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1. Introduction

In this online appendix, I provide proofs that were omitted from Lagerlöf (2020). In addition, I show the

calculations that were used for Figures 2, 4, and 5 of that paper. For convenience, in the next section I re-

state some of the equations (and an assumption) from Lagerlöf (2020). The numbering of those equations

is thus the same as in that paper.
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2. Restatement of Expressions from Lagerlöf (2020)

xi = yih

(
1
pi

)

. (5)

Y (si, pi) =
[

si

f (h (1/pi) , 1)

] 1
t

, X (si, pi) = Y (si, pi) h

(
1
pi

)

. (6)

C [si, pi (s)]
def= pi (s) Y [si, pi (s)] + X [si, pi (s)] . (8)

Assumption 1. The production function and the CSF satisfy at least one of the following three sets of conditions:

(i) t ≤ 1 and ε i (s) η
(

1
pi

)
σ
(

1
pi

)
≤ 2 (for all i, pi, and s);

(ii) tr ≤ 1, rη
(

1
pi

)
σ
(

1
pi

)
≤ 2, and

pi(s) =
wisr

i

∑n
j=1 wjsr

j
(for all i, pi, and s 6= 0), (9)

where r > 0 and wi > 0 are parameters;

(iii) pi(s) is given by (9), f (xi, yi) = xα
i yβ

i (with α > 0 and β > 0), and αr ≤ 1 (for all i).

[vi − Y (si, pi (s))]
∂pi (s)

∂si
≤ C1 (si, pi) . (10)

(v − y∗)
ε̂(n)
ns∗

= C1

[

s∗,
1
n

]

⇔ (v − y∗) tε̂(n) = y∗ + nx∗. (11)

y∗ =
tε̂(n)v

1 + nh(n) + tε̂(n)
. (12)

ε̂(n) =
r(n − 1)

n
. (14)

∂x∗

∂n
< 0 ⇔ σ(n) > −

n (n − 2) h (n) − 1

(n − 1)
[
1 + rt(n−1)

n

] ,
∂y∗

∂n
> 0 ⇔ σ(n) >

n(n − 2)h(n) − 1
(n − 1)nh(n)

. (16)

RA = tε̂(n)v. (18)

RH =
[

1 −
y∗

v

]

RA =
[

1
v [1 + nh(n)]

+
1

RA

]−1

. (19)

y∗i =
rtp∗i (1 − p∗i )vi

rtp∗i (1 − p∗i ) + p∗i + h
(

1
p∗i

) , for i = 1, 2. (23)

RH = rtp1 (1 − p1)
rβ [p1v1 + (1 − p1) v2] + v1 + v2

[rβ (1 − p1) + 1] (rβp1 + 1)
. (24)

w1 = w2

(
p1

1 − p1

)1+rβ ( rβ (1 − p1) + 1
rβp1 + 1

v2

v1

)rt

. (25)
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3. Proofs of Propositions 1-5 and 7-10

3.1. Proof of Proposition 1

To prove the proposition, we can invoke Theorem 3.1 in Reny (1999), which guarantees the existence of

a pure strategy equilibrium under the conditions that the strategy sets are compact, contestant i’s payoff

function is quasiconcave in si, and the game is better-reply secure. The first condition is readily taken care

of by, without loss of generality, imposing a constraint si ≤ s, where s is some finite and sufficiently large

constant; this ensures that each player’s strategy set [0, s]
def= S is closed and bounded and thus compact.

The requirement that the payoff functions are quasiconcave will be investigated at the end of this proof.

To show that the game is better-reply secure, we can rely on Proposition 1 in Bagh and Jofre (2006).

This says that a game is better-reply secure if it is payoff secure and weakly reciprocal upper semicontinuous

(wrusc).1 We know that, in the hybrid contest, each player’s payoff function is continuous everywhere,

except possibly at the origin. This means that the potentially problematic issue with showing the two

properties is what happens at the point s = 0.

In order to prove that the game is payoff secure at s = 0, we must show that each player can, for every

ε > 0, secure a payoff of pi (0) vi − ε at s = 0. A player is said to be able to secure a payoff of pi (0) vi − ε

at s = 0 if there exists s̃i such that πi
(
s̃i, s′−i

)
≥ pi (0) vi − ε for all s′−i in some open neighborhood of 0−i.

The hybrid contest is indeed payoff secure at s = 0. To see this, note that there exists s̃i > 0 such that

πi (s̃i, 0−i) = pi (s̃i, 0−i) vi − C [s̃i, pi (s̃i, 0−i)] = vi − C [s̃i, 1] > pi (0) vi. (A1)

The second equality in (A1) follows from the assumption that, for any s̃i > 0, pi (s̃i, 0−i) = 1; the in-

equality in (A1) follows from (i) the assumption that pi (0) < 1 and (ii) the fact that C [s̃i, 1] can be

made arbitrarily small by choosing a s̃i close enough to zero. Moreover, πi is continuous at (s̃i, 0−i).

Therefore, (A1) implies that for every ε > 0 and for all s′−i in some open neighborhood of 0−i, we have

πi
(
s̃i, s′−i

)
≥ pi (0) vi − ε.

The graph of the game is defined as Γ = {(s, π1, ∙ ∙ ∙ , πn) ∈ Sn × Rn | πi (s) = πi, ∀i}. The closure of

Γ is denoted by Γ. The frontier of Γ, denoted by Fr Γ, is defined as the set of points that are in Γ but not in

Γ. In order to prove that the game is wrusc, we must show that for any (s, β1, . . . , βn) in the frontier of

the game, there is a player i and s̃i such that πi
(
s̃i, s′−i

)
> βi. The game is indeed wrusc. To verify this,

first note that, since the origin is the only point of discontinuity, any point in Fr Γ must be of the form

(0, γ1v1, ∙ ∙ ∙ , γnvn), where for some sτ → 0 and every i, we have limτ→∞ πi (sτ) = γivi. We must also

have ∑n
i=1 γi = 1. Hence, for some i, γi < 1. Suppose, without loss of generality, that γ1 < 1. Because

lims1→0 πi (s1, 0−1) = v1, there exists s̃i > 0 such that πi (s̃i, 0−1) > γ1v1.

