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Introduction 
There is no greater gap between economic theory and econometric 

practice than that which characterizes the literature on business in- 
vestment in fixed capital. According to the neoclassical theory of capi- 
tal, as expounded for example by Irving Fisher, a production plan for 
the firm is chosen so as to maximize utility over time. Under certain 
well-known conditions this leads to maximization of the net worth of 
the enterprise as the criterion for optimal capital accumulation. Capi- 
tal is accumulated to provide capital services, which are inputs to the 
productive process. For convenience the relationship between inputs, 
including the input of capital services, and output is summarized in a 
production function. Although this theory has been known for at least 
fifty years, it is currently undergoing a great revival in interest. The 
theory appears to be gaining increasing currency and more widespread 
understanding. 

By contrast, the econometric literature on business investment con- 
sists of ad hoc descriptive generalizations such as the "capacity prin- 
ciple," the "profit principle," and the like. Given sufficient imprecision, 
one can rationalize any generalization of this type by an appeal to 
"theory." However, even with the aid of much ambiguity, it is im- 
possible to reconcile the theory of the econometric literature on in- 
vestment with the neoclassical theory of optimal capital accumula- 
tion. The central feature of the neoclassical theory is the response of 
the demand for capital to changes in relative factor prices or the ratio 
of factor prices to the price of output. This feature is entirely absent 
from the econometric literature on investment. 

It is difficult to reconcile the steady advance in the acceptance of 
the neoclassical theory of capital with the steady march of the econo- 
metric literature in a direction which appears to be diametrically op- 
posite. It is true that there have been attempts to validate the theory. 
Both profits and capacity theorists have tried a rate of interest here 
or a price of investment goods there. By and large these efforts have 
been unsuccessful; the naive positivist can only conclude, so much the 
worse for the theory. I believe that a case can be made that previous 
attempts to "test" the neoclassical theory of capital have fallen so far 
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short of a correct formulation of this theory that the issue of the 
validity of the neoclassical theory remains undecided. There is not suf- 
ficient space to document this point in detail here; but I will try to 
illustrate what I would regard as a correct formulation of the theory 
in what follows. 

Stated baldly, the purpose of this paper is to present a theory of 
investment behavior based on the neoclassical theory of optimal accu- 
mulation of capital. Of course, demand for capital is not demand for 
investment. The short-run determination of investment behavior de- 
pends on the time form of lagged response to changes in the demand 
for capital. For simplicity, the time form of lagged response will be 
assumed to be fixed. At the same time a more general hypothesis about 
the form of the lag is admitted than that customary in the literature. 
Finally, it will be assumed that replacement investment is proportional 
to capital stock. This assumption, while customary, has a deep justi- 
fication which will be presented below. A number of empirical tests 
of the theory is presented, along with an analysis of new evidence on 
the time form of lagged response and changes in the long-run demand 
for capital resulting from changes in underlying market conditions and 
in the tax structure. 

Summary of the Theory 

Demand for capital stock is determined to maximize net worth. Net 
worth is defined as the integral of discounted net revenues; all prices, 
including the interest rate, are taken as fixed. Net revenue is defined as 
current revenue less expenditure on both current and capital account, 
including taxes. Let revenue before taxes at time I be R(t), direct taxes, 
D(t), and r the rate of interest. Net worth, say W, is 

w= e-rt[R(t) - D(t)]dt. 

We will deduce necessary conditions for maximization of net worth for 
two inputs-one current and one capital-and one output. The ap- 
proach is easily generalized to any number of inputs and outputs. 

Let p be the price of output, s the wage rate, q the price of capital 
goods, Q the quantity of output, L the quantity of variable input, say 
labor, and I the rate of investment; net revenue is 

R = pQ - sL - ql. 

Let u be the rate of direct taxation, v the proportion of replacement 
chargeable against income for tax purposes, w the proportion of interest, 
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and x the proportion of capital losses chargeable against income; where 
K is capital stock and a the rate of replacement, direct taxes are 

D = u[pQ - sL - (v3q + wrq - xq)K] 

Maximizing net worth subject to a standard neoclassical production 
function and the constraint that the rate of growth of capital stock is 
investment less replacement, we obtain the marginal productivity con- 
ditions 

OQ s 

dL p 

--UV ufw 1-uX 4 
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The numerator of the second fraction is the "shadow" price or implicit 
rental of one unit of capital service per period of time. We will call this 
price the user cost of capital. WVe assume that all capital gains are re- 
garded as "transitory," so that the formula for user cost, say c, reduces 
to 

-uv 1-uw 
c = q _1X +1ur. 

