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A Coupon Data

We combine data from InternetDrugCoupons.com, RxPharmacyCoupons.com, and
NeedyMeds.org to code coupon introduction dates from January 2009 through Jan-
uary 2018. The data were assembled using historical snapshots of the three websites
stored on the Internet Archive (webarchive.org). No single source is available and reli-
able for the entire time period. The quality of InternetDrugCoupons data, the source
used in Dafny et al. (2017) and extended to encompass the period from January 2008
to October 2017, decreases after June 2015 due to a change in website structure that
resulted in fewer snapshots. Snapshots from RxPharmacyCoupons.com are available
between March 2012 and October 2017, but the website does not appear to be updated
frequently. Data from NeedyMeds.org is available for the entire study period, but its
quality is best from January 2015 onward. A large share of webpages on NeedyMeds.org
are arranged in alphabetical order, which leads to fewer snapshots for drugs beginning
with letters other than “A.” However, we are still able to obtain a reasonable density
of snapshots for other letters starting in January 2015.

By combining all three sources, we are able to obtain at least one snapshot for most
of the year-months over this time frame. Appendix Figure A1) shows the number of
coupons in our dataset by scrape month; each bar represents the maximum number
of coupons observed in that month across the three datasets. In some months, low
bars indicate that only a small number of drugs have archived snapshots that month
(for example, if only the webpage corresponding to drugs starting with the letter “A”
is archived in a given month, that month will have a significantly smaller number
of coupons). The main gap in coverage that overlaps with our study period occurs
between September 2014 and November 2014. When the same drug has a coupon in
multiple datasets, we use the earliest coupon introduction date. Spikes in the data
reflect months were there were a high number of coupons observed, which may be due
to multiple temporary offers per drug (e.g., a free trial offer as well as a separate copay
coupon). We manually verify coupon introduction dates for all drugs are included in
our difference-in-differences analysis, using the method described in Appendix Section
B.2.

Appendix Figure A2 demonstrates the rapid increase in the significance of coupons
for branded drugs. This figure merges the coupon data with public data on drug
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spending from Medicare Part D (2011–2017) and shows that the share of spending with
a coupon increased from 55% in 2011 to over 90% in 2017 for drugs used in Medicare
(with the corresponding commercial share likely being higher). This corresponds to a
doubling in the number of coupons over the same period, from about 400 coupons in
2011 to 800 in 2017 (Appendix Figure A1). Appendix Figure A2 also confirms that
the PBM Medicare Advantage data in our analysis matches the public Medicare Part
D data (although the public data is gross of rebates, and the PBM data are net of
rebates).

Appendix Figure A1: Coupon Data Availability
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Notes: Figure shows availability of coupon data scraped from InternetDrugCoupons.com,
RxPharmacyCoupons.com, and NeedyMeds.org. Blue bars indicate the maximum number of
drugs observed in each year-month across the three websites.
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Appendix Figure A2: Share of branded drug spending with a copay coupon
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Notes: Figure shows the share of total spending on branded drugs accounted for by drugs
with a copay coupon. Data are shown separately for commercial and Medicare segments in
the monthly PBM data, as well as for annual Medicare Part D spending (gross of rebates).
Part D spending is derived from authors calculations using CMS Part D Prescriber data:
Centers for Medicare and Medicaid Services. 2011-2017. “Medicare Provider Utilization and
Payment Data: Part D Prescriber.” https://www.cms.gov/Research-Statistics-Data-and-
Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Part-D-Prescriber
(accessed February 20, 2019).

B Data Construction

B.1 Harmonizing Drug Names

The coupon data contain coupon availability by drug name but do not include other
standardized drug identifiers such as National Drug Codes (NDCs). Drug names may
differ across datasets; for example, the drug name is sometimes followed by its salt (e.g.
hydrochloride, phosphate, acetate, etc.) or dosage form (e.g. Tablet, Capsule, etc.).

To enable merging across various datasets, we remove special characters, company
names, and other extraneous words. The first word of what remains is the “standardized
drug name” for each drug.

B.2 Manual Verification of Coupon Introduction Dates

We manually verify the coupon introduction dates for the subset of drugs that underpin
our identification strategies in the difference-in-differences analysis (Section 2) and
demand estimation (Section 4).
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For the difference-in-differences analysis, the drugs that contribute identifying vari-
ation to our estimates are branded drugs without generic equivalents (defined as in
Appendix Section B.3) for which we can observe at least a 9-month pre-period prior
to coupon introduction and a 12-month post-period.53

We first established a set of drugs to manually verify. Because manually verified
coupon introduction dates may be earlier but not later than scraped introduction dates,
we limited to drugs with scraped introduction dates no earlier than 10 months after
we first observe the drug in the PBM data (this accommodates the need for at least
a 9-month pre-period). We included drugs with scraped introduction dates that occur
through July 2017, a year past the July 2016 cutoff required for a 12-month post-
period. This yielded 66 drugs. Then, we attempted to manually verify the date of
coupon introduction by locating historic snapshots of manufacturer websites.54 Of the
66 drugs, we were able to manually verify and adjust the introduction dates for 52 of
them.55 One of these drugs did not actually introduce a coupon, leaving 65 remaining
drugs. Of these, coupon introduction dates were revised earlier by a median of 10
months (mean 11.5 months). This includes 17 drugs that were not revised to an earlier
introduction date. Appendix Figure B3 shows the distribution of the revisions applied
to the coupon introduction dates originally scraped from the Internet Archive.

These results imply that the scraped coupon database prior to manual verification
reflects coupon introductions with a lag. However, all regression analyses use coupon
dates that are revised via the above manual verification process. Appendix Section
B.6 describes additional detail from our verification process for the drugs used in our
demand estimation.

53This corresponds to drugs that introduced a coupon at least 9 months after a drug is approved and
appears in our data, and where coupon introduction occurs between October 2014 and July 2016 so
that we can observe a 9-month pre-period and 12-month post-period.

54For drugs where the scraped introduction date is within several months of the initial FDA approval
date, we also search for press releases for the drug approval. In a number of cases, a coupon program
is mentioned in the press release, indicating that coupon introduction actually occurred at the same
time that the drug was approved, rather than a few months after FDA approval as sometimes
indicated by the coupon database.

55For the remaining 14 drugs, we were unable to locate informative archived snapshots of manufacturer
websites, in many cases because archived snapshots were not available far enough back in time. For
these drugs, we kept the original scraped coupon introduction dates. For one additional drug
(Xenical) we determined that no coupon in fact existed and removed this drug from consideration.
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Appendix Figure B3: Lags in Scraped Coupon Dataset
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Notes: Figure shows lags between coupon introduction dates in the scraped dataset and
manually collected introduction dates. Data are shown for the 65/66 drugs fitting our
sample criteria that are confirmed to introduce a coupon (1 drug is excluded as it did not
actually introduce a coupon).

B.3 FDA data

We use the Drugs@FDA database of FDA-approved drugs to obtain drug-specific char-
acteristics such as application approval date, application type (New Drug Application
or Abbreviated New Drug Application), active ingredient at the FDA application level,
and whether or not a drug is an extended-release formulation.56 We use the application
type to help define generic status (all drugs approved via an Abbreviated New Drug
Application are generic drugs). We merged the Drugs@FDA data with the National
Drug Code Directory (also maintained by the FDA) by application number. This al-
lows us to ultimately merge the Drugs@FDA data with our PBM dataset, which defines
a drug product by its 9-digit National Drug Code (NDC). Below, we provide further
details on how we obtained and merged these data sources.

We obtained yearly copies of the Drugs@FDA database for 2009–2018 from the FDA
website (U.S. Food and Drug Administration, 2009-2018a). We appended these yearly
datasets, keeping the most recent information for each FDA application number. The
database contains information on all drugs currently manufactured, prepared, propa-
gated, compounded, or processed for sale in the U.S. Each drug product is identified

56We classify drugs as extended release based on whether their Drugs@FDA dosage form includes
words like “extended,” “release,” or “delayed.”
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by a unique National Drug Code (NDC). The first 9 digits of the NDC code (NDC9)
identify the drug labeler and drug product, while the remaining 1 or 2 digits denote
the package size. We defined drug products at the NDC9 level, keeping the most re-
cent information for each NDC9 code. We obtained yearly copies of the National Drug
Code Directory (U.S. Food and Drug Administration, 2009-2018b) for 2009-2018, using
the Web Archive to obtain data prior to 2011. Using yearly snapshots ensures that we
observe NDC codes that may have been changed or discontinued over time. The NDC9
data also contain FDA application numbers, which allows us to merge the NDC9 codes
with the Drugs@FDA data.57

Using the merged Drugs@FDA and NDC data, we determine whether there are
generic equivalents for a given NDC9 code, where generic equivalents are defined as
generic NDC9 codes that share the same active ingredient, dosage form, route of ad-
ministration, and extended-release status.

B.4 Dataset for Reduced Form Analysis

The unit of observation for the PBM data is the 9-digit NDC (NDC9)- year-segment-
month. The NDC9 codes uniquely identify a drug product by a 4-digit labeler name
(which usually denotes the manufacturer, e.g. Biogen, but can also refer to a repackager
or distributor), a 4-digit product code (which denotes the drug product, which is a
unique combination of strength and dosage form, e.g. “Tecfidera 240mg oral capsule”),
and a 2-digit package code (which identifies the package size and type, e.g. “bottle
of 30 tablets”). The PBM data also includes the name corresponding to each NDC9;
multiple NDC9 codes may map to the same name. The same molecule may have a
branded name as well as a generic name (which correspond to different NDC9 codes).
The PBM data also assigns an indication to each NDC9, corresponding to how that
drug product is most often used. This is called the most common indication (MCI).

For our analysis, we use the standardized name in the PBM data as the unique
drug identifier (see Appendix Section B.1 for the construction of the standardized drug
name), but we first merge the PBM and FDA datasets using the more granular NDC9
codes. We are able to match 98% and 97% of the total PBM costs for the commercial
and Medicare segments respectively to an NDC9 code in the FDA data. The drugs
for which we were not able to find matches in the FDA data consist primarily of
lower-cost and distinct indications that are billed to the PBM but are not listed in the
FDA drug data, including vaccinations, medical supplies, alternative therapies, topical
antiseptics, diagnostic aids, and nutrition-related products. We eliminate indications
where more than 50% of the PBM’s costs for that indication consist of NDC9s that
we are unable to match in the FDA data. These indications include: vaccinations,
alternative therapies, and medical supplies, among others. In total, these indications
account for 1.6% of total costs in the PBM data.

After the above merge process, we standardize the drug names (following the process

57Multiple NDC9 codes may map to a single FDA application number.
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described in Appendix Section B.1) and arrive at a sample of 1,608 (1,656) unique drugs
in the Medicare (commercial) segment with both FDA and PBM data.

Drugs are identified as generic if they are manufactured under an ANDA (per the
FDA data) or are designated as a generic in the PBM data. Among the branded drugs,
we create an indicator for which has a bioequivalent generic, defined as another drug
with the same active ingredient, dosage form, strength, route of administration, and
extended-release status.

Our definition accords with the requirements of a bioequivalent generic described by
the FDA.58 Per the FDA, to establish bioequivalence, a “generic version must deliver the
same amount of active ingredients into a patient’s bloodstream in the same amount of
time as the pioneer drug.” Other studies in the literature (e.g., Dusetzina et al. (2020))
identify generics using all but one of our criteria (extended-release status). However,
coding extended release status is a manual exercise based on drug names; we undertook
this exercise because our focus is on couponed drugs, and branded drug manufacturers
often introduce extended-release versions of their drugs in advance of generic entry
of the immediate-release version, together with a coupon to promote switching to the
extended-release version. Some studies adopt a coarser definition of a generic product,
aggregating over different strengths of the same molecule and dosage form (e.g., Berndt
et al. (2017)).

We drop generic drugs as well as branded drugs with bioequivalent generics. At
this point, only 496 (507) unique branded drugs in the Medicare (commercial) segment
without bioequivalent generics remain.

Because our main analysis relies on comparisons across commercial and Medicare
segments, we further limit the sample in two ways. First, we limit the sample to drugs
that are observed in both segments for at least one month. Second, we limit the sample
to drugs with similar utilization in both segments. To do this, we first calculate the
average utilization share sjk for each drug d and segment k, defined as

sjk =
1

|Tj|
∑
t∈Tj

dsjmk∑
j∈Jm dsjmk

,

where Tj is the set of months where drug j is marketed in the data, dsjmk is days
supplied in the relevant year-month, and Jm is the set of drugs marketed in each
month m. This gives us a measure of the average share of overall utilization (measured
by days supplied) accounted for by each drug in a given segment. For each drug, we
then construct the following measure of how utilization differs between segments:

∆uj =
sj,commercial − sj,Medicare

1
2
(sj,commercial + sj,Medicare)

This measure reflects the degree to which a drug makes up a larger share of pre-
scriptions in the commercial segment as compared to the Medicare Advantage seg-
ment. For example, if a drug has sj,commercial = 7% and sj,Medicare = 1%, then
58https://www.fda.gov/drugs/resources-you-drugs/fda-ensures-equivalence-generic-drugs
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∆uj = (7− 1)/(0.5 ∗ (1 + 7)) = 6/4 = 1.5. The distribution of this statistic is provided
below. We exclude drugs with a difference greater than 1.5 in absolute value; this ex-
cludes 48 drugs. Of these excluded drugs, 40 are used disproportionately more in the
commercial segment, with the most common MCIs being skin conditions or infections,
diabetes, growth deficiency, and hormonal supplements. The drugs disproportionately
utilized in Medicare are medications to treat diabetes, asthma, and inflammatory con-
ditions.

