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Abstract

Agents voluntarily contribute to an infinitely repeated joint project. We investi-
gate the conditions for cooperation to be a renegotiation-proof and coalition-proof
equilibrium before examining the influence of output share inequality on the sus-
tainability of cooperation. When shares are not equally distributed, cooperation
requires agents to be more patient than under perfect equality. Beyond a certain
degree of share inequality, full efficiency cannot be reached without redistribution.
This model also explains the coexistence of one cooperating and one free-riding
coalition. In this case, increasing inequality can have a positive or negative impact
on the aggregate level of effort (or social surplus).

1 Introduction

Agents take part in a joint project to which they voluntarily contribute efforts. The
output is distributed among the players according to their share, which can be their
relative wealth. In this kind of setting, we know that, if the game is played once, the
first-best optimum will be impossible to sustain1, as deviation is a dominant strategy
and the aggregate level of Nash equilibrium contributions is suboptimal. In contrast,
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1It can if all the shares are concentrated into the hands of a single individual and efforts are perfectly

substitutable.
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the Folk theorem states that, provided agents are not too impatient, new and more ef-
ficient equilibria can be reached thanks to the repetition of the game. In this paper, we
investigate to what extent inequality of shares influences first-best sustainability in an
infinitely repeated game. Does introducing share inequality render cooperation more difficult
to support?

There exist numerous examples of voluntarily provided joint projects in the real
world. One can think of an irrigation scheme where individuals have to put in efforts
for building and/or maintaining the infrastructure. In that case, the level of their con-
tributions to this collective action will depend on their benefit, which is directly related
to the amount of land they cultivate. The same logic applies to many other cases: vol-
untary provision to local public goods, collective action problems in management of
environmental resources (forests, fisheries, pest and weed control), cooperatives, finan-
cial lobbying, defence alliances, etc. Industrial Organization also encompasses related
issues, i.e. tacit collusion, moral hazard in teams or principal-agent model of team pro-
duction.

Although most of the literature on these issues uses static game formalizations, these
situations are often better described as repeated games. In many cases, agents interact
repeatedly and have to find ways to sustain cooperation between them, not knowing
when this game is going to end. Our infinitely repeated game framework therefore
seems realistic.

In one-shot games, Olson (1965), followed by several authors, argued that the effect
of inequality was positive on collective action. He claimed that if one single (or a few)
agent has a great interest in the collective action, the good is more likely to be provided
even if this user is the only one to bear its cost. Olson brought up the two following
insights: that contributions are positively related to wealth and that great inequality
implies a great likelihood of success of collective action. These results however rest
upon several unstated hypotheses: perfect substitutability of efforts, single interaction,
Nash behavior and identical marginal costs. Moreover, several papers show that the
conditions for Olson’s latter result to remain valid are quite demanding. This is put
forward, among others, in empirical studies by Bardhan (2000) and Dayton-Johnson
(2000) but also put in perspective in more theoretical papers such as Bardhan, Ghatak,
Karaivanov (2007) and Ray, Baland, Dagnelie (2007).

As for now, the effect of inequality on efficiency or the aggregate level of effort seems
to be ambiguous, depending on the cost function (Banerjee et al., 2006). In an empirical
paper on collective action in Pakistani communities, Khwaja (2006) finds a U-shaped
relationship between inequality in the distribution of project returns or land ownership
and maintenance, the aggregate level of efforts. It also appears that, in many cases,
departing from an equalitarian distribution will harm collective action or efficiency, by
increasing the poor’s incentives to free-ride or by allowing the rich and powerful to
take over rents - as in the case of the Maharashtra sugar cooperatives (Banerjee et al.,
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2001). Deepening inequality can therefore increase or decrease further the incentives of
the beneficiaries from the redistribution to cooperate2.

With the prospect of future interactions with the same people3 arises the possibility
of punishing undesired actions, which is conducive to cooperative outcomes. A few
papers address the question of inequality and efficiency in dynamic or repeated games.
The former refers to a paper by Tarui (2007) investigating the influence of inequality
in productivity, access to markets and credit into a dynamic intergenerational game of
common property resource use4. According to the punishment used and the harvest
sharing rule, Tarui shows that first-best sustainability may or not be affected by an in-
crease of inequality.

As to Bardhan and Singh (2005), they explore the influence of wealth inequality on
cooperation, sustained by trigger strategies, i.e. Nash reversion. In their model, agents
are endowed with private capital which enters, with a complementary input, a constant
return to scale Cobb-Douglas production function. To produce this complementary in-
put, agents have to choose between a status quo technology which guarantees some
level of output and a cooperative technology the fruits of which can be captured by
one or more deviating players. They establish that, in this setting, inequality can affect
cooperation and that redistribution can improve the welfare of the rich thanks to the
greater possibility of cooperation.

This paper also relates to Itaya and Yamada (2003) who investigate the impact of in-
come inequality on a repeated game of private provision of public goods with two play-
ers and renegotiation-proof equilibria. They point out the negative effect of inequality
on first-best sustainability.

This research is also close in spirit to Vasconcelos (2005), a paper on tacit collusion
in quantity setting supergames with asymmetric costs. In both our papers, inequality
decreases the scope of cooperation sustainability, by increasing the discount factor of in-
terest. Since Vasconcelos’ market shares are allocated according to the firms’ production
capacity (which affects marginal costs), he shows that the smallest firms are more prone
to deviate from the collusive agreement, which fits our framework. We mainly differ in
our punishment strategies. As he uses optimal penal codes à la Abreu (the stick and the
carrot, 1986, 1988) to sustain cooperation, while punishing, the largest firms have the
greatest incentives to deviate from the punishment path5. We resort to renegotiation-

2A comprehensive discussion on this issue can be found in Baland and Platteau (2003) from p. 161.
3This renders our framework different from reputation matching games à la Kandori (1992) where rela-

tionships are infrequent and ”agents change their partners over time and dishonest behaviour against one
partner causes sanctions by other members in the society”.

4Rendering our model dynamic would only make, at each period, the rich, richer and the poor, poorer.
It would then lead to a situation where only one player would be rich enough for cooperation to be more
desirable than deviation. No one would therefore produce the efficient level of effort.

5Abreu proposes symmetric punishments during which everyone suffers. Large firms, having a large
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proof punishments which are known to substantially reduce the sustainability of full
collusion in competition à la Bertrand or Cournot (Farrell, 2000).6

A common and easy solution considered in the literature for sustaining cooperation
is Nash reversion (Friedman, 1971) consisting in a permanent return to the Nash equilib-
rium after a single deviation. We will use it as a benchmark for our analysis. However,
one of the main drawbacks of Nash reversion is that, without being the harshest pun-
ishment, the punisher suffers from giving a punishment. As stated by Bernheim and
Ray (1989) and Farrell and Maskin (1989), who introduced the concept of renegotiation-
proofness in the literature7, this renders the threat not credible. Everybody indeed an-
ticipates that, ex post, the punishers and the punished will be tempted to renegotiate.
Furthermore, after a single deviation, all the agents are stuck for ever in a pareto dom-
inated equilibrium. It would be hard to believe that, in a repeated setting, agents fail
to exploit the existing opportunities to reach the pareto frontier. Actually, it is rarely
observed on the field as stated in Tarui (2007). The latter quotes Ostrom (1990) who ar-
gues that many commons overcame occasional deviations. This indirectly supports the
evidence that the punishments are only temporary, allowing a return to cooperation.