Second, we assume that output and employment on the one hand and 
capital stock on the other are determined by a kind of iterative process. 
In each period, production and employment are set at the levels given 
by the first marginal productivity condition and the production func- 
tion with capital stock fixed at its current level; demand for capital is 
set at the level given by the second marginal productivity condition, 
given output and employment. With stationary market conditions, such 
a process is easily seen to converge to the desired maximum of net 
worth. Let K* represent the desired amount of capital stock, if the 
production function is Cobb-Douglas with elasticity of output with 
respect to capital, y, 

pQ 
K*-PQ 

We suppose that the distribution of times to completion of new in- 
vestment projects is fixed. Let the proportion of projects completed in 
time r be WT. If investment in new projects is 4 and the level of starts 
of new projects is I,, investment is a weighted average of past starts: 
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E 00N 

It = w(L)It 
r=O 

where w(L) is a power series in the lag operator, L. We assume that in 
each period new projects are initiated until the backlog of uncompleted 
projects is equal to the difference between desired capital stock, K*, 
and actual capital stock, Kt: 

N *N 
It =Kt - [Kt + (1 -wo)It_1 + 

which implies that: 

It = w(L) [Kt - Kt-1. 

It is easy to incorporate intermediate stages of the investment process 
into the theory. For concreteness, we consider the case of two intermedi- 
ate stages, which will turn out to be anticipated investment, two 
quarters hence, and anticipated investment, one quarter hence. A sim- 
ilar approach can be applied to additional intermediate stages such as 
appropriations or commitments. The distribution of completions of the 
first stage, given new project starts, may be described by a sequence, 
say { VOT }; similarly, the distribution of completions of a second stage, 
given completion of the first stage, may be described by a sequence 
I V1T }. Finally, the distribution of investment expenditures, given 
completion of a second intermediate stage is described by a sequence 

V2T }. Where I,"E represents completions of the first stage, 4s2E com- 
pletions of the second stage, and Is actual investment, as before, we 
have: 

It -E Voit-2 =vo(L)I , 
r.0 

S2E 
0 

S E S1E 
It = E = vi(L)It 

,=O 

It a EVI2si- 2(L)It2 
T=0 

where vo(L), v1(L), and v2(L) are power series in the lag operator. 
Up to this point we have discussed investment generated by an 

increase in desired capital stock. Total investment, say It, is the sum of 
investment for expansion and investment for replacement, say IR: 

E It 
It = It + It 

We assume that replacement investment is proportional to capital 
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stock. The justification for this assumption is that the appropriate 
model for replacement is not the distribution of replacements for a 
single investment over time but rather the infinite stream of replace- 
ments generated by a single investment; in the language of probability 
theory, replacement is a recurrent event. It is a fundamental result of 
renewal theory that replacements for such an infinite stream approach 
a constant proportion of capital stock for (almost) any distribution 
of replacements for a single investment and for any initial age distribu- 
tion of capital stock. This is true for both constant and growing capital 
stocks. Representing the replacement proportion by 6, as before, 

R 
It = Wt; 

combining this relationship with the corresponding relationship for in- 
vestment in new projects, we have: 

It w(L) [K - Kt-1 + SKt. 

Using the assumption that capital stock is continued in use up to the 
point at which it is replaced, we obtain the corresponding relationships 
for gross investment at each of the intermediate stages, say 4'1 and 
Its2 

4t = vo(L) [Kt - Kt-i + 8Kt, 
82 

It vl(L)vo(L)[Kt* -Kt-1] + AK:; 

we can also derive the following; 

I t = vi (L) [Its' -Kt] + SKt, 

It = v2(L) [I?2_ -Kt] + SKt, 

It = v2(L)vzd(L) [I - -Kt] + SKt. 