After applying all of these restrictions, the sample contains 364 drugs.

Appendix Figure B4: Distribution of Segment Utilization Difference Statistic ∆uj
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Next, we manually verified coupon introduction dates for the 66 drugs that ap-
pear to introduce a coupon in the scraped data between October 2014 and July 2017,
inclusive.59 We manually verified these drugs following the procedure outlined in Ap-
pendix Section B.2. For our unbalanced event study analysis, we manually verify an
additional 35 potential switchers that appear to introduce a coupon with at least 1
month of pre-period and 1 month of post-period. After these manual verifications, the
sample contains 56 “switchers” that introduced a coupon during our study period (i.e.,
between January 2014 and June 2016). Of these, a subset of 33 drugs have a sufficient
number of pre- and post-periods for our baseline balanced specification.60

59Setting the minimum month to October 2014 allows for at least a 9-month pre-period. Because
coupon introductions are often observed with a lag in the scraped data, using a July 2017 cutoff
allows us to include coupon introductions that are observed with up to a 12-month lag. For example,
a drug with a scraped coupon introduction date of July 2017 could have a revised coupon date of
June 2016. This drug would then have at a 12-month post-period and could be included in our
estimation sample.

60We require a 9-month pre-period and 12-month post-period.
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Table 1 in the main text presents the sequential list of sample restrictions we apply,
beginning with the original PBM data and ending with the estimation sample. The
table contains the number of unique drug names and total spending on all in-sample
drugs by segment, relative to total PBM spending by segment.

B.5 Drug Indications

Appendix Figure B5: Drug Indications by Estimation Sample

(a) Balanced sample
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(b) Unbalanced sample
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Notes: Figure shows the distribution of drug indications in each estimation sample, ranked by
the number of drugs in each indication. Panel (a) shows the distribution of drug indications
for our baseline specification (balanced sample of N=33 switchers). Panel (b) shows the
distribution of drug indications for the unbalanced sample of switchers (N=56). The “Other”
indication includes many indications with only 1 drug.
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Appendix Figure B6: Comparison of Drug Indications Across Samples

(a) All drugs vs. balanced sample

0 .1 .2 .3
Share of drugs

OTHER
SKIN CONDITIONS

GI DISORDERS
SEIZURES

HORMONAL SUPPLEMENTATION
HIGH BLOOD CHOLESTEROL

URINARY DISORDERS
ERECTILE DYSFUNCTION

MULTIPLE SCLEROSIS
HIGH BLOOD PRESS/HEART DISEASE

COPD
OPHTHALMIC CONDITIONS

MENTAL/NEURO DISORDERS
PAIN/INFLAMMATION

INFLAMMATORY CONDITIONS
ASTHMA

HIV
CANCER

DIABETES

all couponed balanced
sample

(b) All drugs vs. unbalanced sample
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Notes: Panel (a) compares drug indications for the overall sample of couponed drugs (N =
275 always + 56 switch = 331 total) with our baseline balanced sample of N=33 drugs. Panel
(b) compares drug indications for the overall sample with our extended unbalanced sample of
N=56 drugs.
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B.6 Dataset Construction for Demand Model Estimation

We use claims data from the Health Care Cost Institute (HCCI) to derive individual-
level drug choices from 2009 through 2017. We focus on the market for multiple scle-
rosis (MS) drugs. In particular, we restrict to choices over disease-modifying therapies
(DMTs), believed by experts to be the best strategy currently available for slowing the
natural progression of MS.61 We focus on this set of drugs because the choice set is
well-defined, there is a good deal of coupon variation, and there are no generic versions
of most of these drugs during our sample period.62 Generic drugs can have significant
impacts on market shares and prices of therapeutic substitutes, so the limited role of
generics in this segment during our study period helps us to isolate coupon effects.63

Selecting the drugs in the choice set We use National Drug Code (NDC) and
HCPCS codes to identify prescription drug and medical claims for MS drugs. The 11
MS drugs we include in our choice set are the most common MS drugs in the HCCI
data and account for 99.9% of spending on DMTs during our study period.64

Over the course of our study period, eleven DMTs are offered.65 Of these, six are
introduced midway through the sample period (these are Aubagio, Copaxone 40mg,
Glatopa, Plegridy, Tecfidera, and Gilenya). See Appendix Table B1 for more details
on these drugs. All of these products are branded drugs without generic equivalents,
except for Copaxone 20mg, for which a generic (Glatopa) was approved later in our
sample.66

61Disease-Modifying Therapies for MS, National Multiple Sclerosis Society, 2020.
http://www.nationalmssociety.org/NationalMSSociety/media/MSNationalFiles/Brochures/Brochure-
The-MS-Disease-Modifying-Medications.pdf

62Another benefit of studying MS drugs is that, unlike categories such as cancer drugs and antide-
pressants, they are not a “protected class” for Medicare Part D prescription drug plans. Medicare
Advantage insurers are required to cover all drugs within a protected class; this would complicate our
model of price negotiations because Medicare Advantage plans would not have the option of drop-
ping a particular drug from the formulary. Further, DMTs for MS are costly specialty medications;
the DMTs that we study account for 0.058% of all prescriptions but 4.6% of the total prescription
drug costs in the HCCI data. (These statistics exclude Tysabri, which is usually reimbursed via
medical insurance, rather than prescription drug insurance.)

63The only generic drug in our sample is Glatopa, which is the generic version of Copaxone 20mg.
64We excluded MS drugs with very few observed prescriptions, including Extavia, Lemtrada, Ocrevus,
Novantrone, and two additional Copaxone generics (Glatiramer 20mg and Glatiramer 40mg).

65These are Aubagio, Avonex, Betaseron, Copaxone 20mg, Copaxone 40mg, Gilenya, Glatopa, Ple-
gridy, Rebif, Tecfidera, and Tysabri. Of these, Avonex, Plegridy, Rebif, Betaseron, and Tysabri are
biologic drugs delivered via infusion (Tysabri) or injection (all others); Copaxone 20mg, Copaxone
40mg, and Glatopa are formulations of Glatiramer Acetate (a small-molecule drug delivered via
injection); and Gilenya, Aubagio, and Tecfidera are small-molecule drugs delivered orally.

66Glatopa was introduced in April 16, 2015. Its list price is only around 20% percent lower than its
branded reference product (Copaxone 20mg), whose price increased significantly after generic entry.
Glatopa is only 5% cheaper than Copaxone 40mg during our study period, and its share is minimal
(less than 1%).
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Defining coupon status for each drug Taking the scraped coupon data as a
starting point, we manually verified the coupon status of all MS drugs in our choice
set using snapshots of each drug’s website from the Internet Archive. In some cases,
we determined whether a drug had a coupon at the time of FDA approval based
on contemporary press releases, which usually mention a coupon or copay assistance
program if one exists.

Among the interferon-based therapies, only Rebif is coded to have a coupon. Rebif
(interferon beta-1a) is the earliest drug to introduce a coupon (October 2007) and is
always couponed during our sample period. Avonex (another drug containing interferon
beta-1a) introduced a free trial program in October 2011, but this program saw very
little use (< 3% of scripts according to a contemporary industry report67, and we
code Avonex as having no coupon during our sample period. Plegridy, a longer-acting
version of Avonex approved in August of 2014, also lacks a coupon in our scraped
coupon database. Betaseron (interferon beta-1b) is the oldest MS drug (approved
July 1993), but our coupon dataset only shows a coupon starting in December 2017.
The above industry report suggests that there may have been a copay program for
Betaseron, but that it had low utilization (< 5%). Hence, we code Betaseron as not
having a coupon in our analyses.

Copaxone 20mg was approved January 1996 and couponed starting in August 2011.
In the second quarter of 2012, Teva increased the coupon benefit of Copaxone 20mg
from $500 to $2,500 per prescription and from $6,000 to $12,000 per year. Because
coupon databases do not always distinguish between Copaxone 20mg and 40mg, one
concern is that we do not know precisely if or when the coupon for Copaxone 20mg
expires. Researchers with access to coupon redemption data verified that the coupon
was still redeemed at least until April 2015, when the generic version of Copaxone 20mg
(Glatopa) entered the market. Thus, we assume that the coupon for Copaxone 20mg
shuts off starting April 2015. Our estimates are robust to lengthening the lifespan of
the Copaxone 20mg coupon, including the case where the coupon never expires.

Soon after this increase in coupon generosity for Copaxone 20mg, the oral medi-
cation Aubagio was approved and launched with a 3-month free trial plus a coupon
that reduced out-of-pocket costs to $35. Hence, we code Aubagio as being couponed at
approval (September 12, 2012). In the first quarter of 2013, the Aubagio coupon was
revised to reduce out-of-pocket costs to $10 per prescription. Like Aubagio, the other
oral medications in our choice set are also couponed. Gilenya introduced a coupon
in October 2011, a year after the drug’s approval in September 2010. Tecfidera was
approved and launched with a coupon in March 2013.

Tysabri is the only drug in our choice set that must be infused at a physician’s
office. Because it is usually covered by medical insurance rather than prescription drug
insurance, it is not couponed.

According to msfocus.org, all of the above drugs are first line therapies for MS

67Avey, Steve and Alaina Sandhu. 2014. Copay Coupons for Specialty Drugs: Strategies for Health
Plans and PBMs. Atlantic Information Services, Inc.
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except for Gilenya and Tysabri. Table B1 shows characteristics for the MS drugs in
our choice set.

Two of the DMTs introduce a coupon during our sample period (Copaxone 20mg
and Gilenya), five are never couponed during our sample period, and the remaining
drugs are always observed with a coupon.68 More modern drugs (approved after 2011)
are almost invariably couponed at introduction. Older drugs (approved in the 1990s
or early 2000s) tend to introduce coupons around 2010 or not at all. Copaxone 20mg
and Gilenya are somewhat older drugs69 that chose to introduce coupons.

Estimation Sample Our estimation sample consists of patients who have filled a
prescription for any MS drug in our choice set. Because we observe that individuals’
DMT choices are very persistent over time, we limit the data to choices that are
likely to be active choices, defined as cases where we observe that a patient is enrolled
in a plan for at least 180 days before filling their first multiple sclerosis prescription.
Limiting the sample to these “active choices” enables us to abstract away from dynamic
concerns such as patient inertia or learning.70 Moreover, each individual only takes one
disease-modifying therapy at any given time.

To mitigate concerns about unobserved differences between individuals who are
commercially insured or in Medicare, we limit the sample to the age groups immediately
before Medicare eligibility (ages 55-64) and immediately after Medicare eligibility (ages
65-74). Those below the threshold may utilize coupons or manufacturer-sponsored
patient-assistance programs; those above the threshold are not permitted to redeem
coupons or to receive aid from manufacturer-sponsored assistance programs, although
they may receive charitable assistance. We are unable to condition on finer age groups
(e.g. age 64 vs. 65) because our version of the HCCI dataset only includes 10-year
age bins. Moreover, the population prevalence of multiple sclerosis is low, especially
among the older population, so conditioning on finer age groups would substantially
reduce statistical power.

Constructing average allowed amounts As a proxy measure of the list price of
a drug, we use the average allowed amount for a given drug, market segment (com-
mercial vs. Medicare), and year-quarter. We compute this using all MS drug claims
(across all patients in the HCCI database). First, we extract all claims from the HCCI
database for MS drugs based on National Drug Code (NDC) and Healthcare Common

68The never-couponed drugs are Avonex, Plegridy, Betaseron, Tysabri, and Glatopa. The always-
couponed drugs are Aubagio, Copaxone 40mg, Rebif, Tecfidera.

69Copaxone was first approved by the FDA in January 1996, but Gilenya is a newer oral medication
that was first approved in September 2010.

70Because MS typically onsets at earlier ages, many individuals in our sample may have prior expe-
rience – which we are unable to observe – with a drug in the choice set. However, recurrence of
symptoms can prompt an active choice and a potential switch to a different drug. Source: Interview
with Joshua P. Klein, MD, PhD, Chief, Division of Hospital Neurology, Brigham and Women’s
Hospital, March 2019.
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Appendix Table B1: Drug Characteristics

Drug Form US Approval Firm Coupon status
Aubagio Daily pill 2012 Sept 12 Sanofi Always

Copaxone 20mg
(Glatiramer Acetate)

Daily injection 1996 Jan 28 Teva 8/2011–3/2015

Copaxone 40mg
(Glatiramer Acetate)

Thrice-weekly
injection

2014 Jan 29 Teva Always

Glatopa
(Glatiramer Acetate;
generic for Copaxone
20mg)

Daily injection 2015 Apr 16 Sandoz
(Novartis) Never

Avonex
(Interferon Beta-1a)

Weekly injection 1996 May 17
2012 Feb 28
(in pen form)

Biogen Never

Plegridy
(Interferon Beta-1a)

Biweekly injection 2014 Aug 15 Biogen Never

Tecfidera Twice-daily pill 2013 March 27 Biogen Always

Tysabri 1-hour infusion
per month

2004 Nov 23 Biogen None

Betaseron
(Interferon Beta-1b)

Injection every
other day
(usually by physician)

1993 July Bayer None

Rebif Thrice-weekly
injection

2002 March 8 Merck From 10/2007
(Always for
study period)

Gilenya Daily pill 2010 Sept 21 Novartis From 10/2011

Notes: Table provides summary characteristics for all of the MS drugs in our choice set.
Column 1 gives the drug brand name, with non-proprietary (generic) name in parentheses.
Column 2 describes the dosage form and route of administration. Column 3 shows the first
U.S. FDA approval date. Column 4 shows the drug manufacturer. Column 5 provides coupon
information for each drug.
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Procedure Coding System (HCPCS) codes, restricting to claims with a positive allowed
amount. This yields N = 2,540,002 claims. For each NDC/HCPCS code, we filter out
claims where the days supply does not match the modal value (this excludes 264,547
observations). We also drop NDC/HCPCS codes that comprise <= 1000 claims or <=
2% of claims for a given drug (this excludes an additional 479 observations). Next, we
drop claims with allowed amounts <= $100 (2,907 observations), which are likely to
represent errors given the high prices of MS drugs.

