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Appendix A Theoretical Appendix

In A.1, we present an extensions of the BAD to the two imperfect monitoring structures.

In A.2, we derive existence conditions for equilibria in memory-one belief-free strategies in

general, and for the subset of semi-grim memory-one belief-free equilibria. The latter give

us the SG-thresholds. Further, we provide a characterization of these equilibria. In A.3, we

construct renegotiation-proof equilibria for perfect and imperfect public monitoring and a

truthful communication equilibrium for the case of imperfect private monitoring. It will be

useful to recall the normalized stage game parameters:

C D

C 1,1 −l,1+g

D 1+g,−l 0,0

A.1 BAD under imperfect monitoring

Extending the BAD to imperfect monitoring requires to adapt the GRIM strategy to the

imperfect monitoring structures. To derive lower bounds of the BAD, we use the adaptation

of GRIM which is most robust to strategic uncertainty. This adaptation prescribes that

players play D if they already played D in the previous round or when the last signal was

not cc (c) under public (private) monitoring.

A.1.1 Public Monitoring

With public monitoring, indifference between GRIM and ALLD requires

π
1

1− δ(1− ϵ)2
− (1− π)

l

1− δϵ(1− ϵ)
= π

(1 + g)

1− δϵ(1− ϵ)
.

Hence, the BAD is

πDF =
l

l − g + δ((1−ϵ)2−ϵ(1−ϵ))
1−δ(1−ϵ)2

. (1)

If g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

δ((1− ϵ)2 − ϵ(1− ϵ))
l,

and ∂πDF/∂ϵ = lδ(3− 4ϵ− δ(1− ϵ)2)/(δ(1− 2ϵ)2(ϵ− 1)2) > 0 for δ < 1 and ϵ ≤ 0.5.
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If 1 + g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

1− δϵ(1− ϵ)
l,

and ∂πDF/∂ϵ = lδ(3− 4ϵ− δ(1− ϵ)2)/(1− δϵ(1− ϵ)2 > 0 for δ < 1 and ϵ ≤ 0.5. Note that

for ϵ = 0 the equations above yield the BAD of perfect monitoring.

A.1.1 Private Monitoring

With private monitoring, indifference requires

π
1 + δϵ(1− ϵ)(1 + g − l)/(1− δϵ)

1− δ(1− ϵ)2
− (1− π)

l

1− δϵ
= π

(1 + g)

1− δϵ
,

and the BAD is given by

πDF =
l

l − g + δ((1−2ϵ)−ϵ(1−ϵ)(l−g))
1−δ(1−ϵ)2

. (2)

If g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

δ(1− 2ϵ)
l,

and ∂πDF/∂ϵ = 2l(1− δ(ϵ(1− ϵ))/(δ(1− 2ϵ)2) > 0 for δ < 1 and ϵ ≤ 0.5.

If 1 + g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

1− δϵ(1− ϵ)
l,

and ∂πDF/∂ϵ = lδ(3 − 2ϵ − δ(1 − ϵ)2)/(1 − δϵ)2 > 0 for δ < 1 and ϵ ≤ 0.5. For ϵ = 0, the

equations above yield the BAD of perfect monitoring. Note that under private monitoring

(GRIM, GRIM) is not an equilibrium in pure strategies but πDF equals the mixing probability

in Sekiguchi’s (1997) construction of a belief-based equilibrium.

A.2 Belief-Free Equilibria

Depending on the monitoring structure, different versions of memory-one belief-free strategies

exist. We consider three cases: (1) M1BF strategies which condition on (ai, a−i), (2) M1BF

strategies which condition on (ωi, ω−i), and (3) M1BF strategies which condition on (ai, ω−i).

Under perfect monitoring, all three cases are possible. Under public monitoring, only cases

2 and 3 are possible while case 3 is the only possible case under private monitoring. The

existence conditions of semi-grim strategies which condition on public signals and action-signal

combinations are defined in Propositions 1.1.2, 1.2.2 and 1.3.2.
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A.2.1 Actions (Perfect Monitoring)

Proposition 2.1.1 [Memory-One Belief-Free Equilibria Conditioning on Actions]

(i) If strategies condition on actions, the existence condition for symmetric memory-one

belief-free equilibria depends on the larger of the two values g and l. Let ϕ denote the

larger of the two values. The existence condition is:

δ ≥ δBFaa =
ϕ

1 + ϕ
(3)

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +

(
σcc − σdd −

1

δ

)
g (4)

and

σdc = σdd −
(
σcc − σdd −

1

δ

)
l (5)

(iii) For δ = δBFaa all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

Since g and l are both positive values these equilibria exist for high enough values of δ. Note

that if g ≥ l the δ threshold corresponds to the one for cooperative subgame-perfect equilibria

of the repeated game with perfect monitoring. However, if l > g as in our case, the conditions

differ with δBFaa > δSPE. The condition applies for belief-free equilibria in reactive strategies

(Kalai, Samet and Stanford, 1988) which condition on the other player’s action and require

g = l which yields δBFaa = δSPE.

Proof of Proposition 1.1.1. Let V ai
ajai

denote player i’s expected payoff for playing ai if player

j observed the action profile {aj, ai} in the previous round (we say player j is in state ajai).

If σaiaj denotes the probability to play c for any player i after {ai, aj}, we have:

V c
aa = (1− δ)(σaa − (1− σaa)l) + δ(σaaVcc + (1− σaa)Vdc) (6)

V d
aa = (1− δ)(σaa(1 + g) + (1− σaa)0) + δ(σaaVcd + (1− σaa)Vdd) (7)

Following Bhaskar, Mailath and Morris (2008), we derive conditions for Vcd and Vcc which
assure the strategies are belief-free, that is, for any σaa ∈ (0, 1), player i is indifferent between
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playing c or d independent of player j’s state. Subtracting (7) from (6) gives:

0 = σaa {(1− δ)(l − g) + δ (Vcc − Vcd − Vdc + Vdd))} − (1− δ)l + δ (Vdc − Vdd)

The equation holds independent of σaa if the terms in curly brackets and the last part are

both zero. Solving the the condition resulting from the last part for Vdc − Vdd and inserting

the solution into the condition derived from the terms in curly brackets gives

Vcc = Vcd +
(1− δ)g

δ

and

Vdc = Vdd +
(1− δ)l

δ

Solving (6) for σcc using the condition on Vdc above and rearranging for Vcc yields

Vcc =
(1− δ)σcc + δ(1− σcc)Vdd

1− δσcc

Solving (6) for σdd using the condition on Vcd and Vcc above gives

Vdd =
σdd

1 + δσdd − δσcc

Now, all Vaa can be eliminated from (6) solved for σdd and σdc this yields (4) and (5) which

proofs (ii). Note that ∂σcd/∂δ > 0, ∂σcd/∂σcc > 0 and ∂σcd/∂σdd < 0. The question is, how

big δ must be at least in order to assure that σcd ≥ 0 if σcc = 1 and σdd = 0. Inserting these

values into (4) and rearranging gives δ > δBFaa with ϕ = g. Note that σcd ≤ 1 is true even

if σcc = 1 and σdd = 0 for all feasible values of δ, g and l. At the same time ∂σdc/∂δ < 0,

∂σdc/∂σcc < 0 and ∂σdc/∂σdd > 0. The question here is, how big δ must be at least in order

to assure that σdc ≤ 1 if σcc = 1 and σdd = 0. Inserting these values into (5) and rearranging

gives δ > δBFaa with ϕ = l. At the same time, σdc ≥ 0 true even if σcc = 1 and σdd = 0 for

all feasible values of δ, g and l. Hence, the larger of the values g and l imposes the stricter

condition on δ which proofs (i). To complete the proof, insert (3) together with σcc = 1 and

σdd = 0 into (4) and (5) to obtain the structure of the T1BF response defined by g and l.

Next, we derive the δ threshold, above which semi-GRIM equilibria exist. See Breitmoser

(2015) for an alternative derivation.

Proposition 1.1.2 [Semi-Grim M1BF Equilibria Conditioning on Actions]

(i) If strategies condition on actions, the existence condition for symmetric semi-grim
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memory-one belief-free equilibria is:

δ ≥ δSGaa =
g + l

1 + g + l
(8)

(ii) Above the threshold a continuum σcc ∈ ( g+l
δ(1+g+l)

, 1) of memory one belief-free equilibria

in semi-grim strategies exists, given by:

σdd = σcc −
g + l

δ(1 + g + l)
(9)

and

σcd = σdc = σcc −
g

δ(1 + g + l)
(10)

(iii) For δ = δSGaa all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), , 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 1.1.2. Using (4) and (5) yields (9) and (10). Note that σdd < σcd < 1

for σcc ∈ (0, 1) and any δ ∈ (0, 1). For existence σdd must be positive. Rearranging yields the

SG-threshold. Note that the condition on δ is always stricter than the condition on δ, which

results from σcd = σdc ≥ 0, and is δ ≥ g/(1 + g + l).

Note that the condition for semi grim equilibria is a mixture of the two possible conditions

based on the different values of ϕ with equal weight on g and l as required by axiom 5 in

Blonski, Ockenfels and Spagnolo (2011) while (3) gives full weight on the larger of the two

values.

A.2.2 Public Signals (Perfect and Public Monitoring)

Proposition 2.2.1 [M1BF Equilibria Conditioning on Public Signals]

(i) If strategies condition on the ϵ-noisy public signals, the existence condition for symmetric

memory-one belief-free equilibria depends on the larger of the two values g and l. Let ϕ

denote the larger and ψ the smaller of the two values. The existence condition is:

δ ≥ δBFss =
(1− ϵ)ϕ− ϵψ

(1− 2ϵ)(1− 2ϵ+ (1− ϵ)ϕ− ϵψ)
(11)

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria
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exists given by

σcd = σcc +
σcc − σdd − 1

δ(1−2ϵ)

1− 2ϵ
((1− ϵ)g − ϵl) (12)

and

σdc = σdd −
σcc − σdd − 1

δ(1−2ϵ)

1− 2ϵ
((1− ϵ)l − ϵg) (13)

(iii) For δ = δBFss all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

In contrast to result for actions, combinations of the parameters g, l and ϵ exists for which

δBFss > 1.

