observed in the next
round all sit on, or between, the implied level-1 and level-2 strategies (see bottom
row of plots in Figure A7).

The chaos of this market is distinct from most other markets we observed.
This raises the question of what the participants will do in an announcement
round after the market has been so unpredictable. It appears that they mostly
respond in accordance with the unified model. Five out the six forecasts for the
announcement round sit between the level-1 forecast using our standard definition
and a level-1 forecast where the level-0 assumptions is p = 120, which is the steady
state price prior to the announced change.

Figure A8 zooms in even further on just rounds 20 and 21 and classifies the
individual forecasts types using the method described in Section 5.2 in the main
text. Between the two rounds of play, those subjects whose forecasts were closest
to the actual price, i.e. experienced the smallest errors, stick with the level-
1 forecast. Those subjects who experience larger errors clearly revise up their
depth of reasoning, where a revision to level-2 corresponds to what would have
been the best forecast to play in round 20 given what occurred. This behavior is
consistent with the assumptions that underlie the replicator dynamic’s reflective
process that we assume for the unified model.

A5 Supplementary Results for Section 5

This section provides more detail on the experiment and the results.

A5.1 Experiment description

The experiment used a computer based market programmed in oTree.7. The
market setup follows Bao and Duffy (2016) with additions that accommodate our
novel elements. Laboratory participants were randomly assigned to groups of six
subjects to form markets. Laboratory participants were told that they are acting

7See Chen, Schonger and Wickens (2016) for documentation.
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Figure A8: An Anarchist Anecdote Announcement Round
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Notes: Individual classified price forecasts in a T3×A2 treatment. The classifications are made by comparing
the forecasts to different implied level-k forecasts. The closest implied forecast type determines the classification
(see Section 5.2).

as expert advisers to firms that produce widgets. Participants were led through
a tutorial that describes the market environment including the exact demand
and supply equations that govern the price. Participants were informed that the
price depends on the average expected price of all advisers in the market and that
prices are subject to small white noise shocks.

We checked for comprehension of the market environment with a version of
the following question in the tutorial:

Consider the case where A = 60, B = 2, D = 1 and noise = 0. If we
substitute these numbers into this equation

p =
A

B
− D

B
× average price forecast + noise,

we get that price (p) is

p = 60− 1

2
× average price forecast.

What is the market price (p), if the average expected price is equal to 38?

Participants were not able to continue with the experiment until the question was
answered correctly.8 A worked version of this problem with different numbers
was also provided on the printed instruction sheet. The question was designed to
verify that each participant knew how to use the equations without teaching the
person to solve for the REE. The tutorial and printed instructions are available
in the Appendix A10.

Figure A9 shows the graphic user interface (GUI) that participants interacted
with during the experiment. The market information is shown in the top right

8Four out 372 participants were not able to solve the question on their own and asked for
help from the lab manager. In this case, they were directed to look at the example on the
instructions, which clarified the problem in all cases.
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Figure A9: Screenshot of experimental market GUI

corner of the screen. A time series plot of the price and the participant’s predic-
tions is provided on the bottom right. A table with the past prices, predictions,
forecast errors, and the forecast’s earnings is provided on the left-hand-side of the
screen.

The payoff function for the participant’s predictions is

paymentt = 0.50− 0.03 (pt − Et−1pt)
2

where pt is the actual market price in the round, Et−1pt is their prediction for the
price in round t, and 0.50 and 0.03 are measured in cents. Negative quantities re-
ceive zero cents. The function is presented and explained to participants as part
of the tutorial and is the same across treatments. Forecasts must be within 4
units of the actual price to earn money for a forecast. We chose this specification
to give participants a high incentive to be precise in their predictions when con-
fronted with announcements. Previous studies have employed point systems that
compensate more generously for poor forecasts. For example, in Bao and Duffy
(2016) participants needed to be within 7 units to earn points, which ranged from
zero to 1300.

In addition to performance pay, subjects received a $5 show-up fee. In the T2
treatments, subjects also received an additional $5 of guaranteed compensation
to offset the lower earnings that we expected (and which did occur) in these
treatments due the difficulty in coordinating.9 The difference in guaranteed pay
and the treatment settings were not disclosed to the subjects in advance.

9Ethics requirements placed on the study mandated that participant payments were on
average $15 AUD per hour.
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Announcements for the changes in γ were introduced using a pop-up box. The
pop-up box described the change in parameters and participants were required to
close the box before they could continue. The announcement would also appear,
highlighted in red, across the top of the screen in the announcement period. The
information in the top right corner of the GUI would also reflect the change.
A minimum price of 0 and a maximum price of 500 was enforced as well. The
top bound was not advertised to participants but if chosen a pop-up box would
appear informing them of the bound.

A5.2 Additional Convergence Results for 5.2.1

To quantify the speed of convergence, we make use of the experimental design
where announcements destabilize the market and set off a new period of con-
vergence. This roughly doubles our sample to 111 distinct market periods to
study. We measure convergence using three different metrics. First, because of
the random noise component of price, we define a round to be converged when
the price is within plus or minus three of the steady state price. Based on this
cutoff, we simply count the number of rounds in a given interval in which price
satisfies this criterion. Columns 2 - 4 of Table A3 shows the count data for the
three feedback treatments, where we look at various intervals over the first 19
rounds for all treatments and the comparable intervals for rounds 21 through 38
for treatments with an announcement in period 20. We say that a collection of
consecutive rounds has converged if at least 85% of the rounds satisfy the above
convergence criterion. Bolded values in Columns 2 - 4 of the table indicate fail-
ure to converge. By this metric, none of the feedback treatments (T1, T2, and
T3) show convergence within the first five periods of the experiment or within
five periods after the first announcement. Convergence is achieved though for T1
and T3 treatments over rounds 6 to 10, rounds 26 to 30, and overall for the full
intervals. For the T2 treatments, the 85% threshold is never reached.

The second metric we use to assess convergence is the mean difference in the
market price from steady state over the same intervals used for the first metric.
Columns 5 - 7 of Table A3 show the mean difference and the t-statistics for a
test of the null hypothesis that the mean difference is less-than-or-equal to 3.
Bolded values indicate a one-sided rejection of the null hypothesis with a p-value
smaller than 0.15. By this metric, convergence is achieved in the T1 treatments
within 5 rounds of an announcements and maintained through all other intervals.
Convergence is achieved for the T3 treatments in rounds 6-10, but within five
rounds after the first announcement. A t-test of the difference in this measure for
rounds 2 through 19 versus 21 through 38 confirms that market prices are closer to
steady state after the first announcement (bottom row of Table A3) than at start
of the experiment, which indicates faster convergence after the announcement.
The T2 treatments again show a different pattern. With this metric we only
find marginal convergence for rounds 11 - 19 and 31 - 38 in treatments with an
announcement. But we do find that prices are on average closer to steady state
following the announcement.