Next, we exclude claims with extremely low or high values for the allowed amount
relative to other claims for the same drug, plan characteristics, and time period. For
each drug, we perform a claim-level regression of allowed amount on dummies for
year-quarter, NDC/HCPCS code, segment, specialty drug status, mail order status,
insurance plan type, and whether the insurance plan is a high-deductible plan. We
treat missing values for specialty and mail-order status as separate bins. For each drug,
we exclude claims where the residual from this regression is below the 1st percentile or
above the 99th percentile.

For some drugs in the choice set, the number of pills in a single prescription varies
between 28 and 30. This occurs when a manufacturer changes the number of pills or
doses in a single prescription. To establish a single allowed amount for these drugs,
we rescale the allowed amounts to correspond to the most common prescription size.
For example, allowed amounts for Gilenya prescriptions for a 30-day supply of pills are
rescaled by 28/30 to correspond to the more common 28-day supply. After applying
these cleaning steps, we found that for each drug, most of the variation in allowed
amount can be accounted for by year-quarter and NDC/HCPCS fixed effects. This
suggests that we can treat average allowed amounts as a proxy measure of the list
price charged to insurers, and that this allowed amount predominantly varies over
time rather than across insurance plans or across segment.71

Figure B7 demonstrates how average allowed amounts for MS drugs have evolved
over time. Although there is some price variation across drugs, average allowed amounts
for MS drugs have generally increased in lock-step, from about $2500 in 2009 to about
$6500 in 2017.

71Note, this does not include rebates, which may vary across insurers.
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Appendix Figure B7: Average Allowed Amounts for MS Drugs Over Time

(a) Average Allowed Amounts (b) Relative Allowed Amounts

Notes: Panel (a) shows average allowed amounts over time. Panel (b) shows the same, but
subtracting the lowest price in each period to better visualize relative prices. Note that
the price of Copaxone20 rises quickly after the introduction of Copaxone40, to facilitate the
product hop. Also notice that the price of the Glatopa generic is initially pretty high (right
below Copaxone40), but it doesn’t grow along with the other drugs, so it ends up being quite
a bit cheaper (nonetheless, Glatopa is not very popular as a result of the product hop to
Copaxone 40)

Defining out-of-pocket prices The prices that enter our demand model are the
out-of-pocket prices paid by patients, which are usually only a small fraction of list
prices. These out-of-pocket prices are not directly observed in the claims data except
for the enrollee’s actual spending on their chosen drug. In addition, we lack fields
containing information on plan copays and/or coinsurance rates, and plan identifiers
are not included, so we cannot aggregate observations within a specific plan to infer
the out-of-pocket price of other drugs in the enrollee’s choice set. To address this issue,
we impute cost-sharing using each patient’s annual history of claims data for all drugs,
assigning the same fixed copays to all MS drugs when fixed copays are relevant, and
applying the same coinsurance rate to the average allowed amount for each drug-year
when an individual appears to face coinsurance.

We first categorize each claim as on deductible, no cost sharing, copay, or coin-
surance. Claims on deductible are those where the deductible column in the data
is greater than zero or where the total patient cost sharing is equal to the allowed
amount.72 Claims where patient cost sharing is $0 are coded as such. Copay claims
are those where total patient cost sharing is a multiple of $1, no more than $300 in
total, and not already coded as a deductible claim. Coinsurance claims are those that

72The data contains columns for copay, coinsurance, and deductible amounts, but these fields are not
reliable, since coinsurance and deductible payments are frequently entered in the “copay” field.
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are not already coded as a deductible claim, and where patient cost sharing is not a
multiple of $1 or greater than $300. The coinsurance rate for a claim is defined as
patient cost sharing divided by the total allowed amount, rounded to the nearest 5%.
We re-classify claims with coinsurance rates greater than 40% as deductible claims.

After classifying each claim, we calculate the share of coinsurance claims out of the
total number of coinsurance or copay claims (excluding deductible claims and those
with $0 cost sharing). We calculate this share at the patient-year level, separately by
plan type (i.e. prescription drug insurance or medical insurance), and over all claims
(i.e. not only those for MS drugs).73 Patient-year-plan type combinations with a share
of coinsurance claims ≥ 50% are classified as using coinsurance, where the coinsurance
rate is defined as the median coinsurance rate for all claims in that patient-year-plan
type.

For patient-year-drug combinations that use coinsurance rates, we define the out-
of-pocket price as the coinsurance rate times the average allowed amount, where the
coinsurance rate is defined as the median coinsurance rate on all RX scripts in the
patient-year. We allow the average allowed amount to vary by drug, segment, and
year-quarter.74 For individuals whose plan charges copays for MS drugs, we assume
that the copay amount is the same across all MS drugs in the choice set. Hence,
copays only vary across individuals and thus do not contribute to pinning down the
price sensitivity parameters in our demand estimates.75

For patient-year-plan types that use copays, we set pOOPijkt to the average copay on
all DMT prescriptions for that patient-year. If the average DMT copay is missing, we
assign the average copay across all drugs.

Of the remaining observations that lack an out-of-pocket price, some can be inferred
to have $0 cost sharing, if at least 50% of DMT claims or 50% of all claims have no cost
sharing. These individuals are likely those with enough costs to hit their out-of-pocket
maximums.

The remaining patients are assumed to be making their choice at a time when their
spending is lower than their deductible, and hence their out-of-pocket price for each
drug is set equal to the minimum of the average allowed amount (as a proxy for the
list price) and estimated deductible.76 In practice, most patient-drug out-of-pocket
price observations (98.4%) are coded as coinsurance, copays, or $0 cost sharing (see
Appendix Table B2 for more details).

73We must consider medical insurance because Tysabri is typically delivered at a physician office and
hence appears in medical rather than prescription drug claims.

74Using the weighted average acquisition cost (WAC) instead of the average allowed amount yields
similar results.

75This is because the conditional logit model implicitly controls for patient fixed effects.
76We estimate the total deductible in a patient-year by summing together all medical and RX de-
ductible claims.
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Appendix Table B2: Source of Out-of-Pocket Prices by Segment

Type of price Medicare Advantage Commercial
Avg DMT copay (MD) - 0.1%
Avg DMT copay (RX) 6.5% 58.6%
Avg copay (MD) 8.3% 6.0%
Avg copay (RX) 12.2% 11.6%
List price (MD) 0.3% 0.3%
List price (RX) 0.2% 0.6%
No CS on DMTs (MD) - 0.1%
No CS on DMTs (RX) 3.4% 5.0%
No CS on all drugs (MD) 0.4% 0.9%
No CS on all drugs (RX) - 0.2%
Deductible (RX) - 0.1%
Deductible (RX + MD) 0.2% 1.0%
Coinsurance (MD) 2.3% 4.9%
Coinsurance (RX) 66.1% 10.7%
Total Observations 9,733 29,419

Notes: Table shows the source of out-of-pocket prices in the HCCI demand estimation sam-
ple, separately by segment.In Column 1, Avg DMT copay refers to the average copay on all
DMT prescriptions for a given patient-year. Avg copay refers to the average copay on all
prescriptions for a given patient-year. Coinsurance reflects cases where ≥ 50% of claims in a
patient-year are classified as coinsurance, where the median coinsurance rate is used to define
the out-of-pocket price. Cost-sharing under the deductible is captured by Deductible; List
price covers cases where the average allowed amount is used as the out-of-pocket price. No
CS on DMTs and No CS on all drugs reflects cases where individuals have reached their
out-of-pocket maximums and are observed to have no cost sharing. (MD) denotes medical
insurance, which covers Tysabri, and (RX) denotes prescription drug insurance, which covers
all other drugs in the choice set. Deductible (RX+MD) refers to a common deductible across
prescription drug and medical insurance.

Share of Coupon Users We derive our baseline value for the share of commercial
enrollees who use coupons (λ) using pharmacy claims data reported by (Starner et al.,
2014). Starner et al. find that 46% of prescriptions for MS drugs among commercially
insured patients are associated with a coupon. Their sample of MS drugs included
Gilenya (fingolimod), Copaxone 20mg (glatiramer acetate), interferon beta-1a (Avonex
and Rebif), interferon beta-1b (Betaseron), and Tysabri (natalizumab). Their sample
period was from July 2010 to December 2012.

To calibrate λ from the estimates in Starner et al 2014, we first note that not all
of the drugs in their sample have a copay coupon: we do not observe coupons for
Avonex, Betaseron, and Tysabri. This suggests that, for the drugs where a coupon was
available, the usage rate λ was higher than 46%. The share of commercial prescriptions
in our data that correspond to a couponed drug between July 01, 2010 and Dec 31,
2012 was 61.3%. This suggests that of the 61.3% of prescriptions that could have had
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a coupon, 75% of them were associated with a coupon. Assuming that coupon users
and non-users fill a similar number of prescriptions per person, we can calibrate λ =
0.75. That is, 75% of commercially insured individuals taking a couponed MS drug
will use the coupon.

Thus, our preferred specification sets λ = 0.75. We also test robustness of our
estimates and simulation results to λ = 0.60 and λ = .90.
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C Details for Difference-in-Differences Analysis

C.1 Segment-specific Trends

To examine absolute trends in quantity for the treatment (commercially insured) and
control (Medicare Advantage enrollees) groups, we estimate a variant of equation (1)
that shows the segment-specific time trends before and after coupon introduction.
Figure C8 below shows the results from this specification for quantity.77

Appendix Figure C8: Segment-specific Trends in Utilization
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Notes: Figure shows segment-specific trends in drug utilization relative to coupon introduc-
tion. Panel (a) shows results without weights; Panel (b) shows cost-weighted results. The
estimated specification regresses log(days supply) on relative-quarter fixed effects interacted
with dummies for each segment. As in specification (1) in the main text, we include drug-
segment fixed effects; however, we exclude year-month fixed effects to allow us to interpret
the time trend levels for both segments around coupon introduction (rather than just the
between-segment differences, as in our main specification).

The results show that for the set of drugs in our estimation sample, days supplied
is increasing prior to coupon introduction for both the commercial and Medicare Ad-
vantage segments, but demand surges up for the commercial segment after coupon
introduction. Table C3 below presents coefficient estimates from a specification that
pools the post-coupon period, and confirms that the increase in quantity after coupon
introduction is statistically significant at p < 0.01 for the commercially insured popu-
lation.

77We do not find any changes in time trends relative to coupon introduction for prices.
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Appendix Table C3: Segment-specific Trends Pooled Specification

Unweighted Cost Weighted
(1) (2)

Medicare × Post 0.076 0.045*
(0.061) (0.026)

Commercial × Post 0.242*** 0.206***
(0.058) (0.048)

*** p < 0.01, ** p < 0.05, and * p < 0.10.
Notes: Table shows coefficient estimates from a pooled regression of log days supply on a post
coupon introduction indicator, separately by segment. Standard errors are clustered at the
drug level. Column (1) and (2) show unweighted and cost-weighted results respectively.
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C.2 Inference Using Cluster Wild Bootstrap

In Appendix Figure C9 below, we show a version of the results in Figure 2, where the
95% confidence intervals are derived using the cluster wild bootstrap.78

Appendix Figure C9: Effects of Coupons on Quantity and Price (cluster wild bootstrap)
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Notes: Each graph plots coefficient estimates from a regression of ln(days supply) or ln(price)
on quarter relative to coupon introduction. Graphs show 95% confidence intervals derived
from a cluster wild bootstrap.79 Coefficients plotted reflect the response in the commercial
segment relative to the response in Medicare. All specifications are estimated on a balanced
panel of data for switchers, including monthly observations from 9 months prior to coupon
introduction through 12 months after coupon introduction. The quarter prior to introduction
is omitted. Panels (a) and (c) show unweighted results, while Panels (b) and (d) show results
weighted by each drug’s share of spending in each segment in the 6 months prior to coupon
introduction.

78Implemented using the boottest stata module:
David Roodman, 2015. “BOOTTEST: Stata module to provide fast execution of the wild boot-
strap with null imposed,” Statistical Software Components S458121, Boston College Department of
Economics, revised 19 Jul 2022.
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C.3 Month-Level Event Studies

Figure C10 shows versions of our main specification in Figure 2 at the month level. We
see that the coefficients in the months prior to coupon introduction are flat in most
specifications, supporting our identifying assumption that coupon introductions are
not correlated with unobserved factors affecting commercial-segment-specific demand
or price.

Appendix Figure C10: Effects of Coupons on Utilization and Price (month-level effects)
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Notes: Each graph plots coefficient estimates and 95% confidence intervals from a regression
of ln(days supply) or ln(price) on month relative to coupon introduction for the commercial
segment relative to Medicare. All specifications are estimated on a balanced panel of data
for switchers, including monthly observations from 9 months prior to coupon introduction
through 12 months after coupon introduction. The month prior to coupon introduction is
omitted. Panels (a) and (c) show unweighted results, while Panels (b) and (d) show results
weighted by each drug’s share of spending in each segment in the 6 months prior to coupon
introduction.
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C.4 Unbalanced Panel Event Studies

As a robustness test, we estimated a version of Equation 1 using the sample of all drugs
where we observe a coupon introduction and at least 1 month pre-introduction and 1
month post-introduction. We manually verified coupon introduction dates for these
additional drugs following the process outlined in Appendix Section B.2.80 Out of 35
candidate drugs, 10 were determined to have introduced a coupon at the exact time
of entering the market. An additional 2 drugs did not actually have a valid coupon
and were excluded. This version increases our sample size by 23 drugs to N = 56 total
drugs that switch coupon status.