To prove the proposition, it remains to show that, under the conditions stated there, player i’s payoff

function is quasiconcave in si. I will do this by showing that ∂2πi
∂s2

i
< 0 at any point where ∂πi

∂si
= 0. From

the analysis in the main text, it follows that we can write the derivative of contestant i’s payoff function

with respect to si as ∂πi
∂si

= [vi − Y (si, pi (s))] ∂pi
∂si

− C1 (si, pi). Differentiating again yields

∂2πi

∂s2
i

= −
[

Y1 (si, pi) + Y2 (si, pi)
∂pi

∂si

]
∂pi

∂si
+ [vi − Y (si, pi)]

∂2 pi

∂s2
i

− C11 (si, pi) − C12 (si, pi)
∂pi

∂si
.

1The proof below that the hybrid contest has those two properties will follow the proof in Example 3 of Bagh and Jofre (2006)

fairly closely.
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Now note that C12 (si, pi) = C21 (si, pi) = Y1 (si, pi). For a value of si for which ∂πi
∂si

= 0 holds, we also

have vi − Y (si, pi) = C1(si ,pi)
∂pi/∂si

. Moreover, C1 (si, pi) =
[

pi + h
(

1
pi

)]
Y1 (si, pi) and

C11 (si, pi) =
[

pi + h

(
1
pi

)]

Y11 (si, pi) =
1 − t

tsi

[

pi + h

(
1
pi

)]

Y1 (si, pi)

(cf. (6) and (8)). Therefore, evaluated at a value of si where ∂πi
∂si

= 0, the second-derivative can be written

∂2πi

∂s2
i

| ∂πi
∂si

=0
= −

[

2Y1 (si, pi) + Y2 (si, pi)
∂pi

∂si

]
∂pi

∂si
+

[
∂2 pi/∂s2

i

∂pi/∂si
−

1 − t
tsi

] [

pi + h

(
1
pi

)]

Y1 (si, pi) . (A2)

The expression in (A2) is strictly negative if and only if

[

2
Y1 (si, pi) si

Y (si, pi)
+

Y2 (si, pi) pi

Y (si, pi)
∂pi

∂si

si

pi

]
∂pi

∂si
>

[
∂2 pi/∂s2

i

∂pi/∂si
−

1 − t
tsi

] [

pi + h

(
1
pi

)]
Y1 (si, pi) si

Y (si, pi)
. (A3)

Now note that Y1(si ,pi)si
Y(si ,pi)

= 1
t and

Y2 (si, pi) pi

Y (si, pi)
= −

1
t

(si)
1
t

[

f

(

h

(
1
pi

)

, 1

)]− 1
t −1

f1

[

h

(
1
pi

)

, 1

]

h′
(

1
pi

)(
−1

p2
i

)

× pi

[
si

f (h (1/pi) , 1)

]− 1
t

=
1
t

f1

[
h
(

1
pi

)
, 1
]

h
(

1
pi

)

f
(

h
(

1
pi

)
, 1
) ×

h′
(

1
pi

)
1
pi

h
(

1
pi

) = −
η
(

1
pi

)
σ
(

1
pi

)

t
.

Inequality (A3) can therefore be written as


2
t
−

η
(

1
pi

)
σ
(

1
pi

)
εi (s)

t



 ∂pi

∂si
>

[
∂2 pi/∂s2

i

∂pi/∂si
−

1 − t
tsi

]

[pi + h (1/pi)]
1
t

or, equivalently, as

η

(
1
pi

)

σ

(
1
pi

)

εi (s) < 2 −

[
∂2 pi/∂s2

i

∂pi/∂si
−

1 − t
tsi

] [
pi + h

(
1
pi

)]

∂pi/∂si
. (A4)

The last term in the above inequality is strictly negative for all t ≤ 1. Therefore, a sufficient condition

for (A4) to hold is that η
(

1
pi

)
σ
(

1
pi

)
εi (s) ≤ 2. This proves the claim for part (i) of Assumption 1. In

order to prove the claim for part (ii), note that the derivative of the CSF in (9) can be written as ∂pi
∂si

=

rpi (1 − pi) /si, and the second-derivative is given by ∂2 pi
∂s2

i
= rpi (1 − pi) [r (1 − 2pi) − 1] /s2

i . Thus, the

term in square brackets in (A4) becomes

∂2 pi/∂s2
i

∂pi/∂si
−

1 − t
tsi

=
r (1 − 2pi) − 1

si
−

1 − t
tsi

=
tr (1 − 2pi) − 1

tsi
,

which is non-positive for all pi if tr ≤ 1. Moreover, εi (s) = r(1− pi) ≤ r. Hence the result follows. Finally

consider part (iii). The additional Cobb-Douglas assumption means that we can write the last term in (A4)

as

[
∂2 pi/∂s2

i

∂pi/∂si
−

1 − t
tsi

] 


pi + h

(
1
pi

)

∂pi/∂si



 =
[

tr (1 − 2pi) − 1
tsi

] [ pi + α
β pi

rpi (1 − pi) /si

]

=
tr (1 − 2pi) − 1

rβ (1 − pi)
.
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Moreover, the left-hand side of (A4) simplifies to η
(

1
pi

)
σ
(

1
pi

)
εi (s) = αr (1 − pi). Inequality (A4) there-

fore becomes

αr (1 − pi) < 2 −
tr (1 − 2pi) − 1

rβ (1 − pi)
⇔ αβr2 (1 − pi)

2 < 2rβ (1 − pi) − tr (1 − 2pi) + 1.

This inequality is most stringent at pi = 0 (and it is strictly less stringent for higher values of pi). It

therefore suffices if the inequality holds weakly when evaluated at pi = 0:

αβr2 ≤ 2rβ − tr + 1 = rβ − αr + 1 ⇔ 0 ≤ rβ(1 − αr) + 1 − αr ⇔ αr ≤ 1,

which gives us the result.

3.2. Proof of Proposition 2

First consider the claim in the last sentence of the proposition. To verify that s = 0 cannot be a Nash

equilibrium, note that πi (0) = pi (0) vi < vi. Moreover, by assumption we have pi (si, 0−i) = 1 for any

si > 0. Therefore, if contestant i were to deviate from si = 0 to some si > 0, her payoff would equal

πi (si, 0−i) = vi − C [si, 1]. But C [si, 1] can be made arbitrarily small by choosing an si close enough to

zero and, hence, for such an si the deviation is profitable.