The final metric we use to assess convergence is the average earnings by par-
ticipants per round over the same intervals previously studied. The maximum
earnings in a round is $0.50 and forecasts must be within plus or minus four of
the actual price to earn money. Therefore, high average earning indicates that
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Table A3: Convergence of price to REE in experimental markets

Ratio of Market Rounds Converged Mean |pt − p̄| = µ Mean Earning = µ
Rounds (Converged/Total) H0 : µ ≤ 3 Ha : µ > 3 H0 : µ ≥ 0.40 Ha : µ < 0.40

T1 T2 T3 T1 T2 T3 T1 T2 T3
A1 - A3 (β = −0.9) (β = −2) (β = 0.5) (β = −0.9) (β = −2) (β = 0.5) (β = −0.9) (β = −2) (β = 0.5)

[2, 5] 0.76 0.26 0.48 2.22 9.21 5.04 0.24 0.09 0.20
(61/80) (23/88) (38/80) [-1.81] [7.09] [3.55] [-9.17] [-26.26] [-13.77]

[6, 10] 0.97 0.48 0.88 1.41 5.32 2.08 0.34 0.17 0.36
(97/100) (53/110) (88/100) [-18.47] [4.19] [-2.39] [-5.21] [-16.71] [-4.36]

[11, 19] 0.96 0.73 0.94 1.18 2.93 1.99 0.41 0.27 0.42
(173/180) (144/198) (170/180) [-9.41] [-0.26] [-2.03] [1.11] [-10.24] [2.66]

A2 - A3

[21, 25] 0.79 0.35 0.74 1.86 6.16 2.50 0.25 0.12 0.28
(44/56) (21/60) (59/80) [-3.97] [4.72] [-1.16] [-6.76] [-14.77] [-5.89]

[26, 30] 1.00 0.64 0.94 1.48 4.22 1.76 0.37 0.23 0.36
(70/70) (48/75) (94/100) [-24.21] [1.61] [-5.99] [-3.66] [-8.73] [-3.54]

[31, 38] 1.00 0.84 0.89 0.55 2.52 1.29 0.46 0.34 0.42
(126/126) (113/135) (160/180) [-69.52] [-1.08] [-7.46] [19.53] [-4.59] [1.82]

All

[2, 19] 0.92 0.56 0.82 1.48 4.99 2.69 0.35 0.20 0.35
(331/360) (220/396) (296/360) [-10.91] [6.48] [-1.01] [-6.52] [-22.85] [-6.26]

[21, 38] 0.95 0.67 0.87 1.10 3.80 1.70 0.39 0.26 0.37
(240/252) (182/270) (313/360) [-24.71] [2.29] [-8.05] [-1.45] [-12.77] [-3.39]

Difference -0.03 -0.12 -0.05 0.38 1.19 0.99 -0.04 -0.06 -0.02
[-1.67] [-3.12] [-1.76] [2.36] [2.55] [2.87] [-3.41] [-4.13] [-1.76]

Bolded values do not meet our criteria for market convergence.

Notes: The table reports three measures of market convergence. Columns 2-4 report the number of rounds
where we observe the market price is within ±3 of the REE price. Columns 5-7 report the mean difference
between the market price in a round relative to the REE price for the indicated interval of rounds. Columns
8-10 report the mean earning by participants per round over the indicated interval. The maximum earnings in
a round is $0.50.

all market participants are making accurate forecasts. The last three columns of
Table A3 show the mean earnings and the t-statistics for a test of the null hypoth-
esis that average earning are greater-than-or-equal-to $0.40. This is our strictest
measure of convergence. By this measure, we only observe convergence in rounds
11 - 19 and 31 - 38 for T1 and T3 treatments. We never observe convergence for
the T2 treatments.

Figure A10 provides further visualization of the difference in convergence
across feedback treatments. The plots show the proportion of markets that
recorded two consecutive periods within the plus or minus three band for a rolling
window. The T1×A1 and T2×A1 treatments are particularly informative on
convergence here. These treatments were designed to closely replicate the main
treatment of Bao and Duffy (2016). We replicate their main results by finding
relatively quick and maintained market convergence for the T1 treatment and
slow or no convergence for the T2 treatments. The T2 treatment also provided
the greatest heterogeneity for the speed of convergence with some markets never
converging – a phenomena not observed for any market in the T1 and T3 treat-
ments – and some converging quite quickly.10 The heterogeneous outcomes for
the T2 treatments are predicted by the unified model. Small changes in initial
conditions to any number of different parameters of the model can lead to coor-

10One case of non-convergence is particularly noteworthy. One of the T2 x A1 experiments
collapsed completely at period 36. One participant was frustrated with the lack of earnings and
requested to leave the experiment. All participants in this market were paid their show-up fee
and earnings up to period 36 and then dismissed from the experiment.
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Figure A10: Convergence of price to REE in experimental markets
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Notes: The plots show the percentage of markets that have converged by the round indicated for different
treatments. Convergence is defined as being with ± 3 of the steady state price for two consecutive quarters on
a rolling basis.

dination on the REE or to a market that completely destabilizes. Further, the
unified model correctly predicts that all T1 and T3 treatments should robustly
converge.

A5.3 Additional Level-k results for 5.2.2

Figure A11 shows histograms of individual forecasts in round one and in each
announcement round for each feedback treatment. The gray bars show the model
implied level-k forecasts with ±3 band. The T2 round 20/50 predictions provides
the clearest level-k deductions because the large negative feedback (β = −2)
makes each level-k prediction very distinct. While there is not strong evidence
for level-k reasoning in the first period,11 this changes once participants have
played multiple rounds and an announcement occurs. For these announcement
rounds, Figure A11 and Table 2 (main text) show a majority of participants
playing level-k or the high level-k/REE forecasts.

For the robustness exercises regarding the definition of the level-0 forecast see
Section A6

For the results on oscilating deductions see Section A7

11This lack of evidence may reflect difficulty in establishing level-0 forecasts in round one.
Also, some participants do not appear to understand the game’s structure in the first period.
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Figure A11: Laboratory subjects’ forecasts in announcement rounds
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Notes: Histograms of the subject’s forecasts in response to an announced structural change. The shaded regions correspond to our classifications of level-0, 1, 2, 3, and the REE forecasts
reported in Table 2, which is ±3 of the model implied Level-k forecast. The width of each bin for the experimental data is 3. The level-0 shaded bar includes the previous steady state for
prices prior to the announcement in round 20/50 and round 45 cases. We pool A1 (round 50 announcement) and A2 (round 20 announcement) results because both experiments feature a
single and identical announcement.
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A5.4 Additional revision and loss results for 5.2.3

Revisions to the depth of reasoning via the replicator employs three key assump-
tions. First, it assumes that not every agent will update their forecast in every
period. Second, the agents who do should on average experience larger forecast
errors in the most recent period. And finally, a person’s choice of a new strategy
should be based on a counterfactual exercise, where alternative level-k deduc-
tions are evaluated on the most recent outcome, and the best strategy from this
reflective process is selected.

To test the three features of the replicator dynamic, we make use of the an-
nouncements in the A2 and A3 treatments. The announcement rounds provide
a clear intervention from which to identify level-k deductions. They generate
large forecast errors for many participants, and they provide distinct counterfac-
tual level-k predictions, which we can use to identify subsequent revisions to the
depth of reasoning in the experimental data. Specifically, comparing individual
outcomes and predictions in the announcement rounds to the round following the
announcement, we can assess who has revised their depth of reasoning, how the
revision compares to the best level-k forecast one could have chosen in the an-
nouncement period, and whether those who changed strategy experienced larger
forecast errors. To maximize the data and to not exclude those who decided
to switch from a non-classified strategy to a level-k strategy, we do not impose
a cutoff when classifying a person’s forecast as level-0, 1, 2, 3, or the REE for
this analysis. Classifications are made based on whichever level-k strategy the
submitted forecast is closest to in mean squared error.

Table A4 reports the results for the first and second announcements across all
treatments. The first column shows the proportion of individuals who, conditional
on changing strategies, are classified as selecting the best counterfactual strategy
from the previous period, which was often a lower level of reasoning than the one
played in the announcement round as predicted by the unified model. The second
column reports the proportion of participants whom we identify as not changing
their strategy. The remaining columns report the difference in mean absolute
forecast errors experienced by changers and non-changers and the deliberation
time when selecting their new forecast.