We then added these drugs to our original estimation sample, for a total unbalanced
sample of N = 56 drugs. As shown in Appendix Figure C11 and Appendix Table C4,
the quantity effect in the weighted specification is nearly identical to our baseline
results, whereas the results for the unweighted specification are somewhat attenuated.
Overall, our conclusions are unchanged.

80Some of these were not manually checked previously, as their pre- or post-periods were already too
short to be included in our main analysis.
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Appendix Figure C11: Effects of Coupons on Utilization and Price (unbalanced panel)
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Notes: Each graph plots coefficient estimates and 95% confidence intervals from a regression of
ln(days supply) or ln(price) on the quarter relative to coupon introduction for the commercial
segment relative to Medicare. All specifications are estimated on an unbalanced panel of all
N = 56 switchers, including observations from up to 9 months prior to coupon introduction
and up to 12 months after coupon introduction. The month prior to coupon introduction is
omitted. Panels (a) and (c) show unweighted results, while Panels (b) and (d) show results
weighted by each drug’s average pre-period share of segment-specific spending.
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Appendix Table C4: Difference-in-Differences Estimates (unbalanced panel)

Commercial × ln(supply) ln(price)

Q = −3 -0.010 -0.033 -0.019 -0.0267**
(0.049) (0.033) (0.023) (0.012)

Q = −2 -0.061 -0.023 -0.021 -0.0138*
(0.053) (0.030) (0.016) (0.008)

Q = −1 0 0 0 0

Q = 0 0.0352 0.0448* -0.0247** 0.008
(0.034) (0.024) (0.011) (0.006)

Q = 1 0.104** 0.214** -0.0257* -0.007
(0.049) (0.083) (0.015) (0.007)

Q = 2 0.126** 0.190*** -0.0306* -0.0147**
(0.061) (0.066) (0.016) (0.007)

Q = 3 0.179** 0.223*** -0.0436** -0.014
(0.072) (0.041) (0.020) (0.013)

Weights N Y N Y
*** p < 0.01, ** p < 0.05, and * p < 0.10.

Notes: Standard errors are clustered at the drug level. Weights are defined as the share of
within-segment spending accounted for by the drug in the 6 months before coupon introduc-
tion, normalized so that average weights in each segment are equal. Q = 0 represents the
first three months after coupon introduction. For each drug, we include only observations for
the 9 months prior and 12 months after coupon introduction. The unit of observation is the
drug-month-segment. All specifications include drug-segment and year-month fixed effects.
N=1,386.

C.5 Drugs Couponed at the Time of Market Entry

Our difference-in-differences approach is not able to assess coupon effects for drugs
where coupons are introduced at the exact time of launch (because these drugs lack
a pre-period entirely). To assess the effects of coupons for these drugs, we adopt an
alternative approach that compares commercial vs. Medicare quantities for drugs that
enter the market with a coupon versus never-couponed drugs. To ensure that we are
comparing drugs during similar parts of their life cycle, we restrict the sample to drugs
where we can observe prices and quantities for the first 12 months on the market.
This leaves us with N=42 always-couponed drugs and N=10 never-couponed drugs.
Because there is no pre-period with which to compute cost weights, all estimates are
unweighted.

The raw data, graphed in Appendix Figure C12 below, show that drugs that
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are launched with a coupon have higher commercial utilization compared to never-
couponed drugs. We confirm this result by regressing ln(quantity) on an indicator
variable for being always couponed, an indicator variable for the commercial segment,
their interaction, and drug fixed effects. This yields a coefficient of 0.70 (SE=0.10) on
the interaction term. This corresponds to an increase of exp(0.7)-1 = 101%. The same
regression with ln(price) as the outcome variable yields a coefficient estimate of -0.03
(SE=0.02) that is not statistically significant.

This quantity effect is much larger than the 23-25% estimated in our main speci-
fications. This could indicate that always-couponed drugs benefit more from coupons
than switchers, but it could also reflect fixed differences in expected commercial uti-
lization between always-couponed and never-couponed drugs (always-couponed drugs
may treat conditions that are more prevalent among individuals less than 65 years old
and thus have larger potential utilization among commercially insured enrollees).
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Appendix Figure C12: Utilization and price for always-couponed vs never-couponed
drugs
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Notes: Figure plots averages of ln(days supply) or ln(price) for always-couponed and never-
couponed drugs against the relative month after the drug enters the market, limited to the
set of drugs that are introduced within our sample period with at least 12 months of data.
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C.6 Coupon Effect Heterogeneity

We estimated several new analyses to explore heterogeneous effects by different drug
characteristics. To do this, we re-estimated specification 1 in the text, adding an
additional interaction term for the above-median group to allow for heterogeneous
effects by group. This new specification is shown below:

Yjkt =
∑

q∈{−3,3}\−1

γ̂q1(quarter = q) · 1(commercial)k ·Xj

+
∑

q∈{−3,3}\−1

η̂q1(quarter = q) · 1(commercial)k + α̂jk + δ̂jt + εjtk
(7)

where Yjtk is either log quantity for drug j in month t and segment k. The variable
quarter denotes the number of quarters before or after coupon introduction, with
quarter = 0 for the first 3 months a coupon exists for drug j. Xj ∈ {0, 1} is an
indicator variable encoding a particular dimension of heterogeneity. The η̂q coefficients
denote the coupon effect for the group Xj = 0, and the γ̂q coefficients denote the
difference in the coupon effect between group Xj = 1 and Xj = 0. The coupon effect
for group Xj = 1 is therefore η̂q + γ̂q. The α̂jk and δ̂jt coefficients denote drug-segment
and drug-year-month fixed effects.

Heterogeneity by relative size of commercially insured market Using this
specification, we first looked at the relative size of the commercial vs. Medicare market
for each drug. We computed the ratio of commercial to Medicare pre-coupon spending
for each of the N=33 drugs in our main estimation sample. Then, we split the drugs
into two groups based on whether they fell above or below the median of this measure.

We find that the quantity effect of coupons is larger for drugs below the median
commercial:Medicare spending ratio. That is, drugs with relatively smaller commercial
markets appear to have larger percentage increases in quantity due to a coupon, and
this increase is more precisely estimated. The estimated coupon effect is smaller and
more noisily estimated among drugs above the median commercial:Medicare spending
ratio, as shown in the graphs below:
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Appendix Figure C13: Heterogeneity By Commercial:Medicare Spending Ratio
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Notes: Each graph plots coefficient estimates and 95% confidence intervals from Equation 7.
Coefficients plotted reflect the response in the commercial segment relative to the response
in Medicare, separately for drugs with below-median commercial spending (green squares)
and above-median commercial spending (red triangles). All specifications are estimated on
a balanced panel of data for switchers, including monthly observations from 9 months prior
to coupon introduction through 12 months after coupon introduction. The quarter prior to
introduction is omitted. Panel (a) shows unweighted regression results, while panel (b) shows
results weighted by each drug’s share of spending in each segment in the 6 months prior to
coupon introduction.

One possible explanation is that spillover effects from coupon introduction (from
the commercial segment to Medicare) may be stronger when a drug is commonly used
among commercial enrollees, and this in turn attenuates the apparent coupon effect
for drugs with a high commercial share. That is, for drugs where a high percentage
of patients are commercially insured, introducing a coupon may induce doctors to
prescribe the drug more often to all patients (including Medicare enrollees). Because
our estimates are based on commercial vs. Medicare differences, this will attenuate
the estimated coupon effect for drugs with a high commercial share, even if there are
no true heterogeneous treatment effects. This spillover effect is less likely to occur for
drugs where commercial enrollees comprise a small share of patients, explaining the
larger (and more accurate) estimate of the coupon effect for these drugs.

Consistent with this explanation, we find that for drugs with an above-median com-
mercial share, Medicare quantities are increasing along with commercial quantities after
coupon introduction (consistent with commercial to Medicare spillovers), whereas this
is not the case for drugs with a below-median commercial share. Appendix Figure C14
below shows that commercial quantities are increasing in for both below-median com-
mercial share (Panels a, c) and above-median commercial share (Panels b, d). However,
Medicare quantities are also increasing specifically for above-median commercial share
drugs (reflecting spillovers), whereas Medicare quantities are flat for below-median

30



commercial share drugs (no spillovers). This explains the smaller estimated coupon
effects for above-median commercial share drugs shown in Appendix Figure C13.

Appendix Figure C14: Segment-specific Trends By Relative Commercial Share
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Notes: Each graph plots coupon effects on ln(days supply). Coefficient estimates and 95%
confidence intervals use the same specification as in Appendix Section C.1, but separating
the sample into drugs with below-median commercial share (Panels a, c) and above-median
commercial share (Panel b, d). Regressions in (a) and (b) are unweighted; regressions in (c)
and (d) are weighted by drugs’ average costs prior to coupon introduction. All specifications
are estimated on a balanced panel of data for switchers, including monthly observations from
9 months prior to coupon introduction through 12 months after coupon introduction. The
quarter prior to introduction is omitted.
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An additional explanation may be differential selection into introducing a coupon.
A high relative commercial market presence is correlated with introducing a coupon
at the time of FDA approval (consistent with our findings comparing always vs. never
couponed drugs in Appendix Section C.5). Hence, drugs that have a high commercial
presence but wait at least 9 months before introducing a coupon are likely drugs for
which coupons are relatively less impactful.

Lastly, as shown below, cancer and eye medications have larger coupon effects. This
may help explain the larger coupon effects observed for low commercial presence drugs,
since most of the cancer and eye drugs are concentrated in the low commercial presence
group (which contains 9 out of 14 cancer or eye drugs).

Heterogeneity by indication To explore potential heterogeneity by the condition
treated by a drug (“indication”), we began by examining graphs for each of six ma-
jor groupings of indications: cancer, psychiatric conditions (Depression, sleep disor-
ders, seizures), inflammatory conditions (asthma, COPD, Pain/Inflammation), anti-
infectives (HIV, eye infection, fungal infection, infections), eye conditions, and other
chronic conditions (diabetes, blood cell deficiency, high BP/Heart disease, erectile dys-
function). We used groupings of indications as individual indications often contained
no more than two drugs. We found the most pronounced impacts in two categories:
cancer and eye medications, which account for 14/33 (42%) of drugs, with 7 drugs
each.

We then estimated specifications with interaction terms between the coefficients
of interest and an indicator for cancer or eye drugs. (We also estimated versions
with separate indicators for cancer drugs and for eye medications, and the results are
similar.) As shown in Appendix Figure C15, coupon effects are larger for cancer and
eye medications.
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Appendix Figure C15: Heterogeneity by Drug Indications
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Notes: Each graph plots coefficient estimates and 95% confidence intervals from Equation 7.
Coefficients plotted reflect the response in the commercial segment relative to the response in
Medicare, separately for cancer and eye drugs (red triangles) vs. other drugs (green squares).
All specifications are estimated on a balanced panel of data for switchers, including monthly
observations from 9 months prior to coupon introduction through 12 months after coupon
introduction. The quarter prior to introduction is omitted. Panel (a) shows unweighted
regression results, while panel (b) shows results weighted by each drug’s share of spending in
each segment in the 6 months prior to coupon introduction.

Appendix Table C5 below summarizes the significant heterogeneity results discussed
above by displaying estimates of the between-group difference in coupon effects (γ̂q in
Equation 7). The table also shows estimates from specifications that pool the periods
before vs. after coupon introduction.
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Appendix Table C5: Heterogeneity of coupon effects

Commercial × Above-median commercial share Cancer and eye drugs

Q = −3 -0.060 -0.132** 0.005 0.0704
(0.082) (0.058) (0.084) (0.061)

Q = −2 -0.015 -0.039 0.024 0.0303
(0.092) (0.052) (0.085) (0.045)

Q = −1 0 0 0 0

Q = 0 -0.087 -0.091* 0.144** 0.094**
(0.066) (0.051) (0.065) (0.044)

Q = 1 -0.143 -0.285*** 0.151 0.311***
(0.097) (0.096) (0.107) (0.086)

Q = 2 -0.204* -0.227*** 0.137 0.214**
(0.107) (0.082) (0.122) (0.097)

Q = 3 -0.177 -0.248*** 0.130 0.245***
(0.112) (0.067) (0.121) (0.069)

Pooled -0.128 -0.156** 0.131 0.182***
(0.096) (0.061) (0.105) (0.054)

Weights N Y N Y
*** p < 0.01, ** p < 0.05, and * p < 0.10.

Notes: Standard errors are clustered at the drug level. Weights are defined as the share of
within-segment spending accounted for by the drug in the 6 months before coupon introduc-
tion, normalized so that average weights in each segment are equal. Q = 0 represents the
first three months after coupon introduction. For each drug, we include only observations for
the 9 months prior and 12 months after coupon introduction. The unit of observation is the
drug-month-segment. All specifications include drug-segment and year-month fixed effects.
N=1,386.

Drug price level We separated the drugs into above-median and below-median price
groups, based on average commercial net-of-rebate prices in pre-period before coupon
introduction. We found larger coupon effects in the above-median group; however, this
result was not statistically significant in both specifications. Moreover, it is difficult
to independently distinguish whether this effect is driven by indication, as all of the
cancer drugs are in the above-median price category.