Proof of Proposition 2.2.1. The proof follows the same steps as for actions. Let V ai
sjsi

denote

player i’s expected payoff for playing ai if player j observed {sj, si} in the previous round

(which means player j is in state sjsi). If σsisj denotes the (universal) probability of player i

to play c after {si, sj}, we get:

V c
ss = (1− δ)(σss − (1− σss)l) + δ[(1− ϵ)(σss(1− ϵ) + (1− σss)ϵ)Vcc

+ϵ(σss(1− ϵ) + (1− σss)ϵ)Vcd

+(1− ϵ)(σssϵ+ (1− σss)(1− ϵ))Vdc

+ϵ(σssϵ+ (1− σss)(1− ϵ))Vdd] (14)

V d
ss = (1− δ)(σss(1 + g) + (1− σss)0) + δ[ϵ(σss(1− ϵ) + (1− σss)ϵ)Vcc

+(1− ϵ)(σss(1− ϵ) + (1− σss)ϵ)Vcd

+ϵ(σssϵ+ (1− σss)(1− ϵ))Vdc

+(1− ϵ)(σssϵ+ (1− σss)(1− ϵ))Vdd] (15)

Again we derive conditions for Vcd and Vcc which together assure the belief-free property

following Following Bhaskar et al. (2008), that is, for any σss ∈ (0, 1), player i is indifferent

between playing c or d independent of player j’s state. First, subtracting (15) from (14)

gives:

0 = σss
{
(1− δ)(l − g) + δ

(
(1− 2ϵ)2Vcc − (1− 2ϵ)2Vcd − (1− 2ϵ)2Vdc + (1− 2ϵ)2Vdd

))
}

−(1− δ)l + δ ((1− 2ϵ)ϵVcc − (1− 2ϵ)ϵVcd + (1− 2ϵ)(1− ϵ)Vdc − (1− 2ϵ)(1− ϵ)Vdd)
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Note that he expression holds independent of σss if the terms in curly brackets and the terms

in the second line are both zero. Solving the the condition on the second line for Vdc − Vdd

and inserting into the other condition gives

Vcc = Vcd +
(1− δ)((1− ϵ)g − ϵl)

δ(1− 2ϵ)2

and

Vdc = Vdd +
(1− δ)((1− ϵ)l − ϵg)

δ(1− 2ϵ)2

Solving (14) for σcc and rearranging for Vcc yields

Vcc =
(1− δ)(σcc − l) + δ(1− ϵ− σcc(1− 2ϵ))Vdd +

(1−δ)(1−ϵ)((1−ϵ)l−ϵg)
(1−2ϵ)2

− (1−δ)ϵl
1−2ϵ

1− δ(σcc(1− 2ϵ) + ϵ)
.

Solving (14) for σdd and inserting Vcc yields an expression for Vdd (omitted here) that does not

depend on any other Vss. Now, all Vss can be eliminated from (14) and we can solve for σcd

and σdc which leads to (ii). For existence we need to assure that σcd ∈ (0, 1) and σdc ∈ (0, 1)

for a feasible combination of values σcc, σdd and δ. First assume (1 − ϵ)ψ − ϵϕ > 0 and

consider σcd (note that (1− ϵ)ϕ− ϵψ > 0 always holds for ϵ < 0.5). In this case ∂σcd/∂σcc > 0

and ∂σcd/∂σdd < 0. Note that σcd ≤ 1 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σcd ≥ 0 we use σcc = 1 and σdd = 0. Solving for δ shows gives the condition δ > δBFss

with ϕ = g. Next, we consider σdc still assuming (1 − ϵ)ψ − ϵϕ > 0. Hence ∂σdc/∂σcc < 0

and ∂σdc/∂σdd > 0. Again σdc ≥ 0 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σdc ≤ 1 we use σcc = 1 and σdd = 0 which gives δ > δBFss with ϕ = l. Therefore, if

(1− ϵ)ψ− ϵϕ > 0 the stricter condition on δ results from the larger of the two values g or l as

in (11). Note that (1− ϵ)ψ − ϵϕ < 0 also requires δ > δBFss to make the probabilities interior.

On the other hand, it implies ϕ > 1−ϵ
ϵ
ψ and δBFss > 1. To see this we can rearrange δBFss < 1

to ϕ < (1−2ϵ)2+2ϵ2ψ
2ϵ−2ϵ2

and show that this contradicts ϕ > 1−ϵ
ϵ
ψ for ϵ ∈ (0, 0.5). This proofs (i).

To complete the proof, insert (11) together with σcc = 1 and σdd = 0 into (12) and (13) to

obtain the structure of the T1BF response defined by g and l.

Proposition 2.2.2 [Semi-Grim M1BF Equilibria Conditioning on Public Signals]

(i) If players condition on the ϵ-noisy public signals, the existence condition for semi-GRIM

equilibria is:

δ ≥ δSGss =
g + l

(1− 2ϵ)(1 + g + l)
(16)

(ii) Above this threshold, a continuum σcc ∈ ( g+l
δ(1−2ϵ)(1+g+l)

, 1) of semi-grim equilibria exists
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given by:

σdd = σcc −
g + l

δ(1− 2ϵ)(1 + g + l)
(17)

and

σcd = σdc = σcc −
g

δ(1− 2ϵ)(1 + g + l)
(18)

(iii) For δ = δSGss all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), 1− g/(g + l), 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 2.2.2. Using the semi-grim property σcd = σdc for (12) and (13) yields

(17) and (18). Observe that σdd < σcd < 1 for σcc ∈ (0, 1) and for existence σdd must be

positive which can be rearranged to yield (16).

A.2.3 Action-Signal Combinations (All Monitoring Structures)

Proposition 2.3.1 [M1BF Equilibria Conditioning on Action-Signal Combinations]

(i) If players condition on their own action and the ϵ-noisy signal of the other player’s

action, the existence condition for symmetric memory-one belief-free equilibria also

depends on the larger of the two values g and l. Let ϕ denote the larger of the two

values and ψ the smaller of the two. The existence condition is:

δ ≥ δBFas =
ϕ

1− 2ϵ+ (1− ϵ)ϕ− ϵψ
(19)

If g = l the condition is the same as for private signals.

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +
σcc − σdd − 1

δ

1− 2ϵ− ϵ(g + l)
g (20)

and

σdc = σdd −
σcc − σdd − 1

δ

1− 2ϵ− ϵ(g + l)
l (21)

(iii) For δ = δBFas all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.
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Proof of Proposition 2.3.1. Again the proof follows the same steps as for actions. Let V ai
ajsi

denote player i’s expected payoff for playing ai if player j played aj and observed si in
the previous round (which means player j is in state ajsi). If σaisj denotes the (universal)
probability of player i to play c after {ai, sj}, we get:

V c
as = (1− δ)(σas − (1− σas)l)+

δ ((1− ϵ)σasVcc + ϵσasVcd + (1− ϵ)(1− σas)Vdc + ϵ(1− σas)Vdd) (22)

V d
as = (1− δ)σas(1 + g)+

δ ((1− ϵ)σasVcc + ϵσasVcd + (1− ϵ)(1− σas)Vdc + ϵ(1− σas)Vdd) (23)

Subtracting (23) from (22) gives:

0 = σas {(1− δ)(l − g) + δ ((1− 2ϵ)Vcc − (1− 2ϵ)Vcd − (1− 2ϵ)Vdc + (1− 2ϵ)Vdd))}

−(1− δ)l + δ ((1− 2ϵ)Vdc − (1− 2ϵ)Vdd)

The conditions on Vcd and Vcc based on the belief-free property are now:

Vdc = Vdd +
(1− δ)l

δ(1− 2ϵ)

Vcc = Vcd +
(1− δ)g

δ(1− 2ϵ)

Solving (22) for σcc and rearranging for Vcc yields

Vcc =
(1− δ)(σcc − (1− σcc)l) + δ(1− σcc)Vdd − δσcc

(1−δ)((1−ϵ)l+ϵg)
δ(1−2ϵ)

+ δ(1− ϵ) (1−δ)l
δ(1−2ϵ)

1− δσcc

Solving (22) for σdd and inserting the solution for Vcc gives

Vdd =
σdd

(
1− (1−δ)ϵl+ϵg

1−2ϵ

)
+ (1− δσcc)

ϵl
1−2ϵ

1 + δσdd − δσcc

Next, all Vas can be eliminated from (22) solved for σdd and σdc proofs (ii). For existence

we need to assure that σcd ∈ (0, 1) and σdc ∈ (0, 1) for a feasible combination of values σcc,

σdd and δ. First assume 1− 2ϵ− ϵ(g + l) > 0 and consider σcd. In this case ∂σcd/∂σcc > 0

and ∂σcd/∂σdd < 0. Note that σcd ≤ 1 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σcd ≥ 0 we use σcc = 1 and σdd = 0. Solving for δ shows gives the condition δ > δBFas

with ϕ = g. Next, we consider σdc still assuming 1− 2ϵ− ϵ(g + l) > 0. Hence ∂σdc/∂σcc < 0

and ∂σdc/∂σdd > 0. Again σdc ≥ 0 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σdc ≤ 1 we use σcc = 1 and σdd = 0 which gives δ > δBFas with ϕ = l. Therefore, if

1− 2ϵ− ϵ(g + l) > 0 the stricter condition on δ results from the larger of the two values g or

l as in (19).
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If 1 − 2ϵ − ϵ(g + l) < 0, ∂σcd/∂σcc < 0 and ∂σcd/∂σdd > 0. Using σcc = 1 and σdd = 0

we establish that σcd ≤ 1 only if δ ≥ 1 (and the same can be shown for σdc ≥ 0 when using

σcc = 0 and σdd = 1). Note that (19) also requires δ ≥ 1 in this case. For the last case

1− 2ϵ− ϵ(g + l) = 0, σcd and σdc are not defined and (19) also requires δ ≥ 1. This proofs

(i). To complete the proof, insert (19) together with σcc = 1 and σdd = 0 into (20) and (21)

to obtain the structure of the T1BF response defined by g and l.