This confirms the need to elaborate punishments allowing a return to cooperation
after the punishment phase. In this research, we extend the concept of renegotiation-
proofness from 2 to n players, taking into account credible deviations8 of coalitions
to the prisoner’s dilemma with continuous strategies, which, to our knowledge, is a
novelty.

We also introduce a new explanation as to why inequality can result in suboptimal
outcomes. We indeed show that the introduction of inequality under Nash reversion or
punishments resisting to renegotiation and deviation by credible coalitions is detrimen-
tal to cooperation. Compared to perfect share equality, agents have to be more patient
to cooperate in the presence of inequality of shares.

In Section 2, we present our simple model offering a binary choice to the agents:
cooperating or deviating from the socially optimal contribution. Nash reversion is ad-
dressed in Section 3. We propose, in Section 4, a renegotiation-proof and coalition-proof
punishment scheme and investigate the influence of share inequality on the limit dis-

market share, suffer more from the price decrease following the breach in the collusive agreement.
6Farrell (2000) shows that the renegotiation-proofness requirement makes full collusion impossible to

sustain in symmetric Bertrand games when n > 3 and when n > 9 in symmetric Cournot games.
7While their equilibrium concept is fairly similar, the former refer to ’collective dynamic inconsistency’

and the latter to ’weak renegotiation-proofness’. Readers interested in this topic could also see the works
of van Damme (1989) and Asheim.

8The concept we use is coalition proofness which implies that we restrict ourselves to pareto efficiency
within the class of self-enforcing agreements (Bernheim et al, 1987). An agreement is self-enforcing if no
subcoalition taking the action of others as given can deviate in a way that makes all of its members better
off. (Bernheim et al., 1987) It means that an agreement is not self-enforcing and hence not credible if it is
profitable for one member to deviate from this agreement. In this paper we focus on credible deviations.
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count factor. We characterize, in Section 5, the lowest share compatible with generalized
cooperation, discuss the coexistence of one free-riding and one cooperating coalition
and how redistribution can increase or decrease the total amount of effort put in the
project. We also examine how redistributing shares from the rich to the poor players
can improve the welfare of everybody. Eventually, before concluding in Section 7 as
to the negative influence of wealth inequality in this setting, we introduce, in Section 6
outside options. The proofs are collected in an Appendix.

2 Repeated Joint Production with Shares

A group of n agents decide to produce jointly and repeatedly a particular output. All the
i agents are identical except for, λi, their share in output which can also be a measure of
their relative wealth. λ is the vector of shares, [λ1, λ2, . . . , λn], the sum of which equals
1. Note that λ1 ≤ λ2 ≤ . . . ≤ λn. All the agents exhibit the same degree of impatience
and therefore have the same discount factor, δ.9

The collective output is, as in the standard pure public good model, the sum of the
(nonnegative) efforts, ei, of all the agents taking part in the project. This modelling
of the output implies that efforts are perfect substitutes what, with respect to efficiency,
favours an unequal distribution of shares10. A straightforward illustration of this would
be to consider a single agent concentrating all the incentives (λi = 1) to produce the
efficient effort. In this case, the first-best optimum is produced at each stage of the game
while using a Leontieff production function, where efforts are perfect complements,
would result in a suboptimal production of effort.

Regarding the cost function, even though it looks simple and elegant to introduce
an isoelastic convex cost of effort11 it would be at the cost of imposing an assumption of
strict equality of marginal costs of effort. This would imply that the efficient level of ef-
fort is the same for each agent whatever her endowment12 which could be suspected of
driving the results. We therefore adapted the cost expression so that each agent putting
effort in the project has to undergo an isoelastic convex cost expressed in terms of her
share, eγi

γλi
with γ ≥ 2 13, taking into account, for instance, the imperfections of the credit

9If one introduces inequality in the distribution of discount factors assuming that the poor are less
patient than the rich cooperation is even harder to sustain and our conclusions easier to reach.

10For a discussion on the influence of inequality on joint projects when efforts are not perfect substitutes
in a one-shot game, see Ray, Baland and Dagnelie (2007).

11This same exercise was run with an isoelastic convex cost eγi with γ > 1 in a previous version of the
paper (Dagnelie, 2007). Results are equivalent.

12It means that it would be rapidly difficult for the poor to sustain cooperation since they would have
to put in a very high level of effort (the same as for the rich) but would earn only a small share of the total
output (contrarily to the rich).

13If γ < 2, a strong inequality implies that the very rich players prefer generalized deviation to general-
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markets14. Since the marginal cost of effort is decreasing in the share endowment, the
efficient level of effort is smaller for the poor which makes it easier for them to coop-
erate. Even though releasing this assumption of equality of marginal costs renders our
results harder to achieve, both modelings produce similar results. γ is also present at
the denominator for analytical tractability, without loss of generality.

Collective action individual payoffs, πi, have therefore the following form:

πi = λi
∑
j

ej −
eγi
γλi

(1)

Once a game is repeated, many Nash equilibria arise. In this research, we focus on
two of them: the good outcome (πCi ), which is pareto efficient in the class of subgame
perfect equililbria, and the bad one, the Nash equilibrium of the stage game (πNi ). In
most of the paper, we consider that the reservation utility of the agents equals zero,
we remove this assumption in Section 6. Maximizing the social surplus provides us

with the optimal, cooperative level of effort, eCi , equal to λ
1

γ−1

i , which depends on the
distribution of shares.
If this game is played once, then every agent is going to maximize her own payoff, given
the efforts contributed by the other agents.

πNi ≡ max
ei

λi(ei +
∑
j 6=i

ej)−
eγi
γλi

(2)

In this case where everyone deviates from the cooperative level of effort and produces

eNi ≡ λ
2

γ−1

i , the outcome is known to be pareto dominated by the first-best optimum15.
The game described above is similar to a prisoner’s dilemma with n agents and

continuous strategies. Inequality creates tensions in the sense that the premium from
deviating from cooperation is, proportionally to their endowment, higher for the poor
which therefore renders deviation more attractive to them. Hence we can introduce the
following lemma.

LEMMA 1 The agent who benefits most from deviating, relatively to one’s share, is always the
one with the lowest share.

ized cooperation and at γ = 1, surplus maximization is unbounded.
14What we have in mind is restricted access to credit for the poor.
15It means that eNi = eCi λ

1
γ−1
i with eNi < eCi as, if λi < 1, λ

1
γ−1
i < 1 for all γ while πNi =

λi(
P
k∈n λ

2
γ−1
k )− γ−1λ

γ+1
γ−1
i .
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When we introduce share inequality, the cooperation payoff decreases faster than
the deviation payoff which makes deviation more profitable for the poor. This tends to
confirm Olson’s hypothesis as to the exploitation by the poor.