Heterogeneity by cost-sharing We also explored whether effects were heteroge-
neous by the degree of cost sharing (either expressed as a percentage of the net price
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or as a dollar amount) but did not find statistically significant differences.

Summary of coupon effect heterogeneity Overall, the exploration of heteroge-
neous effects yields two main conclusions. First, drugs with relatively smaller commer-
cial share have larger estimated coupon effects. The data suggest this may be due to
larger spillover effects onto Medicare (the control group) when a drug has heavy com-
mercial share relative to Medicare. Second, coupon effects vary by drug indication; in
our sample, the effects are largest for drugs treating cancer or eye conditions.

The last result implies coupons can impact volume for drugs that might typically
be considered inelastically demanded (e.g., cancer drugs). This is not too surprising
given the research that cost-sharing impacts utilization across a wide range of drugs
(e.g. Chandra et al. (2021)). Of course, there are a range of cancer treatments, and
coupons might shift utilization toward more expensive therapies.

C.7 Challenges in Distinguishing Between Market Expansion
and Business Stealing in the Differences-in-Differences Anal-
ysis

The welfare effects of coupons cannot be deduced from the reduced form analyses for
a range of reasons, including the fact that we do not evaluate whether the coupons
resulted in a net increase in drug utilization.

To the extent that coupons induce substitution toward the couponed drug in lieu of
therapeutic substitutes (“business stealing”), rather than growth in overall utilization
(“market expansion”), coupons are less likely to be welfare-enhancing (assuming more is
better for prescription drug utilization). (Even if the increase in demand were entirely
due to market expansion, however, this analysis would not enable us to definitively
assess the welfare implications of coupons as we lack an estimate of the benefit from
incremental utilization net of its price.)

We attempted to discern between business stealing and market expansion effects by
defining markets around each index drug in our PBM analysis sample. Following prior
research on pharmaceutical markets, we began by including the therapeutic substitutes
for each drug as those with the same ATC4 code, and then we used the PBM designation
of “medical indication” for each drug to restrict the market to drugs with the same
broad medical indication. In addition, we manually reviewed all 219 substitute—index
drug pairs, excluding cases where the candidate substitute drug does not treat the same
specific medical indication (and thus should not be included in the index drug’s market).
For instance, we further separated rescue inhalers from long-acting inhalers (both may
share the same ATC4 code and treat COPD but are not substitutable). Similarly,
many cancer medications share the same ATC4 code but are used to treat different
specific types of cancer. Using this methodology, we classified some of our index drugs
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as monopoly markets, for which coupon effects likely reflect market expansion, however
the majority of drugs have substitutes.

In principle, differential decreases in commercial utilization relative to Medicare
Advantage utilization among substitutes following coupon introduction for the index
drug would suggest business stealing effects, whereas differential increases in overall
market quantity (without decreases for substitutes) would reflect market expansion.
However, we concluded this analysis was not appropriate due to ill-defined markets
and small expected effect sizes.

For instance, potential substitute drugs often treat multiple indications that only
partially overlap with an index drug. This is especially true for cancer drugs. Gleevec
can be used to treat the same indications as the index drug Stivarga, but Gleevec
also treats other cancer indications that Stivarga does not, and Gleevec’s quantity sold
swamps that of Stivarga. Thus, searching for quantity effects of a Stivarga coupon on
aggregate Gleevec sales, or on sales of all therapeutic substitutes in the relevant market
using the data available to us, is not likely to be an effective approach to assessing which
mechanism prevails.

In addition, the expected size of business stealing or market expansion effects are
small, as index drugs often account for only a small share of the overall market. Thus,
even if our estimated coupon effect of 20% were entirely due to business stealing, this
would only lead to a 1-2% decrease in the quantity of substitutes for index drugs
with a 5-10% market share (which is approximately their actual median market share
using the market definitions described above). The expected magnitude of any market
expansion effects would be similarly small.

In summary, high variance in the outcome variable due to ill-defined markets, cou-
pled with small expected effect sizes, severely limit our statistical power to assess
market-level outcomes and thus to differentiate between business stealing and market
expansion.
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D Further Model Details

D.1 More Detailed Demand Framework

We estimate the demand model introduced in Section 3.1 via maximum likelihood,
taking the share of commercially insured enrollees who use coupons (λ) as given. The
log likelihood function is:

lnL(θ) =
∑

i∈ĪMA,t

ln
(∑
j∈Jt

sMA
ijt ×1[choseni = j]

)
+
∑

i∈Īcom,t

ln
(∑
j∈Jt

(λscijt+(1−λ)sncijt)×1[choseni = j]
)
.

The shares sMA
ijt , scijt, and sncijt are given by:

sgijt =
exp(ugijt)∑
l∈Jt exp(ugilt)

, for g = MA, c, and nc,

where the utilities uMA
ijt , ucijt, and uncijt are as defined in Section 3.1.

MS Drug Coverage Assumption In our demand estimation, we assume that all
MS drugs are covered for all individuals. Accordingly, in our simulations, we assume
that, in equilibrium, all MS drugs are covered. To support this assumption, we man-
ually collected MS drug coverage information for the three insurers that comprise the
HCCI data, by drug X insurer X segment X year (N = 299 individual cells of formulary
information).

For each cell, we defined Coverage = 1 if the drug is covered under at least some
plans (for example, for a given drug and insurer, Coverage = 1 for Medicare Advantage
in 2016 if we could locate at least one MA plan formulary from that insurer that includes
the drug in 2016). We set Coverage = 0 if the drug was excluded from formularies we
located. Coverage = missing if we were not able to locate any formularies for that cell
(or if the drug had not yet entered the market).

We averaged over all non-missing observations for our simulation period (2015-
2017), weighting by the insurers’ national market shares in 2016 and MS drug shares
in our simulation sample. This resulted in an overall coverage rate of 87%, suggesting
that for MS drugs, the assumption of complete coverage is not overly strong.

D.2 Further Details of Price Negotiation Model

This appendix provides details of the terms determining markups in the Nash Bar-
gaining model. Recall from Section 3.3 that we model the insurer’s objective function
as:

V (Jt, p) = CS(Jt, p)− TC(Jt, p)
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The total consumer surplus in period t is modeled as:

CSt(Jt, p) =
1

αcom

[ ∑
i∈ĪMA,t

ln
(∑
j∈Jt

exp(uij,MA,t)
)

+
∑

i∈Īcom,t

ln
(∑
j∈Jt

exp(uij,com,t)
)]
,

where the factor 1
αcom

ensures that CSt(·) is in dollar units.
The total drug cost to the insurer for MS drugs is:

TCt(Jt, p) =
∑
j∈Jt

[ ∑
i∈ĪMA,t

sMA
i,j,t

(
pjt − pOOPijt

)
+
∑

i∈Īcom,t

(λscijt + (1− λ)sncijt)
(
pjt − pOOPijt

)]
where pjt is the negotiated net-of-rebate price, and pOOPijkt = fi(pjt) is the out-of-pocket
price paid by the enrollee, which is related to pjt in a way that depends on the cost-
sharing rules faced by each individual i, and the rebate, as in Section 3.3.

Predicted price without coupons. Consider first the case where no coupons are
offered. Taking logs and setting the first order condition to zero yields:

pnocouponjt = cjt +
s̄jt

−
(
[1−η
η

] V
′(Jt,pt)

∆V (Jt,pt)
s̄jt +

¯∂sjt
∂pjt

) (8)

where V ′(Jt, pt) = ∂V (Jt,pt)
∂pjt

, ∆V (Jt, pt) = V (Jt, pt) − V (Jt \ j, pt), and s̄jt indicates a
weighted sum of sijt across Medicare Advantage and commercially insured enrollees.81

The model nests the Nash Bertrand model of manufacturers setting prices (the case
with η = 1). The solution differs from Nash Bertrand only through the denominator
of the second (markup) term, which now accounts for the insurer’s gains from trade as
well as those of the manufacturer. While the impact of a change in price on consumer
out-of-pocket prices—and hence consumer choices—may be small, the insurer’s costs
increase almost one-for-one with prices. This is reflected in the much lower equilibrium
markups under this model than under Nash Bertrand. The term ∆V (Jt, pt) is an
important input into prices: it is the change in consumer surplus when drug j is
added, less the change in insurer costs. It measures the net gain to the insurer from
including the drug in its formulary: all else equal, the higher this term, the higher the
price.

Unpacking the markup term further, we see that three bargaining-related factors
have important effects on price. First, if the drug is particularly attractive to con-
sumers, ∆CS(Jt, pt) will be high, implying a sizeable loss to the insurer from excluding
the drug and a relatively high price. Second, if excluding a drug prompts enrollees to
substitute to more expensive alternatives, then ∆TC(Jt, pt) will be negative, and the

81That is: s̄jt ≡
∑
i∈ĪMA,t

sMA
ijt +

∑
i∈Īcom,t

(λscijt + (1 − λ)sncijt) and ¯dslt
dpjt

≡
∑
i∈ĪMA,t

∂sMA
ilt

∂pjt
+ (1 −

λ)
∑
i∈Īcom,t

∂snc
ilt

∂pjt
+ λ(1− couponjt)

∑
i∈Icom,t

∂scilt
∂pjt

.
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equilibrium price will be higher. This “reinforcement effect” implies that the prices of
substitute drugs tend to move together in equilibrium; see Ho and Lee (2017). Finally,
there is an effect due to coinsurance. As in Gowrisankaran et al. (2015), insurers can
use coinsurance rates to steer consumers to low-priced products; this may reduce the
downwards pressure placed on prices by the insurer, particularly for relatively costly
drugs.

Prices when coupons are offered. The first order condition defining the net-of-
rebate price is different when coupons are offered:

pcouponjt = cjt +w(.)λcouponj,t
∑

i∈Icom,t

scijtp
OOP
ijt +

s̄jt − λcouponj,t
∑

i∈Icom,t
scijt

∂pOOP
ijt

∂pjt

−
(
[1−η
η

] V ′(Jt,p)
∆V (Jt,pj,t)

s̄jt +
¯∂sjt
∂pjt

) (9)

Comparing the two equations allows us to unpack the predicted change in price in
response to coupon introduction. There are two new terms that reflect the manufac-
turer’s cost of offering a coupon. First, a portion of this cost is passed through to
prices (the second term of the equation): the fraction passed through, denoted w(.),
is a function of model primitives including the Nash bargaining weights.82 Second,
the manufacturer now accounts for the fact that an increase in list price generates
an increased out-of-pocket price for consumers whose plans charge a coinsurance rate,
inflating the manufacturer’s own costs when consumers redeem coupons. This is the
second part of the numerator in the markup term; it exerts a new downward pressure
on price.

Now consider the elements of the markup that are common to the two equations.
They are functions of variables that change in response to coupon introduction. First,
coupon availability increases the product’s market share s̄jt and reduces ∂s̄jt

∂pjt
. These two

effects have a positive impact on manufacturer markups and they may dominate the
others: the larger the consumer response to the coupon, the larger the price increase.
The first term in the markup denominator will also change. ∆CS increases for the
newly-couponed drug, generating a further upwards pressure on price. Offsetting this,
coupons reduce the effectiveness of steering through coinsurance, implying a greater
cost to the insurer of offering relatively high-priced drugs and generating increased
downwards pressure on price. Finally, the change in the reinforcement effect, operating
through ∆TC, is difficult to sign because it is affected by changes in demand in response
to coupons and is also a function of the equilibrium prices of all drugs.

Overall, the net effect of coupons on negotiated prices is an empirical question.

Assumption of zero marginal production costs Given high list and net prices
of MS drugs and data suggesting small production costs, we believe that the our as-
sumption of zero marginal costs is reasonable for our setting. Six of the 11 drugs in

82The weight is defined as: w(.) ≡ 1/[s̄jt + η
1−η

∆V (Jt,pj,t)
V ′(Jt,p)

∂s̄jt
∂pjt

].
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our sample are small molecule medications, both oral solids and injectables (which are
usually somewhat more expensive to produce). According to internal data obtained by
a US House of Representatives investigation,83 the injectable MS drug with the great-
est market share, Copaxone, has a marginal cost less than 3% of its net price. This is
consistent with production cost estimates in the literature84 for injectable drugs, which
are on the order of <$1 to $20 per vial, i.e., <1% of list prices for MS drugs (MS drug
prices are on the order of $5000 in our data between 2015-17.)

We do not have marginal cost estimates for the 5 biologic drugs, however based on
their initial launch prices (which presumably reflect price well above marginal cost),
it appears their production costs are also very low. The chart below includes most
of the drugs in our sample. To pick one example, Avonex – the second most popular
drug in the choice set, and a biologic – was introduced at an annual price of $8723 in
1996. Assuming a gross margin of 75% yields an estimated marginal cost of $2181/year.
In our data, the annual average allowed amount for Avonex was $70,800/year in 2015-
2017, implying marginal cost of around 3 percent. (Granted, these prices do not exclude
rebates, but based on SSR health data, Avonex rebates are low, averaging 9% in 2015-
17) The most recently-introduced biologic in the sample, Plegridy, relies on the same
molecule type (interferon beta-1a), suggesting marginal costs of production are likely
to be a similar order of magnitude.

