Web Appendices

A. Proofs of Lemmas

Lemma 1 For allp > p/, G (-;p) first-order stochastically dominates G (-;p’).

Proof. Recall that
where

v=A,B.
Now, diva (q) =

) ) )
because 20) — (

G (=) <o (52)

Since G (¢) is a convex combination of G4 (q) and G (q), it follows that dipG (q) <0 for

5v(gqy) _

all ¢ € (0,1). This proves the lemma. =

Lemma 2 G4 (-) is a mean preserving spread of Gg (). And, for all mp < m'y, G (-;mp)

is a mean preserving spread of G (-;m'y).

Proof. First, we verify that Fg, [Qa] = Eg, [@5] =p
By definition,
1
Ec, [Q,] = / 49+ (9) dg
0

where v € {A, B}. Changing the integration variable from probability ¢ to signal s, we get
o dq, (s
Fo, (@)= [ )0, () s

() oats) _ pap  2(55)9(5)

() +a-pe() o 7 (po(% 1)+(1—p> ()

where ¢, (s) =
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and g, (s) = (p¢ (
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This proves that Eg, [Qa] = Eg, @] = p. For later use, note that Eg(m,) [@Q] =
By, Q) = D

To prove that G 4 (-) is a mean preserving spread of Gz (-) it now suffices to show that, on
the interval (0,1), G (-) crosses G 4 (+) only once and from below. We do this by establishing
that the difference D (¢) = G4 (¢) — Gp(q) has two extrema: starting from zero at ¢ = 0,
D (q) first reaching a maximum—at which D (q) is strictly positive—and then a minimum—
at which D (q) is strictly negative.

Let

B l—q p
C_ln(Tl—p>

D = Galg) - Gs(q9)
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Relying on the fact that ¢ is a monotone function of ¢, we now ask when

_1_ 1 _
P e (T - ()

such that
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dac =0
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Now consider the right-hand side, which we denote by ¥, as a function of (.
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Thus, D takes on extrema at values of { that solve
o _ (4(F-)tea)e)
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These roots are

The existence of two distinct roots for ¢ (and hence for ¢) implies that G4 and Gp cross

each other exactly once. It remains to verify that G crosses G4 from below and not from

above. Now,
D = Galg) —Gp(g)
= p(Ga1 —Gp1)+ (1 —p)(Gao — Gpo)
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At q = QI o +17 GAl - GBl = 0 Whi].e GAO — GBO > O. Hence, D (gl) > 0.

1+1;p€2"'A°’B

At ¢ = gU = —21 +— Ga— Gpo =0 while G4; — G, < 0. Hence, D (QH) <0

14122, %405

Now, because gl < gl I this implies that G5 crosses G4 from below.

This completes the proof that G4 (+) is a mean-preserving spread of G (+).

Finally, to prove that G (-; mp) is a mean preserving spread of G (-;m’y) for all mp < m/y,

it remains to show that G (-;mp) second-order stochastically dominates G (-;m’). Or,

q q
/G(q,mB)dq—/ G (q,mp)dg <0
0 0

for all ¢ € (0,1), with strict inequality for some §. Now,
q q
/ G (q,mp)dg — / G (q,m’)dg
0 0

= (mjp —mB)/Oq (Ga(q) —GB(q))dg <0

where the weak inequality for all ¢, and the strict inequality for some ¢, follow from the fact
that G () second-order stochastically dominates G4 (-).
This completes the proof. m

Lemma 3 There exists a unique threshold, ¢! = !

— < p, where the probability of

1+17p620'Ao'B

type I error is the same for both kinds of candidates.

Proof.
G (9) =G (9)
=
o (SA () - 1) e (SB () - 1>
OA OB
<~
SA(Q)—l _SB(Q)—l
0A B OB
where
1 1-—
w0=3-etn(32125)
Hence,
(1) ) 1 3 (() )
0A N OB
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Lemma 4 Suppose q¢ > p. Then:
1. The distribution G 41 dominates Gy in terms of the likelihood ratio.