We find evidence consistent with our replicator assumption for all three key
aspects. First, we document that a proportion of subjects indeed do not update
their strategy following the announcement period. Second, the subjects we do
classify as changing strategy on average had experienced larger forecast errors
and subsequently spent more time deliberating compared to those who did not
change their strategy. Only in the T3 x A2/A3 treatment do we not find full
congruence to the predicted pattern. In this treatment, changers make larger
forecast errors, but spend less time deliberating. However, the difference in de-
liberation time is not statistically significant. Finally, of the subjects who we
observe changing strategies, a significant proportion are classified as changing to
the strategy that would have been the best level-k strategy from the previous
period. The proportions we document here are significantly larger than what one
would expect to occur by chance in all cases except for the T2×A3 treatment.
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Table A4: Revisions and loss

Proportion of changers Ave. abs. prediction error Ave. deliberation time (sec)
Between rounds 20 & 21 Round 20 Round 21

Treatment Revise opt. No Change Change No change Difference Change No change Difference

T1 x A2/A3 0.40 0.38 17.82 8.44 9.37 56.8 50.5 6.38
[2.35] (32/84) [4.53] [0.72]

T2 x A2/A3 0.35 0.49 23.07 14.59 8.48 64.3 54.6 9.76
[1.41] (44/90) [3.04] [1.11]

T3 x A2/A3 0.55 0.31 29.21 11.66 17.31 34.8 39.8 -4.99
[5.74] (37/119) [5.69] [-0.82]

Between rounds 45 & 46 Round 45 Round 46

T1 x A3 0.68 0.55 24.43 3.13 21.3 42.1 28.6 13.5
[4.02] (23/42) [7.60] [1.57]

T2 x A3 0.24 0.40 18.83 6.95 11.88 31.6 30.7 0.85
[-0.10] (19/48) [4.22] [0.14]

T3 x A3 0.41 0.26 30.15 28.5 1.66 26.0 19.3 6.71
[2.35] (17/66) [0.19] [2.24]

Notes: “Revise opt.” is the proportion of people who, conditioning on changing their strategy in period 21(46),
changed their strategy to the best counterfactual strategy out of level-0, 1, 2, 3, or the REE in their market,
where best is defined as what forecast would have been best in round 20(45). Z-scores for the test of the null
hypothesis that subjects switched to one of the five strategies at random are reported in brackets. The next
column reports the proportion of participants who we classify as not changing their strategy either between
rounds 20 and 21 or between rounds 45 and 46 following announcements in either round 20 or 45, respectively.
Counts appear in parentheses below. The remaining columns report the difference in average absolute prediction
errors and average deliberation time for subjects classified as changing versus not changing with two-sample
t-test statistics reported in brackets. Bolded values represent statistical significance at the ten percent level.

A5.5 Additional level-k dynamics results for Section 5.2.4

The unified model also predicts that when |β| < 1 we should see increasing depth
of reasoning over time during periods when the market structure is constant.
We can test this prediction by looking at the distribution of strategies that are
played across the same subjects in the A3 treatments with two announcements.
The unified model predicts that over time more people will select higher level-k
forecasts for the T1 and T3 treatments, but not for the T2 treatments. Figure
A12 shows the distribution of forecasts for levels-0 to 3 and REE. We can see
for the T1 and T3 cases that the distribution shifts to the right. More subjects
choose higher-level forecasts, or are consistent with the REE forecast in the second
announcement than in the first. We find that a Kolmogorov-Smirnov equality of
distributions test rejects the null of equality at the 5% level for the T1 and
T3 treatments. The T2 treatments, however, shows a different result. For T2
treatments, we observe a bifurcation in which subjects either choose a low levels
of reasoning or they jump to the REE.

A5.6 Additional quantitative results for Section 5.2.5

We fit the model to the experimental data at the market level. Table 3 in the main
text averages over the individual market outcomes from the same treatments.
Table A5 shows the underlying data from each market.

Each model that features heterogeneous types is initialized to the first realized
price and to the distribution of level-k types observed in period one for each
market. Afterwards, the model makes predictions based solely on the evolution
of price, adaptive learning, or the replicator, depending on which model is used.
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Figure A12: Increasing or decreasing depths of reasoning over time
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Notes: The distribution of classified forecast types observed in the experimental treatments with two
announcements.

The learning model starts initial beliefs at the average of the individual forecasts
in period one. After period one it updates according to the evolution of data
implied by the model and beliefs for the chosen gain. The simulated data is
compared to experimental data and the mean squared error is calculated.

Each model is optimized individually by searching over a grid of gains ϕ ∈
[0, 1], or replicator parameters α ∈ [0, 2], or both in the case of the unified model.
The optimal coefficients are shown in Table A6. Both the replicator and adaptive
learning are required to best fit the data in T1 and T2 treatments. In many
of the T3 treatments, however, naive expectations and fixed level-k reasoning is
chosen as the best model. This reflects the fact that many markets coverge very
quickly to steady state, but not as quickly as RE implies. This is also reflected
in the results for the adaptive learning case were a naive model is found to best
fit the data for all markets. In subsequent exploration, which is not shown here,
we have found that a ϕ > 1 plus level-k reasoning is preferred. That is consistent
with a trend following behavior similar to what many other positive feedback
experiments have found.

A5.7 Additional Discussion

The experimental evidence provides strong support for Hypothesis 1 (stability).
Large negative feedback results in slow convergence, or nonconvergence, to the
REE price, while convergence is achieved for |β| < 1. In addition, the speed
of convergence measured in multiple ways appears to increase following an an-
nouncement treatment (see Table A3). Increases in convergence speed in treat-
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Table A5: MSE between experimental data and competing models

Treatment REE Unified Model Fixed Level-k Replicator only Adaptive learning

T1 × A3 MSE MSE Rel. REE MSE Rel. REE MSE Rel. REE MSE Rel. REE

Market 1 6.67 3.88 0.58 11.59 1.74 4.29 0.64 20.77 3.11
Market 2 8.66 4.17 0.48 13.34 1.54 4.17 0.48 27.38 3.16
Market 3 24.18 22.34 0.92 25.07 1.04 22.34 0.92 39.76 1.64
Market 4 14.47 3.01 0.21 3.87 0.27 3.51 0.24 29.48 2.04
Market 5 14.66 2.24 0.15 12.81 0.87 13.96 0.95 7.85 0.54
Market 6 18.20 4.11 0.23 16.94 0.93 17.74 0.97 17.23 0.95
Market 7 5.22 1.89 0.36 2.94 0.56 2.57 0.49 13.32 2.55

Average 13.15 5.95 0.45 12.37 0.94 9.80 0.74 22.26 1.69
T2 × A3

Market 1 66.42 57.92 0.87 126.77 1.91 76.33 1.15 86.21 1.30
Market 2 25.31 20.44 0.81 154.20 6.09 34.67 1.37 34.06 1.35
Market 3 58.01 76.90 1.33 873.05 15.05 94.48 1.63 77.46 1.34
Market 4 48.70 40.98 0.84 779.52 16.01 75.16 1.54 65.73 1.35
Market 5 23.36 37.13 1.59 80.20 3.43 44.65 1.91 42.05 1.80
Market 6 44.84 51.04 1.14 569.37 12.70 69.59 1.55 68.70 1.53
Market 7 67.28 52.25 0.78 671.08 9.98 75.55 1.12 47.06 0.70
Market 8 80.64 50.42 0.63 127.50 1.58 97.45 1.21 85.84 1.06