We can thus conclude that in any equilibrium, s 6= 0. Moreover, we know that each contestant’s payoff

function is continuous and differentiable for all s 6= 0. In addition, Assumption 1 takes care of the second-

order condition. It follows that the analysis in the text that precedes the first-order condition (10) is valid

and that this first-order condition indeed characterizes the equilibria of the model.

3.3. Proof of Proposition 3

Under symmetry, the expression in (5) can be written as x∗ = h (n) y∗. Plugging this into (11) and then

solving for y∗ yields (12). The solution to this linear equation system is unique, and so the model has

a unique equilibrium within the family of symmetric equilibria. The expression for s∗ is obtained by

plugging h (1/pi) = h (n) and yi = y∗ into the equality si = yt
i f [h (1/pi) , 1], which was derived in

footnote 13 in Lagerlöf (2020).

3.4. Proof of Proposition 4

The claims about v, t, and α are straightforward to verify, so the calculations are omitted. Consider the

condition for y∗ to be strictly increasing in n. Differentiating the expression for y∗ in (12), we have

∂y∗

∂n
=

ε̂ ′ (n) [1 + nh (n) + tε̂ (n)] − ε̂ (n) [h (n) + nh′ (n) + tε̂ ′ (n)]

(tv)−1 [1 + nh (n) + tε̂ (n)]2
> 0

⇔ ε̂ ′ (n) [1 + nh (n)] > ε̂ (n)
[
h (n) + nh′ (n)

]
.

Differentiating (14), we obtain ε̂ ′ (n) = r/n2. Using this and (14) in the second inequality above yields

1 + nh (n) > n (n − 1) [h (n) + nh′ (n)] = n (n − 1) h (n) [1 − σ (n)], which simplifies to the condition in

(16). Next consider to the condition for x∗ to be strictly decreasing in n. We have x∗ = h (n) y∗, where y∗

is given by (12). Differentiating yields

∂x∗

∂n
=

[ε̂ ′ (n) h (n) + ε̂ (n) h′ (n)] [1 + nh (n) + tε̂ (n)] − ε̂ (n) h (n) [h (n) + nh′ (n) + tε̂ ′ (n)]

(tv)−1 [1 + nh (n) + tε̂ (n)]2
< 0 ⇔
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[
ε̂ ′ (n) h (n) + ε̂ (n) h′ (n)

]
[1 + nh (n)] + t [ε̂ (n)]2 h′ (n) < ε̂ (n) h (n)

[
h (n) + nh′ (n)

]
.

Dividing through by ε̂ (n) and using ε̂ ′ (n) /ε̂ (n) = 1/ [n (n − 1)], the inequality simplifies to
[

h (n)
n (n − 1)

+ h′ (n)
]

[1 + nh (n)] + tε̂ (n) h′ (n) < h (n)
[
h (n) + nh′ (n)

]

or, equivalently, h (n) [1 − (n − 1) σ (n)] [1 + nh (n)]− tε̂ (n) (n − 1) h (n) σ (n) < n (n − 1) [h (n)]2 [1 − σ (n)],

which simplifies to the condition in (16). Finally consider the claim that σ (n) ≥ 1 is sufficient for both

conditions in (16) to hold. Substituting n−2
n−1 (which is smaller than unity) for σ (n) in the condition for ∂y∗

∂n

in (16) yields

n − 2
n − 1

>
n (n − 2) h (n) − 1

n (n − 1) h (n)
⇔ (n − 2) nh (n) > n (n − 2) h (n) − 1 ⇔ 1 > 0,

which always holds. And substituting 1 for σ (n) in the condition for ∂x∗
∂n in (16) yields

1 > −
n (n − 2) h (n) − 1
(n − 1) [1 + tε̂ (n)]

⇔ (n − 1) [1 + tε̂ (n)] > −n (n − 2) h (n) + 1

⇔ n − 2 + tε̂ (n) (n − 1) > −n (n − 2) h(n),

which again always holds.

3.5. Proof of Proposition 5

The first equality in (19) follows immediately from (11) and (18), since nC
[
s∗, 1

n

]
= y∗ + nx∗. To verify

the second equality, note that

(

1 −
y∗

v

)

RA =
(

1 −
RA/v

1 + nh(n) + RA/v

)

RA =
RA [1 + nh (n)] v

[1 + nh (n)] v + RA =
[

1
[1 + nh (n)] v

+
1

RA

]−1

,

where the first equality uses (12) and (18). The claim that RH < RA follows immediately from (19) and

y∗ > 0. The claims about v, t, and α are straightforward to verify, so the calculations are omitted. Consider

the condition for RH to be weakly increasing in n. By differentiating the right-most expression for RH in

(19), we have

∂RH

∂n
= −

[
1

v [1 + nh (n)]
+

1
RA

]−2
[

−
h (n) + nh′ (n)

v [1 + nh (n)]2
−

∂RA/∂n

(RA)2

]

≥ 0 ⇔
∂RA/∂n

(RA)2 ≥ −
h (n) [1 − σ (n)]

v [1 + nh (n)]2
.

By differentiating the expression in (18) (also using (14)), we obtain ∂RA/∂n = tvr/n2. By plugging this

and the expression for RA in (18) (combined with (14)) into the above inequality and then rewriting, we

have

rt (n − 1)2 [σ (n) − 1] h (n) ≤ [1 + nh (n)]2 = 1 + 2nh (n) + n2h (n)2 ⇔ h (n)2 − Kh (n) ≥ −
1
n2 , (A5)

where K is defined in Proposition 5 in Lagerlöf (2020). Since h (n) > 0, this inequality always holds if

K ≤ 0. Suppose K > 0. Then the left-hand side is negative for all h (n) < K, and it is minimized at

h (n) = K/2. Evaluating inequality (A5) at h (n) = K/2 yields

−
K2

4
≥ −

1
n2 ⇔ K ≤

2
n
⇔ σ (n) ≤ 1 +

4n

tr (n − 1)2 . (A6)
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Thus if (A6) holds, then (A5) is always satisfied. If (A6) is violated, then also (A5) is violated for values of

h (n) between the two roots of (A5). Solving for these roots (by completing the square), we have:

h (n)2 − Kh (n) = −
1
n2 ⇔

[

h (n) −
K
2

]2

=
n2K2

4n2 −
4

4n2 ⇔ h (n) =
K
2
±

1
2n

√
n2K2 − 4.

Thus, total expenditures are increasing in n if and only if (i) inequality (A6) holds or (ii) inequality (A6)

is violated and h (n) /∈ (ΞL, ΞH), where ΞL and ΞH are defined in Proposition 5 in Lagerlöf (2020).