2. The distribution G s9 dominates G g in terms of the likelihood ratio.

Proof. To establish this, it is sufficient to show that Phga - ()

0odq
2 s(g)—1 o
9% g _ 0 ln¢( qa )q(l—Q)
0odq 0o dq
2 1 -1 EE%:l 2 o
0% In (x/_27r€ : ) q(l—q)>
N 000q
1—
o (5152
= -o———— %+ >0
q 1—q

where the inequality holds since ¢ > p. The proof of part 2 of the Lemma is virtually

identical. m

Lemma 5 Suppose ¢ > p. Then:
1. The distribution G 41 dominates Gy in terms of the hazard rate.

2. The distribution G a9 dominates Gy in terms of the hazard rate.

Proof. Lemma 4 implies that
951 () < ga1(q')
951 (q) 941 (q)

forall p<g<d.
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Hence,

/1 gar (t) i /1 gp1 (t)
¢ 941 (C]) q 9B1 (Q)
1 —Ga(q) - 1—-Gpi(q)
g1 (q) 91 ()
or, equivalently,

941 (q) 981 (q)
1-Gm (Q) 1-Gm (Q)

The proof of part 2 of the lemma is virtually identical. m

B. Proofs of Propositions

Proposition 1 The optimal threshold, q*, is the unique interior solution to

(16 (1= JLadG ())) e

(1-0G(¢*)) e+ (1 =8 v+k

*

g:

Proof. Recall that

Vi) = 5 J, (qv+ (1= q) (=) dG (q) ~ &
Yoo 1—5(1—f;qu(q))
5vfgl qdG (q) — 6c (1 — G (q)) +5cf; qdG (q) — k

14 (1 -, qu(Q))

It is useful to represent this as numerator and denominator components for purposes of

differentiation. Hence, define

Nzaf (qv+ (1 - q) (—¢)) dG (q) —

Dzl—é(l—/lqu(q)

and

oV q
9q

)

Thus, the first-order necessary condition for optimality, = 0, may be expressed as

DN' —ND'

D2 .
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Therefore,

oV (q) D (—dg(q) ((v+c)g—rc)) = N (=dqg ()
Jdq D2
_ 59@) —D(v+c)[g)2+Dc+Ng

Hence,

—D((+¢)qg+Dc+Ng=0

and this implies that

*

B Dc
1  D(w+c)—N

Substituting for D and N, and simplifying, we get the following implicit characterization of

*

q:

* (15(- o).

(1=0 (1= fp 0dG (@) w+e) =0 [ (qu+ (1= ) (=) dG (q) + &

(-5 (1wot))-

(1-60G(¢*))c+(1—8)v+k

B
I

and this yields the expression in Lemma 1.

Having derived the necessary first-order condition for an interior solution ¢* € (0, 1), we
now prove its actual existence.

At ¢* =0, LHS < RHS. At ¢* = 1, LHS > RHS. Hence, by continuity and the interme-
diate value theorem, there must be a ¢* € (0, 1) such that LHS = RHS.

Next, we prove uniqueness by showing that there is at most one ¢* € (0, 1) that satisfies
the necessary first-order condition.

To see this, first notice that we may rewrite the first-order condition as follows:

¢ ct(1—=0)v+k)=c—co <1—/jqu(q)) +6G(g*)cg*

Integrating by parts, we obtain

1

g*(c+(1—5)v+k)=c—c§/ G (q) dq

q*
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Adding and subtracting cd fog* G (q) dq to the right-hand side yields

*

q

g*(c+(1—5)v~|—k):c—cé/0 G(q)dq—l—cé/o G (q) dq

Finally, noting that fol G (q) dg = 1 — p and substituting, we obtain

¢ c+(1—-0)v+k)=c(l—6)+co (p—l—/oq*G(q)dq)

Hence,

*

. (1 —=29)c+cop cd /q
0

L= +0=0)v+k)  (c+(1—0)v+k)

Note that the right-hand side is monotonically increasing in ¢* at a speed < 1, for all

G (q)dgq

¢ € (0,1). This implies, however, that the right-hand side can cross the 45-degree line,
which corresponds to the left-hand side, at most once. Hence, there is at most one ¢* € (0, 1)
that satisfies the necessary first-order condition.

