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1. Introduction

In this online appendix, I provide proofs that were omitted from Lagerlof (2020). In addition, I show the
calculations that were used for Figures 2, 4, and 5 of that paper. For convenience, in the next section I re-
state some of the equations (and an assumption) from Lagerlof (2020). The numbering of those equations

is thus the same as in that paper.



2. Restatement of Expressions from Lagerlof ( )

xi = yih (;) . 5)

Y (si,pi) = {f(h(lS/M} % ;o X(siypi) =Y (si,pi) (;) : (6)

Clsi, pi (8)] = pi (s) Y [si, pi ()] + X [si,pi ()] - ®)
Assumption 1. The production function and the CSF satisfy at least one of the following three sets of conditions:

(i) t<lande;(s)n (%) o (%) <2 (foralli, p; ands);

(ii) tr <1,ry (%) o (%) < 2,and
w;s’
pi(s) = "liz;sr (foralli, p;, and s # 0), 9)
j=1"7%]

where r > 0 and w; > 0 are parameters;

(iii) pi(s) is given by (9), f(x;,y;) = xf‘yf (witha > 0and B > 0), and ar <1 (for all 7).

[vi =Y (si, pi (s))] apais(is) < Ci (si,pi) - (10)
(v—y*) ?n(:*) =C [s*, H & (v—y")te(n) = y* +nx*. (11)
. fe(n)v
Y = T uh(n) + () (12)
CORAL— (14)
ox* n(n—2)h(n)—1 ay* n(n—2)h(n) —1
o <0< o(n) > _(n—l) {1+rt(nn71)}, o >0<0(n) > (1= 1)nh(n) (16)
RA = t&(n)v. (18)
H _ . K A _ 1 L !
R = [1- )R = | ] )
Y= rtpi (1= pi)oi -, fori=12 23)
rtp; (L= pi) +pf +h ()
H_ Bl (A —p) o) +o1 v
K= ) g () + 1] B 1) .
1418 rt
_ P B(l—p1)+1o
wl—wz(1p1> ( rBp1+1 Ul) ' ®)



3. Proofs of Propositions 1-5 and 7-10

3.1. Proof of Proposition 1

To prove the proposition, we can invoke Theorem 3.1 in Reny ( ), which guarantees the existence of
a pure strategy equilibrium under the conditions that the strategy sets are compact, contestant i’s payoff
function is quasiconcave in s;, and the game is better-reply secure. The first condition is readily taken care
of by, without loss of generality, imposing a constraint s; <5, where 5 is some finite and sufficiently large
constant; this ensures that each player’s strategy set [0,5] = S is closed and bounded and thus compact.
The requirement that the payoff functions are quasiconcave will be investigated at the end of this proof.
To show that the game is better-reply secure, we can rely on Proposition 1 in Bagh and Jofre ( ).
This says that a game is better-reply secure if it is payoff secure and weakly reciprocal upper semicontinuous
(wrusc).! We know that, in the hybrid contest, each player’s payoff function is continuous everywhere,
except possibly at the origin. This means that the potentially problematic issue with showing the two
properties is what happens at the point s = 0.

In order to prove that the game is payoff secure at s = 0, we must show that each player can, for every
€ > 0, secure a payoff of p; (0) v; — € at s = 0. A player is said to be able to secure a payoff of p; (0) v; — €
at s = 0 if there exists 3; such that 7; (sl, ) > pi (0) v; — e forall s’ ; in some open neighborhood of 0_;.
The hybrid contest is indeed payoff secure at s = 0. To see this, note that there exists 5; > 0 such that

7 (51,0-3) = pi (8;,0-3) v; — C[8;, p; (51, 0-3)] = v; — C[53, 1] > p; (0) v;. (A1)

The second equality in (A1) follows from the assumption that, for any s; > 0, p; (5;,0_;) = 1; the in-
equality in (A1) follows from (i) the assumption that p; (0) < 1 and (ii) the fact that C [s;, 1] can be
made arbitrarily small by choosing a 5; close enough to zero. Moreover, 7; is continuous at (5;,0_;).
Therefore, (A1) implies that for every € > 0 and for all s’ ; in some open neighborhood of 0_;, we have
i (5i,8";) = pi (0)v; —e.

The graph of the game is defined as T = {(s, 71y, -+ , ) € S" x R" | 71; (s) = 7, Vi}. The closure of
T is denoted by T. The frontier of I', denoted by Fr T, is defined as the set of points that are in T but not in
I'. In order to prove that the game is wrusc, we must show that for any (s, B1,... ,Bx) in the frontier of
the game, there is a player i and 5; such that 7; (sl, ) > B;. The game is indeed wrusc. To verify this,
first note that, since the origin is the only point of discontinuity, any point in Fr I' must be of the form
(0,7191,- -, Yn¥n), where for some s* — 0 and every i, we have lim;_. 77; (s7) = 7;v;. We must also
have Y/ ; 7v; = 1. Hence, for some i, 7; < 1. Suppose, without loss of generality, that y; < 1. Because
limg, 0 77; (51,0-1) = vy, there exists 5; > 0 such that 7; (5;,0_1) > 7101.