Proposition 2.3.2 [Semi-Grim M1BF Equilibria Conditioning on Action-Signal Combina-

tions]

(i) If players condition on their own action and the ϵ-noisy signal of the other player’s

action, the existence condition for symmetric memory one belief-free equilibria in semi

grim strategies is:

δ ≥ δSGas =
g + l

1− 2ϵ+ (1− ϵ)(g + l)
(24)

(ii) Above this threshold, a continuum σcc ∈ ( g+l
δ(1−2ϵ+(1−ϵ)(g+l)) , 1) of semi-grim equilibria

exists given by:

σdd = σcc −
g + l

δ(1− 2ϵ+ (1− ϵ)(g + l))
(25)

and

σcd = σdc = σcc −
g

δ(1− 2ϵ+ (1− ϵ)(g + l))
(26)

(iii) For δ = δSGas all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), 1− g/(g + l), 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 2.3.2. Using the semi-grim property σcd = σdc for (20) and (21) yields

(25) and (26). Observe that σdd < σcd < 1 for σcc ∈ (0, 1) and for existence σdd must be

positive which can be rearranged to yield (24).

A.3 Renegotiation-Proof and Truthful Communication Equilibria

We give examples for the construction of renegotiation-proof equilibria for the perfect and

imperfect monitoring cases and for a truthful communication equilibrium under imperfect

private monitoring. These equilibria can be described by two states each: (1) a reward
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stage, in which both players cooperate, and (2) a punishment stage; and transition rules

between the states. Unlike in equilibria in strongly symmetric strategies, the punisher and the

punished player have to play differently in the punishment stage to assure that this state is

not Pareto-dominated by the reward state. Hence, the continuation values of the two players

will be different once we enter the punishment state. We will use the following notation: Vr

for the continuation value of the reward state, and Vpp (Vpd) for the continuation value of the

punisher (the punished player) in the punishment state. The following condition has to hold

in any renegotiation-proof equilibrium:

Vpp ≥ Vr (27)

The following condition has to hold in any truthful communication equilibrium, where the

revelation constraints require that the punisher must be indifferent between staying in the

reward state or entering the punishment state as punisher:

Vpp = Vr (28)

A.3.1 Perfect Monitoring

The most simple candidate equilibrium is the following. It starts in the reward state with

both players cooperating. In case of a defection, they enter the punishment state, in which

the player who defected plays C while the other player plays D for one period. After this

period, the game returns to the reward state. For this to be a renegotiation-proof equilibrium,

the following three conditions have to be fulfilled:

1. No player has an incentive to deviate in the reward stage:

1 ≥ (1− δ)(1 + g)− δ(1− δ)l + δ2

2. In the punishment stage, the player being punished has no incentive to deviate:

−(1− δ)l + δ ≥ −δ(1− δ)l + δ2

3. The punisher wants to enter the punishment stage:

(1− δ)(1 + g) + δ ≥ (1− δ)l + δ2

For our experimental parameters it is easy to verify that all three conditions are satisfied.

Hence, our candidate equilibrium is, indeed, an equilibrium.
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A.3.2 Imperfect Public Monitoring

The construction becomes slightly more complicated under imperfect public monitoring.

Renegotiation-proofness criteria can only be applied if players play public strategies, that is,

strategies that condition only on the public history. A special case that has to be considered is

the public signal dd, that occurs with positive probability even when both players cooperate.

The simplest candidate equilibrium is the following. It starts in the reward state with

both players cooperating. In case of a cc or a dd signal, they stay in the reward state. In

case of a dc or cd signal, they transition to the punishment state, in which the player who

appears to have defected plays C, while the other player plays D for one period. In case the

public signal contains a c for the punished, the game returns to the reward state. Otherwise,

the punishment phase is repeated. Note that in comparison to the equilibrium under perfect

monitoring, the incentive to comply as a punished player in the punishment state is weakened

by the positive probability of getting away with playing D and still producing a c signal with

probability ϵ. The continuation payoff of the reward stage of this candidate equilibrium is:

Vr = c+ δ(ϵ2 + (1− ϵ)2)Vr + δ(ϵ(1− ϵ))Vpd + δ((1− ϵ)ϵ)Vpp

where:

Vpd = s+ δ(1− ϵ)Vr + δϵVpd

Vpp = b+ δ(1− ϵ)Vr + δϵVpp

By plugging Vpd and Vpp into Vr and simplifying the equation we get:

Vr =
c(1− δϵ) + δ(1− ϵ)ϵ(b+ s)

(1 + δ − 2δϵ)(1− δϵ)− 2δ(1− ϵ)2

The continuation payoff of deviating from cooperation is:

Vd = b+ 2δϵ(1− ϵ)Vr + δ(1− ϵ)2Vpd + δϵ2Vpp

By plugging Vpd and Vpp into Vd and simplifying the equation we get:

Vd = b+
δϵ2(b+ s)− 2sδϵ

1− δϵ
+
δ(1− ϵ)[2ϵ+ δ(1− ϵ)2 + ϵ2]Vr

1− δϵ

It is easy to verify that with the parameters of our paper, Vr > Vd, and thus no player has

incentive to deviate in the reward stage.

However, the player who is punished in the punishment stage has an incentive to deviate

in the punishment state. His continuation payoffs from complying and deviating are:

V punished
comply = s+ δ(1− ϵ)Vr + δϵVpd
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V punished
deviate = d+ δϵVr + δ(1− ϵ)Vpd

Plugging Vpd and Vr into the two equations above and simplifying yields:

V punished
comply =

s

1− δϵ
+

cδ(1− ϵ)

(1− δ − 2δϵ)(1− δϵ)− 2δ(1− ϵ)2
+

δ2(1− ϵ)2ϵ(b+ s)

(1− δ − 2δϵ)(1− δϵ)2 − 2δ(1− ϵ)2

V punished
deviate =

d+ δϵ− δϵ(d+ s)

1− δϵ
+

δ2(1− ϵ)ϵ(b+ s)(ϵ+ δ − 2δϵ)

(1− δ − 2δϵ)(1− δϵ)2 − 2δ(1− ϵ)2
+

cδ(δ + ϵ− 2δϵ)

(1− δ − 2δϵ)(1− δϵ)− 2δ(1− ϵ)2

With our experimental parameters, the condition V punished
comply ≥V punished

deviate is violated, which

means that the punished player has incentive to deviate in the punishment stage. Hence,

this candidate equilibrium is not an equilibrium in our parametrization.

However, if we add a second round to the punishment state, in which both play D, we

have found a renegotiation-proof equilibrium for our parametrization. The continuation

payoff of the reward stage is still:

Vr = c+ δ(ϵ2 + (1− ϵ)2)Vr + δ(ϵ(1− ϵ))Vpd + δ((1− ϵ)ϵ)Vpp

Since we add a second punishment stage, Vpd and Vpp change to:

Vpd = d+ δ[s+ δ(1− ϵ)Vr + δϵVpd]

Vpp = d+ δ[b+ δ(1− ϵ)Vr + δϵVpp]

By plugging Vpd and Vpp into Vr and simplifying the equation we get:

Vr =
c(1− δ2ϵ) + δϵ(1− ϵ)[2d+ δ(b+ s)]

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)− 2δ3ϵ(1− ϵ)2

The (unchanged) continuation payoff of deviating from cooperation is:

Vd = b+ 2δϵ(1− ϵ)Vr + δ(1− ϵ)2Vpd + δϵ2Vpp

By plugging Vpd and Vpp into Vd and simplifying the equation we get:

Vd =
δ(1− 2ϵ+ 2ϵ2)d

1− δ2ϵ
+

[1− δ2ϵ(1− ϵ)]b

1− δ2ϵ
+
δ2(1− ϵ)2s

1− δ2ϵ
+

[δϵ(2− δ2ϵ) + δ3(1− ϵ)2](1− ϵ)Vr
1− δ2ϵ

And it is easy to verify that under the parameterization of our paper, Vr > Vd, and thus no
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player has incentive to deviate in the reward stage.

Next, we have to check whether the punisher and the player who gets punished have

an incentive to deviate in the punishment stage. The continuation payoff is the same as in

the previous case. For the punisher it is obvious that there is no incentive to deviate in the

punishment stage. For the player who gets punished, the continuation payoff is:

V punished
comply = s+ δ(1− ϵ)Vr + δϵVpd

V punished
deviate = d+ δϵVr + δ(1− ϵ)Vpd

Plugging Vpd and Vr into the two equations and simplifying yields:

V punished
comply =

s+ dδϵ

1− δ2ϵ
+

cδ(1− ϵ)

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)− 2δ3ϵ(1− ϵ)2
+

δ2ϵ(1− ϵ)2[2d+ δ(b+ s)]

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)2 − 2δ3ϵ(1− δ2ϵ)(1− ϵ)2

V punished
deviate = d+

δ(1− ϵ)(d+ sδ)

1− δ2ϵ
+

δ[c(1− δ2ϵ) + δϵ(1− ϵ)(2d+ δ(b+ s))](ϵ− 2δ2ϵ+ δ2)

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)− 2δ3ϵ(1− ϵ)2

With our parameters, V punished
comply ≥V punished

deviate is satisfied. Thus, this candidate equilibrium is,

indeed, a renegotiation-proof equilibrium.

Note that renegotiation-proof equilibria can be constructed in a way that makes them

substantially more efficient than the most efficient equilibrium in strongly-symmetric strategies.

This requires the use of a public randomization device to determine whether or not the

punishment stage is entered after cd or dc signals with a probability less than one, such that

Vpd equals the continuation value of the punishment state with strong symmetry. Efficiency

will then be higher because Vpp ≥ Vr > Vpd. So, even if they are more complicated than

equilibria in strongly-symmetric strategies, players have an incentive to coordinate on them,

in addition to potential renegotiation concerns.

A.3.3 Imperfect Private Monitoring

Truthful communication equilibria have a similar structure as renegotiation-proof equilibria,

but for a different reason. The condition Vpp = Vr stems from the fact that players must

not have an incentive to lie about their private signal. In other words, reporting a c must

lead to the same continuation value as a report of d. An equilibrium can be constructed
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as follows. Players start in the reward state, where they cooperate and report their private

signals truthfully every round, which essentially transforms the game into one of imperfect

public monitoring. Instead of the public signal under public monitoring, the reported signals

are used to determine whether the players stay in the reward state or enter the punishment

state. Unlike under public monitoring, a dd (reported) signal combination cannot be treated

as a cc signal, as this would create an incentive to report d. Instead, the probability of having

to enter the punishment state as the punished player must be independent of the own report.