Finally, we show that at the unique interior ¢*, the value function reaches a global
maximum. This follows from the observation that lim, .; V' (g) — —o00, and that there

d L
exists an € > 0 such that for all 0 < ¢ < ¢, ‘ggﬂ) > (0. To see that the latter assertion is

indeed true, recall that

5 [} (qv+ (1= q) (—c))dG (q) — k

Vig = —
1—5(1—f;qu(q)>
and that ()
ovVig) —D(v+¢)g+ Dec+ Ngq
TERAL D2

where N and D denote the numerator and the denominator of V' (g), respectively.

Now we rewrite % to get
V(g _ c Vig-(+e
ag = 0g (g) (5 + D q

Written in this form, it is obvious that, for sufficiently small ¢ > 0, both factors in the last

expression are strictly positive. This proves the proposition. m

Proposition 2 For all ¢ € (0,1), there exist parameter values such that ¢* = q.
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Proof. Fix k = 0. In that case, the employer will always wish to participate by interviewing
candidates rather than eschewing the employment market. When ¢ | 0, the right-hand side
of equation (2) goes to zero; hence, q¢* | 0. When ¢ — oo, the right-hand side of equation

(2) goes to 1 as the following argument shows:

. (1—5(1—f1*qu(q))>c
c=oo (1 —=6G (¢*)) e+ (1 —0)w
(s ew)-
(1-6G(¢*))c+ (1 —0)v

(1-0G(g))c

oo (190G (7)) e+ (1= d)v

=1

Hence, lim. . ¢* = 1. Finally, since the right-hand side of equation (2) is continuous in c,

it follows that there exist parameter values such that ¢* = ¢ for all ¢ € (0,1). =

Proposition 3

1. Minorities are overrepresented in the workplace iff the employer’s optimal search
strategy leads to lower Type I error for minorities than for majorities, i.e., 0 < ¢* < gl .

2. Minorities are underrepresented iff the employer’s optimal search strategy leads to

higher Type I error for minorities than for majorities, i.e., gl <g <l

Proof. Under a uniform threshold success probability q, T’;LB =1iff Gy ( ) Gp ( ) As

we saw in Lemma 3, this corresponds to q= g = — L . To prove the proposition, we

T 1lrewans
show that at the critical point gl , raising ¢ leads to strict underrepresentation of minorities.
That is, we calculate the derivative of
salq) —1 splq) —1
Gai (q) — G (q) = @ (L) % (L)
O A OB

1

and show that it is strictly negative.
112 TFATE

with respect to ¢, evaluate it at QI

The derivative is equal to

gAl(q)—gBl(Q)=¢<SA(Q)_1> q(UA )—¢(SB(Q)_1> CJ(UB

0A
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Multiplying by ¢ (1 — ¢) and evaluating at c__[I , we get

lop—0oa lop—0oa

5 2 o L) 5 T3 )

= — A— I — B
0A oB

- (JM) A& (_EM) o

2 o408 2 o408

— (UA_UB)¢(1M) <0

2 040B

This proves the proposition. m

Proposition 4 Suppose that the employer is “selective,” i.e., ¢* > p, then:

1. As the employer becomes more selective, minority representation in the workplace
decreases. Formally, rp is decreasing in q*.

2. As the employer becomes arbitrarily selective, minorities vanish from the workplace.

Formally, limg*ﬂl rg = 0.

Proof. To prove part 1, differentiate rp with respect to g

Org_ —mpgp1 (1 —mpGp1 — maGa1) — (—mpgp1 — maga) ms (1 — Gg1)
dq

(1 —mpGpy — maGa)?
mpma (a1 (1 — Gp1) — g1 (1 — Ga1))
(1 —mpGp1 — mAGA1)2

Notice that the sign of ag—f depends only on the hazard rates of G4; and Gp;. And by

Lemma 5 it then follows that 8(;5 < 0.

To prove part 2 of the proposition, notice that (via L’'Hopital’s rule)

. . mp
limrg = lim —————
q—1 q—1lmp —|—mAg;

and this limit depends solely on the limit of the likelihood ratio, %. Finally, it may be
readily shown that:

. gal . oA
lim == = lim =
=1 gp a—1 4 (58la)=
0 op OB
1 2 2 2 q 2 2
40404 In“( ——)—1)(o%—0 o
— hmeSoA B( AYB (1 q) )( B A) A 00
q—1 oB
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Hence,

limrg =0

g—1

|
Proposition 5 Minorities are fired at higher rates than majorities.