To prove the proposition, it remains to show that, under the conditions stated there, player i’s payoff
a 7'[,

function is quasiconcave in s;. I will do this by showing that < 0 at any point where a”’ = 0. From

the analysis in the main text, it follows that we can write the derlvatlve of contestant i’s payoff function

with respect to s; as aa”‘ =[v;—Y(si,pi(s ))] Ts,v — Cy (sj, pi). Differentiating again yields
0% ap;| 9p; 0%p; ap;
aszl = — Y1 (si, pi) + Yo (si, pi) aZ ai;l + [0 = Y (si, pi)] g’? — Cu1 (s, pi) — Cr2 (si, i) ais):

1

IThe proof below that the hybrid contest has those two properties will follow the proof in Example 3 of Bagh and Jofre ( )
fairly closely.



Now note that C1z (s;, pi) = Co1 (si, pi) = Y1 (i, p;). For a value of s; for which %—Zi = 0 holds, we also
have v; — Y (s;, pi) = %. Moreover, Cy (s;, p;) = [p,- +h (%)] Y1 (s;, pi) and

1- 1t
Ci1 (si, pi) = {Pz +h (p )} Y11 (si, pi) = {Pz +h (p )} Y1 (si, pi)
1 1
(cf. (6) and (8)). Therefore, evaluated at a value of s; where %ﬂ’ = 0, the second-derivative can be written

82711 ap; | 9p; azpi/as 1t
e P o) ) S |55

0s? ' f =0~

1

[Pz +h <pl>} Yy (si,pi) - (A2)

The expression in (A2) is strictly negative if and only if

Y1 (si,pi)si . Ya(si, pi) p,%i % szi/aslz _ 1—t ' l Y1 (si, pi) si
{2 Y (si, pi) Y(sipi) osipil osi | opisas  ts | [P o pi)) Y(sipi) (A3)

Yi(sipi)si 1
Now note that Yoy = F and

irPi

menn Lo () )] Al ()] (2) (3) n e
m{ @) @ 1)o@
o)) () f

Inequality (A3) can therefore be written as

2_77(%)0'(%)51'(5) Wi _ Ppi/dst 1t i+ k(1) ‘)}1
t t ds; op;/ 9s; ts; pi pi t
or, equivalently, as
2p; /s 1—t] |Pith(s;
77<1>0(1>8z‘(8)<2— i [ : (Pﬂ (A4)
pi pi op;/0s; ts; op;/0s;

The last term in the above inequality is strictly negative for all ¢ < 1. Therefore, a sufficient condition

for (A4) to hold is that 7 (%) o (%) g; (s) < 2. This proves the claim for part (i) of Assumption 1. In

order to prove the claim for part (ii), note that the derivative of the CSF in (9) can be written as % =

rp; (1 — p;) /s, and the second-derivative is given by aa:zl- = rp; (1 —p;) [r (1 —2p;) — 1] /s?. Thus, the

term in square brackets in (A4) becomes

Ppi/os; 11—t r(1-2p)—1 1—t tr(1-2p;)—

op;/0s; ts; S; ts; ts;

7

which is non-positive for all p; if tr < 1. Moreover, ¢; (s) = (1 — p;) < r. Hence the result follows. Finally
consider part (iii). The additional Cobb-Douglas assumption means that we can write the last term in (A4)

o (1)

dpi/ ds;

as

0%p;/0s? 1t
ts;

B {tr(l—Zpi)—l} pitgpri | w(1-2p) -1
dpi/ s rpi '

ts; i (L—pi) /si rB(1—pi)




Moreover, the left-hand side of (A4) simplifies to # (%) o (l) g; (s) = ar (1 — p;). Inequality (A4) there-
fore becomes
tr (1—2p;) —1
ar (1 —p;) <2—M Saprt(1—p)? <2B(1—p;) —tr(1—2p;) +1
rp (1= pi)
This inequality is most stringent at p; = 0 (and it is strictly less stringent for higher values of p;). It

therefore suffices if the inequality holds weakly when evaluated at p; = 0:

aprr <2rp—tr+l=rf—ar+1<0<rf(l—ar)+1—ar<ar<1,
which gives us the result. O
3.2. Proof of Proposition 2

First consider the claim in the last sentence of the proposition. To verify that s = 0 cannot be a Nash
equilibrium, note that 77; (0) = p; (0) v; < v;. Moreover, by assumption we have p; (s;,0_;) = 1 for any
s; > 0. Therefore, if contestant i were to deviate from s; = 0 to some s; > 0, her payoff would equal
7 (si,0_i) = v; — C[s;, 1]. But C[s;, 1] can be made arbitrarily small by choosing an s; close enough to
zero and, hence, for such an s; the deviation is profitable.