Average 51.82 48.38 0.93 422.71 8.16 70.98 1.37 63.39 1.22
T3 × A3

Market 1 22.49 1.80 0.08 1.80 0.08 35.16 1.56 36.23 1.61
Market 2 31.16 14.70 0.47 16.33 0.52 46.91 1.51 39.09 1.25
Market 3 37.48 17.64 0.47 17.64 0.47 42.97 1.15 38.23 1.02
Market 4 31.37 13.70 0.44 13.70 0.44 31.78 1.01 48.27 1.54
Market 5 12.52 4.34 0.35 4.34 0.35 28.54 2.28 48.90 3.91
Market 6 28.67 33.11 1.15 35.38 1.23 60.66 2.12 75.75 2.64
Market 7 45.41 23.82 0.52 27.08 0.60 61.14 1.35 46.89 1.03
Market 8 44.70 19.56 0.44 22.89 0.51 50.28 1.12 48.38 1.08
Market 9 92.75 76.53 0.83 76.53 0.83 104.95 1.13 106.02 1.14
Market 10 31.71 3.46 0.11 3.46 0.11 40.40 1.27 28.27 0.89
Market 11 30.64 9.45 0.31 9.45 0.31 41.05 1.34 39.53 1.29

Average 37.17 19.83 0.53 20.78 0.56 49.44 1.33 50.51 1.36

Notes: Mean square error (MSE) of five simulated models of aggregate price dynamics compared
to experimental market price data. “Rel. REE” reports the MSE of the a model relative to REE
MSE, i.e., Model MSE/REE MSE. Models are fit by doing a grid search over values α ∈ [0, 2] and
ϕ ∈ [0, 1].
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Table A6: Parameter estimates of competiting models

Treatment Unified Model Fixed Level-k Replicator only Adaptive learning
T1 × A3 α ϕ α ϕ α ϕ ϕ

Market 1 0.225 0.725 - 0.475 0.025 - 0.425
Market 2 0.015 0.000 - 0.550 0.015 - 0.500
Market 3 0.008 0.000 - 0.325 0.008 - 0.450
Market 4 0.200 0.775 - 1.000 0.005 - 0.475
Market 5 0.175 0.725 - 1.000 0.000 - 0.550
Market 6 0.150 0.750 - 1.000 0.000 - 0.575
Market 7 0.300 0.800 - 0.725 0.010 - 0.525
T2 × A3

Market 1 0.005 0.100 - 0.000 0.005 - 0.325
Market 2 0.010 0.050 - 0.475 0.010 - 0.325
Market 3 0.010 0.050 - 0.125 0.010 - 0.400
Market 4 0.005 0.200 - 0.150 0.010 - 0.500
Market 5 0.015 0.025 - 0.175 0.010 - 0.300
Market 6 0.010 0.025 - 0.000 0.010 - 0.325
Market 7 0.005 0.175 - 0.150 0.010 - 0.525
Market 8 0.025 0.425 - 0.400 0.010 - 0.375
T3 × A3

Market 1 0.000 1.000 - 1.000 0.175 - 1.000
Market 2 0.600 0.725 - 1.000 0.200 - 1.000
Market 3 0.000 1.000 - 1.000 0.175 - 1.000
Market 4 0.000 0.950 - 0.950 0.025 - 1.000
Market 5 0.000 1.000 - 1.000 0.075 - 1.000
Market 6 0.600 0.725 - 1.000 0.375 - 1.000
Market 7 0.600 0.725 - 1.000 0.350 - 1.000
Market 8 0.100 0.725 - 1.000 0.375 - 1.000
Market 9 0.000 1.000 - 1.000 0.200 - 1.000
Market 10 0.000 1.000 - 1.000 0.200 - 1.000
Market 11 0.000 1.000 - 1.000 0.225 - 1.000

Notes: Paremeter estimates of the competiting models. Models are fit by doing a grid
search over values α ∈ [0, 2] and ϕ ∈ [0, 1]. The Fixed level-k model assumes an adaptive
level-0 forecast.
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ments T1 & T3 are also supported by the increase in the depths of reasoning we
observe among subjects when there are multiple announcements: see Figure 2.

We find strong support for Hypothesis 2 (level-k reasoning). We observe
level-k deductions taking place in each of the announcement treatments with
clear bunching around the k-level predictions in the histograms shown in Fig-
ure A11. Comparing the individual forecasts to the model implied forecasts in
announcement rounds, we classify between 50% and 70% of subjects, depending
on the chosen cutoff, as Level-0, 1, 2, 3, or REE. Our classifications also coin-
cide well with the deliberation times we observe among participants, with level-0
participants spending less time deliberating than level-3.

We find support for Hypothesis 3 (replicator dynamics). Focusing again on
announcement periods, we find that some fraction of subjects are classified as
using the same depth of reasoning in the announcement period and in the period
following the announcement. These subjects on average had lower forecast errors
in the announcement period than those subjects who appear to change strategies,
and they spent less time deliberating in the next round. In addition, for those
we classify as changing their strategy, we find evidence that a high proportion
are changing to the best strategy (see Table A4). As predicted by our theory,
many of those changes correspond to decreases in the subject’s k-level depth of
reasoning.

Finally, we find mixed evidence for Hypothesis 4 (level-k dynamics). We ob-
serve revisions over time in depth of reasoning for the T1 and T3 treatments.
There were also more high level-k forecasts played for second announcements
compared to first announcements, along with quicker convergence (see Figure 2
and Table A3). In addition, we do observe a bifurcation in the distribution of clas-
sified strategies played in the T2×A3 treatments between the two announcement
rounds with more level-0 and REE forecasts played in the second announcement
round. The reduction in the depth of reasoning in favor of level-0 forecasts ob-
served here is consistent with hypothesis 4. However, the increase in the fraction
of people who choose the REE forecast is at odds with the unified model. This
finding also explains why the RE forecast fits the aggregate price data fairly well
in the quantitative evaluation of competing models discussed in the the previous
sub-section.

We speculate that the high proportion of REE forecasts observed in the
T2×A3 treatment’s second announcement round may be due to the fact that
in the experiment negative prices are not allowed. In an announcement round,
many high-level forecasts predict either 0 or γ in the T2 treatment. Therefore,
a subject’s menu of forecasts has a finite number of distinct choices. With fi-
nite choices and bounded prices, its plausible that some subjects will engage in
sufficient reflection to engender more coordination on the REE, which is in the
interior of the price space. This is an interesting avenue for future research.

A6 Robustness: Level-0 forecast definition

To classify the types of forecasting strategies that participants use, we must as-
sume a shared level-0 forecast. Our baseline assumption is that level-0 is a two-
round moving average of past prices. To demonstrate that our results are robust
to this assumption, we conduct two exercises. First, we replicate the results in
Table 2 and A4 of the main text using a four round moving average as the shared

35



Unified Model

level-0 forecast. Second, we study how overall classification of types and of the
level-0 type changes when we assume last periods price as the level-0 forecast,
a two-period moving average, a four-period moving average, or three different
cosntant gain specifications.

Table A9 replicates Table 2 with the four period average. The number of peo-
ple we classify as level-k reasoners increases slightly under this definition overall.
The regression estimates are mostly unchanged. We retain statistical significance
for the hypothesis test conducted on announcement rounds with a comparable
F-stat obtained to the original specification.

Table A7: Classifying participant’s forecasts as Level-k - Robustness Check

Within ±3 of Level-k in announcement rounds Differences in deliberation time (seconds)

1 20/50 45 Variable [1] [2]

Total Classified 47.3% 65.8% 66.0% Level-0 -7.39 -1.02
[33.9% , 57.0%] [50.6% , 73.6%] [49.4% , 69.9%] (0.995) (0.667)

Level-1 -5.77 -0.03
Level-0 14.8% 7.8% 5.1% (1.059) (0.652)

[11.0% , 15.1%] [4.31% , 9.48%] [4.49% , 6.41%] Level-2 -2.91 -0.78
(1.271) (1.047)

Level-1 7.3% 25.0% 14.1% Level-3 -2.81 -0.33
[6.45% , 8.60%] [19.3% , 27.6%] [14.1% , 14.1%] (1.392) (1.159)

Level-0 x Ann 46.64 3.46
Level-2 6.5% 5.2% 3.8% (8.598) (6.065)

[1.89% , 6.45%] [4.31% , 5.75%] [1.92% , 3.85%] Level-1 x Ann 43.94 11.73
(4.923) (4.80.)