Proof. Because hires are fired if and only if they turn out to be incompetent, we have to

prove that

(1-Gao)(1—=p) < (1 —Gpo)(1—p)
1—GA 1—GB

Pr(0a=0]qa>q) = =Pr(05=01qs>q)

for all g € (0,1).
This is equivalent to showing that

1_GA0<1_GBO
1 -Gy 1-Gp

or
1—GB<1—GA
1-Ggy 1—Gao

Now,
1-Gp _ 1—Gy
1—Gpo 1 — Gao
1 —pGp — (1 —p)Gpo 1 —pGar— (1 —p)Gao
ot < ot e
1—-Gpi - 1—-Ga
1—Gpy 1—-Gyo
Hence, showing that Pr (04 =0]ga >¢q) < Pr (0 =0|¢p > ¢) is equivalent to showing

that the ratio of good hiring decisions over bad hiring decisions, ig”;, is greater for kind A
Y

hires than for kind B hires. To prove the latter, we show that

d 1- G'yl (Q)
== <0
dO',Y 1— G’YO (g)]

4 |1=Gn(g)
Now, do~, [1_(;%((1)]

d _f; 941 (q) dg
dg”’ f; 90 (CI) dq
! sy(@)-1) _oy
d fg ¢< Oy ) fI(l—lI)dq
d 1 57(9) Oy
. L fg ¢< Uvq ) q(lfq)dq
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V(Q)—%)

9y

Using that dz;(f) _ 2
f-d |:1G’Yl (g)

el (q)} is equal to the sign of

do~

, straightforward algebra leads to the conclusion that the sign

[ on@aa [ 5@ @-Von@di— [ gol@ds [ 5@ (s 0 =19 @

Changing variables of integration from q to s, we get

/ gy () aq(;;—s((g)ds/ s(s—1) gy (s) 8(]58(8) ds

w(q v(g)

' 9g, (s) ! _ s s
LT e TR

Substituting for g,9, g1, and ‘aqgs(s)’

/sl(q) ’ (3;1) ds /sj(q) A (in) ds_/sj(q) ’ (0%) * /sj(q) sle=h¢ (Sa_wl) ds

v

Expanding s (s — 1),
/sjoz) o(57) </<> wo() - /s:@) “(2) ds)
_/sv(q) ¢ (%) ds </Sv<q) s26 <3;/1) ds — o s (8;1> ds)

Writing in terms of conditional expectations,

(1_(@(%)) (1 ( > (B[S0 | Sh0 =5, ()] = E [0 | Sy = 5, (9)])

)
_ (1_q> (#)) (1— ( 1)) S8 = s (@)] = B[Sl S0 > s, (0)])
))( +(3))

1 2 5y ()] B[S | S 2 5 (q)]

Dividing by the common positive factor ( - <

B[S0 ] S0 2 5, (@)= F [Si0 | S0 2 5 (9)] - E [S

Now, the moment generating function, mgf, of a left-truncated standard normal random

variable U with truncation point d is (see, for example, Heckman and Honoré, 1990):

1BQfdﬁ\ﬁexp(— u?) du

mgf (B) = fd \ﬁeXp (——UQ) du
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Hence,

EU|U>d = l5—0

while

E[U?|U>d] = ——5|s-

8B |5:0
d¢ (d)
1— @ (d)

For X ~ N (u,0?), this implies

)
E[X|X2d] = M‘FW

2 ! 2 U Uqﬁ(d;“) 2
E[X*|X>d] = o +(u+d)m+u

(e

Now, recall that S,y ~ N (0,0,) and S;; ~ N (1,0,). Hence,

B [530 | S0 = sy (Q”_E [570 | Sy0 2> sy (ﬂ)}_E [531 | Sy1 > sy (Q)] —L [Svl | S1 > sy (Q)]

() ool

_ 03+sv(ﬂ)1_®<szﬁ) 1—¢(M>

~

_ a§+(1+sw(ﬂ))1_¢< )1)

Dividing by o, and collecting terms, we get

wig-n L) ()

1_@(#) =55 (q) 1_@(%(:7)_1)




Hence, the question is whether

06) (=)

VT e
s—1 6(2) s o(35H)
o 1-®(2) 51—q>(5;)<0

forall s € R and o > 0.

s(3)

Denote hazard rate o (2) by A (i) The expression then becomes

=0 (3) - ()

Graphically, when s — 1 < 0, [Figure 3 Here]

Hence, for all s — 1 < 0, it is obvious that

(5—1)A<§>—3A<3;1) <0

When s — 1 > 0, graphically, [Figure 4 Here].