To this end, the public randomization device can be used to determine which of the two

reports is considered (if any), each with a probability π ≤ 1/2, and never both at the same

time. If a report is considered and the reported signal is c, the game stays in the reward

state. Otherwise, it transitions to the punishment state, in which the player who appeared to

have defected, according to the considered report, becomes the punished player.

The punishment state starts with one period of mutual defection. After this round, the

public randomization device determines whether or not a second round of mutual defection

is entered with probability ρ. In these one or two rounds of mutual defection, no reports

are necessary. In the next and last round of the punishment phase, the punished player

plays C while the punisher plays D. After this round, the punisher reports the signal. If the

punisher reports a d, the punishment phase is repeated, otherwise the players return to the

reward state. With our experimental parameters and π = 0.5 and ρ = 0.0498, it can easily

be verified that this is, indeed, an equilibrium (see below). Moreover, it is an equilibrium

with a strict incentive not to deviate in the reward state. Hence, it survives Heller’s (2017)

stability criteria.

The continuation payoff of the reward stage of the proposed equilibrium is:

Vr = c+ δ(π(1− ϵ)2 + (1− π))Vr + δ(π(1− ϵ)ϵ)Vpp + δπϵVpd

Where:

Vpd = d+ ρ[δd+ δ(δs+ δ(δ(1− ϵ)Vr + δϵVpd))] + (1− ρ)[δs+ δ(δ(1− ϵ)Vr + δϵVpd)]

is the continuation payoff from being punished. The continuation payoff as a punisher is:

Vpp = d+ ρ[δd+ δ(δb+ δ(δ(1− ϵ)Vr + δϵVpp))] + (1− ρ)[δb+ δ(δ(1− ϵ)Vr + δϵVpp)]

Moreover, the truthful communication constraint has to hold:

Vpp = Vr

We get a solution for ρ by solving the system of equations. With our experimental parameters
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and π = 0.5 we get ρ = 0.0498. Moreover, we get:

Vpp = Vr =
d+ δb+ ρδ(d− b+ δb)

1− ρδ3 − (1− ρ)δ2

Vpd =
(1− δ + δπϵ)[δ(1− ρ+ ρδ)b+ (1 + ρδ)d]

δπϵ[1− ρδ3 − (1− ρ)δ2]
− c

δπϵ

Now, we are ready to check whether there are incentives to deviate from following the

proposed equilibrium strategies. First, consider whether players have an incentive to deviate

in the reward stage. The continuation payoff from deviating is:

Vd = b+ δ[πϵ+ (1− π)]Vr + δπ(1− ϵ)Vpd

Plugging Vr, Vpd into the equation above yields:

Vd = b+
[(1 + ρδ)d+ δ(1− ρ+ ρδ)b][1− δ − ϵ+ 2δϵ]

ϵ[1− ρδ3 − (1− ρ)δ2]
− c(1− ϵ)

ϵ

Plugging in π = 0.5 and ρ = 0.0498 we see that Vd < Vr. Thus, there is no incentive to

deviate in the reward stage.

For the punishment stage, we have to check that the punished player has no incentive to

deviate. His continuation payoffs from deviating and complying are as follows:

V punished
deviate = d+ δ(ϵVr + (1− ϵ)Vpd)

V punished
comply = s+ δ((1− ϵ)Vr + ϵVpd)

Plugging Vr, Vpd into these equations, we can verify that the first condition V punished
comply >

V punished
deviate holds for our parameters and π = 0.5.

For the punisher it is obvious that there is no incentive to deviate in the punishment stage

either. Thus, the proposed strategy profile is, indeed, a truthful communication equilibrium.
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Appendix B Communication Content

Table B1: Categories Generated from Subcategories

Frequency in Treatment

Category Subcategories Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

All Supergames

Coordination (C) 1-16,51,52,71,72 0.503 0.958 0.929 0.946 0.341 0.454 0.479 0.93
Deliberation (D) 17-26,34-41,57,70 0.274 0.643 0.643 0.606 0.192 0.219 0.218 0.72
Relationship (R) 30-33,42-45,47-50,58 0.228 0.103 0.181 0.200 0.219 0.270 0.236 0.71
Trivia (T) 53-55 0.605 0.886 0.810 0.711 0.633 0.515 0.552 1.00
Information (I) 27-29,46,56,59-69 0.215 - - - 0.184 0.297 0.285 0.81
Report of action 27,29,46,61,62,66-69 0.008 - - - 0.003 0.020 0.006 0.85
Report of action C 27,29,61,66,68 0.062 - - - 0.054 0.087 0.081 0.77
Report of action D 46,62,67,69 0.058 - - - 0.025 0.070 0.113 0.92
Report of signal 28,56,59,60,66-69 0.141 - - - 0.128 0.187 0.190 0.84
Report of signal c 59,68,69 0.066 - - - 0.028 0.091 0.118 0.91
Report of signal d 28,56,60,66,67 0.204 - - - 0.183 0.273 0.272 0.80

Last 3 Supergames

Coordination (C) 1-16,51,52,71,72 0.404 0.975 0.974 0.973 0.241 0.328 0.381 0.95
Deliberation (D) 17-26,34-41,57,70 0.223 0.543 0.654 0.58 0.146 0.167 0.186 0.68
Relationship (R) 30-33,42-45,47-50,58 0.258 0.117 0.244 0.293 0.208 0.301 0.29 0.7
Trivia (T) 53-55 0.708 0.963 0.91 0.833 0.73 0.641 0.66 1
Information (I) 27-29,46,56,59-69 0.24 - - - 0.176 0.325 0.338 0.79
Report of action 27,29,46,61,62,66-69 0.003 - - - 0.001 0.007 0.002 0.8
Report of action C 27,29,61,66,68 0.066 - - - 0.06 0.083 0.086 0.75
Report of action D 46,62,67,69 0.064 - - - 0.012 0.076 0.139 0.91
Report of signal 28,56,59,60,66-69 0.161 - - - 0.112 0.219 0.232 0.82
Report of signal c 59,68,69 0.067 - - - 0.013 0.083 0.141 0.91
Report of signal d 28,56,60,66,67 0.227 - - - 0.175 0.301 0.318 0.78

Notes: Categories are 1 if the rater identified content related to at least one of the subcategories for a give text unit
and 0 otherwise. Frequency indicates the probability that both raters indicated one of the respective subcategories for a
randomly selected text unit. Frequencies < 0.001 omitted (-). κ̄ is the average Cohen’s Kappa over all treatments. Mean
κ̄ of all generated categories is 0.84.
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Table B2: Battery of Subcategories for Coding – All Supergames

Frequency in Treatment

# Subcategory Category Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

1 Proposal: both C C 0.246 0.542 0.420 0.500 0.169 0.210 0.231 0.85
2 Proposal: both D C 0.033 0.071 0.077 0.054 0.012 0.039 0.030 0.81
3 Proposal: alternate C 0.013 0.024 0.058 0.066 0.005 0.001 0.013 0.75
4 Proposal: self D other C C 0.010 0.013 0.047 0.031 0.006 0.004 0.008 0.72
5 Proposal: self C other D C 0.005 0.008 0.008 0.009 0.001 0.001 0.010 0.56
6 Proposal: other coordination C 0.006 0.029 0.044 0.017 - 0.005 0.002 0.41
7 Question: what action other C 0.009 0.024 0.025 0.017 0.009 0.005 0.005 0.51
8 Announcement: C C 0.009 0.016 0.047 0.006 0.006 0.006 0.008 0.59
9 Announcement: D C 0.007 0.021 0.014 0.017 0.006 0.006 0.004 0.76
10 Rejection of proposal C 0.004 0.005 0.005 0.017 0.002 0.004 0.002 0.59
11 Acceptance proposal C 0.297 0.685 0.585 0.617 0.189 0.256 0.268 0.85
12 Implicit punishment threat for D C 0.003 0.005 0.003 0.029 - 0.004 0.001 0.33
13 Punishment threat grim C 0.003 0.005 0.014 0.003 0.005 - - 0.57
14 Punishment threat lenient grim C - - - - - - - -
15 Approval of punishment threat C 0.002 - - 0.014 0.002 0.001 0.001 0.41
16 Ask for coordination C 0.041 0.119 0.115 0.120 0.011 0.031 0.041 0.79
17 Benefits of C D 0.051 0.161 0.099 0.151 0.038 0.034 0.035 0.63
18 Benefits of D D 0.007 0.013 0.027 0.023 0.002 0.005 0.005 0.53
19 Benefits of asymmetric play D 0.003 0.003 0.008 0.011 0.002 0.001 0.003 0.50
20 Related to fairness discussion D 0.009 0.040 0.025 0.031 0.002 0.002 0.010 0.66
21 Related to strategic uncertainty D 0.050 0.095 0.206 0.100 0.026 0.042 0.036 0.56
22 Related to payoffs D 0.055 0.188 0.181 0.154 0.029 0.035 0.036 0.71
23 Related to Prisoner’s dilemma D 0.004 0.058 0.003 - 0.002 - - 0.84
24 Related to game theory D 0.002 0.011 0.005 0.009 - 0.001 - 0.54
25 Future benefit of C D 0.009 0.016 0.019 0.054 0.006 0.007 0.003 0.49
26 Short term incentives of D D - 0.005 - - - - - 0.05
27 Attribute other d to randomness I 0.004 - - - 0.006 0.006 0.002 0.34
28 Attribute own d to randomness I 0.006 - - - 0.010 0.007 0.005 0.36
29 Assurance to have played C I 0.002 - - - - 0.003 0.003 0.21
30 Promise R 0.021 0.040 0.069 0.077 0.014 0.015 0.013 0.71
31 Distrust R 0.002 0.005 - - 0.002 0.001 0.002 0.27
32 Trust R 0.012 0.016 0.019 0.023 0.011 0.010 0.012 0.63
33 Argue for trustworthy behavior R 0.026 0.048 0.102 0.111 0.021 0.011 0.014 0.62
34 Report payoff from past games D 0.028 0.063 0.022 0.006 0.030 0.025 0.027 0.72
35 Report signals of past games D 0.013 0.042 - 0.009 0.013 0.014 0.011 0.42
36 Good past experience with CC D 0.051 0.151 0.126 0.100 0.028 0.048 0.037 0.75
37 Good past experience with DD D 0.001 0.003 0.003 0.003 - 0.002 0.001 0.43
38 Bad past experience with CC D 0.008 0.021 0.060 0.014 0.002 0.001 0.007 0.44
39 Bad past experience with CC D - - 0.003 - - 0.001 0.001 0.24
40 Good past experience asym. play D 0.001 0.005 0.011 0.003 - - 0.001 0.53
41 Bad past experience asym. play D 0.001 0.003 0.003 0.006 - 0.002 - 0.52
42 Positive feedback after CC R 0.119 - - - 0.115 0.167 0.143 0.81
43 Positive feedback after DD R 0.002 - - - 0.002 0.003 0.001 0.65
44 Positive feedback after asym. play R 0.001 - - - 0.001 0.002 0.002 0.64
45 Empathy R 0.016 - 0.003 - 0.014 0.022 0.020 0.57
46 Confess D I - - - - - 0.001 - 0.40
47 Apology R 0.002 - - - 0.004 0.001 0.001 0.48
48 Justification of play R 0.001 - - - 0.003 0.001 - 0.19
49 Accusation of cheating R 0.007 - - - 0.004 0.008 0.014 0.55
50 Verbal punishment R 0.001 - - - 0.001 0.001 - 0.57
51 Renegotiation C 0.001 - - - - 0.001 0.001 0.06
52 Argument against punishment C - - - - - - - -
53 Small talk T 0.247 0.820 0.739 0.583 0.176 0.141 0.168 0.70
54 Off topic T 0.283 0.193 0.093 0.094 0.368 0.229 0.330 0.58
55 Boredom T 0.011 0.021 - 0.014 0.012 0.012 0.010 0.57
56 Disappointed after d signal I 0.024 - - - 0.029 0.030 0.025 0.55
57 Confusion D 0.033 0.058 0.085 0.026 0.015 0.036 0.037 0.35
58 Motivational talk R 0.026 - - - 0.030 0.041 0.022 0.51
59 Report: own signal c I 0.004 - - - 0.001 0.006 0.008 0.65
60 Report: own signal d I 0.012 - - - 0.005 0.021 0.016 0.82
61 Report: own action C I 0.005 - - - 0.001 0.013 0.005 0.50
62 Report: own action D I 0.003 - - - - 0.009 0.001 0.78
63 Ask for others payoff I 0.019 - - - 0.010 0.023 0.035 0.83
64 Ask for others signal I 0.006 - - - 0.003 0.004 0.014 0.45
65 Ask for others action I 0.006 - - - 0.003 0.011 0.007 0.85
66 Report: own payoff 0 I 0.025 - - - 0.012 0.032 0.047 0.95
67 Report: own payoff 17 I 0.004 - - - 0.002 0.009 0.003 0.90
68 Report: own payoff 30 I 0.022 - - - 0.011 0.016 0.051 0.96
69 Report: own payoff 37 I 0.001 - - - 0.001 0.002 0.001 0.73
70 Being cheated on in past games D 0.005 - - 0.003 0.003 0.007 0.006 0.45
71 Counter-proposal C - - - - - 0.001 0.001 0.46
72 Rejection of punishment C - - 0.003 - - - - 0.67

