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Online Appendix WA: Further Details for the DM 

WA1. Details of Rounding in the DM Method 

 As is common with choice lists today, subjects were not given the possibility to 

express indifference.  The latter possibility is known to generate confusions and to be 

hard to incentivize.  Preferences {1,…,24}0  {25,…,52}0 and {1,…,25}0  {26,…,52}0 

reveal that c½ is in the interval (24, 25].  We denote upper bounds of such intervals by 

u, so that here we write u½ = 25.  As is common, we will use midpoints as estimates.  

Thus u½½ is our estimate of c½, which is 24.5 in the above case. 

 In our adaptive experiment, we only presented integer week durations to subjects, 

and no noninteger such as u½½.  Hence we could not use our best approximation 

u½½ of c½ in follow-up questions, but had to use an integer approximation.  So as to 

stay away from extreme values we used the convention of rounding values upward for 

time durations in the first half year and downward for time durations in the second 

half year.  Those rounded integer values were presented to our subjects in the adaptive 

experiment.  We of course correct for the generated and propagated rounding errors in 

our analyses.  We next give details. 

 We follow the notation of the main text and denote time intervals as (0,x] or, 

equivalently, as a set {1,…,x} of weeks.  Similarly, (x, 52] denotes {x+1,…,52}.  

Note that week x+1 runs from time point x until time point x+1, so that its left starting 

point is x and not x+1. 
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 For estimating c½ we measured the subjective midpoint of (0, 52] = {1,…,52}.  

The preference switch (and subjective interval-midpoint) was between u½1 and u½, 

referring to the notation of the integer u½ introduced before.  Thus, for each subject, 

u½ was such that 

(0, u½1] = {1,…,u½1}  {u½, …, 52} =  (u½1, 52] 

and 

 (0, u½] = {1,…,u½}  {u½+1, …, 52}  =  (u½, 52]. 

We then assume 

(0, u½½] ~ (u½½, 52] and, hence, estimate 

c½ = u½½. 

 

To estimate c¼, we measured the preference-midpoint of (0, u½] (weeks {1,…,u½}), 

denoted u¼½, similarly as above.  There is a propagation of roundings here, as 

follows.  u½ overestimates c½ by ½ (on average, as always) as we saw, implying that 

the midpoint of (0, u½] will overestimate c¼ by ¼.  Hence we subtract ¼ from the 

subjective midpoint u¼½, and estimate 

c¼ = u¼¾. 

 

To estimate c⅛, we measured the preference-midpoint of (0, u¼] (weeks {1,…,u¼}), 

denoted u⅛½.  Because u¼ overestimates c¼ by ¾ as we saw, the subjective midpoint 

of (0, u¼] will overestimate c⅛ by ⅜.  Hence we estimate 

c⅛ = u⅛  ⅞. 

 

To estimate c¾, we measured the preference midpoint of (u½1, 52] (weeks 

{u½,...,52}), denoted u¾½.  Because u½1 underestimates c½ by ½, the preference 

midpoint underestimates c¾ by ¼, which is to be added to u¾½.  Hence we estimate 

c¾ = u¾  ¼. 

 

To estimate c⅞, we measured the preference midpoint of (u¾1, 52] (weeks 

{u¾,...,52}), denoted u⅞½.  Because u¾1 underestimates c¾ by ¾, the preference 

midpoint underestimates c⅞ by ⅜, which is to be added to u⅞½.  Hence we estimate 

c⅞ = u⅞  ⅛. 
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For the first separability test, we obtained an estimate s½ of c½ alternative to the one 

obtained before.  We now measured the preference midpoint of (u¼1, u¾] (weeks 

{u¼,...,u¾}), denoted s
1

½½.  Because u¼1 underestimates c¼ by ¼, and u¾ 

overestimates c¾ by ¼, the preference midpoint is a good estimate of c½.  That is, we 

estimated 

s½ (alternative for c½) = s
1

½  ½. 