Here, in principle, it could go either way.

Now, for s — 1 > 0,
(s—l)A(S)_SA(Sgl)
= (s—1) (A(g)—k(‘g:» —(S—(s—l)))\(sgl)
[ooyraa= [ 2 ()

where the inequality follows from the convexity of A ( )

S
o

IN

Changing the variable of integration in the first term from hazard rate [ to signal x, the

last expression becomes
= / xgdx—/ A(f)d:c
s—1 Ox s—1 o
- / Ty (f)dx—/ A(f)dx
s—10 \O s—1 O

S

= [ (E) - (E))
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Finally, we show that the integrand, which we write as
2N (2) = A (2)

is negative for all z > 0.

First, note that

Hence, the integrand can be written as
2N (2) = A (2)
= 2 (2)(A(2) —2) = A(2)
— AN -2 - 1)
Dividing by A (z), The question becomes whether
z(M(z) —2) <1

for z > 0.
Now, note that A\ (z) < 1 for all 2, as the derivative of the hazard rate of the standard

Normal distribution converges to 1 from below when z — oo. Hence, it suffices to show that
2(A(2) =2) S A(2) (A (2) —2) = N (2)

Now,

is equivalent to

where the last inequality is obviously true. m
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C. Proofs of Implications

Implication 1 Reducing the cost of firing increases workplace diversity.

Proof. We prove the implication by showing that ¢* is increasing in c. Recall that optimality

of the threshold strategy implies that

(3) (V(g)-v)a+(1-g)e=0
Implicitly differentiating with respect to ¢ while noting that a\gg%*) = 0 gives
o4 V() oA
(V(g)—v) o+ —5 70+ (1-¢) —cam =0
Solving for % :
oV (q* "

dq* ( 552 L )Q +1

de  vHe-V (g*)
It is easily checked that

1
ov(g)  —0J.(1—q)dG(q)

de 1 —(5(1 —f;* qu(q))

Substituting into the expression for % and simplifying, one obtains

dg* 0G (¢°) — 1 sl
e\ (- fracw) )

To establish that the right-hand side of this expression is positive requires that we show

a-s0)s - (1-0(1- o)) <o

To see this, notice that
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Implication 2 Reducing the cost of interviewing decreases workplace diversity.

Proof. To establish the implication, we show that ¢* is decreasing in k. Tmplicitly differen-

tiating equation (3) with respect to k while noting that ng%*) = 0, we obtain
dg* 0V (q*) dq*
V() —v)— =—q¢" " —c—— =0
V@) =) %+ o ¢
Solving for dl: ,
ov(q*
dg* ()
dk v+ e=V(g)
, dk ( ) have the same sign, while it is easily checked that Wa(kg*) <0. m

Implication 3 Diversity is procyclical.

Proof. From Implication 1, we already know that ¢* is increasing in k. It remains to prove

that ¢* is decreasing in v.

Implicitly differentiating equation (3) with respect to v while noting that =0, we

<v<g*>—v>@+(@v—<ﬂ*>_1)g*_£:o

81/(g*>
Bg*
obtain

ov dv

. dq*'
Solving for —- :

dq” ( )
% o +c— g
It is easily checked that
av (¢) 6 [, (a) dG (q)

dv _1—(5<1—f1*qu(q)>

Substituting this back into 2L and simplifying, one obtains

1-§ q*
dg* 1-5(1- [ adGl@) -
dv v+c—V ()

37



Implication 4 Riskier firms are more diverse.