Notes: Subcategories are 1 if the rater identified content related to the subcategory for a given text unit and 0 otherwise.
Category are Coordination (C), Deliberation (D), Relationship (R), Trivia (T) and Information (I). Frequency indicates
the probability that both raters indicated the respective subcategory for a randomly selected text unit. Frequencies < 0.001
omitted (-). κ̄ is the average Cohen’s Kappa over all treatments. Mean κ̄ of all subcategories with an overall frequency
> 0.01 is 0.65.
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Table B3: Battery of Subcategories for Coding – Last Three Supergames

Frequency in Treatment

# Subcategory Category Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

1 Proposal: both C C 0.224 0.673 0.487 0.613 0.131 0.177 0.195 0.88
2 Proposal: both D C 0.01 0.012 0.058 0.013 0.004 0.011 0.005 0.78
3 Proposal: alternate C 0.005 0.025 0.032 0.013 - - 0.007 0.75
4 Proposal: self D other C C 0.002 - 0.026 - - - 0.004 0.76
5 Proposal: self C other D C 0.002 - 0.006 0.007 - - 0.005 0.64
6 Proposal: other coordination C 0.005 0.012 0.071 0.007 - 0.002 - 0.56
7 Question: what action other C 0.003 - 0.026 0.007 0.001 - 0.005 0.44
8 Announcement: C C 0.007 0.006 0.058 - 0.002 0.004 0.01 0.54
9 Announcement: D C 0.001 0.006 0.019 - - - 0.001 0.83
10 Rejection of proposal C 0.003 0.006 0.006 0.013 - 0.003 0.002 0.6
11 Acceptance proposal C 0.246 0.747 0.59 0.66 0.15 0.185 0.207 0.88
12 Implicit punishment threat for D C 0.003 0.006 - 0.033 0.001 0.003 - 0.28
13 Punishment threat grim C 0.002 - - 0.007 0.005 - - 0.52
14 Punishment threat lenient grim C - - - - - - - -
15 Approval of punishment threat C 0.002 - - 0.027 0.002 - - 0.4
16 Ask for coordination C 0.022 0.062 0.096 0.093 0.004 0.01 0.024 0.79
17 Benefits of C D 0.04 0.123 0.122 0.167 0.024 0.025 0.026 0.62
18 Benefits of D D 0.001 - 0.006 0.007 - 0.001 - 0.28
19 Benefits of asymmetric play D - - 0.006 - - - - 0.4
20 Related to fairness discussion D 0.007 0.037 0.019 0.033 0.002 - 0.008 0.66
21 Related to strategic uncertainty D 0.036 0.068 0.237 0.093 0.013 0.028 0.024 0.54
22 Related to payoffs D 0.032 0.136 0.147 0.113 0.01 0.02 0.02 0.71
23 Related to Prisoner’s dilemma D 0.003 0.056 - - 0.002 - - 0.88
24 Related to game theory D 0.001 0.012 - 0.013 0.001 - - 0.71
25 Future benefit of C D 0.007 0.006 0.013 0.067 0.006 0.006 0.001 0.54
26 Short term incentives of D D - - - - - - - -
27 Attribute other d to randomness I 0.004 - - - 0.005 0.006 0.002 0.31
28 Attribute own d to randomness I 0.006 - - - 0.01 0.004 0.005 0.3
29 Assurance to have played C I 0.002 - - - - 0.003 0.005 0.22
30 Promise R 0.026 0.062 0.103 0.12 0.015 0.017 0.012 0.72
31 Distrust R 0.002 0.006 - - 0.002 0.001 0.003 0.36
32 Trust R 0.012 0.006 0.019 0.02 0.012 0.006 0.016 0.6
33 Argue for trustworthy behavior R 0.029 0.062 0.135 0.18 0.014 0.012 0.015 0.61
34 Report payoff from past games D 0.025 0.043 0.019 - 0.024 0.023 0.03 0.65
35 Report signals of past games D 0.017 0.062 - 0.02 0.014 0.016 0.014 0.44
36 Good past experience with CC D 0.055 0.142 0.179 0.167 0.029 0.048 0.039 0.73
37 Good past experience with DD D 0.001 0.006 0.006 - - - - 0.36
38 Bad past experience with CC D 0.01 0.019 0.109 0.033 0.001 - 0.007 0.43
39 Bad past experience with CC D 0.001 - - - - 0.001 0.001 0.31
40 Good past experience asym. play D 0.001 - 0.013 - - - - 0.5
41 Bad past experience asym. play D 0.001 - - - - 0.002 - 0.67
42 Positive feedback after CC R 0.14 - - - 0.11 0.201 0.178 0.8
43 Positive feedback after DD R 0.001 - - - 0.001 - 0.001 0.44
44 Positive feedback after asym. play R - - - - - - - -
45 Empathy R 0.02 - - - 0.017 0.025 0.029 0.59
46 Confess D I - - - - - 0.001 - 1
47 Apology R - - - - 0.001 - - 0.15
48 Justification of play R 0.001 - - - 0.001 0.001 - 0.12
49 Accusation of cheating R 0.009 - - - 0.002 0.01 0.018 0.61
50 Verbal punishment R - - - - - 0.001 - 0.29
51 Renegotiation C 0.001 - - - - - 0.002 0.05
52 Argument against punishment C - - - - - - - -
53 Small talk T 0.241 0.92 0.821 0.66 0.156 0.127 0.177 0.66
54 Off topic T 0.394 0.315 0.122 0.14 0.473 0.342 0.455 0.58
55 Boredom T 0.014 0.043 - 0.02 0.016 0.012 0.011 0.52
56 Disappointed after d signal I 0.029 - - - 0.039 0.038 0.021 0.56
57 Confusion D 0.022 0.031 0.006 0.027 0.012 0.023 0.031 0.25
58 Motivational talk R 0.028 - - - 0.027 0.046 0.026 0.49
59 Report: own signal c I 0.002 - - - - 0.003 0.005 0.5
60 Report: own signal d I 0.01 - - - 0.002 0.016 0.017 0.8
61 Report: own action C I 0.005 - - - - 0.011 0.005 0.43
62 Report: own action D I 0.001 - - - - 0.002 0.001 0.75
63 Ask for others payoff I 0.018 - - - 0.006 0.017 0.04 0.77
64 Ask for others signal I 0.002 - - - 0.002 0.002 0.003 0.2
65 Ask for others action I 0.004 - - - 0.002 0.006 0.006 0.82
66 Report: own payoff 0 I 0.028 - - - 0.01 0.034 0.054 0.94
67 Report: own payoff 17 I 0.001 - - - - 0.004 0.001 0.91
68 Report: own payoff 30 I 0.023 - - - 0.002 0.017 0.063 0.96
69 Report: own payoff 37 I 0.001 - - - 0.001 0.001 - 0.67
70 Being cheated on in past games D 0.008 - - - 0.004 0.011 0.012 0.47
71 Counter-proposal C - - - - - - 0.001 0.33
72 Rejection of punishment C - - - - - - - -

Notes: See notes of Table B2. Data from last three supergames.
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Table B4: Communication after First Defection Signal - All Supergames

Public Repeated Private Repeated

Category d signal c signals diff p-value d signal c signal diff p-value
Coordination 0.45 0.29 0.17 0.01 0.48 0.29 0.19 0.01
Deliberation 0.12 0.13 -0.01- 0.85 0.08 0.09 -0.01- 0.85
Relationship 0.26 0.40 -0.14- 0.03 0.24 0.32 -0.08- 0.26
Information 0.66 0.34 0.33 0.00 0.64 0.34 0.29 0.00
Trivia 0.38 0.53 -0.15- 0.00 0.39 0.54 -0.15- 0.04
Report of action 0.41 0.02 0.39 0.00 0.44 0.09 0.35 0.00
Report of C 0.40 0.02 0.38 0.00 0.44 0.09 0.35 0.00
Report of D - - - - - - - -
Report of signal 0.56 0.33 0.23 0.00 0.64 0.33 0.31 0.00
Report of c 0.09 0.33 -0.24- 0.00 0.01 0.32 -0.31- 0.00
Report of d 0.48 - - - 0.64 0.00 0.63 0.00

Notes: Frequency of communication categories for subject-round observations with cooperative history of both
players up to round t. A participant has a cooperative history if all her previous actions were C and all signals
she observed in rounds < t were c. Columns compare the communication in round t+ 1 conditional on the
signals received in round t. Frequencies indicate the probability that both raters indicated the category for a
text unit. P-values derived from logit models with standard errors clustered on participant and match. Zero
frequencies omitted (-).