 

For the second separability test, we did not measure a subjective midpoint of a time 

interval.  We obtained an alternative measurement s¾ of c¾, as follows.  The basic 

idea is to find s¾ such that (0,u¼] ~ (s¾,52].  Roundings are as follows.  We found the 

value s
2

¾ such that 

{s
2

¾+1, …,52} = (s
2

¾,52]  (0,u¼] = {1,…,u¼}  {s
2

¾,…,52} = (s
2

¾1,52].  We 

estimate 

(s
2

¾½,52] ~ (0,u¼]. 

Because u¼ overestimates c¼ by ¾, s
2

¾½ will underestimate c¾ by ¾.  We thus 

estimate 

s¾ (alternative for c¾) = s
2

¾ + ¼. 
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WA2. Details of Qualitative Preference Conditions for the 

DM 

We first give the p-values obtained. 

TEST 1: H0: c½  26 (no or negative impatience) is rejected to the favor of H1: c½ < 26 

(impatience; p < 0.001). 

TEST 2: H0: c¼  c½/2 (no or negative impatience) is rejected to the favor of H1: c¼ < 

c½/2 (impatience; p < 0.001). 

TEST 3: H0: c½  (c¼ + c¾)/2 (no or negative impatience) is marginally rejected to the 

favor of H1: c½ < (c¼ + c¾)/2 (impatience; p = 0.09). 

TEST 4: H0: c¾  (c½ + 52)/2 (no or negative impatience) is rejected to the favor of H1: 

c¾ < (c½ + 52)/2 (impatience; p < 0.001). 

TEST 5.  H0: c⅛  c¼/2 (no or negative impatience) is rejected to the favor of c⅛ < c¼/2 

(impatience; p = 0.001). 

TEST 6.  H0: c⅞ < (52 + c¾)/2 (no or negative impatience) is rejected to the favor of c⅞ < 

(52 + c¾)/2 (impatience; p < 0.001). 

TEST 7.  We tested constant impatience by comparing impatience in (0,c½] versus 

(c½,52], testing c½/2  c¼ = (c½+52)/2  c¾ two-sided.  We found constant impatience 

rejected to the favor of decreasing impatience (with > instead of =; p < 0.001). 

TEST 8.  We tested constant impatience by comparing impatience in (0,c¼] versus 

(c¾,52], testing c¼/2  c⅛ = (c¾+52)/2  c⅞) two-sided.  We found constant impatience 

rejected to the favor of increasing impatience (with < instead of =; p = 0.001). 

TEST 9.  For separability, we tested s½ = c½, but rejected it (p < 0.01) to the favor of s½ 

< c½. 

TEST 10.  For separability, we tested s¾ = c¾, which was accepted (p = 0.14). 

 

 We next discuss an alternative rounding assumption for testing qualitative 

preference conditions.  There was a considerable group of subjects who had u¼ = 13, 

u½ = 26, and u¾ = 39, being 37 subjects.  It suggests that many of these subjects are 

constant or very weak discounters, and our roundings may have been too much 

downward for them.  Some hypotheses that we tested could have been favored or 

disfavored by the rounding chosen for these subjects.  Hence we repeated all tests 
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with the 60 subjects that remained after removing those 37 subjects.  Removing 

subjects with constant discounting as done here should not affect the directional 

hypotheses tested.  We found the same conclusions, with the same p-values, with the 

following exceptions.  The main changes concern the tests of constant impatience.  

The decreasing impatience in test 7 (c¾26  c¼ > 0) is no more significant (p = 0.22 

two-sided), and neither is the increasing impatience in test 8 (c¼/2  c⅛ > (c¾+52)/2  

c⅞) (p = 0.19 two-sided).  Some minor changes: Test 5 (c¾ < (c½ + 52)/2) now has p = 

0.003; test 9 (s½ = c½) now has p = 0.017; test 10 (s¼ = c¼) now has p = 0.81. 
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WA3. Further Results for the DM 

 The interval midpoints used in the graph of the discount factors that were derived 

from the cumulative discount weighting are 2.77, 8.51, 17.96, 31.12, 41.13, and 48.25 

weeks, respectively.  The corresponding discount factors for the vertical axis are 1, 

0.94, 0.855, 0.835, 0.826, and 0.74. 