Since we consider deviations of coalitions and simultaneous unilateral deviations of
independent agents, it is possible that, in the latter case, πC

∗
i < πCi - where πC

∗
is the

deviation profit16 which depends on the endowment (and the number) of the deviating
players and πC is the cooperation profit17 - deviating from the cooperation effort is
not profitable.18 While cooperating produces a big surplus, if too few cooperate and
too many deviate, the small surplus is divided among too many deviating players for
deviating to remain profitable.19

3 Nash Reversion

In this section, we will temporarily not address the problems posed by renegotiation
and consider the following punishment: Once a coalition has deviated, everybody pro-
duces the Nash level of effort for ever. For cooperation to be sustainable, the discount
factor must respect the following condition:

(1− δN )πC
∗

i + δNπ
N
i < πCi ⇒ δN >

πC
∗

i − πCi
πC
∗

i − πNi

If πC∗i −πCi
πC∗i −πNi

< 1, it is theoretically possible to support cooperation. As long as players
have a discount factor greater than δN and smaller than 1, Nash reversion can be used
as a threat against deviation. Hence, the necessary condition for cooperation to become
sustainable is :

πCi > πNi ≡ λi

∑
j∈n

λ
1

γ−1

j (1− λ
1

γ−1

j )

− γ−1λ
1

γ−1

i (1− λ
γ
γ−1

i ) > 0 (3)

The bigger the difference πCi − πNi , the smaller δN and therefore the easier cooperation
can be sustained.

16Note that the exponent ∗ always refers to a deviation from what precedes. πC
∗

i = λi(
P
j∈nC

λ
1

γ−1
j +P

k∈nD
λ

2
γ−1
k )− γ−1λ

γ+1
γ−1
i , where n− nD = nC cooperate but nD deviate.

17πCi = λi(
P
j∈n λ

1
γ−1
j )− γ−1λ

1
γ−1
i

18When λi = n−1, deviation is profitable as long as nD < n+1
2

.
19These instances of non profitable deviation are more easily deterred with Nash reversion and a

renegotiation-proof and coalition-proof punishment.
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One can see that, if the distribution of shares is perfectly equal, as long as the agents
have a discount factor smaller than 1 and greater than δN , cooperation can always be
sustained by Nash reversion. The condition in equation (3) is indeed always verified
and becomes :

γ >
1− n

−γ
γ−1

1− n
−1
γ−1

(4)

As cooperation can always be sustained with Nash reversion when the distribution
is equalitarian (and δN < δ < 1) and since deviation is a dominant strategy, even when
the game is repeared, for the agents for which inequality renders πCi < πNi , one can
expect a negative effect of inequality on cooperation. Following the introduction of
inequality, the agents losing from the redistribution of shares, i.e. λi < n−1, have to be
more patient than before not to enter a deviation phase. All this means that increasing
share inequality makes cooperation harder and harder to sustain - as the limit discount
factor, δN , rises - up to a point where inequality is such that, whatever the impatience
degree of the agent with a low share, generalized cooperation is not possible any more.
This enables us to put forward the following proposition.

PROPOSITION 1 Introducing inequality among agents renders the condition to sustain cooper-
ation with Nash reversion more difficult to fulfill.

4 A Renegotiation-Proof and Coalition-Proof Equilibrium

As mentioned before, Nash reversion suffers from several flaws. We therefore want
to devise an equilibrium concept resisting to renegotiation and deviation of credible
coalitions. We also want this equilibrium to enable returning to cooperation after the
punishment phase.

As suggested by van Damme (1989) for the 2 players prisoner’s dilemma with dis-
crete strategies, cooperation can be sustained if after player 1’s deviation, player 2 is
allowed to deviate (produce the Nash level of effort) until player 1 cooperates20. Ex-
tending renegotiation-proofness from 2 to n players requires taking account of devi-
ations of coalitions. Nonetheless, the original concept with 2 players fits in with the
framework set out below.

van Damme’s idea, exposed above, is used to devise our punishment scheme. After
a deviation of a coalition of one or more players, the cooperative players enter a punish-
ment phase during which they produce a retaliation quantity of effort (Ri). They keep
playing this level of effort as long as the cheaters - the ones who deviated in the normal
phase - have not played the punishment level of effort (Pi). During this punishment,

20If player 2 does not cooperate any more, both players are stuck in the pareto dominated equilibrium.
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everybody has the incentives to play accordingly to the scheme - what ensures subgame
perfection - and the punishers get at least as much as when everybody cooperates and
produces the first-best optimum - what guarantees renegotiation-proofness.

We can restrict the length of the punishment phase thanks to the following lemma.

LEMMA 2 Aiming at the smallest discount factor compatible with a renegotiation-proof and
coalition-proof punishment limits the length of the punishment phase to one period.

A multi-period punishment would have two effects, ex ante, it would make deviation
less attractive but as the punishment is harsher, ex post, it would increase the incentives
to deviate from the punishment. As will become clearer below, there is a trade-off be-
tween these two effects. In this particular case, the latter effect would be dominating as
the punishment level of effort is high enough for the punishers to be willing to punish,
given the requirement of renegotiation-proofness.

For a punishment to be renegotiation-proof - in equilibrium no continuation payoff be-
ing pareto dominated by another continuation payoff (Farrell and Maskin, 1989) - and
coalition-proof - restricting to pareto efficiency within the class of self-enforcing agree-
ments (Bernheim et al, 1987) -, the following 5 conditions must be met.

Condition 1 Ex ante, the punishment must be such that deviations are deterred.

(1− δ)πC∗i + δ(1− δ)πPi + δ2πCi < πCi

⇒ δXA >
πC
∗

i − πCi
πCi − πPi

(5)

δXA must be smaller than 1 which implies that 2πCi − πC
∗

i − πPi > 0, with πPi being
the payoff obtained by an agent during her punishment. Meeting this condition will
prevent a subcoalition of players to alternate between deviating and being punished
every other period. If the punishment effort is fixed at the level of the cooperative effort,
this condition is always verified as 2πCi −πC

∗
i −πPi > 0 boils down to equation (4). Hence

we know that, if the punishment effort to put in is greater than during cooperation, δXA
decreases.

Condition 2 Ex post, the punishment must be such that deviations from the punishment are
deterred.