Level-3 3.2% 3.2% 4.5% Level-2 x Ann 57.51 11.63
[1.07% , 1.13%] [2.58% , 3.74%] [3.21% , 5.13%] (9.036) (8.463)

Level-3 x Ann 61.35 23.04
REE 15.6% 24.7% 38.5% (11.929) (8.234)

[13.4% , 15.6%] [20.1% , 27.0%] [25.6% , 40.4%] Cons 39.84 112.51
(0.484) (4.228)

N 372 348 156 Individual FE yes yes

Hypothesis tests of deliberation time regressions Round FE no yes

H0 : Level-0 - Level-3 = 0 F(1, 61) =0.40 R-squared 0.030 0.253
H0 : (Level-0 x Ann) - (Level-3 x Ann) = 0 F(1, 61) =4.41 N 18,367 18,367

Notes: The top left panel reports the proportion of participant’s forecasts that fall within ±3 of a Level-k
forecast. Proportions for cutoffs of ±1.5 and ±4.5 are shown in brackets. The right panel reports the regression
results of identified Level-k individual’s deliberation time in all periods and in announcement periods. Standard
errors are clustered at the market level and reported in parenthesis below the point estimates. Bolded values
indicate statistical significance at the ten percent level. The bottom left panel reports the hypothesis tests for
the equality of regression coefficients for regression specification (2). We pool A1 (round 50 announcement) and
A2 (round 20 announcement) results because both experiments feature a single and identical announcement.
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Table A8: Revisions and loss - Robustness Check

Proportion of changers Ave. abs. prediction error Ave. deliberation time (sec)
Between rounds 20 & 21 Round 20 Round 21

Treatment Revise opt. No Change Change No change Difference Change No change Difference

T1 x A2 and A3 0.62 0.37 18.43 7.08 11.35 58.3 47.8 10.48
[5.75] (31/84) [6.11] [1.27]

T2 x A2 and A3 0.48 0.51 24.95 13.16 11.79 62.7 56.5 6.16
[3.20] (46/90) [4.41] [0.69]

T3 x A2 and A3 0.56 0.25 26.83 14.84 11.99 36.5 35.8 0.73
[6.24] (30/119) [3.31] [0.12]

Between rounds 45 & 46 Round 45 Round 46

T1 x A3 0.73 0.64 26.4 5.34 21.06 43.3 30.0 13.3
[3.97] (27/42) [6.39] [1.35]

T2 x A3 0.30 0.58 17.42 11.77 5.65 36.1 27.8 8.23
[0.47] (28/48) [1.48] [1.32]

T3 x A3 0.52 0.15 31.18 21.58 9.60 25.4 18.2 7.16
[4.25] (10/66) [1.56] [2.21]

Notes: “Revise opt.” is the proportion of people who, conditioning on changing their strategy in period 21(46),
changed their strategy to the best counterfactual strategy out of level-0, 1, 2, 3, or the REE in their market,
where best is defined as what forecast would have been best in round 20(45). Z-scores for the test of the null
hypothesis that subjects switched to one of the five strategies at random are reported in brackets. The next
column reports the proportion of participants who we classify as not changing their strategy either between
rounds 20 and 21 or between rounds 45 and 46 following announcements in either round 20 or 45, respectively.
Counts appear in parentheses below. The remaining columns report the difference in average absolute prediction
errors and average deliberation time for subjects classified as changing versus not changing with two-sample
t-test statistics reported in brackets. Bolded values represent statistical significance at the ten percent level.

Table A8 replicates Table A4 for the four-round average level-0 assumption.
The results are slightly stronger on all categories relative the previous definition.

Table A9 shows the classification results for the ±3 cut off for different level-0
assumptions. In general, the proportion of subjects that we classify as level-
k forecasters of any type increases as we consider level-0 forecasts with longer
averages or weighted averages of past observed prices. Therefore, the results we
provide as our baseline are the most conservative estimates we obtained.

Table A9: Classifying participant’s forecasts as Level-k - Robustness Check

Moving averages Constant Gain
Round 20/50 1-period 2-period* 4-period ϕ = 0.4 ϕ = 0.3 ϕ = 0.2

Level - k 63.8% 64.4% 65.8% 65.2% 66.1% 66.1%
Level - 0 6.6% 6.6% 7.8% 6.9% 7.2% 7.2%

Notes: *Assumption used for level-k classification in the main text. The table reports the proportion of
participant’s forecasts that fall within ±3 of a Level-k forecast in all treatments with an announcement in
period 20 or 50. The level-k forecasts are based on the level-0 assumption denoted in the table.

A7 Oscillating deductions with strategic substitutes

Our experimental results also shed light on an element of level-k reasoning that
recently has been called into question in the literature. Garćıa-Schmidt and
Woodford (2019) and Angeletos and Sastry (2021) put forward models of bounded
rationality that modify level-k reasoning to rule out oscillating deductions when
there is negative expectational feedback. Angeletos and Sastry (2021) writes,
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“We are not aware of any experimental evidence of this oscillatory pattern. We
suspect that it is an unintended “bug” of a solution concept.”

In our experiments, we provide evidence that oscillating deductions occur.
Figure A13 is based on a T2×A2 treatment. The NW panel shows market price
in bold and players’ forecasts in light gray; the N panel shows market price in
bold and the model implied level k forecasts (note truncated time-span around an-
nouncement). The NE panel shows players’ forecasts with dots colored to identify
level-k classification. Remaining panels provide model implied level-0 forecasts
in dashed red and player forecasts colored to identify level-k classification.

From Figure A13 is evident that some individual participants make oscillat-
ing deductions over time. Obvious examples include participants #1 and #4.
Indeed, four out of six of the participants clearly make oscillating deductions
with forecasts above and below the REE after the announcement occurs in round
20. The oscillations occur despite the experience of the price not oscillating for
many periods prior to the announcement. This experience of tranquility com-
bined with how close many of the forecasts are to level-k deductions suggests
that participants contemplated oscillations consistent with classic level-k reason-
ing. Moreover, they took action with money at stake which was consistent with
such deductions.
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Figure A13: Oscillating Deductions: Individual forecasts from experimental market with treatment T2 (β = −2)
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Notes: The first plot shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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Figures A14 shows an additioanl example of a market with clear oscillating
behavior and Figures A15 shows one market with more monotonic behavior.12

To further illustrate point, Figures A16 show the same type of analysis applied
to a T3 treatment where β = 0.5. Level-k deductions do not imply oscillations
in this case and indeed none are observed. Individual forecasts conform nicely
to level-k deductions based on our proposed level-0 forecast. This suggests that
people do not abandon level-k deductions in environments with strategy substi-
tutability. Level-k deductions describes forecasting behavior in our experiment
when strategic actions are both compliments and substitutes.

12We do not plot the level-3 forecast in the middle figure because it makes the graph harder
to interpret by requiring a larger scale of the y-axis. For the markets we show, no one chooses it
in the announcement round. This of course is not true in general. We observe people choosing
exactly level-3 deductions in some markets as can be seen in Figure 2 in the main text.
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Figure A14: Example 2: Individual forecasts from experimental market with treatment T2 (β = −2)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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Figure A15: Example 3: Individual forecasts from experimental market with treatment T2 (β = −2)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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Figure A16: Example 4: Individual forecasts from experimental market with treatment T3 (β = 0.5)
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Notes: The first plots shows all individual forecasts and the market price from a single market. The second plot shows the model implied level-k forecasts and the data in a window around the
announcement. The remaining figures classify each of the forecasts as a level-k type, which is indicated by the color of the dot. Forecasts that are classified as level-0 are shown in red, level-1 in blue,
level-2 in magenta, level-3 in black, and REE as a black circle with a white interior. The dotted red line shows the path of the level-0 forecast from which all level-k deductions are derived. The perfect
foresight equilibrium is indicated by the dashed line.
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A8 Exit Survey Results

After the experimented ended, subjects completed an exit survey while they
waited for their pay envelopes to be prepared. The survey questions aimed to
assess what information they used to make their forecasts and what information
they thought others used.