3.6. Proof of Proposition 7

The first-order condition in (10) can be written as

(vi − y∗i )
rp∗i

(
1 − p∗i

)

s∗i
=

1
ts∗i

C (s∗i , p∗i ) ⇔ rt (vi − y∗i ) p∗i (1 − p∗i ) =
[

p∗i + h

(
1
p∗i

)]

y∗i , (A7)

where the relationships C1
(
s∗i , p∗i

)
= 1

ts∗i
C
(
s∗i , p∗i

)
and C

(
s∗i , p∗i

)
=
[

p∗i + h
(

1
p∗i

)]
y∗i were used. By solv-

ing (A7) for y∗i , we obtain (23). The remaining parts of the characterization claim are either shown in the

main text or straightforward. It remains to prove the uniqueness claim. Note that the equilibrium is de-

fined recursively: The only endogenous variable in the equality Υ (p1) = 0 is p1; moreover, given a value

of p∗1, the winner-pay investments y∗1 and y∗2 are uniquely determined by (23). To prove the claim, it thus

suffices to show that if rη
(

1
pi

)
σ
(

1
pi

)
≤ 1 for all pi ∈ [0, 1], then the equation Υ (p1) = 0 has a unique

root. A sufficient condition for this, in turn, is that Υ (p1) is strictly increasing (by Proposition 1 in Lager-

löf (2020), we know that the equation has at least one root). The equation Υ (p1) = 0 can equivalently be

written as Υ̂ (p1) = 0, where

Υ̂ (p1) = ln

[
w2vrt

2

w1vrt
1

]

+ ln p1 + r ln f

[

h

(
1

1 − p1

)

, 1

]

+ rt ln

[

rtp1 (1 − p1) + p1 + h

(
1
p1

)]

− ln (1 − p1) − r ln f

[

h

(
1
p1

)

, 1

]

− rt ln

[

rtp1 (1 − p1) + 1 − p1 + h

(
1

1 − p1

)]

.

Differentiating with respect to p1 yields

Υ̂′ (p1) =
1
p1

+
r f1

[
h
(

1
1−p1

)
, 1
]

h′
(

1
1−p1

)
1

(1−p1)
2

f
[

h
(

1
1−p1

)
, 1
] +

rt

[

rt (1 − 2p1) + 1 − h′
(

1
p1

)
1
p2

1

]

rtp1 (1 − p1) + p1 + h
(

1
p1

)

+
1

1 − p1
+

r f1

[
h
(

1
p1

)
, 1
]

h′
(

1
p1

)
1
p2

1

f
[

h
(

1
p1

)
, 1
] −

rt

[

rt (1 − 2p1) − 1 + h′
(

1
1−p1

)
1

(1−p1)
2

]

rtp1 (1 − p1) + 1 − p1 + h
(

1
1−p1

)

=
1

p1 (1 − p1)
−

rη
(

1
1−p1

)
σ
(

1
1−p1

)

1 − p1
−

rη
(

1
p1

)
σ
(

1
p1

)

p1

+
rt

[

rt (1 − 2p1) + 1 − h′
(

1
p1

)
1
p2

1

]

rtp1 (1 − p1) + p1 + h
(

1
p1

) −
rt

[

rt (1 − 2p1) − 1 + h′
(

1
1−p1

)
1

(1−p1)
2

]

rtp1 (1 − p1) + 1 − p1 + h
(

1
1−p1

) . (A8)
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Under the assumption that rη
(

1
pi

)
σ
(

1
pi

)
≤ 1 for all pi, the first line of (A8) is non-negative. The second

line of (A8) is strictly positive if

rt [rt (1 − 2p1)]

rtp1 (1 − p1) + p1 + h
(

1
p1

) −
rt [rt (1 − 2p1)]

rtp1 (1 − p1) + 1 − p1 + h
(

1
1−p1

) ≥ 0 ⇔

(1 − 2p1)
[

1 − p1 + h

(
1

1 − p1

)

− p1 − h

(
1
p1

)]

= (1 − 2p1)
2 + (1 − 2p1)

∫ 1
1−p1

1
p1

h′ (z) dz ≥ 0.

But, since h′ < 0, the last inequality holds for all p1 ∈ [0, 1] (with equality if, and only if, p1 = 0.5).

3.7. Proof of Proposition 8

Under the assumption that v1 = v2, (A7) simplifies to rt
(
v − y∗i

)
p∗i
(
1 − p∗i

)
=
[

p∗i + h
(

1
p∗i

)]
y∗i . Since

the expression in square brackets is strictly increasing in p∗i and since p∗1
(
1 − p∗1) = p∗2 (1 − p∗2) , the

equality implies that p∗1 > p∗2 ⇔ y∗1 < y∗2. Moreover, since
[

p∗i + h
(

1
p∗i

)]
y∗i = C

(
s∗i , p∗i

)
, it also implies

that y∗1 < y∗2 ⇔ C
(
s∗1, p∗1

)
> C (s∗2, p∗2). This proves part (i). Next turn to part (ii). By taking logs of the

three equations (23) and Υ(p∗1) = 0, we have

ln r + ln t + ln (v1 − y∗1) + ln p∗1 + ln (1 − p∗1) = ln

[

p∗1 + h

(
1
p∗1

)]

+ ln y∗1, (A9)

ln r + ln t + ln (v2 − y∗2) + ln p∗1 + ln (1 − p∗1) = ln

[

1 − p∗1 + h

(
1

1 − p∗1

)]

+ ln y∗2, (A10)

ln p∗1 + ln w2 + r ln f

[

h

(
1

1 − p∗1

)

, 1

]

+ rt ln y∗2 = ln (1 − p∗1) + ln w1 + r ln f

[

h

(
1
p∗1

)

, 1

]

+ rt ln y∗1.