Appendix C Strategy Estimation

We use the strategy frequency estimation method (Dal Bó and Fréchette, 2011) and its

adaptation to behavior strategies (Breitmoser, 2015) to analyze participants’ strategies across

treatments. The estimation is perfomed with the R package stratEst (Dvorak, 2021). A

detailed documentation of the method can be found in Dvorak (2020).

Model Definition

Let pk denote the share of strategy k ∈ {1, · · · , K} in the population and πsk ∈ [0, 1] the

probability of cooperation prescribed by strategy k in state sk ∈ Sk. When estimating pure

strategies, we assume that there exists a pure underlying response probability ξsk ∈ {0, 1}
to each πsk . The pure responses are confounded by a tremble which implements the wrong

action and occurs with probability γ ∈ [0, 0.5]. We assume that the probability of a tremble

is the same for all individuals, supergames and rounds and that the realizations of trembles

are independent across these dimensions.1 The probability of cooperation for pure strategy k

1See Bland (2020) for a recent adaptation of SFEM which allows for heterogeneity in the trembles.
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Table B5: Communication after First Defection Signal – All Supergames

Public Repeated Private Repeated

# Subcategory d signal c signals diff d signal c signal diff

1 Proposal: both C 0.164 0.145 0.019 0.168 0.143 0.025
2 Proposal: both D 0.013 0.012 0.001 - 0.011 -0.011-
3 Proposal: alternate - - - - 0.005 -0.005-
4 Proposal: self D other C - - - 0.017 0.003 0.014
5 Proposal: self C other D 0.007 - 0.007 - - -
6 Proposal: other coordination - 0.004 -0.004- - - -
7 Question: what action other - - - - - -
8 Announcement: C 0.007 0.002 0.005 0.025 0.003 0.022
9 Announcement: D 0.007 - 0.007 - - -
10 Rejection of proposal - - - - 0.002 -0.002-
11 Acceptance proposal 0.178 0.164 0.014 0.143 0.165 -0.022-
12 Implicit punishment threat for D - - - - 0.002 -0.002-
13 Punishment threat grim - - - - - -
14 Punishment threat lenient grim - - - - - -
15 Approval of punishment threat - - - - 0.002 -0.002-
16 Ask for coordination 0.013 0.004 0.009 0.025 0.005 0.02
17 Benefits of C 0.007 0.008 -0.001- 0.008 0.017 -0.009-
18 Benefits of D - - - - - -
19 Benefits of asymmetric play - - - - - -
20 Related to fairness discussion - - - - - -
21 Related to strategic uncertainty 0.013 0.017 -0.004- 0.025 0.011 0.014
22 Related to payoffs 0.013 0.006 0.007 0.017 0.016 0.001
23 Related to Prisoner’s dilemma - - - - - -
24 Related to game theory - 0.002 -0.002- - - -
25 Future benefit of C 0.007 0.002 0.005 0.008 0.002 0.006
26 Short term incentives of D - - - - - -
27 Attribute other d to randomness 0.033 - 0.033 - 0.002 -0.002-
28 Attribute own d to randomness 0.053 - 0.053 0.042 - 0.042
29 Assurance to have played C - - - 0.008 0.003 0.005
30 Promise - 0.012 -0.012- 0.008 - 0.008
31 Distrust - - - 0.008 - 0.008
32 Trust 0.013 0.006 0.007 0.084 0.003 0.081
33 Argue for trustworthy behavior 0.013 - 0.013 - 0.003 -0.003-
34 Report payoff from past games - 0.019 -0.019- 0.008 0.003 0.005
35 Report signals of past games - 0.004 -0.004- - 0.005 -0.005-
36 Good past experience with CC - 0.017 -0.017- - 0.002 -0.002-
37 Good past experience with DD - - - - - -
38 Bad past experience with CC - - - - - -
39 Bad past experience with CC - - - - 0.002 -0.002-
40 Good past experience asym. play - - - - - -
41 Bad past experience asym. play - - - - - -
42 Positive feedback after CC - 0.321 -0.321- 0.017 0.233 -0.216-
43 Positive feedback after DD - - - - - -
44 Positive feedback after asym. play - - - 0.008 0.002 0.006
45 Empathy 0.132 - 0.132 - 0.027 -0.027-
46 Confess D - - - - - -
47 Apology - 0.002 -0.002- - - -
48 Justification of play - - - - - -
49 Accusation of cheating 0.046 - 0.046 0.143 - 0.143
50 Verbal punishment 0.007 - 0.007 - - -
51 Renegotiation - 0.002 -0.002- - - -
52 Argument against punishment - - - - - -
53 Small talk 0.02 0.014 0.006 0.059 0.046 0.013
54 Off topic 0.118 0.269 -0.151- 0.151 0.38 -0.229-
55 Boredom - 0.015 -0.015- - 0.008 -0.008-
56 Disappointed after d signal 0.191 - 0.191 0.185 - 0.185
57 Confusion 0.059 0.044 0.015 - 0.027 -0.027-
58 Motivational talk 0.033 0.089 -0.056- 0.008 0.029 -0.021-
59 Report: own signal c 0.007 0.004 0.003 0.008 0.008 -
60 Report: own signal d 0.151 - 0.151 0.16 0.002 0.158
61 Report: own action C 0.092 0.004 0.088 0.008 0.006 0.002
62 Report: own action D - - - - - -
63 Ask for others payoff 0.086 0.008 0.078 0.059 0.035 0.024
64 Ask for others signal 0.013 0.002 0.011 0.034 0.016 0.018
65 Ask for others action 0.066 - 0.066 0.042 - 0.042
66 Report: own payoff 0 0.197 - 0.197 0.395 0.003 0.392
67 Report: own payoff 17 - - - - - -
68 Report: own payoff 30 0.066 0.015 0.051 - 0.076 -0.076-
69 Report: own payoff 37 - - - - - -
70 Being cheated on in past games - 0.006 -0.006- - 0.003 -0.003-
71 Counter-proposal - - - - 0.002 -0.002-
72 Rejection of punishment - - - - - -

Notes: Frequency of subcategories for subject-round observations with cooperative history in round t. A Subject has a
cooperative history if her previous actions were C and all signals she observed in rounds < t were c. Frequencies illustrate
the use of subcategories dependent on signals in round t. Frequency indicates the probability that both raters indicated
the respective subcategory for a randomly selected text unit. Frequencies < 0.001 omitted (-).
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Table B6: Communication after First Defection Signal – Last Three Supergames

Public Repeated Private Repeated

# Subcategory d signal c signals diff d signal c signal diff

1 Proposal: both C 0.136 0.094 0.042 0.182 0.112 0.07
2 Proposal: both D - 0.01 -0.01 - 0.013 -0.013
3 Proposal: alternate - - - - 0.005 -0.005
4 Proposal: self D other C - - - - 0.005 -0.005
5 Proposal: self C other D - - - - - -
6 Proposal: other coordination - - - - - -
7 Question: what action other - - - - - -
8 Announcement: C - 0.003 -0.003 0.03 0.005 0.025
9 Announcement: D - - - - - -
10 Rejection of proposal - - - - 0.003 -0.003
11 Acceptance proposal 0.123 0.094 0.029 0.121 0.142 -0.021
12 Implicit punishment threat for D - - - - - -
13 Punishment threat grim - - - - - -
14 Punishment threat lenient grim - - - - - -
15 Approval of punishment threat - - - - - -
16 Ask for coordination - - - 0.045 0.003 0.042
17 Benefits of C - - - - 0.013 -0.013
18 Benefits of D - - - - - -
19 Benefits of asymmetric play - - - - - -
20 Related to fairness discussion - - - - - -
21 Related to strategic uncertainty - 0.01 -0.01 - 0.003 -0.003
22 Related to payoffs 0.012 0.006 0.006 0.015 0.008 0.007
23 Related to Prisoner’s dilemma - - - - - -
24 Related to game theory - - - - - -
25 Future benefit of C 0.012 0.003 0.009 - - -
26 Short term incentives of D - - - - - -
27 Attribute other d to randomness 0.037 - 0.037 - - -
28 Attribute own d to randomness 0.025 - 0.025 0.045 - 0.045
29 Assurance to have played C - - - 0.015 0.005 0.01
30 Promise - 0.01 -0.01 - - -
31 Distrust - - - 0.015 - 0.015
32 Trust 0.025 0.003 0.022 0.136 0.005 0.131
33 Argue for trustworthy behavior 0.025 - 0.025 - 0.003 -0.003
34 Report payoff from past games - 0.026 -0.026 - - -
35 Report signals of past games - 0.003 -0.003 - 0.008 -0.008
36 Good past experience with CC - 0.023 -0.023 - 0.003 -0.003
37 Good past experience with DD - - - - - -
38 Bad past experience with CC - - - - - -
39 Bad past experience with CC - - - - 0.003 -0.003
40 Good past experience asym. play - - - - - -
41 Bad past experience asym. play - - - - - -
42 Positive feedback after CC - 0.314 -0.314 - 0.254 -0.254
43 Positive feedback after DD - - - - - -
44 Positive feedback after asym. play - - - - - -
45 Empathy 0.16 - 0.16 - 0.037 -0.037
46 Confess D - - - - - -
47 Apology - - - - - -
48 Justification of play - - - - - -
49 Accusation of cheating 0.074 - 0.074 0.182 - 0.182
50 Verbal punishment 0.012 - 0.012 - - -
51 Renegotiation - - - - - -
52 Argument against punishment - - - - - -
53 Small talk 0.025 - 0.025 0.091 0.064 0.027
54 Off topic 0.185 0.353 -0.168 0.197 0.479 -0.282
55 Boredom - 0.01 -0.01 - - -
56 Disappointed after d signal 0.235 - 0.235 0.136 - 0.136
57 Confusion 0.062 0.036 0.026 - 0.035 -0.035
58 Motivational talk 0.049 0.071 -0.022 - 0.024 -0.024
59 Report: own signal c - 0.003 -0.003 - 0.005 -0.005
60 Report: own signal d 0.111 - 0.111 0.121 0.003 0.118
61 Report: own action C 0.086 - 0.086 0.015 0.011 0.004
62 Report: own action D - - - - - -
63 Ask for others payoff 0.062 - 0.062 0.091 0.045 0.046
64 Ask for others signal - 0.003 -0.003 - 0.003 -0.003
65 Ask for others action 0.049 - 0.049 0.045 - 0.045
66 Report: own payoff 0 0.21 - 0.21 0.5 0.003 0.497
67 Report: own payoff 17 - - - - - -
68 Report: own payoff 30 0.074 0.006 0.068 - 0.091 -0.091
69 Report: own payoff 37 - - - - - -
70 Being cheated on in past games - 0.01 -0.01 - 0.005 -0.005
71 Counter-proposal - - - - 0.003 -0.003
72 Rejection of punishment - - - - - -