A8.1 Exit Survey Questions

1. Please rank the importance of each option below to the formation of your
price forecast in each period:

a. The history of market prices

b. The market equations

c. The history of my own price forecasts

d. The history of my own forecasts errors

e. My expectation about the average price forecast in the period

2. Please rank the importance of each option below to the formation of your
price forecast following the announcements:

a. The history of market prices

b. The market equations

c. The history of my own price forecasts

d. The history of my own forecasts errors

e. My expectation about the average price forecast in the period

3. Which of the following statements best describes your thinking before mak-
ing each forecast?

a. I looked at the past prices and made my best guess based on their
recent movements. I never used the equations.

b. I made a guess about what the average forecast might be based on
past prices and then used the equations to determine my own forecast
using that guess.

c. I made a guess about what the average forecast might be and used the
equation to work out the price only when I did a poor job of forecasting
in the previous round. Otherwise, I just looked at past prices and made
my best guess.

d. I made a guess about what the average forecast might be and used
the equation to work out the price only when there was an announced
change in the market. Otherwise, I just looked at past prices and made
my best guess.
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4. Please rank the importance of each option below to other participants,
which you believe they may have used to make their price forecasts:

a. The history of market prices

b. The market equations

c. The history of their own price forecasts

d. The history of their own forecasts errors

e. Their expectation about the average price forecast in the period

5. Please rank the importance of each option below to other participants,
which you believe they may have used to make their price forecasts follow-
ing the announcements:

a. The history of market prices

b. The market equations

c. The history of their own price forecasts

d. The history of their own forecasts errors

e. Their expectation about the average price forecast in the period

6. If you do not feel like the strategy you used was well-captured by the survey
questions, then please use this box to explain your strategy

A8.2 Exit Survey Results

Survey questions (1), (2), (4), and (5) used a drop-down menu with options:
“very important”, “somewhat important”, and “did not consider.” Table A10
and Table A11 shows the cumulative importance of each factor where “very im-
portant” is assigned a zero, “somewhat important” is assigned a one, and “did
not consider” a two. Therefore, the lower the value, the more important the
information. Consistent with level-k reasoning, we find that on average subjects
rated the equations and the forecast of the average expectation as more impor-
tant to their own forecast than they believed it was to others. This is consistent
with a belief that others are less sophisticated. We observe the results on the full
sample and when restricting to only people who played a level-k forecast in the
announcement periods with the ± 3 cutoff. The latter consistently rank the equa-
tions as more important to them than they are to their perceived competitors,
which is consistent with the level-k assumption that others players are perceived
as less sophisticated.
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Table A10: Tabulated survey results for Q1 and Q4

All Responses

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 10 9 33 32 24 21 30 32 19 21
T1×A2 11 11 32 30 33 19 38 31 17 19
T1×A3 11 11 31 30 40 31 45 32 21 23
T2×A1 13 8 25 23 31 25 36 30 16 19
T2×A2 13 10 28 28 47 24 50 42 18 30
T2×A3 23 18 36 41 52 35 47 43 25 41
T3×A2 7 7 42 37 50 33 44 42 20 29
T3×A3 16 13 47 59 67 52 63 66 30 33

All 104 87 274 280 344 240 353 318 166 215
Difference 17 -6 104 35 -49

Info is ( ) to me (less important) (more important) (less important) (less important) (more important)

Responses from those identified as level-k in announcement rounds with ±3 cutoff

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 8 7 28 26 20 17 28 25 14 18
T1×A2 6 10 21 22 26 14 29 21 12 12
T1×A3 11 11 27 28 37 28 40 29 16 19
T2×A1 11 7 17 16 24 18 26 19 13 14
T2×A2 12 7 15 20 32 18 34 31 10 22
T2×A3 20 15 32 37 44 30 42 40 21 38
T3×A2 2 4 18 17 35 25 28 27 12 21
T3×A3 13 10 42 50 58 43 58 57 27 27

All 83 71 200 216 276 193 285 249 125 171
Difference 12 -16 83 36 -46

Info is ( ) to me (less important) (more important) (less important) (less important) (more important)

Notes: Participants rated each piece of information denoted in the top line as “very important”,
“somewhat important”, or “did not consider” when making their “own” forecasts and what they
believed was important to “others”. The categories are assigned the following values and summed:
“very important” is a assigned a zero, “somewhat important” a one, and “did not consider” as two.
Lower totals indicate that the piece of information is more important to a person’s decision.

Figure A17 shows the responses to question 3 separated by treatment. The
most common response is (b), which is:

I made a guess about what the average forecast might be based on past
prices and then used the equations to determine my own forecast using
that guess.

This response is consistent with level-1 behavior.
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Table A11: Tabulated survey results for Q2 and Q5

All Responses

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 13 12 30 29 24 24 29 39 23 18
T1×A2 19 19 24 19 42 35 36 32 23 21
T1×A3 19 19 28 24 40 29 44 38 24 23
T2×A1 11 21 18 23 33 27 40 34 21 20
T2×A2 21 19 21 20 44 24 49 41 20 24
T2×A3 31 35 30 36 52 49 54 45 32 35
T3×A2 25 27 31 25 51 39 54 45 26 28
T3×A3 40 44 38 38 75 64 73 76 28 30

All 179 196 220 214 361 291 379 350 197 199
Difference -17 6 70 29 -2
Info is ( ) to others (more important) (less important) (less important) (less important) (more important)

Responses from those identified as level-k in announcement rounds with ±3 cutoff

Past Prices Equations Forecast History Forecast Errors Exp. Ave. Price
Treatment Own Others Own Others Own Others Own Others Own Others

T1×A1 9 9 24 21 19 19 23 31 17 15
T1×A2 17 13 14 12 30 26 25 25 17 17
T1×A3 18 19 25 22 37 27 40 35 20 18
T2×A1 10 15 13 16 26 15 30 23 19 16
T2×A2 19 17 11 14 32 19 34 31 14 18
T2×A3 27 29 24 30 47 44 48 41 27 30
T3×A2 16 17 14 15 34 25 36 27 18 19
T3×A3 32 31 33 28 65 53 63 65 25 24

All 148 150 158 158 290 228 299 278 157 157
Difference -2 0 62 21 0

Info is ( ) to others (more important) (the same) (less important) (less important) (the same)

Notes: Participants rated each piece of information denoted in the top line as “very important”,
“somewhat important”, or “did not consider” when making their “own” forecasts and what they
believed was important to “others”. The categories are assigned the following values and summed:
“very important” is a assigned a zero, “somewhat important” a one, and “did not consider” as two.
Lower totals indicate that the piece of information is more important to a person’s decision.

A9 Unified dynamics in the NK model

Consider the following RE forward model:

yt = γt + βEtyt+1, (A14)

where y ∈ Rn, γt ∈ {γ̄1, . . . , γ̄M}, γ̄i ∈ Rn, and γt has transition matrix P . The
analog of (A14) in our unified framework is

yt = γt + β
∑
k

ωkt · Ek
t yt+1, (A15)

where Ek
t yt+1 is the level-k forecast of yt+1 made in period t.