(A11)

Now set v1 = v2 = v in (A9) and (A10). Then differentiate (A9) with respect to w1:

−
1

v − y∗1

∂y∗1
∂w1

+
[

1
p∗1

−
1

1 − p∗1

]
∂p∗1
∂w1

=
1 − h′

(
1
p∗1

)
1

(p∗1)
2

p∗1 + h
(

1
p∗1

)
∂p∗1
∂w1

+
1
y∗1

∂y∗1
∂w1

⇔

[
1 − 2p∗1

p∗1
(
1 − p∗1

)

]
∂p∗1
∂w1

=
1
p∗1

[
p∗1 + σ

(
1
p∗1

)
h
(

1
p∗1

)]

p∗1 + h
(

1
p∗1

)
∂p∗1
∂w1

+
v

y∗1
(
v − y∗1

)
∂y∗1
∂w1

⇔

[
1 − 2p∗1
1 − p∗1

]
∂p∗1
∂w1

w1

p∗1
=

p∗1 + σ
(

1
p∗1

)
h
(

1
p∗1

)

p∗1 + h
(

1
p∗1

)
∂p∗1
∂w1

w1

p∗1
+

v
v − y∗1

∂y∗1
∂w1

w1

y∗1
⇔

[
1 − 2p∗1 − A1

(
1 − p∗1

)

1 − p∗1

]
∂p∗1
∂w1

w1

p∗1
=

v
v − y∗1

∂y∗1
∂w1

w1

y∗1
, (A12)

where A1
def=
[

p∗1 + σ
(

1
p∗1

)
h
(

1
p∗1

)]
/
[

p∗1 + h
(

1
p∗1

)]
. Similarly, by differentiating (A10) with respect to w1

and then rewriting, we obtain the following equality (the derivation is very similar to the one above):

[
1 − 2p∗1 + A2 p∗1

1 − p∗1

]
∂p∗1
∂w1

w1

p∗1
=

v
v − y∗2

∂y∗2
∂w1

w1

y∗2
, (A13)
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where A2
def=
[
1 − p∗1 + σ

(
1

1−p∗1

)
h
(

1
1−p∗1

)]
/
[
1 − p∗1 + h

(
1

1−p∗1

)]
. Finally differentiate (A11) with respect

to w1:

1
p∗1

∂p∗1
∂w1

+
r f1

[
h
(

1
1−p∗1

)
, 1
]

h′
(

1
1−p∗1

)
1

(1−p∗1)
2

f
[

h
(

1
1−p∗1

)
, 1
]

∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

= −
1

1 − p∗1

∂p∗1
∂w1

+
1

w1
−

r f1

[
h
(

1
p∗1

)
, 1
]

h′
(

1
p∗1

)
1

(p∗1)
2

f
[

h
(

1
p∗1

)
, 1
]

∂p∗1
∂w1

+ rt
1
y∗1

∂y∗1
∂w1

⇔

1

p∗1
(
1 − p∗1

)
∂p∗1
∂w1

−
rη
(

1
1−p∗1

)
σ
(

1
1−p∗1

)

1 − p∗1

∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

=
1

w1
+

rη
(

1
p∗1

)
σ
(

1
p∗1

)

p∗1

∂p∗1
∂w1

+ rt
1
y∗1

∂y∗1
∂w1

⇔




1 − rη

(
1

1−p∗1

)
σ
(

1
1−p∗1

)
p∗1 − rη

(
1
p∗1

)
σ
(

1
p∗1

) (
1 − p∗1

)

p∗1
(
1 − p∗1

)



 ∂p∗1
∂w1

+ rt
1
y∗2

∂y∗2
∂w1

=
1

w1
+ rt

1
y∗1

∂y∗1
∂w1

⇔

1 − B
1 − p∗1

∂p∗1
∂w1

w1

p∗1
+ rt

∂y∗2
∂w1

w1

y∗2
= 1 + rt

∂y∗1
∂w1

w1

y∗1
, (A14)

where

B
def= rη

(
1

1 − p∗1

)

σ

(
1

1 − p∗1

)

p∗1 + rη

(
1
p∗1

)

σ

(
1
p∗1

)

(1 − p∗1) .

Now evaluate the three equations (A12)-(A14) above at w1 = w2 (all expressions below, until the end of

the proof, are evaluated at symmetry, even though this is not everywhere explicitly indicated):

−A
∂p∗1
∂w1

w1

p∗1
=

v
v − y∗

∂y∗1
∂w1

w1

y∗
, A

∂p∗1
∂w1

w1

p∗1
=

v
v − y∗

∂y∗2
∂w1

w1

y∗
, 2 (1 − B)

∂p∗1
∂w1

w1

p∗1
+ rt

∂y∗2
∂w1

w1

y∗
= 1 + rt

∂y∗1
∂w1

w1

y∗
,

where A
def= [1 + 2σ (2) h (2)] / [1 + 2h (2)], B

def= rη (2) σ (2), and y∗ is the common value of y∗1 and y∗2
when evaluated at symmetry. Solving this equation system yields

∂p∗1
∂w1

w1

p∗1
=

1

2
[
1 − B + rtA v−y∗

v

] ,
∂y∗1
∂w1

w1

y∗
= −

A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] ,
∂y∗2
∂w1

w1

y∗
=

A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] .

(A15)

From these results, most of the comparative statics claims follow. To prove the only remaining claim, the

one about the all-pay investments, note that the relationship x∗1 = h
(

1
p∗1

)
y∗1 implies that (at symmetry)

∂x∗1
∂w1

w1

x∗
= σ (2)

∂p∗1
∂w1

w1

p∗1
+

∂y∗1
∂w1

w1

y∗
=

σ (2) − A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] , (A16)

where x∗ is the common value of x∗1 and x∗2 when evaluated at symmetry. Thus,

∂x∗1
∂w1

> 0 ⇔ σ (2) > A
v − y∗

v
=

1 + 2σ (2) h (2)
1 + 2h(2) + tr

2

⇔ σ (2) >
1

1 + tr
2

=
2

2 + tr
,

where the first equality is obtained by using (23). Similarly, from the relationship x∗2 = h
(

1
1−p∗1

)
y∗2 we

have (at symmetry)

∂x∗2
∂w1

w1

x∗
= −σ (2)

∂p∗1
∂w1

w1

p∗1
+

∂y∗2
∂w1

w1

y∗
=

−σ (2) + A v−y∗

v

2
[
1 − B + rtA v−y∗

v

] , (A17)

which has the opposite sign to (A16).
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3.8. Proof of Proposition 9

Equation (A7) can be restated as rt
(
vi − y∗i

)
p∗i
(
1 − p∗i

)
= C

(
s∗i , p∗i

)
. Since p∗1

(
1 − p∗1) = p∗2 (1 − p∗2) ,

the equality implies that v1 − y∗1 > v2 − y∗2 ⇔ C
(
s∗1, p∗1

)
> C (s∗2, p∗2). We can also write (A7) as

rt

(
vi

y∗i
− 1

)

p∗i (1 − p∗i ) = p∗i + h

(
1
p∗i

)

.