We can thus conclude that in any equilibrium, s # 0. Moreover, we know that each contestant’s payoff
function is continuous and differentiable for all s # 0. In addition, Assumption 1 takes care of the second-
order condition. It follows that the analysis in the text that precedes the first-order condition (10) is valid

and that this first-order condition indeed characterizes the equilibria of the model. O
3.3. Proof of Proposition 3

Under symmetry, the expression in (5) can be written as x* = & (n) y*. Plugging this into (11) and then
solving for y* yields (12). The solution to this linear equation system is unique, and so the model has
a unique equilibrium within the family of symmetric equilibria. The expression for s* is obtained by
plugging h (1/p;) = h(n) and y; = y* into the equality s; = yif [ (1/p;),1], which was derived in
footnote 13 in Lagerlof ( )- O

3.4. Proof of Proposition 4

The claims about v, t, and « are straightforward to verify, so the calculations are omitted. Consider the
condition for y* to be strictly increasing in 7. Differentiating the expression for y* in (12), we have

ay* &' (n)[1+nh(n)+te(n)] —&n)[h(n) +nh' (n)+te' (n)] >0
on (b0) 7 [+ () + £ ()]

& €' (n)[1+nh(n)] >€n) [h(n)+nh' (n)].

Differentiating (14), we obtain €/ (n) = r/n%. Using this and (14) in the second inequality above yields
14+nh(n) >n(m—1)[hn)+nh' (n)] =n(n—1)h(n)[1—0c(n)], which simplifies to the condition in
(16). Next consider to the condition for x* to be strictly decreasing in n. We have x* = & (n) y*, where y*
is given by (12). Differentiating yields

ai* _ [€"(n)h(n)+€m)W (n)][1+nh(n)+te(n)] —€(n)h(n)[h(n) +nh' (n) + €’ (n)] <0
on (t0) =1 [1 4 nh (n) + t& (n)]?

5



[8' (n)h(n) +E(m) K (n)] 1+ nh (n)] +t[Em)]*H (n) <E(n)h(n) [h(n) +nk' (n)].
Dividing through by € (1) and using €’ (n) /€(n) = 1/ [n (n — 1)], the inequality simplifies to

h(n)

n(n—1) + 1 (n)| [1+nh(n)] +t€(n) K (n) < h(n) [h(n)+nk (n)]

or,equivalently, h (n) [1 — (n —1)o (n)][1+nh (n)] —te(n) (n —1)h(n)o (n) <n(n—1)[h (m))?[1—o (n)],
which simplifies to the condition in (16). Finally consider the claim that o (n) > 1 is sufficient for both
conditions in (16) to hold. Substituting Z—:% (which is smaller than unity) for ¢ (n) in the condition for %
in (16) yields
n—2_nmn-2)h(n)—1
>
n—1 nn—1)h(n

& m—=2)nh(n)>n(n—2)h(n)—1<1>0,

which always holds. And substituting 1 for ¢ () in the condition for % in (16) yields
nn—2)h(n)—1
(n—1)[1+te(n)]
en—2+te(n)(n—1) > —n(n—2)h(n),

1> —

S mn—-1)[1+te(n)>-nn—-2)h(n)+1

which again always holds. O

3.5. Proof of Proposition 5

The first equality in (19) follows immediately from (11) and (18), since nC [s*, l} = y* + nx*. To verify

n
the second equality, note that

y* B R4 /v  RA1+nh(n)]v 1 177!
<1_v)RA_<1_1+nh(n)+RA/v)RA_[1+nh(n)]v+RA_[[1+nh(n)]v+RA} ‘

where the first equality uses (12) and (18). The claim that RH < RA follows immediately from (19) and
y* > 0. The claims about v, t, and « are straightforward to verify, so the calculations are omitted. Consider
the condition for R to be weakly increasing in n. By differentiating the right-most expression for R in
(19), we have

otk TRA

aRH 1 1 }—2 [_h(n)—i—nh’ (n) 8RA/an] S R0 h(n)[1 -0 (n)]
o[l+nh(n))?  (RA)? (R~ o[l+nh(n)*

By differentiating the expression in (18) (also using (14)), we obtain dR*/9n = tor/n?. By plugging this
and the expression for R* in (18) (combined with (14)) into the above inequality and then rewriting, we

have

rt(n—1)%[o (n) = 1]k (n) < [1+ nh (n)]* =1+ 2nh (n) + n?h (n)* < b (n)* — Kh (n) > — (A5)

1
ﬁ/
where K is defined in Proposition 5 in Lagerlof ( ). Since i (n) > 0, this inequality always holds if
K < 0. Suppose K > 0. Then the left-hand side is negative for all & (n) < K, and it is minimized at
h (n) = K/2. Evaluating inequality (A5) at 1 (n) = K/2 yields

K2 1 2 4n

—— > =K< - n) <1+ ——. A6
U R e (A6)

4 — n?