Denote by Eki yt the level-k forecast of yt given γt−1 = γ̄i. Note that the
subscript on E identifies the current state. Importantly, this operator is always a
one-period-ahead forecast. Define Eki yt recursively:

Eki yt+1 ≡ Ek
t

(
γt+1 + βEk−1

t+1 yt+2

∣∣∣γt = γ̄i

)
=
∑
j

Pij γ̄j + β
∑
j

Pij · Ek−1
j yt+2. (A16)
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Figure A17: Exit survey question 3 responses
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Notes: This figure shows the response to question 3 from exit survey separated by treatment type.

Writing Ekyt+1 as the column vector with ith entry as Eki yt+1, we obtain

Ekyt+1 = (P ⊗ In)γ̄ + (P ⊗ β)Ek−1yt+2

= (IMn − P ⊗ β)−1 (IMn − (P ⊗ β)k
)
(P ⊗ In)γ̄ + (P ⊗ β)k E0yt+k+1.

(A17)

Equation (A17) extends the univariate and two-state case shown in the main text.
What is clear though from this more general setting is the connection between the
kth-level of reasoning and how forward-looking an agent is. Note the kth exponent
in the first term and that the whole term reflects a finite sum of k elements. Each
higher level deduction is essentially is akin to contemplating a longer possible
duration with the addition of one additional element.

Connecting (A17) to (A15) is simplified by defining Yit = yt
∣∣γt = γ̄i, and

letting Yt be the vector of vectors Yit for i = 1, . . . ,M . Thus Yt is the vector of
state-contingent values of yt (the time-subscript on y continues to have relevance
because the value of y is history dependent via level-0 forecasts). Exploiting this
notation, we may write

Yt = γ̄ + (IM ⊗ β)
∑
k

Ekyt+1. (A18)

Given level-0 beliefs, equation (A18) determines yt for all possible realizations of
γt.

To complete the model we must determine the evolution of {E0yt+s}s≥1 over
time t. We assume agents use CGL coupled with the anticipated utility assump-
tion that E0

j yt+s = E0
j yt+1 ≡ ajt−1, where this second equality aligns the notation

used here with notation from the paper. We have

ajt = ajt−1 + χj(γt) · ϕ · (yt − ajt−1) . (A19)
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The function χj controls updating of beliefs depending on the realization of the
state. If χj is the state-j indicator then this algorithm is state-contingent CGL.

Application to Bilbiie’s NK model

Recall our laboratory NK model:

xt = Etxt+1 − σ−1(it − Etπt+1 − rt) (A20)

πt = ξEtπt+1 + κyt (A21)

Bilbiie assumes rt is Markov, r0 = rS < 0, and that it transitions to the absorbing
state rN > 0 with probability δ ≥ 0. The interest rate rule sets it = 0 when
rt = rS; otherwise, it transitions to it = rN with probability ν ≥ 0.

To map this model into the general theory developed above, we proceed as
follows: writing yt = (xt, πt) (of course, vectors are always columns), let zt ∈
{S, F,N} be the underlying state, so that rt = r(zt) and it = i(zt). Then z0 = S
and the transition for zt is

P =

1− δ δ(1− ν) δν
0 1− ν ν
0 0 1

 . (A22)

Set

β =

(
1 σ−1

κ ξ + κσ−1

)
and γt =

(
σ−1(rt − it)
κσ−1(rt − it)

)
. (A23)

Then (A20) – (A21), together with the interest rate rule, can be written as (A14).
In more detail,

rt(z) =


rS if z = S
rN if z = F
rN if z = N

and it(z) =


0 if z = S
0 if z = F
rN if z = N

Thus

γt(z) =


σ−1(rS, κrS)

′ if z = S
σ−1(rN , κrN)

′ if z = F
(0, 0)′ if z = N

Finally, to incorporate our assumptions about level-0 forecasts, we assume that
level-0 forecasts in state S are the same as in state F , and level-0 forecasts in
state N are rational, i.e. zero. Operationally, we have that E0

t

(
yt+1

∣∣zt = ξ
)
= aξt,

where
azt = azt−1 + χz(zt) · ϕ · (yt−1 − azt−1),

and

χN(z) = 0, χS(z) =

{
1 if z = S
0 else

, χF (z) =

{
1 if z = S or F
0 else

,

and aS,0 = aF,0, and aN,0 = 0.
The REE of the model is obtained by backward induction. Let yS and yF

be the output-gap/inflation pairs associated with γS and γF respectively. Since
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y = 0 when γ = γN we can solve for yS and yF using backward induction. We
have

yF = γF + P22βyF , thus yF = (I2 − P22β)
−1 γF (A24)

yS = γS + P11βyS + P12βyF , thus yS = (I2 − P11β)
−1 γS + P12β (I2 − P22β)

−1 γF
(A25)

A10 Experiment materials

This section provides the instructions and tutorial information that were provided
to laboratory subjects.

Negative feedback case

Computer based tutorial:

� What is your role?

Your role is to act as an expert forecaster advising firms that produce widgets.

� What makes you an expert in this market?

You will have access to information about the demand and supply of widgets to
the market. You will also have a bit of training before making paid forecasts.

� What is a widget?

Widgets are a perishable commodity like bananas or grapes. They are perishable
in the sense that they can only be consumed in the period they are produced. They
cannot be stored for consumption in future periods. The widgets that each firm
produces are all the same and there are many firms in the market. Therefore, the
individual firms do not set the price at which they sell their widgets but must sell
widgets at the market price.

� Why do the firms need to forecast the price?

A firm must commit to the number of widgets it will produce in the coming period
before knowing the price. Therefore, the firms need to have a forecast of the price
to know how many to produce.

� How am I paid?

Your compensation for each forecast is based on the accuracy of the forecast. The
payoff for each forecast is given by the following formula:

payment = 0.50− 0.03 (p− your price forecast)
2

where p is the actual market price, and 0.50 and 0.03 are measured in cents. If your
forecast is off by more than 4, you will receive $0.00 for your forecast. Therefore,
you will receive $0.50 for a perfect forecast, where p=your price forecast, and
potentially $0.00 for a very poor forecast. You will be paid to make 50 forecasts
in total.

In addition, you will be paid a $5 show-up fee for participating. You may quit the
experiment at any time, for any reason, and retain this $5 payment.

� The Demand for Widgets:
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The total demand for widgets in a period is downward sloping. This means that
the lower the price is the greater the demand for widgets. In precise terms, the
demand is given by

q = A−Bp

where q is the quantity demanded, and p is the current price in the market. The
equation for demand and the values for A and B will be given to you at the
beginning of the experiment. The values may also change during the experiment.
The equation, the values of A and B, and any changes to these values will be told
to all participants at the same time.

� The Supply of Widgets:

The firms in the market all face the same costs for producing widgets. The supply
of widgets by each firm, therefore, only depends on their forecast for price next
period. The total supply of widgets to the market depends on the average price
forecast from all firms.

The total amount of widgets supplied to the market by all firms is given by

q = D × average price forecast

where D is a positive number, which will be given to you and all other forecasters
in the market at the start of the experiment. Just like with demand, D may change
during the experiment and the changes will be announced.

� Prices and Expected Prices:

Once all participants have chosen their expected price, the average expected price
determines total supply. Since quantity demanded depends on price, equating
supply and demand determines the price. Consequently the actual market price
depends on average expected price. In fact there is a negative relationship between
price and expected price. In other words, when the average forecast for the price
is high, the actual price is low and vice versa.

� Why does this occur?

It occurs because a high average expected price causes widget producers to increase
their production of widgets. The increase in production results in more widgets
supplied to the market. More supply of widgets means that the price of each widget
will be lower. The opposite occurs when the average expected price is low. In this
case, the widget producers will supply fewer widgets to the market, which results
in a high price.

By equating supply and demand,

A−Bp = D × average price forecast

we can arrive at the precise relationship for price and expected price

p =
A

B
− D

B
× average price forecast

Note that expected price is negatively related to price. If expected price is high,
then the actual price is low and vice versa

� A bit of randomness:

Finally, like in real markets, we allow for the possibility that unforeseen and unpre-
dictable things may happen that affect price. We add this to the game by adding
a small amount of noise to price such that
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p =
A

B
− D

B
× average price forecast + noise.