Since the right-hand side is strictly increasing in p∗i and since p∗1
(
1 − p∗1) = p∗2 (1 − p∗2) , the equality

implies that p∗1 > p∗2 ⇔ y∗1
v1

<
y∗2
v2

.

3.9. Proof of Proposition 10

The Cobb-Douglas specification (Assumption 5 in Lagerlöf, 2020) implies h (m) = α
β m−1. By using this in

(23), we get

v1 − y∗1 =
v1

(
p1 + α

β p1

)

rtp1 (1 − p1) + p1 + α
β p1

=
v1

t
β

rt (1 − p1) + t
β

=
v1

rβ (1 − p1) + 1
, (A18)

v2 − y∗2 =
v2

[
1 − p1 + α

β (1 − p1)
]

rtp (1 − p1) + 1 − p1 + α
β (1 − p1)

=
v2

t
β

rtp1 + t
β

=
v2

rβp1 + 1
. (A19)

Moreover, it follows from (A7) that the expected total equilibrium expenditures can be written as RH =

rtp1 (1 − p1) ×
[(

v1 − y∗1
)
+ (v2 − y∗2)

]
. Plugging (A18) and (A19) into this expression yields the expres-

sion for RH stated in (24). Next, taking logs of both sides of (24), we can write

ln RH = ln rt + ln p1 + ln (1 − p1) + ln {rβ [p1v1 + (1 − p1) v2] + v1 + v2}

− ln [rβ (1 − p1) + 1] − ln (rβp1 + 1)

Differentiating yields:

∂ ln RH

∂p1
=

1
p1

−
1

1 − p1
+

rβ (v1 − v2)
rβ [p1v1 + (1 − p1) v2] + v1 + v2

+
rβ

rβ (1 − p1) + 1
−

rβ

rβp1 + 1

=
1 − 2p1

p1 (1 − p1)
+

rβ (v1 − v2)
rβ [p1v1 + (1 − p1) v2] + v1 + v2

+
(rβ)2 (2p1 − 1)

(rβ)2 p1 (1 − p1) + rβ + 1

=
(1 − 2p1) (rβ + 1)

p1 (1 − p1)
[
(rβ)2 p1 (1 − p1) + rβ + 1

] +
rβ (v1 − v2)

rβ [p1v1 + (1 − p1) v2] + v1 + v2

def= z (p1) .

(A20)

First consider the case v1 = v2. Then it is clear from inspection that (A20) is positive for p1 < 1
2 and

negative for p1 > 1
2 . Hence, p̂1 = 1

2 . Next consider the case v1 > v2. The derivative w.r.t. p1 of the first

term in (A20) is strictly negative:

∂T (p1)
∂p1

= (rβ + 1)
−2p1 (1 − p1)

[
(rβ)2 p1 (1 − p1) + rβ + 1

]
− (1 − 2p1)

2
[
2 (rβ)2 p1 (1 − p1) + rβ + 1

]

p2
1 (1 − p1)

2
[
(rβ)2 p1 (1 − p1) + rβ + 1

]2 < 0,

(A21)
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where T is short-hand notation for the first term in (A20). Moreover, by inspection, the second term

in (A20) is strictly decreasing in p1. Therefore, ∂2 ln RH/∂p2
1 < 0. Moreover, evaluated at p1 = 1

2 , the

expression in (A20) is strictly positive, whereas it approaches −∞ as p1 → 1. It follows that p̂1 ∈
(

1
2 , 1
)

.

In particular, for any v1 ≥ v2, p̂1 is characterized by z ( p̂1) = 0.

One can verify that z (p1) is strictly increasing in v1 and strictly decreasing in v2. Hence, ∂ p̂1/∂v1 > 0

and ∂ p̂1/∂v2 < 0 (the former result will also follow from computations shown below). In order to do

comparative statics w.r.t. rβ, differentiate the first term of z (p1) w.r.t. rβ:

(1 − 2p1)
p1 (1 − p1)

(rβ)2 p1 (1 − p1) + rβ + 1 − (rβ + 1) [2rβp1 (1 − p1) + 1]
[
(rβ)2 p1 (1 − p1) + rβ + 1

]2

=
− (1 − 2p1)
p1 (1 − p1)

p1 (1 − p1) rβ [2 (rβ + 1) − rβ]
[
(rβ)2 p1 (1 − p1) + rβ + 1

]2 = −
(1 − 2p1) rβ (rβ + 2)

[
(rβ)2 p1 (1 − p1) + rβ + 1

]2 .

Then differentiate the second term of z (p1) w.r.t. rβ:

(v1 − v2)
rβ [p1v1 + (1 − p1) v2] + v1 + v2 − rβ [p1v1 + (1 − p1) v2]

{rβ [p1v1 + (1 − p1) v2] + v1 + v2}
2 =

(v1 − v2) (v1 + v2)

{rβ [p1v1 + (1 − p1) v2] + v1 + v2}
2 .

Thus, if v1 = v2, thenz (p1) is constant w.r.t. rβ and ∂ p̂1/∂ (rβ) = 0. And if v1 > v2, thenz (p1) is strictly

increasing in v1 and ∂ p̂1/∂ (rβ) > 0.

Given the Cobb-Douglas specification in Assumption 5 in Lagerlöf (2020), the equation Υ(p∗1) = 0,

which defines the equilibrium value of p1, becomes

w2vrt
2

w1vrt
1

p1

[(
α
β

)α
(1 − p1)

α
]r

[
rtp1 (1 − p1) + 1 − p1 + α

β (1 − p1)
]rt =

(1 − p1)
[(

α
β

)α
pα

1

]r

[
rtp1 (1 − p1) + p1 + α

β p1

]rt ⇔

w2vrt
2

w1vrt
1

p1 (1 − p1)
rα

(1 − p1)
rt
(

rtp1 + 1 + α
β

)rt =
prα

1 (1 − p1)

prt
1

[
rt (1 − p1) + 1 + α

β

]rt ⇔

w2vrt
2

w1vrt
1

p1+rβ
1

(
rtp1 + t

β

)rt =
(1 − p1)

1+rβ

[
rt (1 − p1) + t

β

]rt ⇔

w1 = w2

[
p1

1 − p1

]1+rβ
[

r (1 − p1) + 1
β

rp1 + 1
β

v2

v1

]rt

= w2

[
p1

1 − p1

]1+rβ [ rβ (1 − p1) + 1
rβp1 + 1

v2

v1

]rt

,

which gives us (25). The result that limv1→∞ p̂1 < 1 follows from inspection of (A20): z ( p̂1) = 0 is

inconsistent with limv1→∞ p̂1 = 1. Similarly, the result that limv1→∞ ŵ1 = 0 follows from (25) and the fact

that limv1→∞ p̂1 < 1.