 For all cp values, all the median values exceed the mean values, indicating 

negative skewness with the left tail longer than the right tail.  It is confirmed by 

histogram and kernel density functions in Figure WA1. 

 

FIGURE WA1.  Histograms and kernel density curves for the cp observations 
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Negative skewness is confirmed by the skewness/kurtosis tests for normality, with p  < 

0.05 for all kurtosis tests and four of the five skewness tests, and p = 0.09 for the 

remaining skewness test.  Therefore, no cp is normally distributed. 

 

TABLE WA1 

Skewness/Kurtosis tests for Normality_DM 

 Joint 

 Variable       Observations Pr(Skewness) Pr(Kurtosis) Adj chi2(2) Prob > chi2 

𝐜𝟏/𝟖 97 0.0924 0.0370 6.66 0.0358 

𝐜𝟏/𝟒 97 0.0000 0.0008 28.22 0.0000 

𝐜𝟏/𝟐 97 0.0000 0.0000 39.42 0.0000 

𝐜𝟑/𝟒 97 0.0000 0.0000 33.28 0.0000 

𝐜𝟕/𝟖 97 0.0002 0.0126 16.21 0.0003 
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We next give the statistics showing that the difference between the area under the DM 

cumulative discount weight function and the area under the diagonal is positive, 

confirming impatience. 

 

TABLE WA2 

Signrank DM_area = 0 

Wilcoxon signed-rank test 

Sign Obervations Sum Ranks Expected 

Positive 81 4221 2327.5 

Negative 14 434 2327.5 

Zero 1 1 1 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties    1148.25 

adjustment for zeros      0.25 

                                   ____________ 

adjusted variance      73735.50 

 

H0:   DM_area = 0 

                         z =   6.97 

             Prob > z =   0.0000 
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WA4. The Control Question 

 After subjects had completed a choice list, they clicked on a “submit my choices” 

button to go to the next page, which showed an implication of their choices (Figure 

WA2).  For instance, if a subject chose as in Figure 1 in the main text, with 

indifference value 5.5, then after clicking the “submit my choices” button, the page 

shown in Figure WA2 appeared.  Subjects had to confirm the implied preferences to 

go to the next question.  If they did not confirm, they went back to the previous page 

and filled out the choice list again. 

 

FIGURE WA2.  Implication of the choice 
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Online Appendix WB: Further Details for the UM 

 For each variable d j
u
, the median is larger than the mean, indicating negative 

skewness and failure of normal distribution.  The following table confirms this using 

statistical tests, and rejecting normal distributions. 

 

TABLE WB1.  Skewness/kurtosis tests rejecting normality of UM observations 

Skewness/Kurtosis tests for Normality_UM 

 Joint 

 Variable  Observations Pr(Skewness) Pr(Kurtosis) Adj chi2(2)  Prob > chi2 

d4

u
 96 0 0.0004 33.81 0 

d12

u
 96 0 0.06 16.94 0.0002 

d20

u
 96 0.0001 0.13 14.23 0.0008 

d28

u
 96 0.01 0.14 7.72 0.02 

d36

u
 96 0.04 0.004 10.94 0.004 

d44

u
 96 0.046 0.002 11.45 0.003 

d52

u
 96 0.13 0.0001 14.72 0.0006 

 

 By impatience, switching values  in 9030 ~ j0 should be increasing in duration 

j.  15 subjects violate this requirement at least once. 

 The weeks used in the graph of the discount factors are 3, 4, 12, 20, 28, 36, 44 

and 48.25 weeks
1
.  The corresponding discount factors for the vertical axis are 1, 0.93, 

0.874, 0.84, 0.79, 0.77, 0.75 and 0.74.  The latter value suggests an annual discount 

factor of 30%. 

        Wilcoxon signed-rank tests confirmed impatience (discount factors decreasing 

over time) by comparing each consecutive discount factor.  Impatience is confirmed 

(always p = 0.0000). 