(1− δ)πPi + δπCi > (1− δ)πP ∗i + δ(1− δ)πP ′i + δ2πCi

⇒ δXP >
πP
∗

i − πPi
πCi − πP

′
i

(6)

πP
∗

i is the payoff obtained by the subcoalition of punished agents who deviate from un-
dergoing the punishment. πP

′
i is the payoff obtained by the same subcoalition of agents
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when accepting the punishment (while all the other agents, including those who had
accepted the punishment the previous period, produce the retaliation level of effort).
The basic idea is that the payoff of the punished must be greater when conforming to
their punishment than when deviating. When nD∗ = 1, the number of punished play-
ers deviating from their punishment equals 1, δXP reaches its minimum which therefore
makes Condition 2 the most easily fulfilled. The benefit from deviating from the pun-
ishment is by far outweighed by the burden of the penalty for which the single deviator
has to compensate all the cooperating players. If the size of the deviating subcoalition
rises, πP

∗
i decreases whereas πP

′
i rises much faster which means that δXP also rises. It

is therefore expected that arg maxnD∗∈(1,nD) δXP = nD.
The following two conditions ensure that all the punishers are willing to conform to

the punishment phase.

Condition 3 The payoff of the punishers must be greater when conforming than when deviating
from punishing and then conforming, i.e. π1/P

i > π
1/P ∗

i .

If π1/P
i and π1/P ∗

i represent respectively the payoff from punishing and from deviating
from giving the punishment, we get:

(1− δ)π1/P
i + δπCi > (1− δ)π1/P ∗

i + δπCi ⇒ π
1/P
i > π

1/P ∗

i

In case of perfect equality of wealth among agents, we have:

γ
nC∗

n
(R−R∗) > (Rγ −R∗γ ) (7)

The intuition behind this condition is that it could more interesting, for the punishing
players, to skip the punishment phase and go back directly to cooperation. We check
which values of R and R∗ are compatible with a renegotiation and coalition-proof pun-
ishment. R∗ being the level of effort put in when deviating from giving a punishment.
Equation (7) must hold for nC∗ = 1, while if it does not hold when nC∗ > 1 we have to
ensure that all these deviating coalitions are not credible. This is done in Condition 4.

One could imagine that the simplest form of punishment would be for the deviators
to put in a level of effort giving at least the cooperative payoff to the punishers while the
latter do not produce. However, as long as R < eNi , for very high values of γ, it could
be interesting for one punisher to deviate and produce the cooperative level of effort21.
Once R is fixed at the Nash level of effort, eNi , it is never interesting for one punisher22

21As showed by limγ→+∞
γ
n
(βn

−1
γ−1 − 1) − (βγn

−γ
γ−1 − 1) < 0 when β < 1. For the particular case of

R = 0, it is easy to check that the condition R∗ > ( γ
n
)

1
γ−1 is not satisfied for many values of γ, n.

22A coalition of nC∗ > 1 players could be tempted to deviate from giving the punishment. This prevents
this scheme to be strong Nash.
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to deviate from the punishment scheme and it is easy to prove that:

∂δXP
∂nD∗

> 0 (8)

Hence, we have to focus on the case where Condition 2 is the hardest to satisfy, i.e.

nD∗ = nD, which gives δXP >
πNi −πPi
πCi −πPi

. As it is easy to see that ∂δXP
∂πPi

< 0 23, we know
that the minimum of δXP is reached when the punishment is also fixed at its minimum.

All that has been said so far enables us to point out that πNi is again a focal point. If
the cooperative agents return to putting in the Nash effort, the threat point of the game
is infinite repetition of the Nash equilibrium. The deviators can indeed renege for ever
on the punishment and produce the Nash effort. We therefore know that πCi > πNi is
again to satisfy.

For this setting to be coalition-proof, we must now ensure that no deviating coalition
of punishers is credible which implies that no one should have one’s interest in further
deviating from the deviating coalition. We hence turn to the next condition.

Condition 4 For the equilibrium to be coalition-proof, no deviation of punishers should be cred-
ible, i.e. π1/P ∗

i < π
1/P ∗∗

i .

If λi = 1
n and nC∗∗ = 1 24, π1/P ∗

i < π
1/P ∗∗

i is equivalent to:

γ

n
<

(1− n
−γ
γ−1 )

(1− n
−1
γ−1 )

(9)

For all γ and n, this condition is fulfilled which means it is always more interesting
for one player to further deviate from the deviating coalition by producing the Nash
level of effort25. Condition 4 is always met and no deviation of punishers is therefore
credible.

It is to be noted that, if all the punished agents conform to the punishment phase
and produce a high level of effort, no coalition of punishers is willing to deviate. A for-
tiori, if only a subcoalition of punished players deviates from the punishment phase -
and therefore produces less -, no subcoalition of punishers is tempted to skip this phase.
Given the punished and the punishers have opposite duties and interests, no deviation
of mixed coalitions is credible. This ensures that our punishment scheme is immune to
deviation from coalitions of punishers and/or punished players and guarantees sub-
game perfection.

23 ∂δXP
∂πPi

=
πNi −π

C
i

(πCi −π
P
i )2

which is negative as long as πCi > πNi .
24One player is enough to show that coalitions are not credible.
25It is not surprising as eNi is the best response of player i, being the solution to equation (2).
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The following condition certifies that the punishers will not renegotiate the punish-
ment scheme.

Condition 5 The payoff from punishing a deviating coalition must be greater or equal than the
payoff from generalized cooperation, i.e. π1/P

i ≥ πCi .

It means that, if λi = 1
n ,

P ≥ n
−2
γ−1

[
n

γ
γ−1 − nC − γ−1(n

γ
γ−1 − 1)

] 1
nD

(10)

Now that the conditions to satisfy are stated, we want to select the punishment pro-
ducing the lowest discount factor compatible with generalized cooperation, δ. We have
therefore to fix the effort level corresponding to the punishment, P , so that the couple
(δXA, δXP ) is the lowest possible and, in any case, smaller than one. As our punish-
ment scheme has to simultaneously respect the conditions expressed in equations (5)
and (6), we have to find the max(δXA, δXP ). In order to pick the punishment corre-
sponding to the highest degree of impatience, we have to determine P such that we get
δ ≡ min max(δXA, δXP ).
Comparing δXA and δXP boils down to comparing πC

∗
i − πCi and πNi − πPi , in the limit

case where nD∗ = nD, since the denominator of these ratios is the same. After simplifi-
cation,

πC
∗

i − πCi ≤ πNi − πPi (11)

becomes with an equalitarian distribution of shares:

−γ−1n
−1
γ−1

[
(n

1
γ−1P )γ − 1

]
+ nDn

−γ
γ−1 (n

1
γ−1P − 1) ≤ 0 (12)

The root of interest in equation (12) is P = eC . Hence we know that when P = eC ,
δ = δXA = δXP . We also know that as soon as P > eC , (10) must be binding, hence we
have to minimize πNi −πPi (as δXA ≤ δXP ) and thus P to get δ. It means that the minimal
punishment compatible with renegotiation-proofness and coalition-proofness is P as
long as it is greater than the cooperative level of effort. As long as the parameters of
equation (10) produce a P < eC , resorting to such a punishment effort will not prevent
deviations. The penalty incurred by the deviators would be too small to deter them
from alternating between deviating and being punished. In this case, the punishment
must be to put in the cooperative level of effort. On the other hand, if P < P , the
punishment is not renegotiation-proof.
We have therefore to find P ≡ max(eC , P ) and turn to the following equation.