Thus if (A6) holds, then (A5) is always satisfied. If (A6) is violated, then also (A5) is violated for values of
h (n) between the two roots of (A5). Solving for these roots (by completing the square), we have:

2 212
h(n)2—1<h(n)=—%<:> {h(n)—K] :i—i@)h(n):gi%\/nzl@—él.

2 4n?  4n?

Thus, total expenditures are increasing in 7 if and only if (i) inequality (A6) holds or (ii) inequality (A6)
is violated and & (n) ¢ (Er,Ep), where & and Ep are defined in Proposition 5 in Lagerlof ( )- O

3.6. Proof of Proposition 7

The first-order condition in (10) can be written as

(vi = CH tsy

(1 — »* 1
y?)M—*C(Z,P,)ﬁrf(vi—yi‘);?i‘(l—vi) {P,Jrh(p)]y?/ (A7)

where the relationships C; (s, p) = %C (sf,pr) and C (sf,p}) = [pl +h < )} v} were used. By solv-
ing (A7) for y;, we obtain (23). The remaining parts of the characterization claim are either shown in the
main text or straightforward. It remains to prove the uniqueness claim. Note that the equilibrium is de-
fined recursively: The only endogenous variable in the equality Y (p;) = 0 is p1; moreover, given a value
of p}, the winner-pay investments y] and y; are uniquely determined by (23). To prove the claim, it thus
suffices to show that if 1y (%) o (%) < 1 for all p; € [0,1], then the equation Y (p;) = 0 has a unique
root. A sufficient condition for this, in turn, is that Y (p1) is strictly increasing (by Proposition 1 in Lager-
16f ( ), we know that the equation has at least one root). The equation Y (p;) = 0 can equivalently be

written as Y (p1) = 0, where

1 1
+Inp; +rinf {h () ,1] +rtln [rtpl (1=p1)+p1+h ()]
L=p1 p1

- wyvht
Y = In
(P 1 ) l w, vfit

—In(1—py)—rinf [h (1) ,1] —rtln [rtpl (1—p1)+1—p1+h( ! >} .
p1 I=p
Differentiating with respect to p; yields
1 1 1 - R
o Al A () e () ]
1) = -
P () 1] rtpr (1= p1) +pr+ 0 ()

1 +rf1[h(p11)'1}h/<z}l);% {rt(l_zpl)_l—i-h/( ) 1;7}

1=m f[h(ﬁ)/l] rtpr(1=p1) +1—p1+ ( )
1 n(E)e(E) ()3
p1(1—p1) 1-m 1
+rif [rt(l—Zm)—i—l_h’(pl) ;3%] ) [ (1-2p1) —1+H (1 m) a ;l)z] a8
rtp1 (1_p1)+P1+h<ﬂ) rtpr(1—p1) +1—p1 +h(13pl)




Under the assumption that » L) o (L) <1forall p;, the first line of (A8) is non-negative. The second
17 Pi Pi P
line of (AS8) is strictly positive if

rt[rt (1 —2pq1)] B rt[rt (1 —2p1)] >0
rtpr(L—p1)+p1+h(o) rtpr(l—p)+1—pi+h(2
P1 p1

=20 [1= ot (2 ) =m-n ()] = (=22 (1= 2p0) [T W (202 > 0

P1

But, since /i’ < 0, the last inequality holds for all p; € [0,1] (with equality if, and only if, p; = 0.5). O
3.7. Proof of Proposition 8

Under the assumption that v; = vy, (A7) simplifies to rt (v —y}) pf (1 —p}) = {pl* +h (p%*)} y}. Since
the expression in square brackets is strictly increasing in p} and since p; (1 —p;) = p5 (1—p3), the
equality implies that p] > p; < y] < y3. Moreover, since {pl* +h (%)} yi = C (s}, p}), it also implies
that y; < y3 < C (s}, p;) > C(s3, p3). This proves part (i). Next turn to part (ii). By taking logs of the