                                                

1 Although we have the discount factor d52

u
 of 52 weeks, we do not show it in Figure 5.  Instead, for the 

end point of the UM, we used the last midpoint of the DM, to allow direct comparisons between the 

UM and the DM. 
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TABLE WB2 

Signrank d4 = d12 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 52 3618 1855 

Negative 1 92 1855 

Zero 43 946 946 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros     6858.50 

                                   ____________ 

adjusted variance          68025.50 

 

H0:   d4 = d12 

                         z =   6.76 

             Prob > z =   0.0000 
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TABLE WB3 

Signrank d12 = d20 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 44 3224 1690.5 

Negative 2 157 1690.5 

Zero 50 1275 1275 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros     10731.25 

                                   ____________ 

adjusted variance          64152.75 

 

H0:   d12 = d20 

                         z =   6.05 

             Prob > z =   0.0000 
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TABLE WB4 

Signrank d20 = d28 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 57 3875 1957.5 

Negative 1 40 1957.5 

Zero 38 741 741 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros     4754.75 

                                   ____________ 

adjusted variance          70129.25 
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TABLE WB5 

H0:   d28 = d36 

                         z =   7.24 

             Prob > z =   0.0000 

 

Signrank d28 = d36 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 40 2916 1715.5 

Negative 7 515 1715.5 

Zero 49 1225 1225 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros     10106.25 

                                   ____________ 

adjusted variance          64777.75 

 

H0:   d28 = d36 

                         z =   4.72 

             Prob > z =   0.0000 
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TABLE WB6 

Signrank d36 = d44 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 47 3306 1855 

Negative 6 404 1855 

Zero 43 946 946 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros     6858.50 

                                   ____________ 

adjusted variance          68025.50 

 

H0:   d36 = d44 

                         z =   5.56 

             Prob > z =   0.0000 
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TABLE WB7 

Signrank d44 = d52 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 37 2801 1612.5 

Negative 6 424 1612.5 

Zero 53 1431 1431 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros     12759.75 

                                   ____________ 

adjusted variance          62124.25 

 

H0:   d36 = d44 

                         z =   4.77 

             Prob > z =   0.0000 
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We next give the statistics showing that the difference between the area under the UM 

cumulative discount weight function and the area under the diagonal is positive, 

confirming impatience. 

 

TABLE WB8 

Signrank UM_area = 0 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 96 4656 2328 

Negative 0 0 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties       0.13 

adjustment for zeros       0.00 

                           ________________ 

adjusted variance      74883.88 

 

H0: UM_area = 0 

                         z =   8.51 

         Prob > |z| =   0.0000 
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Online Appendix WC: Further Details in Comparing the 

DM and the UM 

WC1. Regressions 

To see how concavity of the cumulative discount weights is related to individual 

characteristics, we regress (1) DM_area, (2) UM_area and (3) difference between the 

two areas on risk preference parameters (𝛼, 𝛽, 1 − η) and demographics (gender, age, 

nationality (Dutch/non-Dutch)).  The following table gives the results. 

 

TABLE WC1.  LS regression of areas on risk preference parameters and demographics 

 (1) (2) (3) 

α  0.63  0.24 0.88 

 (0.66) (0.48) (0.72) 

Pessimism  0.13  2.47 *** 2.60 * 

 ( 1.22) ( 0.88) (1.33) 

Concavity of Utility  0.12 1.21 *** 1.09 *** 

 (0.28) ( 0.21) (0.31) 

Nation  0.28  0.15 0.43 

(1: Dutch; 0: Other) (0.38) ( 0.28) (0.42) 

Gender  0.16 0.27 0.11 

(1: Male; 0: Female) ( 0.39) (0.28) (0.42) 

Age  0.10 0.15 *** 0.05 

 ( 0.07) (0.05) (0.08) 

Constant 0.83 1.41 2.23 

 (1.99) (1.44) (2.17) 

 R2 0.03 0.40 0.21 

Observations 96 96 96 

* 0.05; ** 0.01; *** 0.001 

 

 Column (1) shows that none of the parameters in risk preference or demographics 

have impact on DM time preference.  Column (2) shows that UM time preference is 
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related with pessimism in probability weighting and concavity of utility and also age.  