P ≥ eC ≡ nC
n
γ ≥ 1− n

−γ
γ−1

1− n
−1
γ−1

(13)
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The cases where equation (13) is not verified, with γ ≥ 2, is when nD ≥ n
2 . In these

cases, P is too small a punishment and the punished have to put in the cooperative
level of effort, exactly as in the two players game put forward by van Damme (1989).

Considering we took into account the different conditions imposed by our punish-
ment scheme when λi = n−1, we are equipped with the parameters of our punishment,
P and R. As δXP must be smaller than 1 for cooperation to be a renegotiation-proof
and coalition-proof equilibrium, πNi must be smaller than πCi . It is the same binding
constraint as with Nash reversion and we know from equation (4) that it is always true.
This allows us to put forward the following proposition:

PROPOSITION 2 As long as δXP < δ < 1, λi = n−1 and the game is infinitely repeated26, it is
possible to sustain cooperation with a renegotiation-proof and coalition-proof punishment.

So far, we have shown that, under a perfectly equalitarian distribution of shares,
it is possible to use a renegotiation-proof and coalition-proof punishment scheme to
sustain generalized cooperation. One can remark that, with γ known and a perfectly
observable and certain output, this equilibrium requires particularly little information.
It can be completely decentralized as, after deviation, the punished and the punishers
know exactly which level of effort to provide.

We now want to investigate how introducing share inequality influences the way
the first-best optimum can be supported. The punishment is, as expected, very similar
to the case of perfect share equality. If we introduce inequality, πC

∗
i − πCi ≤ πNi − πPi

becomes:

λi

∑
k∈nD

(Pk − λ
1

γ−1

k )

− γ−1λ−1
i

(
P γi − λ

γ
γ−1

i )γ
)
≤ 0 (14)

It is easy to see that for this condition to be met, the punishment effort has to be greater

or equal than the cooperative level of effort, i.e. Pi ≥ λ
1

γ−1

i . It means that equation (10)
becomes:

P k ≥
λk∑

k∈nD λk

∑
i∈n

λ
1

γ−1

i −
∑
j∈nC

λ
2

γ−1

j − γ−1

∑
j∈nC λ

2−γ
γ−1

j (1− λ
γ
γ−1

j )
nC


While, as each punisher must receive π1/P

i = πCi , all the deviators have to put in P k so
that:

π
1/P
i = λi(

∑
j∈nC

λ
2

γ−1

j +
∑
k∈nD

P k)− γ−1λ
γ+1
γ−1

i

26It remains true if the game is finitely repeated and the agents do not know when the game ends.
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where ∀j ∈ nC :
∑

k∈nD P k =
∑

i∈n λ
1

γ−1

i − (
∑

j∈nC λ
2

γ−1

j )− γ−1λ
2−γ
γ−1

j (1− λ
γ
γ−1

j ).
We showed that, under a perfectly equalitarian distribution of shares, our punish-

ment scheme prevents all the agents from deviating from cooperation. We also know
that inequality is detrimental to cooperation since it is possible that deviation becomes
a dominant strategy for poorly endowed agents - i.e. if πCi < πNi . However, even in less
extreme cases, we can state the following proposition.

PROPOSITION 3 After introducing inequality, the agents losing from the change in the distri-
bution of shares have to be more patient than before to produce the efficient level of effort when
the punishment is renegotiation-proof and coalition-proof.

As in the case of Nash reversion, introducing inequality of shares renders first-best effi-
ciency more difficult to support with a renegotiation-proof and coalition-proof punish-
ment.

Now that the minimal discount factor is characterized in two different punishment
schemes, we can compare them. It is easy to show that δN ≤ δXP as, after rearranging
and symplifying, we get equation (11).

5 Redistribution and Cooperation

In this section, we try to characterize the lower bound of theoretical cooperation, i.e.
when δ tends towards 1. Note again that the further

(
πCi − πNi

)
is from 0, the lower δ,

which increases the scope for cooperation. We then investigate the issue of redistribu-
tion.

5.1 Characterization of the lowest share compatible with generalized coop-
eration

As the utmost condition to satisfy for cooperation to be sustainable is πCi > πNi , it is pos-
sible to partially characterize the lowest share compatible with generalized cooperation,
λmin. To see this, let us define several distributions of shares:

λ ≡ λ1 = . . . = λn−1 < λn
λ̃ ≡ λ̃1 = . . . = λn−2 < λn−1 < λn
λ̂ ≡ λ̂1 = . . . = λn−2 < λn−1 = λn
λ̄ ≡ λ̄1 < λ2 = . . . = λn

The lowest share compatible with cooperation depends on the convexity parameter of
the cost term, γ. Therefore, we get:

λmin ≥
{
λ̄1 if 2 ≤ γ ≤ 4
λ̄1 or λ1 if γ > 4

(15)
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When γ > 4, the second derivative of the function λ
1

γ−1

i − λ
2

γ−1

i is either positive or
negative. Hence the latter function is respectively convex or concave which determines
the form of the shares distribution giving the lowest share compatible with generalized
cooperation. A high γ favours convexity and therefore inequality while a high n is in
favour of concavity and equality of shares.

5.2 Redistribution

We know that, whatever the punishment strategy we use, if πCk < πNk , the best strategy
for player k is to deviate at each period of the game. If the rich players know that
some people are too poor to cooperate (and hence do not punish them), the first-best
optimum cannot be attained any more but cooperation can still be sustained for the
subset of players whose cooperation profit is greater than the Nash profit.

Observation 1 If a subset of agents do not cooperate because of a low λi
27 (such that πCk <

πNk ), a low-producing (putting in the Nash level of effort) and a high-producing (providing the
efficient level of effort) coalition can coexist.

If we restrict cooperation to the well endowed agents, equation (3), πCi > πNi , be-
comes

λi

∑
j∈nC

λ
1

γ−1

j (1− λ
1

γ−1

j )

− γ−1λ
1

γ−1

i (1− λ
γ
γ−1

i ) > 0 (16)

This inequality is never verified if nC = 1.28 It means that, if more than one agent
gets a positive share, producing the first-best level of effort requires at least two agents
to get a big enough share29, i.e. a share such that πCi > πNi . The number of people
whose shares add up to a low λinflim does not influence cooperation. At the same time,
there can coexist one cooperating and one free-riding coalition.

As we know that cooperators put in an effort of λ
1

γ−1

j and deviators contribute λ
2

γ−1

k ,

the total level of effort put in the project is
∑

i ei =
∑

j∈nC λ
1

γ−1

j +
∑

k∈nD λ
2

γ−1

k . It is
therefore possible to compare the different distributions with respect to the total level
of effort contributed to the project30.

27P
i λk = λinflim ⇒

PnC
i6=k λi = 1− λinflim

28The maximum of equation (16) with 1 player is at λi = 1 and equals 0. It means that as long as λi < 1
the former expression is negative.