For empirical implementation of the theory of investment behavior, 
it is essential that each of the power series-vo(L), vi(L), v2(L)-have 
coefficients generated by a rational function; for example, 

s(L) 
w(L) = v2(L)v,(L)vo(L) =s L 

1(L) 

where s(L) and t(L) are polynomials. We will call the distribution 
corresponding to the coefficients of such a power series a rational power 
series distribution. The geometric and Pascal distributions are among 
the many special instances of the rational power series distribution. 
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Empirical Results 

To test the theory of investment behavior summarized in the preced- 
ing section, the corresponding stochastic equations have been fitted to 
quarterly data for U. S. manufacturing for the period 1948-60. The 
data on investment are taken from the OBE-SEC Survey; first and 
second anticipations of investment expenditure as reported in that Sur- 
vey are taken as intermediate stages.' With two intermediate stages, 
six possible relationships may be fitted. First, for actual investment 
and both intermediate stages, the level of investment is determined by 
past changes in desired capital stock. Second, investment is determined 
by past values at each intermediate stage and the second anticipation 
is determined by past values of the first anticipation. The first test of 
the theory is the internal consistency of direct and derived estimates 
of the coefficients of each of the underlying power series in the lag 
operator. 

The results of the fitting are given in Table 1. For each of the fitted 
relationships coefficients of the polynomials s(L) and t(L) in the ex- 

1 Data on capital stock were obtained by interpolating the capital stock series for total 
manufacturing given in the U.S. national accounts between 1949 and 1959, using the formula 

Kt+1 = It + (1 -)Kt. 

Given an investment series, a unique value of a may be determined from the initial and 
terminal values of capital stock. Investment data from the OBE-SEC Survey were used for 
the interpolation. For desired capital stock, the quantity pQ was taken to be sales plus changes 
in inventories, both from the Survey of Current Business. User cost depends on a number of 
separate pieces of data. The quantity q is an investment deflator, a is, of course, a fixed pa- 
rameter (taken to be equal to .025), r is the U.S. government long-term bond rate. The tax 
functions vary with time; as an example, the tax rate u is the ratio between corporate income 
tax payments and corporate profits before taxes as reported in the U.S. national accounts. 
A detailed description of the data underlying this study will be reported elsewhere. 

2 To derive the form of the functions used in the actual fitting, we take v2(L)v1(L) Vo(L) 
as an example. First: 

I s() [Kt - K*1] + aKt. 
t(L) 

Secondly, 

It = s(L)[K*- K*t-] + [1 - t(L)][It - aKt] + aKt. 

The coefficient to may be normalized at unity so that: 

1 - t(L) = - t1L -t2L2 - * * - 

The a priori value 5= .025 was used to compute It-,-Ktr. An estimate of a is given by the 
coefficient of Kt. If a is different from its a priori value, the process of estimation can be re- 
iterated, using a second approximation to the value of &. 

The parameter -y is estimated using the constraint: 

w0 

T P0 
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TABLE 1 

REGRESSION COEFFICIENTS AND GoODNESS OF FIT STATISTICS, UNRESTRICTED ESTIMATES 

Regres- 
'SO y yS2 1 t2 R2 s A2/s2 

72V1l' O .00102 -1.51911 .63560 .02556 .94265 .10841 2.14039 
(.00049) (.09945) (.10098) (.00163) 

viv o .00132 -1.25242 .36656 .02618 .89024 .16229 2.00431 
(.00073) (.12667) (.12977) (.00240) 

7o .00109 -1.26004 .37281 .02549 .87227 .18974 2.37298 
(.00085) (.13044) (.13138) (.00278) 

V271 .81357 .01962 .92729 .11955 1.16294 
(.03492) (.00175) 

1. .90024 .02295 .96234 .08604 1.47693 
(.02722) (.00127) 

.89462 .02337 .95121 .10597 1.70179 
(.03145) (.00155) 

REGRESS10N COE.F1CI1ENTS AND GOODNESS OF FIT STATISTICS, RESTRICTED ESTIMATES 

V21 VO .00106 -1.52387 .63100 .94156 .10830 2.10778 
(.00049) (.09925) (.10074) 

*'i7 0 .00133 -01.25704 .36769 .88986 .16087 2.00549 
(.00073) (.12509) (.12862) 

I c .00109 -1.26395 .37300 .87128 .18848 2.53442 
(.00084) (.12942) (.13051) 

ra. 1 .82764 .89995 .13883 .87127 
(.04037) 

V2 .91545 .95406 .09409 1.23560 
(.02933) 

.90271 .94538 .11100 1.53759 
(.03276) 

pression for each power series as a rational function are given.2 For 
example, the power series v2(L)v1(L)vo(L) is expressed as: 