Column (3) shows that the difference between the two areas is related to concavity of 

utility.  There is no correlation between age and concavity of utility (p = 0.16), and 

also no correlation between gender and concavity of utility (p = 0.46). 
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WC2. Further Details 

The discount factors of 48.25 weeks in the DM and that in the UM suggest that the 

mean (median) of discount factors of 52 weeks (δ52) is 0.756 (0.839) for the DM and 

0.716 (0.748) for the UM.  A Wilcoxon test shows that subjects’ discounting in the 

DM and in the UM does not differ significantly (p = 0.87). 

 

TABLE WC2 

Signrank DM_d52 = UM_d52 

Wilcoxon signed-rank test 

Sign Observations Sum Ranks Expected 

Positive 46 2374 2328 

Negative 50 2282 2328 

Zero 0 0 0 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                                   ____________ 

adjusted variance      74884.00 

 

H0:   DM_d52 = UM_d52 

                         z =   0.17 

             Prob > z =   0.87 
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Histograms of discount factors are provided next. 

 

FIGURE WC1 
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We calculate annual discount rates r from e−rt =  δ52.  The mean (median) of r is 

0.409 (0.175) for the DM and 0.390 (0.291) for the UM.  The difference is not 

significant (p = 0.74). 

 

TABLE WC3 

 Signrank DM_r52 = UM_r52 

Wilcoxon signed-rank test 

Sign Observations Sum 

Ranks 

Expected 

Positive 50 2418 2328 

Negative 46 2238 2328 

Zero 0 0 0 

All 96 4656 4656 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                                   ____________ 

adjusted variance      74884.00 

 

H0:   DM_r52 = UM_r52 

                         z =   0.33 

             Prob > z =   0.74 
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DM_area and UM_area are the difference between area under the DM/UM 

cumulative discount weighting functions and area under the diagonal.  Here is the 

output of the test showing that the UM area exceeds the DM area. 

 

TABLE WC4 

signrank UM_area = DM_area 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 55 2980 2328 

Negative 41 1676 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties        0.00 

adjustment for zeros       0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0: UM_area = DM_area 

                       z =   2.38 

           Prob > z =   0.02 
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Here is the output of the test showing that the power function fitted to the DM area 

has a power different than 1, confirming concavity of C. 

 

TABLE WC5 

signrank DM_power = 1 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 10 307 2328 

Negative 86 4349 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties        749.50 

adjustment for zeros       0.00 

                           ________________ 

adjusted variance      74134.500 

 

H0: DM_power = 1 

                       z =   7.42 

           Prob > z =   0.0000 
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Here is the output of the test showing that the power function fitted to the UM area 

has a power different than 1, confirming concavity of C
u
. 

 

TABLE WC6 

signrank UM_power = 1 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 0 0 2328 

Negative 96 4656 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties        0.13 

adjustment for zeros       0.00 

                           ________________ 

adjusted variance      74883.88 

 

H0: UM_power = 1 

                       z =   8.51 

           Prob > z =   0.0000 
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Here is the output of the test showing that the power function fitted to the UM area is 

not significantly different from that fitted to the DM area. 

 

TABLE WC7 

signrank UM_power = DM_power 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 50 2140 2328 

Negative 46 2516 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0: UM_power = DM_power 

                       z =   0.69 

           Prob > z =   0.492 
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The following table shows the correlation  between discount rate r, 

DM_area/UM_area, and concavity of C.  Capital P designates p-value. 

 

TABLE WC8 

 r(DM) area(DM) concavity(DM) r(UM) area(UM) concavity(UM) 

r(DM) ----- 
P = 0.000 

ρ = 0.96 

P = 0.000 

ρ = 0.90 

P = 0.008 

ρ = 0.27 

P = 0.01 

ρ = 0.26 

P = 0.03 

ρ = 0.21 

area(DM) ----- ----- 
P = 0.000 

ρ = 0.90 

P = 0.02 

ρ = 0.25 

P = 0.02 

ρ = 0.24 

P = 0.046 

ρ = 0.20 

concavity(DM) ----- ----- ----- 
P = 0.007 

ρ = 0.34 

P = 0.001 

ρ = 0.32 

P = 0.004 

ρ = 0.29 

r(UM) ----- ----- ----- ----- 
P = 0.000 

ρ = 0.99 

P = 0.000 

ρ = 0.96 

area(UM) ----- ----- ----- ----- ----- 
P = 0.000 

ρ = 0.95 

concavity(UM) ----- ----- ----- ----- ----- ----- 
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Online Appendix WD: Statistics for Parametric Fittings 

The following table gives descriptives of parametric fittings of discounting on the 

individual level. 