29It implies that, if all the agents but one have a share such that πCi < πNi , the richest player (whose
λn < 1) will produce the deviating level of effort.

30The same exercise done on the social surplus,
P
j∈nC

λ
1

γ−1
j (1 − γ−1) +

P
k∈nD

λ
2

γ−1
k (1 − γ−1λk),

produces equivalent results.
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The only case of unambiguous effect of disequalizing redistribution31 is when it low-
ers the share of a poor player to the benefit of another poor player to the extent that the
latter becomes rich enough to cooperate. In this case higher inequality increases the
total sum of contributions. In all the other instances of redistribution, the effect on the
aggregate level of effort depends on γ which determines the concavity or convexity of
the function. Regarding redistribution from/to a deviator to/from a cooperator, its ef-
fects are symmetrical. Redistribution from a deviator to a cooperator (from a cooperator
to a deviator) decreases (increases) the aggregate level of effort, if γ ≥ 3. When γ < 3
there exists a γ̃ where redistribution is neutral as to the aggregate level of contributions
while below this cutoff value γ̃ increasing inequality will raise the total level of efforts.
As to the redistribution between deviators, the pivotal value of γ is 3. At 3, redistribu-
tion does not influence the amount of efforts provided in the project. Below (above) 3,
every disequalizing redistribution among the poor increases (decreases) the aggregate
level of effort. We therefore show that in some cases increasing inequality can have
a positive effect on the amount contributed. This means we can observe a U-shaped
relationship between inequality and the aggregate level of effort.

We now want to investigate whether it would be profitable for the rich agents to
redistribute part of their share to the less endowed so that the latter can afford to co-
operate. If the agents are perfectly patient, once the poor get a share such that their
cooperation profit is at least equal to their deviation profit, they are expected to pro-
duce the efficient level of effort. The benefits from cooperation are such that, in some
cases, they outweigh the loss of welfare undergone by the rich agents redistributing
part of their share.

Let us first examine the extreme case where only one individual is rich enough for
cooperation to be attractive. In this case, all produce the deviation level of effort. There
are therefore large potential gains from cooperation. Simulations on the following sys-
tem of equations32 show us that there exists a range for γ ∈ [γ, γ̄] where redistributing
so that each agent gets a big enough share to cooperate is always profitable, whatever
the initial distribution of shares. This range increases with the number of players, while
it is empty when n = 2. It does not mean however that redistribution is not profitable
for values of γ outside this range.{

πCñ ≥ πNn with agent ñ being n after redistributing part of her share.

πCmin = πNmin with agent min owning a share equalizing both payoffs.

Redistribution is obviously also conceivable in share distributions where (not gener-
alized) cooperation already exists. In these cases, the payoff from cooperation after

31To the exception of γ = 2, where redistribution is neutral, disequalizing redistributions between coop-
erators always lower the aggregate level of effort.

32The detail of this system is presented in Appendix B.

16



redistribution (hence with a larger coalition of cooperative players) must be at least as
large as the payoff from cooperation before redistribution for all the players on the giv-
ing side of the scheme. Once again we assume that the poorly endowed agents get a
share such that they are indifferent between generalized cooperation and generalized
deviation.33

As in the case of weakest-link public goods where the aggregator index used to
describe the production function is the minimum of all the contributions34, the repeti-
tion of the game could induce rich players to redistribute part of their share to render
cooperation attractive for the poor. Note that it would not be dictated by altruistic con-
siderations but would pertain to a payoff maximizing behaviour of the richest agents.

6 Outside Option

So far we have constrained the players to produce either a cooperative or a deviation
level of effort while preventing them from opting out of the game. This could be the
right way to model many joint projects in real life where, once the decision of joining
the project has been made, it is not possible to go astern. Nevertheless, the alternative is
relevant for other types of project, all the more since we focus on projects with perfect
substitutability of efforts. In the presence of outside options, it makes sense to consider
that, to get the same quantity of goods as jointly produced by n agents, working solo
would require more effort and therefore be costlier than being involved in a joint project.
In the case of irrigation schemes, once the decision to participate has been made, the ir-
rigation infrastructure is built. It then becomes difficult to opt out and, unless one is
ready to sustain an important cost, the agent’s choice is limited to produce the coop-
erative or the deviation level of maintenance effort. Likewise, regarding tacit collusion
in competition à la Cournot, firms, once in the market, produce either the collusive or
the Nash quantity. As to defence alliances, countries can decide to leave a coalition, in
which case they will probably have to increase their level of effort to benefit from the
same level of protection.

Introducing outside options changes the conditions to be fulfilled for cooperation to
be sustainable. In the case of Nash reversion, it is necessary to take into account the pos-
sibility that the profit from working solo (πSi ) is higher than the profit from generalized
deviation (πNi ) in which case the condition to be respected becomes:

(1− δ)πC∗ + δπS < πC ⇒ δ >
πC
∗ − πC

πC∗ − πS
33The first derivative of the cooperation payoff after redistribution with respect to the redistributed

amount being negative.
34See Vicary (1990) for redistributions and weakest-link techonology.
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Deviating from cooperation then leaving the collective action for working on one’s own
must indeed be less profitable than producing the cooperative level of effort in the joint
project. The ultimate condition for cooperation to be fulfilled is therefore:

πC > max(πN , πS)

One can immediately realize that, if πSi > πNi , the discount factor is higher than without
exit option. Outside options can therefore, as expected, decrease the scope for coopera-
tion.

As to renegotiation-proofness where we have to ensure that δ = min max(δXA, δXP ),
we have to take into account an additional condition. As the punishment lasts one
period and allows a return to cooperation, the payoff received on the punishment path
must be higher than the payoff obtained while working solo.

(1− δ)πP + δπC > πS ⇒ δS >
πS − πP

πC − πP

As in the case of Nash reversion, the ultimate condition to be respected, while δXA and
δXP must be simultaneously smaller than 1, becomes:

πC > max(πN , πS)

Obviously, as long as the outside option gives nothing more advantageous than the joint
project, working solo is not even considered. Once the solo payoff is higher than the
payoff from generalized deviation, deviating then working solo becomes a conceivable
option which is not chosen unless the player is too impatient.

To summarize the different possibilities created by the introduction of an outside
option, let us present the following tables. Note that the outside option is not specified
and could differ according to the agent’s share (or other factors absent from this model).
The first table typically corresponds to the situation of the rich or to an equal to moder-
ately unequal distribution of shares where, for all, the cooperation profit is greater than
the Nash profit.