83Drug Pricing Investigation Teva – Copaxone. Staff report, Committee on
Oversight and Reform. US House of Representatives. September 2020.
https://oversight.house.gov/sites/democrats.oversight.house.gov/files/Teva%20Staff%20Report%2009-
30-2020.pdf Accessed 5/24/2022

84for example, Gotham, D., Barber, M. J., & Hill, A. M. (2019). Estimation of cost-based
prices for injectable medicines in the WHO Essential Medicines List. BMJ Open, 9 (9).
https://doi.org/10.1136/BMJOPEN-2018-027780
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Reproduced from “The cost of multiple sclerosis drugs in the US and the pharma-
ceutical industry, Too big to fail?,” Daniel M. Hartung, Dennis N. Bourdette, Sharia
M. Ahmed, Ruth H. Whitham. First published April 24, 2015, Neurology, DOI:
https://doi.org/10.1212/WNL.0000000000001608
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E Details of Counterfactual Simulations

E.1 Calibration of the bargaining parameter

The bargaining parameter η describes the weight placed on manufacturer profits versus
the insurer’s objective in the Nash Product (Equation 6). Bargaining nests Nash
Bertrand pricing (this is the case when η = 1). When η < 1, the insurer has additional
leverage in constraining list prices or increasing rebates, since the insurer can threaten
to exclude a drug from its formulary. Thus, the value of η captures the degree to which
the insurer can constrain prices beyond consumer cost sharing.

Because the value of η is not observed, we calibrate η to match the simulated net
prices (Equation 8) to net prices that we infer from the simulation data, assuming
zero marginal costs of drug manufacturing. We calculate inferred net prices from the
data by multiplying the allowed amounts (a proxy for list prices) by 1 - r, where r is
the fixed rebate share that we assume to be 0.15. Figure E16 shows how simulated
net prices vary with η, and how these prices compare to the observed prices (defined
as (1 − r) times the average allowed amount for each drug). As expected, increasing
η results in higher simulated prices. We calibrate η to minimize the mean squared
distance between the vectors of simulated and observed prices.

Appendix Figure E16: Calibrating the Manufacturer Bargaining Weight η

Notes: Figure shows how we calibrate the manufacturer bargaining weight to approximately
match the prices observed in the data. Line colors represent different drugs; dashed lines
indicate couponed drugs. Y-axis shows simulated and observed net prices. X-axis shows the
manufacturer bargaining weight η.
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E.2 Robustness to Modeling Assumptions

Our simulation results depend on the assumed values of the share of eligible consumers
who use a coupon λ and the magnitude of the fixed rebate share r. Recall that the bar-
gaining parameter η is calibrated conditional on λ and r to match the share-weighted
average simulated and observed prices. Below, we demonstrate that the broad conclu-
sions from our simulations are robust to a range of different values of these parameters.

Robustness to λ: To assess how our assumption of λ = 0.75 affects our results,
we consider λ = 0.60 and λ = 0.90 while holding r constant at 0.15. In addition, we
estimate specifications where λ is assumed to vary with cost sharing. In one version,
we set λ = 0.7 for individuals whose cost sharing amount (averaged across drugs) is
less than $150 and λ = 0.9 for individuals whose average cost sharing exceeds $150. In
another version, we set λ = 0.5 for cost sharing below $75, 0.7 for cost sharing between
$75 and $150, and 0.9 for cost sharing above $150. Given each specification for λ, we
re-estimate demand and re-calibrate η to arrive at new simulation results. Table E6
below shows demand estimates under these alternative specifications for λ.
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Appendix Table E6: Maximum Likelihood Estimates, Varying λ

(λ = 0.60) (λ = 0.75) (λ = 0.90) (λ = (0.7, 0.9)) (λ = (0.5, 0.7, 0.9))
OOP Price 0.049 + 0.049 + 0.049 + 0.049 + 0.049 +

(0.026) (0.026) (0.026) (0.026) (0.026)
OOP Price X Commercial -0.121 ∗∗ -0.099 ∗∗ -0.080 ∗∗ -0.079 ∗∗ -0.079 ∗∗

(0.030) (0.029) (0.028) (0.028) (0.028)
Coupon X Commercial 0.367 + 0.373 + 0.388 + 0.390 + 0.390 +

(0.208) (0.208) (0.209) (0.208) (0.208)
Coupon -0.261 -0.263 -0.264 -0.264 -0.263

(0.246) (0.246) (0.245) (0.245) (0.245)
Drug Age (6-12 mo) 0.634 + 0.632 + 0.633 + 0.633 + 0.633 +

(0.269) (0.269) (0.269) (0.269) (0.269)
Drug Age (1-2 yr) 1.303 ∗∗ 1.300 ∗∗ 1.299 ∗∗ 1.299 ∗∗ 1.300 ∗∗

(0.280) (0.280) (0.280) (0.280) (0.280)
Drug Age (2-3 yr) 1.522 ∗∗ 1.518 ∗∗ 1.516 ∗∗ 1.516 ∗∗ 1.517 ∗∗

(0.322) (0.322) (0.322) (0.322) (0.322)
Drug Age (3-5 yr) 1.826 ∗∗ 1.821 ∗∗ 1.818 ∗∗ 1.818 ∗∗ 1.818 ∗∗

(0.354) (0.354) (0.353) (0.354) (0.354)
Drug Age (5+ yr) 1.825 ∗∗ 1.816 ∗∗ 1.809 ∗∗ 1.809 ∗∗ 1.809 ∗∗

(0.420) (0.420) (0.420) (0.420) (0.420)
Drug Age (6-12 mo) X Female -0.352 -0.351 -0.352 -0.352 -0.351

(0.288) (0.288) (0.288) (0.288) (0.288)
Drug Age (1-2 yr) X Female -0.495 + -0.493 + -0.493 + -0.494 + -0.494 +

(0.257) (0.257) (0.257) (0.257) (0.257)
Drug Age (2-3 yr) X Female -0.625 + -0.624 + -0.623 + -0.623 + -0.624 +

(0.263) (0.263) (0.263) (0.263) (0.263)
Drug Age (3-5 yr) X Female -0.838 ∗∗ -0.836 ∗∗ -0.834 ∗∗ -0.834 ∗∗ -0.834 ∗∗

(0.261) (0.261) (0.261) (0.261) (0.261)
Drug Age (5+ yr) X Female -0.316 -0.315 -0.314 -0.314 -0.314

(0.231) (0.231) (0.231) (0.231) (0.231)
Drug FE Yes Yes Yes Yes Yes
Drug-Year FE Yes Yes Yes Yes Yes
Drug-Segment FE Yes Yes Yes Yes Yes
Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Table shows maximum likelihood estimates of Equations 2 and 3 across different assumptions
for the share of coupon users λ. All columns include drug, drug-year, and drug-segment fixed effects.
Columns 1, 2, and 3 show estimates assuming λ = 0.60, 0.75, and 0.90 respectively. Columns 4 and 5
show results when λ is assumed to vary with cost sharing.

Table E7 below shows the simulated price effects of coupons under alternative spec-
ifications for λ. When λ = 0.60, banning coupons coupons results in a slightly larger
average decrease in list prices of 7.7%. In contrast, when λ = 0.90, banning coupons re-
sults in a smaller decrease in prices of 6.7%. Assuming that λ varies with out-of-pocket
costs (Columns 9-10 and 11-12) gives similar results, with average price decreases of
6.6% (under the specification λ = 0.7, 0.9) and 6.5% (under the specification λ = 0.5,
0.7, 0.9).
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Appendix Table E7: Sensitivity of Coupon Price Effect to λ

λ = 0.60 λ = 0.75 λ = 0.90 λ = (0.7, 0.9) λ = (0.5, 0.7, 0.9)

Drug
Coupon
Status

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

∆Price
(%)

∆Share
(%)

Aubagio Always -7.6 -6.5 -7.4 -6.4 -6.7 -6.4 -6.6 -6.4 -6.5 -6.4
Avonex Never -6.7 26.5 -5.9 26.6 -4.6 26.7 -4.4 26.7 -4.4 26.6
Betaseron Never -6.9 24.6 -6.1 24.8 -4.8 24.9 -4.7 24.8 -4.6 24.7
Copaxone20 Aug 2011 -7.0 28.4 -6.2 28.5 -4.9 28.6 -4.7 28.5 -4.7 28.4
Copaxone40 Always -7.8 -7.7 -7.7 -7.7 -7.2 -7.6 -7.1 -7.6 -7.0 -7.6
Gilenya Oct 2011 -8.6 -8.9 -8.5 -8.8 -8.1 -8.7 -7.9 -8.7 -7.9 -8.7
Glatopa Never -7.1 30.9 -6.3 31.0 -5.0 31.1 -4.8 31.0 -4.8 30.9
Plegridy Never -7.0 29.0 -6.2 29.2 -4.9 29.3 -4.7 29.2 -4.7 29.1
Rebif Always -7.8 -6.8 -7.6 -6.7 -7.1 -6.6 -6.9 -6.6 -6.8 -6.6
Tecfidera Always -7.9 -7.6 -7.7 -7.5 -7.2 -7.4 -7.1 -7.4 -7.0 -7.4
Tysabri Never -10.0 39.8 -8.4 36.6 -5.8 32.8 -5.6 32.5 -5.6 32.3

Notes: Table shows how simulated changes in net price and shares vary across assumptions of λ.
The average change in net price, weighting by baseline simulated shares, is -7.7%, -7.4%, and -6.7%
for λ=0.60, 0.75, and 0.90 respectively. Columns 4 and 5 show results when λ is assumed to vary
with cost sharing. For these cases, the average change in net price is -6.6% and -6.5% for these cases
respectively.

The effect of changing λ comprises two different effects. A lower value of λ = 0.60
results in a larger estimated price coefficient. This case requires a higher value of η to
match simulated and observed baseline prices. The higher inferred bargaining power of
the drug manufacturer reduces the importance of the insurer objective in the negotiated
price (Equation 9) and increases the impact of coupons, which directly affect the ∂s̄jt

∂pjt

term. This tends to increase the effect of coupons on price. On the other hand, the
lower value of λ means that fewer individuals use coupons, which tends to reduce the
effect of coupons on price. On net, the first effect outweighs the second, leading to
a somewhat larger price effect of coupons for λ = 0.60 and a somewhat smaller price
effect of coupons when λ = 0.90.

The distributional consequences of a coupon ban also depend on the specification
for λ, as shown in Table E8 below. When λ = 0.60, there are fewer coupon users who
would be negatively affected by a coupon ban, so the average increase in out-of-pocket
costs is lower at $73, compared to $98 when λ = 0.75. Cost savings are also larger at
$402 compared to $385 when λ = 0.75, due to a larger coupon effect on prices. Taken
together, assuming λ = 0.60 implies that banning coupons would result in cost savings
that are 5.5 times larger than the increase in out-of-pocket costs.

Assuming λ = 0.90 has the opposite effects, resulting in lower cost savings of $361
and a larger increase in out-of-pocket costs of $126, for a ratio of savings to out-of-
pocket cost increases of 2.9. Assuming that λ varies with out-of-pocket costs (Columns
9-10 and 11-12) gives similar results, with a ratio of insurer savings to out-of-pocket
cost increases of 2.8.
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Appendix Table E8: Sensitivity of Distributional Effects to λ

λ=0.6 λ=0.75 λ=0.90 λ=0.7, 0.9 λ=0.5, 0.7, 0.9

Group N

∆ Insurer
Costs
($)

∆ OOP
Costs
($)

∆ Insurer
Costs
($)

∆ OOP
Costs
($)

∆ Insurer
Costs
($)

∆ OOP
Costs
($)

∆ Insurer
Costs
($)

∆ OOP
Costs
($)

∆ Insurer
Costs
($)

∆ OOP
Costs
($)

Commercial 1,104 -408 112 -391 146 -369 183 -350 175 -350 175
Coupon Users 994 -410 196 -392 199 -369 205 -351 201 -351 202
Non-users 110 -403 -13 -387 -14 -365 -13 -347 -12 -347 -12

Medicare 388 -387 -40 -367 -38 -339 -35 -321 -34 -321 -34

Overall 1,492 -402 73 -385 98 -361 126 -342 121 -343 120

Ratio 5.5 3.9 2.9 2.8 2.8

Notes: Table shows how a coupon ban would affect insurer costs (i.e., premiums) and out-of-pocket costs, separately
for commercially insured consumers (separately for coupon users and non-users) and Medicare enrollees. Insurer costs
are expressed in $ per member per month; out-of-pocket costs are expressed in $ per prescription for enrollees’ first
observed choice. Results average over coupon users and non-users (except where otherwise indicated) based on our
assumed specification for the share of commercially insured individuals who use coupons λ.

Robustness to different values of the fixed rebate share r: Varying our as-
sumed fixed rebate percentage (holding λ = 0.75 fixed) does not significantly affect our
conclusions. Our baseline specification assumes a rebate percentage of 15%. Assuming
a lower rebate percentage of 10% results in a small decline in the effect of coupons
on net price, from -7.4% to -7.2%. Assuming higher values of 20% and 25% results in
slight increases in the coupon price effect to -7.6% and -7.7% respectively.

Using estimated rebates from SSR Health: Rebates are likely to vary across
drugs, and this may affect our simulation results. To account for heterogeneous rebates,
we test the sensitivity of our simulations to using estimated rebates from SSR Health.
Broadly, our simulation results are not changed (details below).