 

TABLE WD1 

               Variable Mean        Min      Median       Max      SD 

r (exponential; UM) 0.009 0.000 0.006 0.046 0.009 

α (hyperbolic; UM) 1.876 0.000 1.214 8.222 2.139 

β (hyperbolic; UM) 0.249 0.000 0.055 3.981 0.557 

d (unit invariance; UM) 0.576 9.401 0.938 3.719 1.352 

r (unit invariance; UM) 2.190 0.000 0.692 18.193 3.411 

r (exponential; DM) 0.005 0.012 0.002 0.037 0.008 

α (hyperbolic; DM) 1.663 0.000 1.297 9.770 2.497 

β (hyperbolic; DM) 0.139 0.012 0.049 1.650 0.261 

d (unit invariance; DM) 0.801 1.281 0.893 1.954 0.490 

r (unit invariance; DM) 1.858 0.000 0.246 19.982 2.970 
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We next present tests for heteroskedasticity.  We fitted three models for both UM data 

and DM data.  The following figure displays the error term of the exponential model 

for UM data. 

 

FIGURE WD1 

  

Levene’s test of equality of variances rejects the null hypothesis that absolute 

deviations from the medians are the same across time (p < 0.01). 

 

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations 

from the median 

data:  error_exponential_UM 

Test Statistic = 5.28, p = 2.46e05 
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We now present the error term of the hyperbolic model for the UM. 

 

FIGURE WD2 

 

For the hyperbolic discounting model, Levene’s test cannot reject the null that 

absolute deviations from the medians are the same across time (p > 0.05). 

 

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations 

from the median 

data:  error_hyperbolic_UM 

Test Statistic = 2.00, p = 0.06 
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The following figure shows the error term of the unit invariance model for the UM. 

 

FIGURE WD3 

 

Levene’s test cannot reject the null that absolute deviations from the medians are the 

same (p > 0.05). 

 

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations 

from the median 

data:  error_unit.invariance_UM 

Test Statistic = 1.98, p = 0.07 
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The following figure shows the error term of the exponential discounting model for 

the DM. 

 

FIGURE WD4 

 

Levene’s test cannot reject the null.  Hence, deviations from the medians are constant 

(p > 0.05). 

 

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations 

from the median 

data:  error_exponential_DM 

Test Statistic = 1.67, p = 0.16 
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The following figure shows the error term of the hyperbolic discounting model for the 

DM. 

 

FIGURE WD5 

 

Visual inspection suggests that the error terms in each column have different 

variances.  Levene’s test confirms this (p < 0.01). 

 

Modified robust Brown-Forsythe Levene-type test based on the absolute deviations 

from the median 

data:  error_hyperbolic_DM 

Test Statistic = 104.59, p < 2.2e16 
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The following figure gives the error term of the unit invariance discounting model for 

the DM. 

 

FIGURE WD6 

 

Leneve’s test cannot reject the null that the variances are the same (p > 0.1). 

 

Modified robust Brown-Forsythe Levene-type test based on the absolute 

deviations from the median 

data:  error_unit.invariance_DM 

Test Statistic = 1.61, p = 0.17 
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The following output shows that the discount rate r of exponential discounting of the 

UM exceeds that of the DM. 

 

TABLE WD2 

signrank r (exponential, UM) = r (exponential, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 60 3344 2328 

Negative 36 1312 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0: r (exponential, UM) = r (exponential, DM) 

                       z =   3.71 

           Prob > z =   0.0002 
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The following output shows that the  parameter of hyperbolic discounting of the DM 

is not significantly different from that of the UM.   