πC
∗

i > πCi > πNi

πSi ↑ ↑ ↑ ↑
πSi (1− δ)πC∗i + δπSi πCi if δS < δ πCi if δ < δ

According to the level of their solo payoff (πSi ), agents make different decisions as to
their participation in the project. If the payoff from working alone is even greater than
deviating from the project for agent i, the latter is going to work individually and will
never participate in the project. If the solo payoff is greater than the cooperation payoff
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but smaller than the payoff from deviating, one can expect this agent to deviate in the
first period of her participation in the collective action and then to opt out and work
solo. In this case, it is likely that the cooperative players decide, if possible, to restrict
access to the project.35 While if working solo is less profitable than cooperating but more
than generalized deviation, as long as the player’s discount factor is greater than the
limit discount factor taking account of the outside option, the player cooperates. That,
she will also do if working solo is less interesting than generalized deviation. Whatever,
the discount factor in this latter case, she takes part in the joint project. Whether she
cooperates or deviates will then depend on the player’s and the limit discount factors.

It is interesting to note that once some players opt out, the condition for cooperation
to be sustainable among the remaining players boils down to equation (16). Even if
the payoff of the rich decreases when poor and thus deviators leave the joint project,
the departure of the latter does not render cooperation harder to sustain for the rich.
Outside options might therefore increase the scope for feasible redistribution. It could
indeed be interesting for the rich to redistribute so that the poor get πNi > πSi and, even
though deviating, keep participating in the project36.

The second table exhibits the case where there is enough inequality for the Nash
profit, typically of the poorly endowed agents, to be greater than the cooperation profit.

πC
∗

i > πNi > πCi

πSi ↑ ↑ ↑ ↑
πSi (1− δ)πC∗i + δπSi (1− δ)πC∗i + δπNi (1− δ)πC∗i + δπNi

In those cases where cooperation is never a conceivable option, the agent either
works directly on her own if her solo payoff is greater than her deviation payoff or first
deviates then leaves the joint project if her solo payoff is comprised between her devi-
ation and Nash payoff. Eventually, if the payoff from generalized deviation is greater
than the solo payoff, at each period of the game, this player is going to produce the
deviation level of effort.

Again, in some cases, the rich players knowing the situation of the poorest could let
them deviate while a subcoalition could keep cooperating.

35They could also introduce a membership fee or a commitment device for discouraging such strategic
behaviours.

36A larger redistribution such that πCi > πNi for all i is also to be considered in this case.
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7 Conclusion

We showed that, in this particular model, cooperation can be supported under Nash
reversion or a renegotiation-proof and coalition-proof punishment. We also demon-
strated that introducing inequality of shares among players increases the discount fac-
tor compatible with sustainable cooperation, reducing the scope for cooperation. Once
inequality has been introduced, the poorer agents involved in the repeated project have
to be more patient than before to keep cooperating. Hence, we established that inequal-
ity is, in this game, detrimental to generalized cooperation, the efficient outcome. In this
respect, this paper puts forward new insights as to the relationship between inequality
and efficiency.37

Inequality can be such that some agents cannot afford to produce the efficient level
of effort while others may keep cooperating. Our model can therefore also explain the
coexistence of well endowed players providing a high level of effort and poor agents
only putting in the Nash level of effort. This, in a way, complies with Olson’s hypothesis
that contributions are positively related to wealth.

Comparing several distributions of share where cooperators and deviators coexist
shows that increasing share inequality can have a positive or negative impact on the
aggregate level of effort (or social surplus) depending on the cost parameter, γ, (and the
number of cooperators). Hence, share inequality can have a U-shaped relationship with
the aggregate level of effort (or social surplus), as regularly seen in case studies.

We also mentioned that, in some cases, it can be profitable for the rich agents to re-
distribute part of their share to the poor players so that the latter can afford to cooperate
at each period of the game. Repetition of the game can therefore enlarge the scope for
redistribution.

Eventually, we put forward that outside options could restrict the scope for cooper-
ation and increase the scope for redistribution.

APPENDIX
37Several other explanations have been proposed so far in the vast literature exploring the link between

inequality and efficiency. Missing or imperfect capital markets have been shown to prevent poor individ-
uals to develop their full potential leading to inefficiency from the viewpoint of the social surplus (Loury,
1981). Inequality implying high redistribution would according to Alesina and Rodrik, 1994, Persson and
Tabellini, 1994, generate inefficiency through tax induced distortions on resource allocation. As modelled
by Esteban and Ray (2006), agents lobbying for government support put in effort along two dimensions:
productivity of the project and wealth. This blurs the signal received by the government which leads it to
make inefficient decisions in the presence of wealth inequality.
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A Proofs

Proof of Lemma 1:
The relative premium from deviating in terms of her own share is the following:

πC
∗

i − πCi
λi

=
[∑
nD

λ
1

γ−1 (λ
1

γ−1 − 1)
]
− γ−1λ

2−γ
γ−1 (λ

γ
γ−1 − 1)

If the derivative with respect to the share is negative, a wealth decrease renders the
deviation more attractive.

∂(πC
∗
i − πCi )/λi
∂λi

≡ 1
γ − 1

λ
−γ+2
γ−1

i

[
(λ

1
γ−1

i − 1) +
2− γ
γ

(λ−1
i − λ

1
γ−1

i )
]

As the derivative is always negative when γ ≥ 2, the relative premium from deviating
rises when the share declines.

Proof of Equation (4)
After rearranging equation 4, we get:

(γ − 1)− n
−1
γ−1 (γ − n−1) > 0

Taking alternatively the limit of γ towards 2 and +∞, we get that the first term is always
positive and greater than the second one. It makes our result.

Proof of Proposition 1
We are going to compare two discount factors compatible with cooperation, first under
a perfectly equalitarian distribution of shares, then after introducing a disequalizing
change in the distribution. As discount factors and ease to sustain cooperation vary
in opposite directions, we are done if we can prove that introducing inequality in the
distribution of shares makes the discount factor rise.
As long as δN < 1, it is theoretically possible to sustain cooperation. We know that the
bigger πCi − πNi , the lower δN .

πCi − πNi = λi

[(∑
λ

1
γ−1 (1− λ

1
γ−1 )

)
− γ−1λ

2−γ
γ−1

i (1− γ
γ
γ−1 )

]
As ∂(πC−πN )

∂λi
> 0, a decrease in λi lowers the gain from cooperation and therefore in-

creases the incentives to deviate and the limit discount factor, δN .

Proof of Lemma 2
Let us assume the length of the punishment is t periods with t ∈ [1, . . . , T ]. If we com-
pare the different δ corresponding to equations (5) and (6), we get:
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• ex ante, no one wishes to deviate

T∑
t=1

δtXA >
πC
∗ − πC

πC − πP
⇒ δXA−1 > . . . > δXA−T

• The payoff of the punished must be greater when conforming to their punishment
than when deviating.

δXP−t > (
πP
∗ − πP

πC − πP
)

1
t ⇒ δXP−1 < . . . < δXP−T

To get the equilibrium compatible with the biggest impatience of the agents, we have to
find the lowest δ, δ ≡ min max(δXA−t, δXP−t) with t being the number of periods of the
punishment.
If δXA−1 ≤ δXP−1, we are done as this couple would be smaller than any other one in
the following general ordering: δXA−t < . . . < δXA−1 ≤ δXP−1 < . . . < δXP−t.
It therefore boils down to prove that πC

∗ − πC ≤ πP
∗ − πP which is the case when

P ≥ eCi as explained after equation (12).