.00106L2 
V2(L)vj(L)vo(L) = -2 

1 - 1.52387L + .63100L2 

The value of the replacement proportion a estimated from data on 
capital stock is .025. Two sets of regressions were run, one with 5 fitted 
from the data (unrestricted), the other with 3=.025 (restricted). 
Throughout, the coefficient of multiple determination R2, the standard 
error of estimate for the regression s, and the VonNeumann ratio A2/s2 

are presented as measures of goodness of fit. 
The first set of tests of the theory is the comparison of alternative 

estimates of each of the fundamental power series. As an example, one 
may take the hypothesis that the direct estimates of the power series 
v2(L) and vi(L), when combined, give an estimate of v2(L)v1(L) which 
is close to that obtained by direct estimation. Using the unrestricted 
estimates, the result of this comparison is: 
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.91545L 0 .90271L = .82639L2; 

the derived estimate, which may be compared with the direct estimate, 
.82764L2. The difference between the two estimates is slightly over .03 
standard errors. A similar test of the hypothesis that the direct esti- 
mates of the power series vi(L) and vo(L), when combined, yield an esti- 
mate of vi(L)vo(L) which is close to that obtained by direct estimation 
results in 

.90271L .00098L 
.00109* 2- 

1 - 1.26395L + .37300L2 1 - 1.26395L + .37300L2 

which may be compared with the direct estimate, 

.00133L 

1 - 1.25704L + .36769L2 

The coefficient of the numerator is within half a standard error of the 
derived estimate. The coefficients of the denominator are within .06 
and .04 standard errors of the derived estimates. The similarity of 
derived and direct estimates for the power series v2(L)vi(L)vo(L) is less 
striking. The three possible derived estimates are extremely similar to 
each other, but they differ considerably from the direct estimate. Nev- 
ertheless, using any of the derived estimates as the null hypothesis for a 
test of the direct estimates would probably lead to acceptance of the 
null hypothesis. In general, the theory of investment behavior is 
strongly confirmed by the set of tests of internal consistency. Of course, 
given the internal consistency of the alternative estimates, it is possible 
to improve efficiency of estimation for the model as a whole by combin- 
ing information from the various sources. 

The tests of internal consistency just described are tests of the theory 
of investment in new projects. A test of the theory of replacement in- 
vestment is a test of the consistency of the empirical results with the 
hypothesis a=.025. This hypothesis is borne out in two ways. First, for 
all but one of the regressions, the usual null hypothesis is accepted; a 
much stronger result is that for the first three regressions, estimates 
of the relationships under the restriction that 6=.025 results in a reduc- 
tion in the standard error of estimate for the regression. Finally, each of 
the standard errors of the estimates of a is less than one-tenth the size 
of the corresponding regression coefficient. We conclude that the hy- 
pothesis that replacement is a constant fraction of capital stock, spe- 
cifically, that 6=.025, is strongly validated by the empirical results. 

We turn now to comparisons of the fitted regressions with some 
simple alternatives. First, as alternatives for the first three regressions, 
we take the naive models: 
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It = It-1, 

S2 S2 
I t = It-II 

Si S1 
I t= It-i. 

Simple as these models may be, they are quite stringent standards for 
comparison for seasonally adjusted quarterly data, much more strin- 
gent, for example, than the corresponding models for annual data. The 
appropriate statistics for comparison are the standard errors of estimate 
and the VonNeumann ratios. Results of this comparison are given 
separately for the periods 1948-60 and second quarter 1955 to 1960 in 
Table 2.3 For the period as a whole, each of the regression models has a 
standard error well below that for the corresponding naive model. For 
the later subperiod the advantage of the regression models is even 
greater. Turning to the VonNeumann ratios, there is practically no 
evidence of autocorrelated errors for the fitted models and very clear 
evidence of autocorrelation for the naive models. Of course, this test is 
biased in favor of the fitted regressions. Even with this qualification, 
the fitted regressions are clearly superior in every respect to the cor- 
responding naive models. 

As a standard of comparison for the second three regressions, we 
take the forecasts actually used by the Department of Commerce in 
presenting the results of the OBE-SEC Survey. These alternative 
models take the form: 

ItI _ 
It =It-2, 8 

2 

59 S 
1t It-l. 

Despite the high level of performance of the OBE-SEC anticipations 
data, the fitted regressions constitute a substantial improvement in 
both goodness of fit as measured by standard error of estimate and ab- 
sence of autocorrelation of residuals. The test for autocorrelation is not 
biased in favor of the fitted regressions, so that the evidence is unequiv- 
ocal; the fitted relationships are clearly superior to the corresponding 
forecasting models for the period as a whole and for the subperiod since 
second quarter 1955. 