It remains to prove the last limit result stated in the proposition. In order to do that, we must first

derive the value of limv1→v2 ∂ p̂1/∂v1. To this end, differentiate both sides of z ( p̂1) = 0, to obtain:

∂T ( p̂1)
∂p1

∂ p̂1

∂v1
−

(rβ)2 (v1 − v2)
2

[rβ [ p̂1v1 + (1 − p̂1) v2] + v1 + v2]
2

∂ p̂1

∂v1

+
rβ {rβ [ p̂1v1 + (1 − p̂1) v2] + v1 + v2 − (v1 − v2) (rβ p̂1 + 1)}

[rβ [ p̂1v1 + (1 − p̂1) v2] + v1 + v2]
2 = 0.

(A22)

The numerator of the last term simplifies to rβ (rβ + 2) v2 > 0. Since we also know, from above, that

∂T ( p̂1) /∂p1 < 0, it follows that ∂ p̂1/∂v1 > 0. Next, take the limit v1 → v2 of both sides of (A22):
[

lim
v1→v2

∂T ( p̂1)
∂p1

] [

lim
v1→v2

∂ p̂1

∂v1

]

+
rβ (rβ + 2) v2

[rβv2 + v2 + v2]
2 = 0.
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From (A21) we also have

lim
v1→v2

∂T ( p̂1)
∂p1

= (rβ + 1)
−8

[(
rβ
2

)2
+ rβ + 1

]

[(
rβ
2

)2
+ rβ + 1

]2 = −
8 (rβ + 1)

(
rβ
2

)2
+ rβ + 1

= −
32 (rβ + 1)

(rβ + 2)2 .

Thus, limv1→v2
∂ p̂1
∂v1

=
[

− rβ(rβ+2)v2

(rβ+2)2v2
2

]

/

[

− 32(rβ+1)
(rβ+2)2

]

= rβ(rβ+2)
32(rβ+1)v2

. We can now prove the last limit result

stated in the proposition. Take logs of (25) and evaluate at p = p̂1:

ln ŵ1 = ln w2 − (1 + rβ) ln (1 − p̂1)+ (1 + rβ) ln p̂1 − rt ln (rβ p̂1 + 1)+ rt ln [rβ (1 − p̂1) + 1]− rt ln v1 + rt ln v2.

Differentiate both sides w.r.t. v1:

1
ŵ1

∂ŵ1

∂v1
=

[
1 + rβ

1 − p̂1
+

1 + rβ

p̂1
−

tr2β

rβ p̂1 + 1
−

tr2β

rβ (1 − p̂1) + 1

]
∂ p̂1

∂v1
−

rt
v1

=
[

1 + rβ

(1 − p̂1) p̂1
−

tr2β (rβ + 2)
(rβ p̂1 + 1) [rβ (1 − p̂1) + 1]

]
∂ p̂1

∂v1
−

rt
v1

.

Next take the limit v1 → v2 of both sides:

lim
v1→v2

[
1

ŵ1

] [

lim
v1→v2

∂ŵ1

∂v1

]

=



4 (1 + rβ) −
tr2β (rβ + 2)

(
rβ
2 + 1

) (
rβ
2 + 1

)




[

lim
v1→v2

∂ p̂1

∂v1

]

−
rt
v2

⇔

1
w2

lim
v1→v2

∂ŵ1

∂v1
= 4

[

(1 + rβ) −
tr2β (rβ + 2)

(rβ + 2)2

]
rβ (rβ + 2)

32 (rβ + 1) v2
−

rt
v2

=
rβ (rβ + 2)

8v2
−

rt
v2

−
tr3β2

8 (rβ + 1) v2
=

rβ (rβ + 2)
8v2

−
rt
[
8 (rβ + 1) + (rβ)2

]

8 (rβ + 1) v2
.

Thus,

lim
v1→v2

∂ŵ1

∂v1
< 0 ⇔

rβ (rβ + 2)
8v2

<
rt
[
8 (rβ + 1) + (rβ)2

]

8 (rβ + 1) v2

⇔
β

α + β
<

8 (rβ + 1) + (rβ)2

(rβ + 2) (rβ + 1)
=

5rβ + 6
(rβ + 2) (rβ + 1)

+ 1,

which always holds.

4. Calculations Used for Figures 2, 4, and 5 in Lagerlöf (2020)

4.1. Calculations Used for Figure 2

Assume a CES production function, a CSF of the generalized Tullock form (as in eq. (9) in Lagerlöf, 2020),

and that t = 1 and r ≤ 1. Under these assumptions, condition (i) in Assumption 1 is satisfied for all σ ≤ 1.

Thus suppose that σ > 1. Table 1 in Lagerlöf (2020) tells us that, under the stated assumptions, η
(

1
pi

)
=

(
α

1−α

)σ pσ−1
i /

[(
α

1−α

)σ pσ−1
i + 1

]
. For σ > 1, this expression is strictly increasing in pi. Therefore, since

12



pi ≤ 1, an upper bound on η
(

1
pi

)
is given by

(
α

1−α

)σ /
[(

α
1−α

)σ + 1
]
. It follows that condition (i) in

Assumption 1 (i.e., rη
(

1
pi

)
σ ≤ 2) is satisfied for all pi ∈ [0, 1] if

r

(
α

1−α

)σ

(
α

1−α

)σ + 1
σ ≤ 2 ⇔ (rσ − 2)

(
α

1 − α

)σ

≤ 2.

This inequality is satisfied for all σ ≤ 2/r. Suppose σ > 2/r. Then the inequality can be rewritten as

α ≤

( 2
rσ−2

) 1
σ

1 +
( 2

rσ−2

) 1
σ

def= Θ (σ, r) .