three equations (23) and Y(p;) = 0, we have

1
Inr+Int+In(v; —y7) +Inpy +In(1 - pj) =1In [pi‘ +h (P*ﬂ +Inyj, (A9)
1

Inr+Int+1In(vy —y5) +Inp; +In(1 —pj) =1n {1 —pi+h <1lp*>] +1Iny3, (A10)
N

Inp] +Inwy, +rinf {h <1 119*)’1] +rtlny; =In(1—p]) +Inw; +rin f [h (pl*),l] +rtlnyj.
g 1
(A11)
Now set v; = v = vin (A9) and (A10). Then differentiate (A9) with respect to w;:
1-n (L)
1 oy [1_ 1 ]ap{ _ (Pl)(pf)z op1 | 1 9y;
v—yjow, |p; 1—pj|ow pT"‘h(%) ow  y; owy
1
A% 1 1 " %
1-2p] %:pf[m”(p:)h(;ﬂaﬂ+ °o %
pi (1—pp) | own pi+h ( dw  yi (0—yj) dwr
* 1 1
F—ziqavmzmw(ﬁ)h(ﬁ)am 0 wiwm
1—pr | owy p§ * 1 owy p; = v —y;ow Y
P 1P P1+h<ﬁ) 1P Y1 0w Yy
1 _2PT B Al*(l — pT) apiﬁ @ — 4 %@, (A12)
1—p] Jwy p] v —yjowy Y]

where A; = [pj‘ +0o (%) h (%)] / [pi‘ +h (p%)] Similarly, by differentiating (A10) with respect to w;
1
and then rewriting, we obtain the following equality (the derivation is very similar to the one above):

1-p; dwy p;  v—y; 0w s’



where Ay = {1 —pi+o ( — ) h ( 1 )} / {1 —pi+h (ﬁ)} . Finally differentiate (A11) with respect

T-p;
to wq:
1 r (1 1
1 dp] rh [h (Pﬁ) '1} L (1*PT) (1-p1) apy 1 9y;
p; 0wy f [h <1jpf) 1 ow; 5 0wy
1 11 1
__ 1 op; | 1 rh {h PT)’l}h (PT) (p1)* Op} . 1 9yj
1—pjow wy f{h(pl—{),l 0wy v 0wy
1 1 1 1
v ) (o, s 1 mG)o () an
p; (1—pj) owy 1-p; owq y3o0w;  wy 2 owy i ow,
1 1 *
() ()i (B G 0 o 11 1o
pi (1—p7) dw; Y5 0wy wq yi owq
1—-B apl w1 ayj w1 a]/ik w
NIPTALY Nk R R Wy Al4
1—p* pi dwy p3 4 owy 3 ’ w1 Yy ( )
where

) 1 1 1 1
BY — ) (1=9pH).
”( PT)U<1—PT>p1+ "(m)U(PT)( pi)

Now evaluate the three equations (A12)-(A14) above at w; = wy (all expressions below, until the end of

the proof, are evaluated at symmetry, even though this is not everywhere explicitly indicated):

Adiw_ o Wiw o dpiwn o Whwr g p 0w e 3w
awlpl v—y*owy y dwy py  v—y*dwry

Jwy pj g owy y* T+r t%yi

where A = [1+20(2)h(2)] /[1+2h(2)], B = 117 (2) 0 (2), and y* is the common value of yi and v}
when evaluated at symmetry. Solving this equation system yields

opi wi _ 1 dyi wi AZE ay; wi AZE

durpi 21-B4raX]" 0y 2[1-Benatt) 0wy y* 21-

(A15)
From these results, most of the comparative statics claims follow. To prove the only remaining claim, the

one about the all-pay investments, note that the relationship x] = h ( ) y] implies that (at symmetry)

dx} p; ; 2) - A%
Moy Wiw @ -ATE (A16)
dwy x owy p;  dwy y D) [1 — B+ rtAY }
where x* is the common value of x] and x5 when evaluated at symmetry. Thus,
oxy —y* 1+4+202)h(2 1 2
x1>0<:>a(2)>AU . 14+20(2) (t)@a(2)> = e
Jwq v 1+2hr(2)+ 2 1+ 2+t

where the first equality is obtained by using (23). Similarly, from the relationship x5 = h ( ) Y5 we

have (at symmetry)

ox; ap; 9y —o (2
Mo i W D FATE (A17)
Jdwy x dwrpi Wyt 2[1-B4rtat L]

which has the opposite sign to (A16). O



3.8. Proof of Proposition 9

Equation (A7) can be restated as rt (v; — ;) pf (1 —p;) = C (s}, p}). Since pj (1 —p}) = p5(1—p3),
5/ P3)-

the equality implies that v1 — y; > vy —y3 < C (s], p}) > C (s}, p3). We can also write (A7) as