A further comparison of the fitted regressions with the corresponding 
naive and forecasting models is given in the second half of Table 2, 
where an analysis of the conformity of turning points of each of the 

3Data for both anticipations and actual expenditures on a revised basis are available 
from the Department of Commerce only since the second quarter of 1955. Anticipations data 
for the earlier period were revised by multiplying each observation by the ratio of revised to 
unrevised actual investment for the period in which the observation was made. 
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TABLE 
2 

GOODNESS 

OF 

FIT 

STATISTICS: 

FITTED, 

NAIVE, 

AND 

FORECASTING 

MODELS 

19481-1960IV 

1955II-1960IV 

1948I-1960IV 

1955II-1960IV 

Model 

TP 

Over- 

Under- 

TP 

Over- 

Under- 

R2 

S 

A2/S2 

R2 

s 

A2/S2 

Error 

estimate 

estimate 

Error 

estimate 

estimate 

It=f(AKg) 

.94156 

.10830 

2.10778 

.94298 

.11378 

1.95800 

29%o 

47%/o 

24%| 

23%| 

41% 

36%o 

It2=f(AKs ) 

.88986 

.16087 

2.00549 

.94757 

.09368 

1.84699 

29 

43 

27 

41 

32 

27 

t 

=f(AKt) 

.87128 

.18848 

2.53442 

.91921 

.14372 

2.25394 

39 

33 

27 

41 

27 

32 

Ig 
= 

Iu_i 

.86193 

.15950 

.66900 

.81929 

.18410 

.52078 

22 

39 

39 

23 

32 

45 

2 

821036.93 

i't2= 

it-I 

1 

.84966 

.18058 

..04366 

.81297 

.19435 

.94465 

24 

37 

39 

32 

27 

41 

i't 

=I't'l 

t 

.83854 

.20282 

1.31901 

.81161 

.19947 

.83580 

35 

25 

39 

32 

27 

41 

if 

=1(Ir1) 

.92729 

.11955 

1.16294 

.92169 

.12996 

1.09855 

16 

43 

41 

23 

41 

36 

Ig=f(I') 

.96234 

.08604 

1.47693 

.95931 

.09368 

1.65030 

14 

45 

41 

18 

45 

36 

t2:f(I8l) 

.95121 

.10597 

1.70179 

.96477 

.09045 

2.26525 

16 

45 

39 

23 

41 

36 

It=I't' 

t 

.83673 

.17391 

.69933 

.77138 

.20707 

.46505 

25 

47 

27 

27 

50 

23 

I,=12 

.93504 

.10969 

.99342 

.91854 

.12359 

.91146 

14 

51 

35 

18 

50 

32 

t2I 
t I 

.93380 

.11983 

1.45737 

.92833 

.12031 

1.25062 

20 

49 

31 

18 

45 

136 

NOTE: 

Total 

percentages 

may 

not 

add 
to 

100%0 

because 
of 

rounding 

error. 
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"forecasts" to the turning points of the actual data is presented. In 
general, the first set of fitted regressions is slightly inferior to the naive 
models and the second set slightly superior to the forecasting models on 
the basis of this criterion. A final comparison is between the fitted re- 
gression of investment on changes in desired capital stock and the fore- 
cast of investment from its second anticipation. The comparison favors 
the fitted regression; however, the anticipations data used in a fitted 
relationship between investment and second anticipation provide a 
model which is superior to the simple forecasting model and to the 
fitted regression of investment on changes in desired capital stock. 

Structure of the Investment Process 

In the preceding sections, only those aspects of the theory of invest- 
ment behavior relevant to testing the theory were presented. In this 
section certain further implications of the theory are developed. Specifi- 
cally, we will characterize the long-term response of investment to 
changes in the underlying market conditions and the tax structure and 
the time pattern of response of investment to changes in demand for 
capital. 