This is the function that is graphed in Figure 2 in Lagerlöf (2020). Note that the derivative of Θ (σ, r) has

the same sign as the derivative of 1
σ [ln 2 − ln (rσ − 2)]. Differentiating the latter expression with respect

to σ yields
ln (rσ − 2) − ln 2 − rσ

rσ−2

σ2 , (A23)

which clearly is negative for all rσ ≤ 4. Moreover, the numerator in (A23) is increasing in σ and for

sufficiently large values of σ the numerator is positive. Thus, for all σ ≤ 4/r, Θ (σ, r) is downward-

sloping and there is a unique σ, such that σ > 4/r, for which Θ (σ, r) is minimized. This value of σ,

which I denote by σ∗, is characterized by ln (rσ∗ − 2) − ln 2 − rσ∗

rσ∗−2 = 0. The values of σ∗ shown in

the table in Figure 2 in Lagerlöf (2020) are obtained by solving this equation numerically for different r

values (using Maple). The table also shows the associated minimized values values of Θ (σ, r), denoted

by α∗ = Θ (σ∗, r).

4.2. Calculations Used for Figure 4

In Figure 4 in Lagerlöf (2020) there are two graphs that indicate the part of the parameter space where

RH is decreasing in n (at n = 10). I here describe how these graphs were obtained. By assuming a CES

production function (which implies h (n) =
(

α
(1−α)n

)σ
) and by setting t = r = 1, we can write

h (n) > ΞL ⇔
(

α

1 − α

)σ

n−σ >
(n − 1)2 (σ − 1) − 2n

2n2 −
1

2n

√√
√
√
[
(n − 1)2 (σ − 1) − 2n

]2

n2 − 4 ⇔

(
α

1 − α

)σ

>
(n − 1)2 (σ − 1) − 2n −

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

2n2−σ

=

[
(n − 1)2 (σ − 1) − 2n

]2
−
[[

(n − 1)2 (σ − 1) − 2n
]2

− 4n2
]

2n2−σ

[

(n − 1)2 (σ − 1) − 2n +

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

]

=
2nσ

(n − 1)2 (σ − 1) − 2n +

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

⇔
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α

1 − α
>

2
1
σ n

[

(n − 1)2 (σ − 1) − 2n +

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

] 1
σ

⇔

α >
2

1
σ n

2
1
σ n +

[

(n − 1)2 (σ − 1) − 2n +

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

] 1
σ

. (A24)

Similarly we can write

h (n) < ΞH ⇔
(

α

1 − α

)σ

n−σ <
(n − 1)2 (σ − 1) − 2n

2n2 +
1

2n

√√
√
√
[
(n − 1)2 (σ − 1) − 2n

]2

n2 − 4 ⇔

(
α

1 − α

)σ

<
(n − 1)2 (σ − 1) − 2n +

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

2n2−σ

=

[
(n − 1)2 (σ − 1) − 2n

]2
−
[[

(n − 1)2 (σ − 1) − 2n
]2

− 4n2
]

2n2−σ

[

(n − 1)2 (σ − 1) − 2n −

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

]

=
2nσ

(n − 1)2 (σ − 1) − 2n −

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

⇔

α

1 − α
<

2
1
σ n

[

(n − 1)2 (σ − 1) − 2n −

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

] 1
σ

⇔

α <
2

1
σ n

2
1
σ n +

[

(n − 1)2 (σ − 1) − 2n −

√[
(n − 1)2 (σ − 1) − 2n

]2
− 4n2

] 1
σ

. (A25)

The expressions in (A24) and (A25) are then evaluated at n = 10. The resulting expressions can then,

in principle, be plotted with the help of some appropriate software. However, I have instead computed

values of the right-hand sides of (A24) and (A25), evaluated at n = 10 and different σ’s. Then I plotted

the associated pairs of (σ, α) using the LATEX package TikZ.

4.3. Calculations Used for Figure 5

Recall from the proof of Proposition 10 in Lagerlöf (2020) that p̂ is characterized by z ( p̂1) = 0, where

z (p1) =
(1 − 2p1) (rβ + 1)

p1 (1 − p1)
[
(rβ)2 p1 (1 − p1) + rβ + 1

] +
rβ (v1 − v2)

rβ [p1v1 + (1 − p1) v2] + v1 + v2
.

Also recall that ŵ1 is given by

ŵ1 = w2

(
p̂1

1 − p̂1

)1+rβ ( rβ (1 − p̂1) + 1
rβ p̂1 + 1

v2

v1

)rt

.
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v1 1 1.5 2 3 4 5 6 7 8 9 10 20 50 100 ∞

α = .1 p̂1 .500 .517 .528 .542 .550 .555 .559 .562 .564 .565 .567 .573 .577 .578 .580

ŵ1 1 .743 .599 .436 .344 .285 .243 .212 .188 .169 .153 .080 .033 .017 0

α = .5 p̂1 .500 .510 .517 .526 .531 .534 .537 0.538 .540 0.541 .542 .546 .549 .550 .551

ŵ1 1 .704 .547 0.381 .294 .239 .202 .174 .153 .137 .124 .064 .026 .013 0

α = .9 p̂1 .500 .502 .504 .506 .507 .508 .509 .509 .509 .510 .510 .511 .511 .512 .512

ŵ1 1 .673 .508 .342 .258 .207 .173 .148 .130 .116 .104 .052 .021 .011 0

Table 1: Computed values of p̂1 and ŵ1 used in Figure 5 of Lagerlöf (2020).

Now set r = t = v2 = 1. Moreover, to start with, assume α = β = 1
2 . We then get

z (p1) =
(1 − 2p1)

(
1
2 + 1

)

p1 (1 − p1)
((

1
2

)2
p1 (1 − p1) + 1

2 + 1

) +
1
2 (v1 − 1)

1
2 (p1v1 + 1 − p1) + v1 + 1

(A26)

and

ŵ1 = w2

(
p̂1

1 − p̂1

) 3
2 1

2 (1 − p̂1) + 1
1
2 p̂1 + 1

1
v1

=
w2

v1

(
p̂1

1 − p̂1

) 3
2 3 − p̂1

2 + p̂1
. (A27)

By using Maple and the expression in (A26), the equality z ( p̂1) = 0 can be solved for p̂1, given various

values of v1. Thereafter, by plugging p̂1 into (A27), we can compute ŵ1. Doing this yields the numbers in

rows 3 and 4 (i.e., the ones for α = 0.5) of Table 1 in the present document. The numbers for α = 0.1 and

α = 0.9 are obtained similarly.
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