[ * * * 1
rt(i—l) pi L—pi)=p;i +h P*>'

i i

Since the right-hand side is strictly increasing in p} and since p; (1 —p;) = p5 (1 —p3), the equality
. . y* y*

implies that p7 > p; < 5t < 22. O
3.9. Proof of Proposition 10

The Cobb-Douglas specification (Assumption 5 in Lagerlof, ) implies h (m) = %m’l. By using this in
(23), we get

e 01 (?71+%P1) B U1ﬁ B 4 (A18)
1= rtpr (1—p1) +p1+ gp rt(l—m)—l—é B(1—p1)+1

v |l-p1+5(1—p1) 02 g
0 -y = [ i | _ = _ = (A19)

rtp(l=p)+1=pr+5(=p1) rtpr+g 7Bp1+1
Moreover, it follows from (A7) that the expected total equilibrium expenditures can be written as R =
rtpr (1—p1) x [(v1 —y5) + (v2 — y3)]. Plugging (A18) and (A19) into this expression yields the expres-
sion for RH stated in (24). Next, taking logs of both sides of (24), we can write
InRY = Inrt+Inp;+In(1—p1) +In{rf[p1o1 + (1 — p1) v2] +v1 + 02}
—In[rB(1—p1)+1] —In(rBp1 +1)

Differentiating yields:

dln RH _ 11 n rB (v1 — v2) n rB R
P p1 1—=-p1 rBlpi+ (1 —p)o]+ovi+v rB(l—p1)+1 rBp1+1
_ 1-2p B (v1 —v2) (rB)* (2p1 — 1)
pr(l=p1) rBlpon+(A—pvl+oi+to (182 p (1—p1) +rp+1
(1—-2p1) (rp+1) B (v1 —v2) det

B p1(1—p1) {(rﬁ)Z pr(1—p1) +rB+ 1] ! Blpior+ (1 —p1)va] + o1 +o2 Fp)-

(A20)

First consider the case v; = v,. Then it is clear from inspection that (A20) is positive for p; < % and
negative for p; > % Hence, p1 = % Next consider the case v1 > v,. The derivative w.r.t. p; of the first

term in (A20) is strictly negative:
~2p1 (1= p1) [(BY pr (1= p1) + 7B +1] = (1 =2p1)* [2(rB)* pr (1 = p1) + 7B +1]

P p)? [P (= p) +rp 1]

aT (p1)
ap1

=(rB+1)

(A21)
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where T is short-hand notation for the first term in (A20). Moreover, by inspection, the second term
in (A20) is strictly decreasing in p;. Therefore, 3*In R /9p? < 0. Moreover, evaluated at p; = 1, the
expression in (A20) is strictly positive, whereas it approaches —oco as p; — 1. It follows that p; € (%, 1).
In particular, for any v > vy, pj is characterized by F (p1) = 0.

One can verify that /- (p;) is strictly increasing in v1 and strictly decreasing in v,. Hence, 9p1/0v; > 0
and dp1/0vy < 0 (the former result will also follow from computations shown below). In order to do

comparative statics w.r.t. 7B, differentiate the first term of f (p;) w.r.t. B:

(1—2p1) (rp)’pr(1—p1) +rp+1—(rp+1)[2rpp1 (1—p1) +1]
prd=py) (B 1 (1—291)+rﬁ+1}2
—(A-2p)prA—p)rp2p+ Y —rp] (A -2p)rp(rp+2)
PP (a2 pra—py 1] (08P py) +rp 1]
Then differentiate the second term of f (p;) w.r.t. rB:

{rBlp1o1 + (1= p1) 02 + 01 + 02}  {rBlpor+ (1= pr)v] + o1+ 02}
Thus, if v; = vy, then F (p7) is constant w.r.t. ¥ and 9p1 /0 (rf) = 0. And if v; > vy, then [ (pq) is strictly
increasing in v and 9p1 /9 (rp) > 0.

(01 — v3) Blpioi+ (1 —pr)va+to1+v—rBlpros+(1—p1)va] _ (01 —v2) (01 + 02)

Given the Cobb-Douglas specification in Assumption 5 in Lagerlof ( ), the equation Y(pj) = 0,
which defines the equilibrium value of p;, becomes

wau al” L
e [(5) a—p] e[
rt P
e =)+ 1=prt g =p] [rtpr (L= pa)
o 1+4r
T A pi (1= p1) i (1—p)™*"

o rt g i <:>
(1—p1)" (ffP1+1+%) pit [rt (1—p1)+1+%} (rtp1+é) [rt (1—p1) é]