 

TABLE WD3 

Signrank α (hyperbolic, DM) = α (hyperbolic, UM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 40 1998 2328 

Negative 56 2658 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0: α (hyperbolic, DM) = α (hyperbolic, UM) 

                       z =   1.21 

           Prob > z =   0.23 
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The following output shows that the  parameter of hyperbolic discounting of the UM 

is not significantly different from that of the DM. 

 

TABLE WD4 

Signrank β (hyperbolic, DM) = β (hyperbolic, UM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 41 2049 2328 

Negative 55 2607 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0: β (hyperbolic, DM) = β (hyperbolic, UM) 

                       z =   1.02 

           Prob > z =   0.31 
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The following output shows that the d parameter of unit invariance of the DM tends to 

exceed that of the UM but not significantly so. 

 

TABLE WD5 

Signrank d (unit invariance, UM) = d (unit invariance, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 45 2026 2328 

Negative 51 2630 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.00 

adjustment for zeros            0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0:  d (unit invariance, UM) = d (unit invariance, DM) 

                       z =   1.10 

           Prob > z =   0.27 
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The following output shows that the r parameter of unit invariance of the DM is not 

significantly different from that of the UM. 

 

TABLE WD6 

Signrank r (unit invariance, UM) = r (unit invariance, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 48 2424 2328 

Negative 48 2232 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties                1.25 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74882.75 

 

H0: r (unit invariance, UM) = r (unit invariance, DM) 

                       z =   0.35 

           Prob > z =   0.73 



 

 

40 

The following output gives descriptive statistics of the Akaike information criterion 

(AIC). 

 

TABLE WD7 

Variable Mean Min Median Max SD 

Exponential _UM 3.026 6.708 3.261 0.452 1.229 

Exponential _DM 3.559 3.990 3.676 2.147 0.475 

Hyperbolic _UM 1.552 4.916 1.684 1.943 1.025 

Hyperbolic_ DM 1.659 2.184 1.799 0.017 0.440 

Unit invariance_ UM 1.628 5.084 1.699 1.931 0.953 

Unit invariance_ DM 1.647 2.269 1.779 0.017 0.462 
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The following output shows that AIC for exponential discounting of the UM exceeds 

that of the DM, implying that the DM has a better fit. 

 

TABLE WD8 

Signrank AIC (exponential, UM) = AIC (exponential, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 72 3577 2328 

Negative 24 1079 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0:  AIC (exponential, UM) = AIC (exponential, DM) 

                       z =   4.56 

           Prob > z =   0.0000 
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The following output shows that AIC for hyperbolic discounting of the UM tends to 

exceed that of the DM (suggesting that the DM has a better fit), but not significantly 

so. 

 

TABLE WD9 

Signrank AIC (hyperbolic, UM) = AIC (hyperbolic, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 53 2753 2328 

Negative 43 1903 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0:  AIC (hyperbolic, UM) = AIC (hyperbolic, DM) 

                       z =   1.55 

           Prob > z =   0.12 
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The following output shows that AIC for unit invariance discounting of the DM and 

the UM do not differ significantly. 

 

TABLE WD10 

Signrank AIC (unit.invariance, UM) = AIC (unit.invariance, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 52 2582 2328 

Negative 44 2074 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties                0.00 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74884.00 

 

H0:  AIC (unit.invariance, UM) = AIC (unit.invariance, DM) 

                       z =   0.93 

           Prob > z =   0.35 
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The following output shows, for the UM, that the AIC for unit invariance discounting 

exceeds that of exponential discounting (so that exponential has a better fit). 

 

TABLE WD11 

Signrank AIC (unit.invariance, UM) = AIC (exponential, UM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 95 4639 2328 

Negative 1 17 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.13 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74883.88 

 

H0:  AIC (unit.invariance, UM) = AIC (exponential, UM) 

                       z =   8.44 

           Prob > z =   0.0000 
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The following output shows, for the UM, that the AIC for hyperbolic discounting 

exceeds that of unit invariance (so that unit invariance has a better fit). 