The noise term is chosen at random in each period and is not predictable. Its value
is not given to any participant in the market. The size of each realisation is small.
The average value of the noise over the course of the experiment is zero and each
realisation of it is independent from any other realization. In other words, the
noise term may take a positive or a negative value in any given period, but overall,
the size and number of positive and negative realisations will be approximately
equal and cancel each other out over time.

Positive feedback case

Computer based tutorial:

� What is your role?

Your role is to act as an expert forecaster advising firms that sell widgets.

� What makes you an expert in this market?

You will have access to information about the demand and supply of widgets to
the market. You will also have a bit of training before making paid forecasts.

� What is a widget?

Widgets are a perishable commodity like bananas or grapes. They are perishable
in the sense that they can only be consumed in the period they are produced. They
cannot be stored for consumption in future periods. The widgets are all the same
and there are many firms that sell in the market. Therefore, the individual firms
do not set the price at which they sell their widgets but must sell widgets at the
market price.

� Why do the firms need to forecast the price?

Widgets are considered by many to be a luxury good, in part because they cannot
be stored. In fact, when the price of widgets goes up, the demand for widgets tends
to go up as well as many consider expensive widgets a status symbol. Therefore,
how many widgets a firm should produce to meet demand depends on the expected
price in the market that day. Each firm has an advisor like you that provides price
forecasts. If the average price forecast is high, then firms will want to supply many
widgets and the actual price will be high. If the average price forecast is low, then
the firms will supply fewer widgets and the actual price will be low.

� How am I paid?

Your compensation for each forecast is based on the accuracy of the forecast. The
payoff for each forecast is given by the following formula:

payment = 0.50− 0.03 (p− your price forecast)
2

where p is the actual market price, and 0.50 and 0.03 are measured in cents. If your
forecast is off by more than 4, you will receive $0.00 for your forecast. Therefore,
you will receive $0.50 for a perfect forecast, where p=your price forecast, and
potentially $0.00 for a very poor forecast. You will be paid to make 50 forecasts
in total.

In addition, you will be paid a $5 show-up fee for participating. You may quit the
experiment at any time, for any reason, and retain this $5 payment.
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� The Demand for Widgets:

The total demand for widgets in a period is upward sloping. This means that the
higher the price, the greater the demand for widgets. In precise terms, the demand
is given by

q = A+Bp

where q is the quantity demanded, and p is the current price in the market. The
equation for demand and the values for A and B will be given to you at the
beginning of the experiment. The values may also change during the experiment.
The equation, the values of A and B, and any changes to these values will be told
to all participants at the same time.

� The Supply of Widgets:

The firms in the market all face the same costs for producing widgets. The supply
of widgets by each firm, therefore, only depends on their advisor’s forecast for price
next period. The total supply of widgets to the market depends on the average
price forecast from all firms.

The total amount of widgets supplied to the market by all firms is given by

q = C +D × average price forecast

where C and D are positive numbers, which will be given to you and all other
forecasters in the market at the start of the experiment. Just like with demand, C
and D may change during the experiment and the changes will be announced.

� Prices and Expected Prices:

Once all advisors have chosen their expected price, the average expected price
determines total supply. In each period, a central market-maker then sets the
final price so that demand equals the quantity supplied. Consequently, the actual
market price depends on the average expected price. In fact, there is a positive
relationship between price and expected price. In other words, when the average
forecast for the price is high, the actual price is high and vice versa.

� Why does this occur?

It occurs because a high average expected price causes widget producers to increase
their production of widgets. The higher the price, the higher the actual demand
for widgets due the fact they are a status symbol. The opposite occurs when the
average expected price is low. In this case, low prices will results in low demand
as widgets appear to be less of a luxury good. By equating supply and demand,

A+Bp = C +D × average price forecast

we can arrive at the precise relationship for the price and the expected price

p =
C −A

B
+
D

B
× average price forecast

where we will assume that C > A. Note that the expected price is positively
related to price. If the expected price is high, then the actual price is high and
vice versa

� A bit of randomness:
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Finally, like in real markets, we allow for the possibility that unforeseen and unpre-
dictable things may happen that affect price. We add this to the game by adding
a small amount of noise to price such that

p =
A

B
− D

B
× average price forecast + noise.

The noise term is chosen at random in each period and is not predictable. Its value
is not given to any participant in the market. The size of each realisation is small.
The average value of the noise over the course of the experiment is zero and each
realisation of it is independent from any other realization. In other words, the
noise term may take a positive or a negative value in any given period, but overall,
the size and number of positive and negative realisations will be approximately
equal and cancel each other out over time.

Paper instructions:
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Widget Game Instruction Summary: 

• Your job is to forecast the price of a widget next period 
• Demand for widgets is determined by the market price 

o q = A – B p 
• The total supply of widgets to the market is determined by the average of all price forecasts 

submitted to the market 
o q = D x average price forecast 

• Combining supply and demand, we have the key formula that determines price in the 
market 

o P = A/B – D/B x average expected price + noise 
 Recall that noise is small and on average equal to zero 

• An Example: A = 120, B =2, D = 1, and noise = 0, what is price if the average price forecast is 
42? 

o p = 60 – ½ x average price forecast 
o P = 60 – ½ x 42 = 60 – 21 = 39 

• You are paid based on accuracy of your forecast according to the following formula 
o Payment = 0.50 – 0.03 (𝑝𝑝 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)2 

 A perfect forecast in a round earns 50 cents 
 A very poor forecast results in 0.00 

• KEY POINT: The market has negative feedback. Therefore, if the average price forecast is 
high, the market price will be low. And, if the average price forecast is low, then the 
market price will be high. 

• Your Notes: 
o – 
o – 
o – 
o – 
o – 
o –  

 

 

Widget Game Rules 

• You may withdraw from the experiment at any time for any reason 
• You may take notes on this paper or the scratch paper provided 
• Feel free to do any calculations you wish on the scratch paper provided 
• Do not exit the web browser 
• Do not open new tabs in the web browser 
• Please turn your phone off during the experiment 
• Do not speak with the people around you 
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Widget Game Instruction Summary: 

• Your job is to forecast the price of a widget next period 
• Demand for widgets is determined by the market price 

o q = A + B p 
• The total supply of widgets to the market is determined by the average of all price forecasts 

submitted to the market 
o q = C + D x average price forecast 

• Combining supply and demand, we have the key formula that determines price in the 
market 

o P = (C – A)/B + D/B x average expected price + noise 
 Recall that noise is small and on average equal to zero 

• An Example: A = 0, B =2, C=60, D = 1, and noise = 0, what is price if the average price 
forecast is 42? 

o p = 30 + ½ x average price forecast 
o P = 30 + ½ x 42 = 30 + 21 = 51 

• You are paid based on accuracy of your forecast according to the following formula 
o Payment = 0.50 – 0.03 (𝑝𝑝 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)2 

 A perfect forecast in a round earns 50 cents 
 A very poor forecast results in 0.00 

• KEY POINT: The market has positive feedback. Therefore, if the average price forecast is 
high, the market price will be high. And, if the average price forecast is low, then the 
market price will be low. 

• Your Notes: 
o – 
o – 
o – 
o – 
o – 
o –  

 

 

Widget Game Rules 

• You may withdraw from the experiment at any time for any reason 
• You may take notes on this paper or the scratch paper provided 
• Feel free to do any calculations you wish on the scratch paper provided 
• Do not exit the web browser 
• Do not open new tabs in the web browser 
• Please turn your phone off during the experiment 
• Do not speak with the people around you 
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