Notes: See notes of Table B5. Data from last three supergames.
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Table B7: Frequency and Truthfulness of Private Information Exchange - All Supergames

Public Private

p(report) p(true) p(report) p(true)

Actions
Report of action 0.11 0.94 0.14 0.89
Report of C 0.09 0.95 0.14 0.88
Report of D 0.02 0.97 0.01 1.00
Report of C if ωi = d 0.11 0.83 0.14 0.61
D and report of D if ωi = d 0.12 1.00 0.03 1.00
C and report of C ωi = d 0.30 1.00 0.30 1.00
D and report of C if ωi = d 0.03 0.00 0.08 0.00

Signals
Report of signal - - 0.33 0.95
Report of c - - 0.23 0.98
Report of d - - 0.10 0.86
Report of d if ω−i = d - - 0.33 -

Notes: Frequencies of coding in all participant-round observations after round one for the
repeated communication treatments with public monitoring (columns 2 and 3) and private
monitoring (columns 4 and 5). A coding is considered valid if both raters indicated the same
sub-category for a participant-round observation. Values might not add up as expected due to
rounding.

Table B8: Private Information Exchange and Mutual Cooperation - All Supergames

Public Private

estimate std. error p-value estimate std. error p-value

intercept -0.14 0.23 0.55 -0.76 0.32 0.02
Report of C 0.65 0.36 0.07 2.42 1.16 0.04
Report of d - - - 1.42 0.41 0.00
Report of C × Report of d - - - -2.12 1.15 0.06
Trivia 0.76 0.30 0.01 -0.12 0.32 0.70

Notes: Table shows coefficients of logit models with standard errors clustered on participant
and match. Report of C is a dummy that indicates if C is reported by the player for whom
the signal indicated d in the last round. Report of d is a dummy that indicates whether the
defection signal was reported by the player who received the signal. Data of all supergames. A
coding is considered valid if both raters indicated the same sub-category for a participant-round
observation.
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in state sk is given by: πsk = ξsk(1 − γ) + (1 − ξsk)(1 − γ). Let yisk denote the number of

times individual i ∈ {1, · · · , N} cooperates in nisk observations of state sk of strategy k. We

report the maximum-likelihood estimates of the parameters pk, πsk (or alternatively ξsk and

γ) that maximize the log-likelihood

lnL =
N∑
i=1

ln

(
K∑
k=1

pk
∏
sk∈Sk

(πsk)
yisk (1− πsk)

nisk
−yisk

)
.

To find the global optima of the parameters, we execute the EM-algorithm (Dempster, Laird

and Rubin, 1977) from multiple random starting points and use the Newton-Raphson method

to check for convergence.

To obtain the results reported in Table C1, we perform treatment-wise strategy estimation

starting with the candidate set of 24 strategies listed in Tables C2-C5. We assume that all

strategies of the same model condition on the same information and report the model with

the highest likelihood. The strategies fitted to the data of the perfect monitoring treatments

condition on the action profile {ai, a−i} observed in the previous round. The strategies fitted

to the data of the imperfect monitoring treatments condition on the action-signal profile

{ai, ω−i} observed in the previous round.

SFEM Results

Table C1 depicts the estimated strategy shares and standard errors. The main result of the

strategy estimation is that the shares of lenient and forgiving strategies increase substantially

with communication under all three monitoring structures. Under imperfect monitoring,

repeated communication further increases the use of lenient and forgiving strategies.

Adaptation of Strategies

Tables C2-C5 list the set of 24 strategies used to obtain the strategy estimation results

reported in Table C1. Circles in Table C4 represent strategy states and arrows deterministic

state transitions. In the treatments with perfect monitoring, the state traditions can in

principle be triggered by action profiles, the two public signals or action-signal combinations.

In the treatments with public monitoring, transitions can be triggered by the two public

signals or action-signal combinations. We assume that all strategies in the set condition on

the same information, run the estimation for the 3 (2) possibilities and report the results

with the highest log-likelihood.
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Table C1: Strategy Frequency Estimation

Perfect Public Private

lenient/forgiving No Pre Rep No Pre Rep No Pre Rep

ALLD no 0.42 - - 0.61 0.02 - 0.50 0.02 -
(0.07) - - (0.08) (0.02) - (0.07) (0.02) -

ALLC yes - - - - - 0.32 - - 0.27
- - - - - (0.19) - - (0.20)

DC no - - - - - - - - -
- - - - - - - - -

FC no - - - - 0.08 0.01 - - -
- - - - (0.04) (0.02) - - -

GRIM no 0.08 0.23 - - 0.02 - 0.03 - -
(0.06) (0.16) - - (0.02) - (0.04) - -

TFT yes 0.08 - - 0.03 - - - - -
(0.06) - - (0.04) - - - - -

PTFT yes - - 0.17 - - - - - -
- - (0.18) - - - - - -

T2 yes - - - - - - - - -
- - - - - - - - -

TF2T yes - - - 0.01 0.01 - - 0.07 0.07
- - - (0.02) (0.04) - - (0.09) (0.08)

TF3T yes - - - - - - - - -
- - - - - - - - -

T2FT yes - - - - 0.04 - - 0.05 -
- - - - (0.04) - - (0.06) -

T2F2T yes 0.04 - 0.40 - 0.15 - - 0.24 0.09
(0.03) - (0.21) - (0.10) - - (0.15) (0.10)

GRIM2 yes - - 0.44 - 0.20 0.21 0.19 0.10 0.15
- - (0.20) - (0.10) (0.15) (0.07) (0.14) (0.09)

GRIM3 yes - - - 0.04 0.02 0.32 - 0.01 0.12
- - - (0.03) (0.04) (0.18) - (0.06) (0.17)

PT2FT yes - - - - - - - - -
- - - - - - - - -

DTFT yes 0.12 - - - - - - - -
(0.06) - - - - - - - -

DTF2T yes 0.02 - - 0.07 - - - - -
(0.02) - - (0.04) - - - - -

DTF3T yes - - - - - - - - -
- - - - - - - - -

DGRIM2 yes - - - 0.02 - - 0.01 - -
- - - (0.04) - - (0.02) - -

DGRIM3 yes - - - - - - - - -
- - - - - - - - -

SGRIM yes 0.09 - - 0.09 - 0.04 0.24 0.22 0.05
(0.08) - - (0.06) - (0.04) (0.09) (0.11) (0.05)

M1BF yes - - - 0.03 0.38 - - 0.10 0.08
- - - (0.05) (0.10) - - (0.09) (0.09)

T1BFas yes 0.11 0.77 - 0.05 - 0.06 - 0.07 0.13
(0.07) (0.28) - (0.05) - (0.05) - (0.08) (0.09)

RAND no 0.03 - - 0.05 0.08 0.05 0.03 0.11 0.03
(0.03) - - (0.03) (0.05) (0.04) (0.04) (0.05) (0.03)∑

lenient/forgiving 0.46 0.77 1.00 0.34 0.79 0.94 0.45 0.87 0.97
(0.09) (0.16) (0.01) (0.08) (0.06) (0.04) (0.08) (0.06) (0.04)

γ 0.06 0.01 0.01 0.07 0.06 0.03 0.05 0.02 0.04
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Treatment-wise maximum-likelihood shares of the 24 strategies listed in Tables C2-C5 assuming
constant strategy use over the last three supergames. Strategies condition on action profiles in perfect
treatments, and on action-signal profiles in public and private treatments. γ indicates the probability
of a tremble. Zero shares are omitted (-). Analytic standard errors in parentheses. Values might not
add up as expected due to rounding.
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Strategies 1-20 and their descriptions are taken from Fudenberg, Rand and Dreber (2012).

The remaining four strategies are behavior strategies. Two of the behavior strategies are

motivated by Backhaus and Breitmoser’s (2021) analysis, who present evidence suggesting

that subjects play semi-grim M1BF strategies, and further find that a small share of (noise)

players randomize 50–50 in all states. Taking these findings into account, we include a

strategy RAND that predicts a 50% cooperation probability after all histories. We also

include a semi-grim strategy SGRIM which starts with cooperation and cooperates with

probability of 1 in the cc-state, probability 0 in the dd-state, and probability 0.35 in the

cd and dc states. The value 0.35 is the average cooperation probability that Backhaus and

Breitmoser (2021) report for these states in the lower panel of Table 1 of their paper. We

choose this value instead of estimating the probability from our data, as this would give the

strategy an additional free parameter and therefore an advantage over the other strategies in

the set.