+
rt
p ]Wﬁ rd-m ol _ i T*"* 0= +1vz}
1*}71 rpl—k% 01 1*})1 T,Bp1+1

which gives us (25). The result that limy, . p1 < 1 follows from inspection of (A20): f (p1) = 0 is

wlzwz[

inconsistent with limy, ..o p1 = 1. Similarly, the result that lim;, .., @; = 0 follows from (25) and the fact
that limy, o p1 < 1.
It remains to prove the last limit result stated in the proposition. In order to do that, we must first
derive the value of limy, —.,, 0p1/9v1. To this end, differentiate both sides of / (p1) = 0, to obtain:
oT (p1) op1 (rB)* (v1 — v2)° P
o1 901 [rB[pro1 + (1 — pr) va] + 01 + vo]” 901
rp{rB[proi+ (1= pr) v + o1+ 02 — (01 —v2) (rBp1 + 1)}
B [Pro1 + (1= p1) v2] + 01 + 0a]
The numerator of the last term simplifies to B (rp 4 2) v, > 0. Since we also know, from above, that
oT (p1) /9p1 < 0, it follows that dp7/dv1 > 0. Next, take the limit v; — v; of both sides of (A22):
[ lim aT(ﬁl)} { lim aﬁl] L PUBrAm
01—0 9Py 0102 9V [rBus + v + 02]2

(A22)

+ =0.
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From (A21) we also have

limaT(ﬁl):(rﬁH)s{ _ 8(rp+1) _ 32(rp+1)

8
V1 —0p ap1 [(rzﬁ>2+r‘8+1:|2 <%)2—|—I’IB+1 B (V,B+2)2 .

Thus, limy, 4, % = {— rﬁgﬁ:}g} / [—iigf ;)12)} = é*?r(giﬁgz We can now prove the last limit result

stated in the proposition. Take logs of (25) and evaluate at p = p:
Inw) =Inwy— (1+rB)In(1—p1)+ (A +rB)Inpy —rtIn (rfp1 + 1) +rtIn[rf (1 — p1) + 1] —rtInovy +rtInov,.

Differentiate both sides w.r.t. vq:

1w {l—l—rﬁ_ﬁ_l%—rﬁ_ tr'p tr’B ]aﬁl_rt
Wy vy 1-— }/?\1 ?7\1 7"3}/7\1 +1 B (1 — f)\1) +1| 0y U1
{ 1+r8 tr2B (rB +2) }aﬁl_rt
(I=ppr o+ [rB(1—p1)+1]] dor o1
Next take the limit v; — v, of both sides:
~ 2 ~
0102 [ Wy | 102 00 (% + 1) (% + 1) 01702 001 02
1 .. 0wy tr’B(rB+2)| rB(rB+2)  rt
— lim = = 4| - _
wy vllg};z dvq (1+rp) (rB + 2)2 R+ vy v

BUBLD) _r R rpupr2) [SUB+D (B

8vy vy, 8(rB+1)vy  8; 8(rB+1)v;
Thus,
. 0w rB(rp+2) [8 (rp+1)+ (7.3)2]
v}lgzlg vy <0e 8vy < 8(rB+1)v;
B _8(rp+1)+(rp)>  5rB+6
CArB S BB (B2 (B
which always holds. 0

4. Calculations Used for Figures 2, 4, and 5 in Lagerlof ( )

4.1. Calculations Used for Figure 2

Assume a CES production function, a CSF of the generalized Tullock form (as in eq. (9) in Lagerlof, ),

and that t = 1 and r < 1. Under these assumptions, condition (i) in Assumption 1 is satisfied for all o < 1.

pi
(ﬁ)a pf_l / [(ﬁ)a p?_l + l] For o > 1, this expression is strictly increasing in p;. Therefore, since

Thus suppose that o > 1. Table 1 in Lagerlof ( ) tells us that, under the stated assumptions, 7 (i) =

12



pi < 1, an upper bound on y (%) is given by (ﬁ)g / {(157)0 + 1}. It follows that condition (i) in

Assumption 1 (i.e., ry (pl) o < 2) is satisfied for all p; € [0,1] if

i

r

(1) Y
(;mm”fz@(”"”(w) =%

This inequality is satisfied for all o < 2/r. Suppose o > 2/r. Then the inequality can be rewritten as

(222)°
n< 1T =@ (o).

— 1
1+ (rtrz—?.)[r

This is the function that is graphed in Figure 2 in Lagerlof ( ). Note that the derivative of ® (¢, r) has
the same sign as the derivative of % [In2 — In (ro — 2)]. Differentiating the latter expression with respect

to o yields

In(roc—2)—1In2—
o2

ro

ro—2 , (A23)

which clearly is negative for all ro < 4. Moreover, the numerator in (A23) is increasing in ¢ and for
sufficiently large values of ¢ the numerator is positive. Thus, for all ¢ < 4/r, ® (0,r) is downward-

sloping and there is a unique o, such that ¢ > 4/7, for which ® (¢, ) is minimized. This value of o,

ro*

—+— = 0. The values of ¢* shown in

which I denote by ¢*, is characterized by In (rc* —2) —In2 —
the table in Figure 2 in Lagerlof ( ) are obtained by solving this equation numerically for different r
values (using Maple). The table also shows the associated minimized values values of ® (o,r), denoted
by a* = © (c*, 7). O