Proof of Equation (8)
Taking into account that δXP < 1 and that πC − πP

′
> 0, and rearranging, we get

πP
∗

+ πP
′ − πC − πP < 0. Our strategy is to focus on the terms varying with nD∗ to get

the simplest expression of the derivative.
Considering the punishment level of effort of equation (10), we get respectively for P
and P ′:

P = n
−2
γ−1

[
n

γ
γ−1 − (n− nD)− γ−1(n

γ
γ−1 − 1)

]
1
nD

P ′ = n
−2
γ−1

[
n

γ
γ−1 − (n− nD∗)− γ−1(n

γ
γ−1 − 1)

]
1

nD∗

Deriving πP
∗

+ πP
′ − πC − πP with respect to nD∗ , we get:

n−1

[
−P + P ′ + nD∗

∂P ′

∂nD∗
− n2P ′γ−1 ∂P

′

∂nD∗

]
Substituting in the latter expression ∂P ′

∂nD∗
= 1

nD∗
[−P ′ + n

−2
γ−1 ], we have the following

sum which we can sign:

n−1

[
−(P − n

−2
γ−1 ) +

n2

nD∗
P ′γ−1(P ′ − n

−2
γ−1 )

]
It is easy to prove that the second term is greater than the first one if nD∗ = 1.
As we know that P ≤ P ′ with equality when nD = nD∗ , we are done if we can show
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that the derivative is positive when all the punished deviate from the prescribed pun-
ishment. In this case, the derivative becomes:

n−1

[
(P − n

−2
γ−1 )(P ′γ−1 n

2

nD
− 1)

]
Regarding the first difference, P − n

−2
γ−1 , the condition for it to be positive boils down

to:

γ >
1− n

−γ
γ−1

1− n
−1
γ−1

which we know is always true.

While the second difference, P ′γ−1 n2

nD
−1, is positive if n

γ
γ−1−n−n

γ
γ−1

D +nD−γ−1(n
γ
γ−1−

1) > 0. Since the higher bound on nD is n
2 and the lower bound on γ is 2, it is always

respected.
Those two differences being positive, we know that ∂δXP∂nD∗

> 0.

Proof of Equation (9)
The scheme of this proof follows the proof of equation 4, what gives:

(γ − n)− n
−1
γ−1 (γ − 1) > 0

Taking alternatively the limit of γ towards 2 and +∞, we get that the first term is always
positive and greater than the second one. It makes our result.

Proof of Proposition 3
As, in the limit case where nD∗ = nD, the condition for cooperation to be sustainable
becomes πCi > πNi , the proof of Proposition 3 boils down to the proof of Proposition 1.

Proof of Equation (15):
As the condition for one agent to cooperate is πCi − πNi > 0, the bigger the positive
difference, the easier the cooperation. We can therefore compare equation (3) 38, with
two different distributions of λ to see which one will be more favourable to cooperation.
If λ1 is compatible with cooperation such that equation (3) is verified then all the ’less
compatible with cooperation’ distributions of shares will produce a smaller result.
This being said, we can compare the different distributions of shares.

38πCi > πNi ≡
P
λ

1
γ−1
i (1− λ

1
γ−1
i )− λ

2−γ
γ−1
i (1− λ

γ
γ−1
i ) > 0
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We compare equation (3) with λ and λ̃:

(n− x)(λ
1

γ−1

1 − λ
2

γ−1

1 ) + x
[
(1−(n−x)λ1

x )
1

γ−1 − (1−(n−x)λ1

x )
2

γ−1

]
− γ−1λ

2−γ
γ−1

1 (1− λ
γ
γ−1

1 ) ≷

(n− x− 1)(λ
1

γ−1

1 − λ
2

γ−1

1 ) + (λ1 + ε)
1

γ−1 − (λ1 + ε)
2

γ−1

+x
[
(1−(n−x)λ1−ε

x )
1

γ−1 − (1−(n−x)λ1−ε
x )

2
γ−1

]
− γ−1λ

2−γ
γ−1

1 (1− λ
γ
γ−1

1 )

It simplifies to:

λ
1

γ−1

1 − λ
2

γ−1

1 + x
[
(1−(n−x)λ1

x )
1

γ−1 − (1−(n−x)λ1

x )
2

γ−1

]
≷

(λ1 + ε)
1

γ−1 − (λ1 + ε)
2

γ−1 + x
[
(1−(n−x)λ1−ε

x )
1

γ−1 − (1−(n−x)λ1−ε
x )

2
γ−1

]
As the second derivative of λ

1
γ−1 (1− λ

1
γ−1 ) with respect to λ is equal to:

1
(x− 1)2

λ
3−2γ
γ−1 [2− γ − 2(3− γ)λ

1
γ−1 ]

this function is concave if 2− γ − 2(3− γ)λ
1

γ−1 < 0 (convex if > 0).
As λ1 < λ2 < . . . < λn ⇒ λ1 <

1
n we get:

1− (n− x)λ1

x
>

1− (n− x)λ1 − ε
x

> λ1

This point and the concavity of the function λ
1

γ−1 (1− λ
1

γ−1 ) when 2 ≤ γ ≤ 4 allow us to
state that, if x = 1, λ1 < λ̃1. If ε grows and becomes = 1−nλ1

x+1 ,

(λ1 + ε)
1

γ−1 − (λ1 + ε)
2

γ−1 + x
[
(1−(n−x)λ1−ε

x )
1

γ−1 − (1−(n−x)λ1−ε
x )

2
γ−1

]
=

(x+ 1)
[
(1−(n−(x+1))λ1

x+1 )
1

γ−1 − (1−(n−(x+1))λ1

x+1 )
2

γ−1

]
The same reasoning shows therefore that λ1 < λ̃1 < λ̂1. Then applying the same rea-
soning with x = [2, . . . , n− 1] gives our result when 2 ≤ γ ≤ 4.
The reverse is true when γ > 4, and the function λ

1
γ−1 − λ

2
γ−1 is convex, this being

dependent on the shares (and therefore the number of players).

B Systems of equations

Extreme case:

24



λñ

[
λ

1
γ−1

ñ + (n− 1)λ
1

γ−1

min

]
− γ−1λ

1
γ−1

ñ ≥ λn
(∑

k∈n λ
2

γ−1

k

)
− γ−1λ

γ+1
γ−1
n

λmin

[
λ

1
γ−1

ñ (1− λ
1

γ−1

ñ ) + (n− 1)λ
1

γ−1

min(1− λ
1

γ−1

min)
]
− γ−1λ

1
γ−1

min(1− λ
γ
γ−1

min) = 0

Note that λñ = λn − ε and λmin = λi + αiε (where αi = λmin−λiP
k∈nD

λmin−λk ) equalizes the

payoffs from generalized cooperation and from generalized deviation.
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