The third behavioral strategy that we include is a M1BF strategy that conditions on the

observed actions (σ∅ = 1, σcc = 1, σcd = 0.75, σdc = 0.5, σdd = 0). The M1BF strategy results

for δ = 0.8 when assuming that subjects start with cooperation, cooperate after mutual

cooperation, and defect after mutual defection. The fourth behavior strategy that we include

is the T1BF strategy that which conditions on the own action and the signal about the

action of the partner in the previous round (σ∅ = 1, σcc = 1, σcd = 0.5, σdc = 1, σdd = 0). The

behavior of T1BFas after round one is the unique behavior of all memory-one belief-free

equilibrium strategies that can be played under imperfect monitoring (see Appendix A for

the derivation of these equilibrium strategies).
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Table C2: Strategies 1-7

Acronym Description Automaton

ALLD Always play D. D

ALLC Always play C. C

DC Start with D, then alternate between C and D. D C

FC Play C in the first round, then D forever. C D

Grim
Play C until either player plays D, then play D
forever.

C

cd, dd, dd

cc D

TFT Play C unless partner played D last round. C

cd, dd

cc, dc

cc,

dc

cd,

ddD

PTFT
(WSLS)

Play C if both players chose the same move last
round, otherwise play D.

C

cd, dc

cc, dd

cc,

dd

cd,

dcD

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic state
transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An unlabeled
arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table C3: Strategies 8-15

Acronym Description Automaton

T2
Play C until either player plays D, then play D
twice and return to C (regardless of all actions
during the punishment rounds).

C

cd, dd, dd

cc D D

TF2T
Play C unless partner played D in both of the last
2 rounds.

C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

ddC D

TF3T
Play C unless partner played D in all of the last 3
rounds.

C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

ddC C D

T2FT
Play C unless partner played D in either of the
last 2 rounds (2 rounds of punishment if partner
plays D).

D
cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

dcC D

T2F2T
Play C unless partner played 2 consecutive Ds
in the last 3 rounds (2 rounds of punishment if
partner plays D twice in a row).

D
cc,

dc

cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

cc, dc

cd, dd

dcCC D

GRIM2
Play C until 2 consecutive rounds occur in which
either player played D, then play D forever.

C

cc cd, dd, dd

cd, dd, dd

cc C D

GRIM3
Play C until 3 consecutive rounds occur in which
either player played D, then play D forever.

C

cc

cc

cd, dd, dd

cd, dd, dd cd, dd, dd

cc C C D

PT2FT

Play C if both players played C in the last 2 rounds,
both players played D in the last 2 rounds, or both
players played D 2 rounds ago and C last round.
Otherwise play D.

D

cc, dd

cc, dd

cd, dc

cd, dc

cd, dc

cc,

dd C D

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic state
transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An unlabeled
arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table C4: Suspicious Strategies 16-20

Acronym Description Automaton

DTFT Play D in the first round, then play TFT. D

cc, dc

cd, dd

cd,

dd

cc,

dcC

DTF2T Play D in the first round, then play TF2T. C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C DD

DTF3T Play D in the first round, then play TF3T. C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C C DD

DGRIM2 Play D in the first round, then play GRIM2. C

cc
cc

cc cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C D

DGRIM3 Play D in the first round, then play GRIM3. C

cc

cc

cc

cc

cd, dd, dd

cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C C D

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic state
transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An unlabeled
arrows indicates an unconditional transition that occurs independent of the observed profile.

30



Table C5: Behavior Strategies 21-24

Acronym Description Automaton

SGRIM
Play C if both players played C, and D if both
players played D. If one player played D and the
other C, play C with probability 0.35.

C dd

cc dd

cd, dc cd, dc

cc

cc

cd, dc

dd

0.35

D

M1BF

Play C if both players played C, and D if both
players played D. If the own action was C and
the other player played D, play C with probability
0.75. If the own action was D and the other player
played C, play C with probability 0.5.

C

dd

cd dd

dccc

cc cd

dddc
cc

cd dccc

cd

dc

dd

0.5

0.75

D

T1BFas

Play C if you played C and the signal was c, and
D if you played D and the signal was d. If the
own action was C and the signal was d, play C
with probability 0.5. If the own action was D and
the signal was c, play C with probability 1.

C

dd

cd dd

dccc

cc cd

dddc
cc

cd dccc

cd

dc

dd

C

0.5

D

RAND Always randomize between C and D with σ = 0.5. 0.5

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Numbers in indicate the probability of
cooperation in the current state of the automaton. Arrows represent deterministic state transitions. The labels indicate the
information profiles of the previous periods which trigger the transitions. An unlabeled arrows indicates an unconditional
transition that occurs independent of the observed profile.
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Appendix D Experimental Instructions and Quiz

[Below are the instructions for the perfect-monitoring treatment with repeated communication.

Instructions for the other treatments were very similar and are therefore omitted here. They

can be obtained from the authors upon request, along with the original instructions in

German.]

Overview

Welcome to this experiment. We ask you not to speak with other participants during the experiment and to

switch off your mobile phones and other mobile electronic devices.

For your participation in today’s session, you will be paid in cash at the end of the experiment. The amount

of the payout depends in part on your decisions, partly on the decisions of other participants and partly on

chance. It is therefore important that you carefully read and understand the instructions before the start of

the experiment.

In this experiment, every interaction between participants goes through the computers you are sitting in front

of. You will interact with each other anonymously. Neither your name nor the names of other participants

will be made public, either today or in future written evaluations.

Today’s session includes several rounds. Your payout amount is the sum of the earned points in all rounds,

converted into euros. The conversion of points into euros is done as follows. Each point is worth 2 cents, so

the following applies: 50 points = EUR 1.00.

All participants will be paid privately, so that other participants will not be able to see how much they have

earned.

Experiment

Interactions and Matching

This experiment comprises 7 identical interactions, each consisting of a randomly determined number of rounds.

At the very beginning, before the first interaction, you are randomly placed in a group with other participants.

In each of the 7 interactions, you will interact with a different participant in your group.

In concrete terms, this is how it works: Before the first interaction, you are assigned to a person from your

group with whom you interact in all rounds of the first interaction. In the second interaction, you are then

assigned to a new person from your group, with whom you interact in all rounds of the second interaction,

etc. In this way, you interact with each person assigned to your group in exactly one interaction, but in all
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rounds of that interaction.

Length of an Interaction

The length of an interaction is determined randomly. After each round there is an 80% chance that there will

be at least one more round.

You can imagine this as follows. A 100-sided dice is rolled after each round. If the roll is 20 or less, there is no

further round. If the roll is a different number (21-100), the interaction continues. Note that the probability

of another round does not depend on the round you are in. The probability of a third round when you are in

round 2 is 80%, as is the probability of a tenth round when you are in round 9.

As soon as chance decides after a round that there is no further round in the interaction, the interaction is

finished and you are assigned to a new person for the next interaction. After the seventh interaction, the

experiment ends.

Interactions and Sequence of Events in a Round

Before each round of interaction, you can chat with the other person on your screen. The chat takes place in

an anonymous chat window. In order to protect your anonymity, it is important that you do not provide any

information about yourself or your seat number during communication. Otherwise we reserve the right not to

pay you any money in the end. The entire chat content is displayed during the interaction and can be read

again.

After the first chat the first round begins.

In each round, you select one of two possible options, A or B. The other person also selects one of two possible

options, A or B.

There is a 90% probability that the option you have chosen will be correctly communicated to the other

person. There is a 10% probability that the option you have not selected will be transmitted. What the other

person receives is what we call the other person’s signal. The same applies to the other person’s option and

your signal. For example, if the other person chooses option A, you receive Signal A with 90% probability

and with 10% probability you get Signal B. Assuming you choose Option B, the other person receives Signal

A with 10% probability and Signal B with 90% probability.

Your round income depends on your selected option and the signal received. Likewise, the payout of the

other person depends on their chosen option and the signal they receive.

Once you and the other person have chosen an option, chance decides which signals are transmitted and

what round earnings result from them with the probabilities given above.
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Figure D1: Round Income [Figure 1 from Instructions]

Your income with signal
Expected income if the other person

chooses option A chooses option B

Your options

The four cells on the right in Figure 1 show the expected earnings depending on your option choice and the

option choice of the other person. For example, if you select option B and the other person selects option

A, you receive Signal A with 90% probability and Signal B with 10%. Therefore you will receive 37 points

with 90% probability and 17 points with 10% probability, that is, your expected earnings in this case are:

0.9*37+0.1*17=35 points.

Figure D2: Part of Feedback Screen (Example) [Figure 2 from Instructions]

Round Income

Your Choice:

Your Signal:

Choice of oth. person:

Signal of oth. person:

Your Points in
this Round:

At the end of the round, you will receive feedback on your chosen option, the signal received, the other

person’s choice of an option, the signal received by the other person, and your own round earnings (see Figure

2).

All possible following rounds are identical in sequence. The course of the current interaction, that is, the

feedback that you received at the end of all previous rounds, is shown in a table in every round.
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End and Payoff

As soon as chance ends the seventh interaction, the experiment is over.

At the end of the experiment, the points from all rounds are converted into euros and paid out privately.

The last screen of the last round of the seventh interaction shows you how much you have earned in euros.

Questions?

Take your time to go over the instructions again. If you have any questions, please raise your hand. An

experimenter will then come to your place.

If you think you have understood everything well, you can start the quiz on your screen. The quiz is only to

ensure that everyone has understood the instructions well. The answers do not affect your payout.
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Quiz [on screen]

[The quiz was the same in all nine treatments. The correct answers appeared on the next screen.]

1. How many interactions are there?

[1,7, it is random]

2. What is the probability that there is a first round of an interaction?

[20%, 80%, 100%]

3. What is the probability that there will be a second round in an interaction when you are

currently in the first?

[20%, 80%, 100%]

4. What is the probability that there will be a third round in an interaction when you are

currently in the second?

[20%, 80%, 100%]

5. What is the probability that there will be a third round in an interaction when you are

currently in the first?

[64%, 80%, 100%]

6. You choose Option B and the other person cooses Option B.

(a) What is the probability that you receive Signal A?

[10%, 90%, 100%]

(b) What is the probability that the other person receives Signal B?

[10%, 90%, 100%]

(c) How high is your payoff in case you receive Signal A?

[19, 35, 37]

(d) How high is the expected payoff of the other person?

[19, 35, 37]
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