4.2. Calculations Used for Figure 4

In Figure 4 in Lagerlof ( ) there are two graphs that indicate the part of the parameter space where

RH is decreasing in n (at n = 10). I here describe how these graphs were obtained. By assuming a CES
[

production function (which implies & (n) = ( ﬁ) ) and by setting t = r = 1, we can write

—-4&

i )”ng><n—1>2<a—1>—2n 1J[<ﬂ—1>2<0—1>—2”]2

h = 1
(n) > L@)(lzx 02 n 2

( o )ff N (”_1)2(0—1)—271—\/[(n—1)2(a_1)_2n}2_4n2

1—a 2n2—c

[(;«-1)2 (0——1)—242— H(n—l)z (0—1)—242—4;12]

2020 [(n ~1)*(c—1)—2n+ \/[(n 1) (c—1) - 2n]2 - 4n2]

2nv
— &

(n—l)z(a—l)—2n+\/[(n—1)2(0—1)—2nr—4n2
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1
o 2on
> =

l(n—nz (a—l)—2n+\/[(n—1)2 (c—1) —2n}2—4n21

2l n
x> T (A24)

(n—1)2(a—1)—2n+\/[(n—l)z(a—l)—znr—zxnzr

Q=

2%n+

Similarly we can write

hn) < EH@< o )Un—a<(n—1)2(0—1)—2n+1\l [(”—1)2(0—1)—242

1—«a 2n2 2n n2 —ie
L \e (n—1)72(c—1)—2n+ [(n—1)2(a—1)—znr—4n2
(1—(x> < \/2;12‘7
) {(n—l)z(a—l)—an—H(n—l)z(a—l)—Zrzr—éan]
2120 l(n ~12(—1)—2n— \/[(n 12 (1) —242 —4n2]
_ 2n? -
(n—1)2(a—1)—2n—\/[(n—1)2(a—1)—2n} —4n2
o 2on
1—«a < I <
[(n—l)z((f—l)—Zn—\/[(n—l)Z((T—l)—an—éan]
x < 20 : (A25)

1
o

2%n+

(n1)2(01)2n\/[(nl)z(al)anéan]

The expressions in (A24) and (A25) are then evaluated at n = 10. The resulting expressions can then,
in principle, be plotted with the help of some appropriate software. However, I have instead computed
values of the right-hand sides of (A24) and (A25), evaluated at n = 10 and different ¢’s. Then I plotted
the associated pairs of (0, &) using the BTEX package TikZ. O

4.3. Calculations Used for Figure 5

Recall from the proof of Proposition 10 in Lagerlof ( ) that p is characterized by F (p1) = 0, where

Fpr) = (1—2p1) rp+1) n B (v1 —v2) '
p1(1—p1) [(75)2 pr(1—p1)+rB+ 1} rBlpior+ (1 —p1)vo] + o1+ 02

Also recall that @ is given by

By = ws P B —p) 10"
D Vﬁfﬁ +1 (% ’
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(4] 1 1.5 2 3 4 5 6 7 8 9 10 20 50 100 ©

«a=.1 p; 500 517 528 542 550 555 559 562 564 565 567 573 577 578 .580
Wy 1 743 599 436 344 285 243 212 188 169 153 .080 .033 .017 0

«a=.5 pp 500 510 517 526 531 534 537 0.538 540 0541 542 546 549 550 551
Wy 1 704 547 0381 294 239 202 174 153 137 124 064 .026 .013 0

a=9 p; 500 502 504 506 507 508 509 509 509 510 510 511 511 512 512
W1 1 673 508 342 258 207 173 148 130 116 104 .052 .021 .011 0

Table 1: Computed values of p1 and @, used in Figure 5 of Lagerlof ( )-

Now set r =t = vp = 1. Moreover, to start with, assume o« = § = % We then get

(1—-2p1) (%2 +1 1o —1
F(p) = g (i) + - z(01 1) (A26)
P1(1—P1)<<%> p1(1_p1)+§+1) 2(pro1t1=pr) For +1
and
P\ iO-p)+11 w (P \i3-p
@1:w2< A) T =( A> L (A27)
1-p spi+1 o1 o \1-p1/) 2+p

By using Maple and the expression in (A26), the equality f (p1) = 0 can be solved for pj, given various
values of v1. Thereafter, by plugging p; into (A27), we can compute ;. Doing this yields the numbers in
rows 3 and 4 (i.e., the ones for « = 0.5) of Table 1 in the present document. The numbers for « = 0.1 and

« = 0.9 are obtained similarly. O
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