 

TABLE WD12 

Signrank AIC (unit.invariance, UM) = AIC (hyperbolic, UM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 17 634 2328 

Negative 79 4019 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties               0.13 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74883.88 

 

H0:  AIC (unit.invariance, UM) = AIC (hyperbolic, UM) 

                       z =   6.18 

           Prob > z =   0.0000 
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The following output shows, for the UM, that the AIC for hyperbolic discounting 

exceeds that of exponential discounting (so that exponential discounting has a better 

fit). 

 

TABLE WD13 

Signrank AIC (hyperbolic, UM) = AIC (exponential, UM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 88 4394 2328 

Negative 8 262 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    68114.75 

adjustment for ties              0.00 

adjustment for zeros           0.00 

                           ________________ 

adjusted variance          68114.75 

 

H0:  AIC (hyperbolic, UM) = AIC (exponential, UM) 

                       z =   7.37 

           Prob > z =  0.0000 
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The following output shows, for the DM, that the AIC for hyperbolic discounting 

tends to exceed that of unit invariance (so that unit invariance has a better fit), but not 

significantly so. 

 

TABLE WD14 

Signrank AIC (unit.invariance, DM) = AIC (hyperbolic, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 31 1995 2326.5 

Negative 63 2658 2326.5 

Zero 2 3 3 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties          370.75 

adjustment for zeros           1.25 

                           ________________ 

adjusted variance      74512.00 

 

H0:  AIC (unit.invariance, DM) = AIC (hyperbolic, UM) 

                       z =   1.21 

           Prob > z =   0.22 
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The following output shows, for the DM, that the AIC for hyperbolic discounting 

exceeds that of exponential discounting (so that exponential discounting has a better 

fit). 

 

TABLE WD15 

Signrank AIC (exponential, DM) = AIC (hyperbolic, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 0 0 2328 

Negative 96 4656 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties          771.00 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74113.00 

 

H0:  AIC (exponential, DM) = AIC (hyperbolic, DM) 

                       z =   8.55 

           Prob > z =   0.0000 
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The following output shows, for the DM, that the AIC for unit invariance exceeds that 

of exponential discounting (so that exponential discounting has a better fit). 

 

TABLE WD16 

Signrank AIC (exponential, DM) = AIC (unit.invariance, DM) 

Wilcoxon signed-rank test 

  

Sign Observations Sum Ranks Expected 

Positive 0 0 2328 

Negative 96 4656 2328 

Zero 0 0 0 

All 96 4656 4656 

 

 

unadjusted variance    74884.00 

adjustment for ties          370.75 

adjustment for zeros             0.00 

                           ________________ 

adjusted variance      74513.25 

 

H0:  AIC (exponential, DM) = AIC (unit.invariance, DM) 

                       z =   8.53 

           Prob > z =   0.0000 
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Online Appendix WE: Theoretical Possibility to Manipulate 

in the Adaptive Experiment 

As explained in the main text (Section V), the possibility for subjects to manipulate in 

the experiment is only a theoretical problem because in reality it is impossible for 

subjects to see through the design without knowing it beforehand.  Even readers who 

have studied the design will need considerable time before being able to specify how 

to benefit from manipulation.  We now consider the theoretical case where someone 

knows the entire design and has used considerable time to think about manipulations, 

which is our case as authors of this paper.  We assume that all answers are equally 

likely to be implemented for real, and that the prize to be won is fixed. 

 A wrong answer in the measurement of c½ will bring no net gain in the 

measurements of c¼ and c¾ because the time period gained for one of these two is the 

time period lost for the other.  It will neither bring net gains in the measurements of 

c⅛, and c⅞ because, again, the duration gained for one is the duration lost for the other.  

The only benefit possible is from making c¼ too large (or, similarly, making c¾ too 

small).  Then in some followup questions for c⅛ there is a gain, always less than half 

the loss suffered due to the preceding wrong answer (but in some there is a loss).  But 

there are more, usually around 12, choice questions in the choice list for c⅛.  Hence in 

expectation one gains about p  (8/21) times the error made, where p is the 

probability of the question being selected for real.  Given that p  0.01, this is a 

moderate gain. 

 