Proof. Implicitly differentiating equation (3) with respect to 0 while noting that ‘;g% ) _ 0,

V@) ) %+ (dv 7). 1) et

we obtain

s ds

. dg*
Solving for —« :

avig *
dq* ( 55)_1 q

do v+c—V (g*)
It is easily checked that:

AV (¢*)  Z(1-6X)+X(0Z —k)

do (1-0X)°

where

7 = / (qv+ (1= q) (—¢)) dG (q)

X = (1—/qlqu<q>>

dV(g*)
dd

To show that % > 0, it is sufficient to show that — 1> 0, or equivalently

Z(1—6X)+X(6Z—k) —(1-0X)>>0

To see this, simplify the left-hand side of the above expression and recall that, since the

employer finds it optimal to search in the first place, Z — k > 0. This yields

Z — Xk+ (1 - X0)?
> 7 - X6Z+(1-X6)?
= (1-X06)(Z+1- X))

> 0
where the last inequality follows from the fact that Z > 0 and X, 6 € (0,1). =

Implication 5 The larger the minority, the smaller its degree of underrepresentation.
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Proof. Recall that g* satisfies

. <1—5(1—f;*qu(q))>c

(1-6G(¢*))c+(1—08)v+k
(1=8)c+cd [, qdG (q)
(1-6G(¢*))c+(1—=08)v+k

(1=8) e+ 8 ([ adG (q) + [ adG (q) = Ji qdG (q))
(106G (1)) c +(1—6)v+k
(1—8)c+cs (EG[Q]—fg*qu(q))
(1-6G (¢*))c+(1—08)v+k

(1=0)c+cd (BelQ) - (¢°G (¢") - i Gla)da))
(1—5G(q*))c+(1—5)v+k

(1-d)e+ed (EalQ ]—Q*G( )+ Ji G (q) da)
(1=6G (¢*)) c+ 0)v+k

Therefore,
g*((l—éG(g*))c—F(l—(S)v—l—k) = (1—5)c+05<EG[Q]—g*G(g*)+/q G(q)dq>
(c+(1—=0)v+k)g—cb6¢"G (¢*) = (1—6)c+cdEq[Q] —cdg*G (g +05/ G (q

(c+(1=0)v+k)q

(1—=08)c+co (EG[Q]+/Oq G(q)dq)

Now, from Lemma 2, we know that if mp < m’z, then G (¢, mp) is a mean preserving spread
of G (q,m/y). Hence, if we go from mp to m’y, Eq[Q] remains unchanged in the RHS of
the last equation but, by definition of second-order stochastic dominance, fog* G (q¢;mp) >
fo (q;mp). Hence, the LHS also increases. Therefore, it must be that ¢* (mgp) > ¢* (ms),

because ¢, 9, v, and k are all constants. We conclude that ;ﬂ% <0. m

Implication 6 In jobs that require rare skills, minorities will be underrepresented. In jobs
that require common skills, minorities will be overrepresented. Formally, there exist 0 < py <

IB > 1,

’ mp

p1 < 1 such that for all p € (0,po) , ;—‘Z < 1, while for all p € (p1,1)
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Proof. First, we establish that lim,;; ¢* < 1 and lim,|o ¢* > 0. To see this, note that ¢* is

monotone in p since, by implicitly differentiating equation (3),

v (g*
dg’ %f
—_— = >0
dp v—V (g*) +c
where the inequality follows from the fact that v > V(¢*) and, by Lemma 1, 6‘/6(5*) > 0.

Since ¢* is bounded and monotone function of p we know that both limits must exist.
To establish that limy; ¢* < 1, suppose, to the contrary, that lim,; ¢* = 1. Then the

right-hand side of equation (2) becomes:

. <1—(5<1—f11qu(q)>)c
R A5G () er (=0 v+k

(1-9)c
A=) ct(—0)vrk”

which is a contradiction.
To establish that lim,, o ¢* > 0, recall that ¢* is implicitly defined by equation (2). Taking

limits:

(1-5(1- JadG @)) e

limg' =
pl0 L 1%1(1—5G(g*))c+(1—5)v+k
ST ) LI

plo c+(1—0)v+k

To complete the proof, it remains to show that gI I and gl are monotone in p with limits
limy,| ¢'" = 0 and lim,,; ¢' = 1. Monotonicity may be readily verified by differentiating the

expressions for ¢’* and ¢'. Likewise, the limit results are trivial to obtain. m
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