Table E9 below shows rebate estimates from SSR Health. These estimates derive
from combining data on drug quantities sold with financial documents from public
drug manufacturers, which do not report revenues separately by drug. Thus, rebates
are estimated at the national level (combining many payors with potentially different
rebates) with some error, and some estimates may be negative. Over the 2015–2017
simulation period, estimated rebates for MS drugs ranged from 0—31% across drugs.
Glatopa is not available in the SSR Health dataset. Because it is a generic (of Copaxone
20mg), we assume that it has rebates of 0%. We also assume that Tysabri’s rebate is
0% to avoid negative rebates.
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Appendix Table E9: Estimated Rebates from SSR Health

Product 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Average 15-17

Aubagio -.02 .02 .10 .12 .06 .08 .09
Avonex -.31 -.13 .38 .34 .52 .30 .21 .09 .04 .18 .06 .11 .09
Betaseron .00 .03 .26 .25 .37 .16 .01 .17 .28 .31 .34 .43 .31
Copaxone 20 -.12 -.15 .00 -.07 .04 .26 .11 .12 .20 .19 .29 .48 .22
Copaxone 40 .12 .19 .19 .29 .48 .22
Gilenya .36 .18 .01 -.00 .06 .14 .19 .22 .13
Plegridy .05 .12 .04 .24 .07
Rebif -.14 -.00 .03 -.08 .07 .12 .06 .05 .11 .17 .21 .26 .16
Tecfidera .02 .07 .07 .10 .18 .08
Tysabri -1.06 -.81 -.31 -.26 .04 -.03 .00 -.15 -.10 -.01 .08 .06 -.01

Notes: Table shows average estimated rebate shares by drug-year for MS drugs from SSR Health.

Using SSR rebates does not significantly change our results, as shown by Table E10
below. We find the a nearly identical overall coupon price effect of -7.4%. This is likely
because the average SSR Health rebate is about 15%, which matches our assumption
of a fixed 15% rebate across drugs.
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Appendix Table E10: Coupon Price Effects with SSR Health Rebates

Data Simulation: Baseline Simulation: Coupons Banned

Drug
Coupon
Status

Net Price
($)

Share Net Price
($)

Share Net Price
($)

Share ∆ Price
(%)

∆ Share
(%)

Aubagio Always 5266 0.148 5059 0.139 4690 0.130 -7.3 -6.2
Avonex Never 5411 0.076 4927 0.086 4636 0.104 -5.9 26.8
Betaseron Never 4379 0.044 4992 0.058 4676 0.067 -6.3 24.2
Copaxone20 Aug 2011 5290 0.030 4889 0.030 4581 0.037 -6.3 28.3
Copaxone40 Always 4351 0.308 5223 0.298 4811 0.278 -7.9 -8.0
Gilenya Oct 2011 5560 0.066 4985 0.066 4562 0.061 -8.5 -8.7
Glatopa Never 5339 0.008 4830 0.009 4530 0.011 -6.2 31.5
Plegridy Never 5554 0.028 4857 0.029 4556 0.035 -6.2 29.5
Rebif Always 5301 0.054 5003 0.056 4618 0.053 -7.7 -6.8
Tecfidera Always 5938 0.224 5116 0.218 4727 0.206 -7.6 -7.2
Tysabri Never 5895 0.015 4522 0.013 4145 0.018 -8.3 36.8

Notes: Table shows observed prices (computed as (1 − rj)× the average allowed amount, where rj
is the 2015–17 average SSR Health rebate estimate for drug j from Appendix Table E9) and market
shares in the simulation sample (Columns 2-3). Columns 4-5 show simulated net prices and shares
at baseline, where coupons are as observed in the data (Column 1). Columns 6-10 show results from
a simulation where all existing coupons are banned. Columns 6-7 show the resulting net prices and
market shares; Columns 8-9 express the effects of the coupon ban as a percent of baseline simulated
values. The average change in net price is -7.4%, weighting by the baseline simulated shares in Column
5.

Varying the bargaining weight: We could alternatively vary the bargaining weight
η, which is the only model parameter affected by our assumptions on the value of
rebates (i.e., net prices). A higher value of η corresponds to higher net prices earned
by manufacturers (i.e., lower rebates). Varying η directly does slightly change our
results, but the magnitudes are small (see details below).

Our baseline sets the manufacturer bargaining weight η = 0.69. As we describe in
Section E.1, this is the value of the bargaining weight that best fits the observed prices
in the data, assuming a 15% fixed rebate. As shown in Appendix Table E11 below,
coupon price effects are directly proportional to the manufacturer’s bargaining weight:
higher manufacturer bargaining power corresponds to greater coupon effects (as well
as higher net prices in general).
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Appendix Table E11: Coupon Price Effects: Varying the Bargaining Weight η

Manufacturer Net price Price effect when
bargaining weight with coupons coupons are banned

0.5 2329 -5.6% ($130)
0.6 3458 -6.2% ($215)
0.65 4257 -6.8% ($288)

0.69 (baseline) 5077 -7.4% ($375)
0.75 6778 -8.7% ($587)

Notes: Table shows how the price effect of a coupon ban varies across assumptions on the manufacturer
bargaining weight η (Column 1). Column 2 shows the average simulated net price of MS drugs in the
baseline case when coupons are allowed. Column 3 shows the average price effect when coupons are
banned as a percentage of the net price in Column 2, and also as a dollar amount in parentheses.

Varying insurer weight on drug costs: We have assumed that insurers place
equal weight on consumer surplus and drug costs. However, this may not necessarily
be the case. Below is a modified equation for the insurer objective function, where
τ encodes the relative weight that insurers place on consumer surplus (versus drug
costs). For example, Gowrisankaran et al. (2015) estimate a value of τ = 2.79 but with
a standard error of 2.87, such that the welfare weight is not distinguishable from 0 or
1 (the value we assume at baseline).

V (Jt, pt) = τ × CS(Jt, pt)− TC(Jt, pt)

To assess the sensitivity of our coupon price effect to the assumption of τ = 1, we
run simulations under alternative values of τ . We find that higher values of τ (i.e.,
the insurer places more weight on consumer surplus and less weight on keeping drug
costs low) correspond to larger price reductions under a coupon ban (-9.1% with τ = 2
compared to -7.4% in our baseline case where τ = 1). Also, when the insurer cares
less about costs (τ = 2), a smaller manufacturer bargaining weight (η = .53 vs. .69)
rationalizes the observed prices.

Conversely, when insurers have a lower value of τ = 0.5 (prioritizing lower drug
costs), coupons have smaller price effects (-6.7%), and a larger manufacturer bargaining
weight η = 0.82 is necessary to rationalize observed prices.

Allowing the rebate share to adjust when coupons are banned: Rebates
may adjust when coupons are banned. To account for this possibility, we simulate the
impact of a coupon ban under the assumption that rebates adjust when coupons are
removed, increasing from 15% to 20%. This results in a similar coupon effect on net
price of -7.6%, as shown in Table E12 below.
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Appendix Table E12: Price Effect of Coupons when Rebates Adjust

Data Simulation: Baseline Simulation: Coupons Banned

Drug
Coupon
Status

Net Price
($)

Share Net Price
($)

Share Net Price
($)

Share ∆ Price
(%)

∆ Share
(%)

Aubagio Always 4941 0.148 5105 0.137 4719 0.129 -7.6 -5.8
Avonex Never 5071 0.076 4969 0.086 4660 0.105 -6.2 22.1
Betaseron Never 5395 0.044 4964 0.058 4649 0.070 -6.4 20.6
Copaxone20 Aug 2011 5787 0.030 4903 0.030 4584 0.038 -6.5 23.4
Copaxone40 Always 4753 0.308 5219 0.298 4809 0.278 -7.9 -6.9
Gilenya Oct 2011 5420 0.066 5018 0.066 4574 0.061 -8.8 -7.9
Glatopa Never 4538 0.008 4877 0.009 4557 0.011 -6.6 25.6
Plegridy Never 5060 0.028 4899 0.029 4580 0.036 -6.5 24.0
Rebif Always 5390 0.054 5029 0.056 4632 0.052 -7.9 -6.0
Tecfidera Always 5486 0.224 5159 0.218 4750 0.203 -7.9 -6.7
Tysabri Never 5011 0.015 4513 0.013 4063 0.018 -10.0 32.7

Notes: Table shows how net prices and shares change when coupons are banned, assuming rebates
adjust from 15% to 20% after the ban. Columns 3-4 show observed prices (computed as 0.85 × the
average allowed amount) and market shares in the simulation sample. Columns 5-6 show simulated
net prices and shares at baseline, where coupons are as observed in the data (Column 2). Columns
7-11 show results from a simulation where all existing coupons are banned. Columns 7-8 show the
resulting net prices and market shares; Columns 9-10 express the effects of the coupon ban as a
percent of baseline simulated values. The average change in net price is -7.6%, weighting by the
baseline simulated shares in Column 6.

Insurer cost savings are slightly larger, but so is the increase in out-of-pocket ex-
penses. This is because a portion of the decrease in net prices operates through rebates,
which does not help reduce cost sharing, since coinsurance rates are applied to list prices
not net prices. Table E13 below shows how insurer and out-of-pocket costs change for
various groups of individuals.
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Appendix Table E13: Distributional Effects when Rebates Adjust

Group N

Insurer costs
with coupons

($)

Insurer costs
coupon ban

($)

∆ Insurer
Costs
($)

OOP Cost
with coupons

($)

OOP Cost
coupons ban

($)

∆ OOP
Costs
($)

Commercial 1,104 5,102 4,700 -402 88 240 153
Coupon Users 828 5,103 4,700 -404 35 240 205
Non-users 276 5,098 4,700 -398 245 240 -4
Copay 903 5,101 4,702 -399 30 69 40
Coinsurance 201 5,107 4,690 -418 348 1,009 661
Couponed Drugs 895 → 806 5,151 4,743 -409 57 251 195
Non-couponed Drugs 209 → 298 4,916 4,593 -323 234 233 -1

Medicare 388 5,090 4,709 -381 544 535 -9
Copay 117 5,091 4,710 -381 123 122 -2
Coinsurance 271 5,090 4,709 -381 726 714 -12
Couponed Drugs 282 → 282 5,152 4,748 -404 553 541 -11
Non-couponed Drugs 106 → 106 4,928 4,609 -319 524 521 -3

Overall 1,492 5,099 4,702 -397 206 317 111
Notes: Table shows average premiums and out-of-pocket costs with and without coupons, separately
for selected subgroups. Rebates adjust from 15% to 20% when coupons are banned. Premiums
are expressed in $ per member per month; out-of-pocket costs are expressed in $ per prescription
for enrollees’ first observed choice. Results average over coupon users and non-users (except where
otherwise indicated) based on our assumption that λ = 0.75 share of commercially insured patients
use coupons. Copay/coinsurance designations apply at the patient level. Patients are coded as
paying copays or coinsurance based on the nature of their prescription drug insurance (see Appendix
Section B.6) Patients with copay-based prescription drug insurance may have medical insurance that
is coinsurance based. The number of individuals choosing couponed drugs may change after coupons
are banned; this is reflected in Column 2 in the format [number of individuals when coupons are
available] −→ [number of individuals when coupons are banned].

Assuming that the coupon advertising effect selectively affects coupon users
Our baseline specification assumes that the non-price or “advertising effect” of coupons
on demand affects all commercially insured individuals, regardless of whether they
redeem coupons or not. This would be the case if coupons induce physician offices
to prefer prescribing couponed drugs to all patients, with the expectation that many
patients will have reduced out-of-pocket costs via coupons. However, the advertising
effect of coupons may also affect coupon users to a larger degree than non-users, if
knowledge that a coupon exists for a drug drives both coupon use and the advertising
effect.

To test the sensitivity of our results to this assumption, we estimate versions of
the demand model where the coefficient representing the advertising effect is 1.5 times
larger for coupon users, 2 times larger for coupon users, and where the advertising
effect only affects coupon users.
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Appendix Table E14: Demand Estimates Under Alternative Advertising Effects

Equal Ad Effects Users 1.5x Users 2x Only Users
OOP Price 0.049 + 0.049 + 0.049 + 0.049 +

(0.026) (0.026) (0.026) (0.026)
OOP Price X Commercial -0.099 ∗∗ -0.101 ∗∗ -0.102 ∗∗ -0.107 ∗∗

(0.029) (0.029) (0.029) (0.029)
Coupon X Commercial 0.373 + 0.301 ∗ 0.251 ∗ 0.693 ∗

(0.208) (0.151) (0.119) (0.275)
Coupon -0.263 -0.297 -0.318 -0.386

(0.246) (0.246) (0.246) (0.248)
Drug Age (6-12 mo) 0.632 ∗ 0.633 ∗ 0.632 ∗ 0.634 ∗

(0.269) (0.269) (0.269) (0.269)
Drug Age (1-2 yr) 1.300 ∗∗ 1.300 ∗∗ 1.301 ∗∗ 1.301 ∗∗

(0.280) (0.280) (0.280) (0.280)
Drug Age (2-3 yr) 1.518 ∗∗ 1.518 ∗∗ 1.519 ∗∗ 1.520 ∗∗

(0.322) (0.322) (0.322) (0.322)
Drug Age (3-5 yr) 1.821 ∗∗ 1.821 ∗∗ 1.821 ∗∗ 1.824 ∗∗

(0.354) (0.354) (0.354) (0.354)
Drug Age (5+ yr) 1.816 ∗∗ 1.816 ∗∗ 1.816 ∗∗ 1.818 ∗∗

(0.420) (0.420) (0.420) (0.421)
Drug Age (6-12 mo) X Female -0.351 -0.351 -0.350 -0.353

(0.288) (0.288) (0.288) (0.289)
Drug Age (1-2 yr) X Female -0.493 + -0.494 + -0.493 + -0.494 +

(0.257) (0.257) (0.257) (0.257)
Drug Age (2-3 yr) X Female -0.624 ∗ -0.624 ∗ -0.624 ∗ -0.624 ∗

(0.263) (0.263) (0.263) (0.263)
Drug Age (3-5 yr) X Female -0.836 ∗∗ -0.835 ∗∗ -0.835 ∗∗ -0.836 ∗∗