First, using the facts that gross investment is determined by the rela- 
tionship: 

It = w(L)[Kt- Kt1] + AK: 

and that capital stock is determined by past investments, we obtain: 

It = [1 - (1 - 8)L]w(L)K*, 

= y(L)Kt, 

where y(L) is a power series in the lag operator. XVe define the r-period 
response of investment to a change in market conditions or tax struc- 
ture as the change in gross investment resulting from a change in the 
underlying conditions which persists for r periods. More precisely, sup- 
pose that desired capital remains at a fixed level for r periods to the 
present; then, 

Kt = Kt-, (v = 1, 2 ), 

and 

00 

It = E yvKt-p) 

co 

=zKt 
+ E yvKt-', 

P-7+ 1 
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where { Z4} is the sequence of cumulative sums of the coefficients of 
y(L). As an example, the response of gross investment to a change in the 
rate of interest is: 

AI dK* 
- ZT . 

ar ar 

The coefficients {Z-r} characterize the time pattern of response. Obvi- 
ously, 

lim z7 - lim yv =6, 
7T* X 7t+ P0 

so that the long-term response of gross investment to changes in, say, 
the rate of interest, is 

ai dK* 
cl r ar 

Clearly, the short-term responses approach the long-term response as a 
limit; the approach is not necessarily monotone, since the coefficients 
of the power series y(L) are not necessarily non-negative. 

Long-term response and elasticities of gross investment with respect 
to the price of output, price of capital goods, and the rate of interest are 
given in the top half of Table 3. The corresponding responses and 
elasticities for the income tax rate, the proportion of replacement and 
the proportion of interest chargeable against income for tax purposes 
are given in the bottom half of Table 3. It should be noted that the rate 
of interest and the tax rate are measured as proportions, not percent- 
ages. For example, a decrease in the rate of interest by 1 per cent in- 
creases manufacturing gross investment by $.15178 billions per quarter 
in the long run, at least to a first approximation. 

The time pattern of response is presented in Table 4, where the func- 
tions w(L), y(L), and z(L) are derived from the fitted regressions. The 

TABLE 3 

RESPONSES AND ELASTICITIES OF INVESTMENT WITH RESPECT TO CHANGES IN MARKET 
CONDITIONS AND TAX STRUCTURE 

RESPONSE ELASTICITY 

Average End of Period Average End of Period 

Market Conditions 
Price of output .......... .35830 .35299 1.00000 1.00000 
Price of capital goods .... -.35273 -.32106 -1.00000 -1.00000 
Rate of interest ......... -14.23653 -15.17789 -.29143 -.37866 

Tax Structure 
Income tax rate ......... -.37487 -.33016 -.50959 -.42064 
Proportion of replacement .18729 .20502 .39181 .48565 
Proportion of interest.... .55656 .79840 .19428 .32659 
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TABLE 4 

TImE FORM OF LAGGED RESPONSE 

Lag w(L) y(L) z(L) 

0 0 0 0 
1 0 0 0 
2 .11277 .11277 .11277 
3 .14209 .03214 .14491 
4 .13700 -.00154 .14337 
5 .11965 - .01393 .12944 
6 .09969 - .01697 .11247 
7 .08101 - .01619 .09628 
8 .06491 -.01407 .08221 
9 .05159 - .01170 .07051 

10 .04081 - .00949 .06102 
11 .03219 - .00760 .05342 
12 .02535 - .00604 .04738 
13 .01994 - .00478 .04260 
14 .01567 - .00377 .03883 
15 .01231 - .00297 .03586 
16 .00967 - .00233 .03353 
17 .00760 - .00183 .03170 
18 .00597 - .00144 .03026 
19 .00469 - .00113 .02913 
20 .00368 - .00089 .02824 

Remaining ..01346 -.00325 
Rate of decline ..78531 .78531 

average lag between change in demand for capital stock and the cor- 
responding net investment is, roughly, 6.5 quarters or about a year and 
a half. Of course, this estimate is affected by the essentially arbitrary 
decision to set the proportion of the change invested in the same period 
and period immediately following the change at zero. The coefficients 
of the power series z(L) are of interest for computation of short-period 
responses of investment to changes in the demand for capital stock. 
For example, the 2-period response of manufacturing gross investment 
to a change in the rate of interest of 1 per cent is: 

AK* .11277 
Z7 Or = . .15178 = .68465 billions/quarter. 

ar .02500 

By comparison, the corresponding 10-period response is .37046 billions 
per quarter. The response dies out, almost to its long-term level of 
.15178 billions/quarter, by twenty periods from the initial change in 
demand for capital stock. Similar calculations of the response of gross 
investment to changes in market conditions or the tax structure may be 
made for any of the six determinants of demand for capital by combin- 
ing the responses given in Table 3 with the time pattern presented in 
Table 4. 
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