(0.261) (0.261) (0.261) (0.261)
Drug Age (5+ yr) X Female -0.315 -0.315 -0.314 -0.315

(0.231) (0.231) (0.231) (0.232)
Drug FE Yes Yes Yes Yes
Drug-Year FE Yes Yes Yes Yes
Drug-Segment FE Yes Yes Yes Yes
Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Table shows maximum likelihood estimates of Equations 2 and 3 across different assumptions
for how coupon users and non-users are affected by the coupon advertising effect. Column 1 shows
estimates assuming that both coupon users and non-users are equally affected by the advertising
effect. Columns 2 and 3 show estimates assuming that the advertising effect coefficient (on Coupon X
Commercial) is 1.5 or 2 times as large for coupon users (Note: the reported coefficient estimates are
for non-users in these columns). Lastly, Column 4 shows estimates assuming that only coupon users
are affected by the advertising effect. The advertising effect coefficient in Column 4 corresponds to
coupon users. All columns include drug, drug-year, and drug-segment fixed effects.
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Appendix Table E15: Price Effects of Coupons Under Alternative Advertising Effects

Equal Ad Effects Users 1.5x Users 2x Only Users

Drug
Coupon
Status ∆Price ∆Share ∆Price ∆Share ∆Price ∆Share ∆Price ∆Share

Aubagio Always -7.4 -6.4 -7.6 -7.1 -7.9 -7.5 -8.6 -8.4
Avonex Never -5.9 26.6 -6.2 29.3 -6.5 30.9 -7.2 34.9
Betaseron Never -6.1 24.8 -6.4 27.2 -6.7 28.7 -7.4 32.4
Copaxone20 Aug 2011 -6.2 28.5 -6.5 31.1 -6.8 32.7 -7.5 36.4
Copaxone40 Always -7.7 -7.7 -8.0 -8.4 -8.2 -8.9 -9.0 -10.0
Gilenya Oct 2011 -8.5 -8.8 -8.8 -9.7 -9.1 -10.2 -9.8 -11.5
Glatopa Never -6.3 31.0 -6.6 34.2 -6.9 36.1 -7.5 40.5
Plegridy Never -6.2 29.2 -6.5 32.0 -6.8 33.8 -7.5 38.1
Rebif Always -7.6 -6.7 -7.9 -7.4 -8.2 -7.8 -8.9 -8.7
Tecfidera Always -7.7 -7.5 -8.0 -8.2 -8.3 -8.7 -9.0 -9.8
Tysabri Never -8.4 36.6 -8.9 40.1 -9.3 42.6 -10.2 48.1

Notes: Table shows how simulated changes in net price and shares vary across assumptions on the
advertising effect. Columns 3–4 show results when both coupon users and non-users are equally
affected by the coupon advertising effect (our baseline specification). Columns 5–8 show results when
the advertising effect is assumed to be 1.5x or 2x larger for coupon users. Columns 9-10 show results
when we assume that only coupon users are affected by the advertising effect. The corresponding
average changes in net price, weighting by baseline simulated shares, are -7.4%, -7.7%, -8.0%, and
-8.7%.

Our results are qualitatively similar under these alternative assumptions. The max-
imum likelihood demand estimates corresponding to these versions are shown below in
Table E14. (Note that for the 1.5x and 2x cases, the reported coupon X com coefficient
applies to coupon non-users). When only coupon users have the advertising effect, the
corresponding coefficient is 0.693, compared to 0.373 in the baseline case. The price
effect of coupons is somewhat larger, at 8.7% compared to a baseline of 7.4%. Table
E15 below reports the price effects of coupons when we assume that only coupon users
have an advertising effect.

Assuming that the coupon advertising effect remains after coupons are
banned: We also test the effects of a modified coupon ban that eliminates coupons’
price discounts but maintains the estimated advertising effect (γcom in Equation 3).
This reflects a scenario where manufacturers maintain advertising but are no longer
able to provide discounts. With persistent advertising, drug shares shift less as a result
of a coupon ban. The coupon price effect is only slightly lower: 6.6% vs. 7.4% in our
baseline case, see Appendix Table E16.
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Appendix Table E16: Coupon Price Effect: Advertising Effect Remains Post-ban

Data Simulation: Baseline Simulation: Coupons Banned

Drug
Coupon
Status

Net Price
($)

Share Net Price
($)

Share Net Price
($)

Share ∆ Price
(%)

∆ Share
(%)

Aubagio Always 5812 0.148 5973 0.139 5569 0.137 -6.8 -1.0
Avonex Never 5966 0.076 5811 0.086 5505 0.085 -5.3 4.0
Betaseron Never 6347 0.044 5808 0.058 5500 0.057 -5.3 3.9
Copaxone20 Aug 2011 6808 0.030 5733 0.030 5424 0.030 -5.4 4.3
Copaxone40 Always 5592 0.308 6116 0.298 5704 0.299 -6.7 -1.3
Gilenya Oct 2011 6376 0.066 5869 0.066 5410 0.066 -7.8 -1.2
Glatopa Never 5339 0.008 5704 0.009 5396 0.008 -5.4 4.5
Plegridy Never 5953 0.028 5730 0.029 5419 0.028 -5.4 4.5
Rebif Always 6341 0.054 5880 0.056 5462 0.056 -7.1 -1.0
Tecfidera Always 6454 0.224 6041 0.218 5624 0.219 -6.9 -1.2
Tysabri Never 5895 0.015 5293 0.013 4880 0.014 -7.8 11.0

Notes: Table shows observed prices (computed as 0.85 × the average allowed amount) and market
shares in the simulation sample (Columns 2-3). Columns 4-5 show simulated net prices and shares
at baseline, where coupons are as observed in the data (Column 1). Columns 6-10 show results from
a simulation where all existing coupon discounts are removed, but the coupon advertising effect is
allowed to remain. Columns 6-7 show the resulting net prices and market shares; Columns 8-9 express
the effects of the coupon ban as a percent of baseline simulated values. The average change in net
price is -6.6%, weighting by the baseline simulated shares in Column 5.

Using quantitative coupon values: We manually checked for dollar amounts for
MS coupons (from 2009 through 2017), and then applied these rules in our demand
estimation and simulations. Appendix Table E17 below shows the specific coupon
offers we impute using archived manufacturer websites and coupon databases.

Drug manufacturers tend to pay slightly less for coupons in the earlier period, since
early versions of the coupons had limits on the monthly amount they would pay (e.g.
by limiting discount amounts to $500 per or only reducing copays to $35 instead of
$0). In the later years relevant to our simulations (2015-17), all coupons are $0 copay
coupons (although the coupon for Gilenya still has a $1000 maximum for the amount of
out-of-pocket costs covered by the coupon per month). Thus, our simulations are only
affected insofar as the measured coupon values affect the estimated demand coefficients.
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Appendix Table E17: Quantitative Coupon Values Over Time

Drug Date Range Coupon Description
Aubagio Sept 2012 – Dec 2012 3 month free trial ($0 copay) at time of drug launch

Jan 2013 – Mar 2013 Pay no more than $35 out of pocket
Apr 2013 – Nov 2014 Pay no more than $10 out of pocket
Dec 2014 – Dec 2017 Pay $0 out of pocket

Copaxone 20mg Aug 2011 – Jun 2012 Pay no more than $35 out of pocket (maximum $500/month)
Jul 2012 – Mar 2015 Pay no more than $35 out of pocket (maximum $2500/month)

Copaxone 40mg Feb 2014 – Dec 2017 Pay $0 out of pocket

Gilenya Oct 2011 – Apr 2013 Pay $0 out of pocket (maximum $800/month)
May 2013 – Dec 2017 Pay $0 out of pocket (maximum $1000/month)

Rebif Jan 2009 – Mar 2013 Pay no more than $50
Apr 2013 – Dec 2017 Pay $0 out of pocket

Tecfidera Mar 2013 – Sept 2014 Pay no more than $10
Oct 2014 – Dec 2017 Pay $0 out of pocket

Notes: Table shows coupon values over time for MS drugs in our sample that introduce a coupon.
Coupon values are manually verified through December 2017.

Both the demand estimates (see Appendix Table E18) and simulation results (Ap-
pendix Table E19) are very similar to our baseline case.
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Appendix Table E18: Demand Estimates with Quantitative Coupon Values

Estimates with measured coupon values
OOP Price 0.049 +

(0.026)
OOP Price X Commercial -0.096 ∗∗

(0.029)
Coupon X Commercial 0.394 +

(0.208)
Coupon -0.245

(0.245)
Drug Age (6-12 mo) 0.630 ∗

(0.269)
Drug Age (1-2 yr) 1.295 ∗∗

(0.280)
Drug Age (2-3 yr) 1.511 ∗∗

(0.322)
Drug Age (3-5 yr) 1.814 ∗∗

(0.354)
Drug Age (5+ yr) 1.809 ∗∗

(0.420)
Drug Age (6-12 mo) X Female -0.350

(0.288)
Drug Age (1-2 yr) X Female -0.493 +

(0.257)
Drug Age (2-3 yr) X Female -0.622 ∗

(0.263)
Drug Age (3-5 yr) X Female -0.834 ∗∗

(0.261)
Drug Age (5+ yr) X Female -0.313

(0.231)
Drug FE Yes
Drug-Year FE Yes
Drug-Segment FE Yes
Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Notes: Table shows maximum likelihood estimates of Equations 2 and 3 where coupon discounts are
given by the measured value of each coupon in Appendix Table E17. Specification includes drug,
drug-year, and drug-segment fixed effects.
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Appendix Table E19: Coupon Price Effects with Quantitative Coupon Values

Data Simulation: Baseline Simulation: Coupons Banned

Drug
Coupon
Status

Net Price
($)

Share Net Price
($)

Share Net Price
($)

Share ∆ Price
(%)

∆ Share
(%)

Aubagio Always 5817 0.140 6076 0.141 5621 0.129 -7.5 -8.3
Avonex Never 5983 0.075 5911 0.086 5551 0.104 -6.1 37.6
Betaseron Never 6353 0.045 5910 0.058 5538 0.069 -6.3 34.8
Copaxone20 Aug 2011 6825 0.030 5831 0.030 5458 0.037 -6.4 40.5
Copaxone40 Always 5600 0.308 6233 0.298 5738 0.279 -7.9 -9.8
Gilenya Oct 2011 6389 0.069 5954 0.066 5452 0.062 -8.4 -11.3
Glatopa Never 5290 0.009 5800 0.009 5427 0.011 -6.4 44.4
Plegridy Never 5953 0.029 5826 0.029 5455 0.035 -6.4 41.6
Rebif Always 6364 0.055 5979 0.056 5514 0.052 -7.8 -8.6
Tecfidera Always 6471 0.224 6152 0.218 5663 0.204 -7.9 -9.6
Tysabri Never 5815 0.015 5396 0.013 4942 0.017 -8.4 48.7

Notes: Table shows coupon price effect results when measured coupon values (Appendix Table E17)
are used in the demand estimation and simulations. Columns 2-3 show observed prices (computed as
0.85 × the average allowed amount) and market shares in the simulation sample. Columns 4-5 show
simulated net prices and shares at baseline, where coupons are as observed in the data (Column 1).
Columns 6-10 show results from a simulation where all existing coupon discounts are removed, but the
coupon advertising effect is allowed to remain. Columns 6-7 show the resulting net prices and market
shares; Columns 8-9 express the effects of the coupon ban as a percent of baseline simulated values.
The average change in net price is -7.6%, weighting by the baseline simulated shares in Column 5.

Robustness of the coupon price effect to varying the price elasticity: Be-
cause we do not observe coupon use and must impute out-of-pocket prices, our estimate
of price sensitivity may be too small (for example, due to attenuation bias from mea-
surement error). Therefore, we tested the sensitivity of the coupon price effect to
increasing or decreasing the price coefficient by one times the standard error of ˆαcom in
Equation 3. We find that greater price sensitivity leads to larger coupon price effects:
if the price coefficient increases in magnitude by 1 standard error, a coupon ban re-
duces prices by 9.8% compared to our baseline of 7.4%. Conversely, if that coefficient
is reduced by one standard error, then the coupon ban reduces prices by 4.8%.

Accounting for variation in demand parameter estimates: In addition to vary-
ing the price elasticity, we test the sensitivity of our price simulations to variation in
all of the parameters in the demand model. To do this, we take draws from the joint
sampling distribution of the parameter estimates, simulate the resulting price effect,
and repeat this 200 times to capture uncertainty in the simulated price effect. The
2.5 and 97.5 percentiles of this distribution generate price effects of 5.5% and 9.7%
respectively.
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E.3 Distributional Implications of a Coupon Ban

As noted in the text, the distributional implications of a coupon ban vary across in-
dividuals and segments. Panel (a) of Appendix Figure E17 below shows the effects of
a ban on per-enrollee insurer expenditures. Insurers’ costs decline across all enrollees
due to the reduction in list prices for all medications. Panel (b) shows the effects
on per-enrollee out-of-pocket costs per claim, which weakly decline for all Medicare
Advantage enrollees, who were not able to redeem coupons so can only benefit from
list price reductions, and can be large and positive for commercial enrollees who relied
heavily upon coupons.

Appendix Figure E17: Distribution of Coupon Effects on Insurer and Out-of-Pocket
Costs

(a) Coupon effect on insurer costs
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(b) Coupon effect on cost sharing
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Notes: Figures show the distribution of effects of banning coupons on insurer costs
(Panel (a)) as well as enrollee out-of-pocket costs (Panel (b)) per prescription.
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