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Abstract

We investigate the effectiveness of central bank communication when firms have

heterogeneous inflation expectations that are updated through social dynamics. The

bank’s credibility evolves with these dynamics and determines how well its announce-

ments anchor expectations. We show that trying to eliminate high inflation by intro-

ducing a low inflation target can lead to short-term overshooting if the introduction

is insufficiently gradual. In contrast, combating deflation requires either aggressive

announcements that are broadly consistent with price level targeting or QE-type an-

nouncements that allow the central bank to stem deflationary expectations without

altering its inflation target.
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1 Introduction

For many central banks, communication has become part of the policy toolkit. Inflation

targeters provide a prime example as they rely on clear and transparent communication

to anchor inflation expectations over various horizons (e.g. Carney (2012)). The rise of

communication has also been visible since December 2008 when the Federal Reserve hit the

zero lower bound and unveiled a series of unconventional programs to shore up the financial

system and stem deflationary expectations. In this paper, we study the effectiveness of

central bank communication when agents have heterogeneous inflation expectations that

evolve through social dynamics.

While communication has gained attention among macroeconomists, many of the key

insights depend on public uncertainty about the central bank’s current or future actions

(e.g. Melosi (2012) and Eggertsson and Pugsley (2006)). A similar dependence exists in game

theoretic work, with asymmetric information between the public and the central bank used to

explain the pre-Greenspan Fed’s preference for ambiguity (e.g. Stein (1989) and Cukierman

and Meltzer (1986)). Given the recent shift to transparency discussed in Woodford (2005)

and Blinder et al. (2008), however, public information about policy goals may now be the

relevant baseline. Interestingly though, increased transparency has not entirely eliminated

heterogeneity in inflation expectations (e.g. Mankiw, Reis and Wolfers (2004)). Why does

disagreement about future inflation persist despite clear announcements by the central bank?

How can announcements be designed to achieve maximal anchoring of expectations? To

answer such questions, one needs a model which speaks to the expectations formation process

(e.g. Kroszner (2012), Boivin (2011), and King (2005)).

Our paper takes a step in this direction. We construct a simple model of inflation deter-

mination where monopolistically competitive firms must make decisions before the aggregate

price level is known and thus rely on inflation forecasts. Empirical evidence points to two

natural forecasting rules: one that is consistent with central bank announcements and one
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that is consistent with a random walk. We set up our model so that each rule is indeed an

unbiased forecast of inflation when adopted by all firms. For example, if all firms use the

central bank’s announcements as a basis for forecasting (i.e., if the bank is highly credible),

then firm decisions are such that the announcement is in fact realized. The opposite is true

if the bank is not credible. The fraction of firms with announcement-consistent forecasts is

thus a crucial variable in our model and we endogenize it using social dynamics. In particu-

lar, once inflation has been realized, firms can meet and potentially switch forecasting rules

based on relative performance. A small and/or temporary divergence of realized inflation

from the central bank’s announcements may not have enough momentum to significantly

affect credibility. However, prolonged divergence may convince some firms to abandon the

central bank’s cues in favor of more successful forecasting rules, limiting the extent to which

future announcements will be realized. Combining our model of inflation determination with

our model of social dynamics, we investigate how announcements can be tailored to limit

divergence and build credibility.

Our analysis yields three main insights. First, we show that abruptly introducing a

low inflation target to achieve a large disinflation can cause temporary overshooting of the

target, even when the central bank is transparent and firms reset prices every period. In

contrast, gradually introducing the target (i.e., via interim targets) directs the economy

to the long-term goal more smoothly because the interim targets provide more scope for

credibility-building when beliefs evolve through social dynamics. Our model thus suggests

a novel explanation for overshooting differences among the inflation targeters studied in

Mishkin and Schmidt-Hebbel (2007). Second, we show that gradual strategies are actually

less effective in a deflation. Instead, the central bank can eliminate deflation more quickly

by communicating an aggressive increase in its short-term inflation goals. Our results thus

suggest that price-level targeting may have some communication-based benefits over inflation

targeting during a deflation. Lastly, we show how two dimensions of quantitative easing -

number of rounds and intensity of announcements - can be varied to guide the economy out of

3



deflation without explicitly increasing short-term targets. While many papers have focused

on the yield curve response to QE, our model sheds some light on the less pervasive but

potentially key inflation response defined in Krishnamurthy and Vissing-Jorgensen (2011).1

Since our results are driven by the interaction between inflation determination and social

dynamics, they are difficult to generate if expectations are homogeneous and rational as

assumed in workhorse models of monetary policy.2 The use of rule-based agents to bridge

the gap between tractability and realism has recently gained attention in economic model-

ing, with Ellison and Fudenberg (1993) showing that even naive rules-of-thumb can achieve

fairly efficient outcomes. Further work has also demonstrated how social dynamics between

heterogeneous agents can change the predictions of more standard models (e.g. Arifovic,

Bullard and Kostyshyna (2012)) and/or explain otherwise puzzling aggregate dynamics (e.g.

Burnside, Eichenbaum and Rebelo (2013)).3 Although there is a large literature on repre-

sentative learning of central bank goals - see, for example, Orphanides and Williams (2005),

Berardi and Duffy (2007), Eusepi and Preston (2010), and Branch and Evans (2011) - we

are not aware of any papers that have introduced social dynamics into a model of inflation

determination to endogenize the credibility of transparent communication. In this regard,

we also differ from Arifovic et al. (2010) who allow the central bank to choose both inflation

announcements and realized inflation in a cheap talk economy with social learning.

The rest of the paper proceeds as follows. Section 2 overviews our framework to highlight

the key interactions, Section 3 explains the evolution of credibility through social dynamics,

Section 4 builds a model of inflation determination for use in simulations, Sections 5 and 6

present the simulation results, and Section 7 concludes. All proofs appear in the Appendix.

1For more on the yield curve effect, see Gagnon et al. (2010), D’Amico and King (2010), Williams (2011),
Hamilton and Wu (2012), and the references therein.

2See, for example, Clarida, Gali and Gertler (1999), Woodford (2003), Smets and Wouters (2003) and
Christiano, Eichenbaum and Evans (2005).

3For more on agent-based models, see LeBaron (2001), Judd and Tesfatsion (2006), Colander et al. (2008),
Ashraf and Howitt (2008), and Page (2012).
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2 Basic Framework

We begin by describing how announcements, expectations, and inflation will come together in

this paper. There are three important features. First, how is inflation determined given a set

of inflation expectations? Second, how do central bank announcements affect expectations?

Third, how does realized inflation affect expectations? We take each question in turn. The

focus here will be on intuition, with more formal structure deferred until Sections 3 and 4.

Inflation Determination Consider a continuum of firms i ∈ [0, 1]. At the beginning of

date t, firm i expects an inflation rate of π̂it. The mean expectation is g and the standard

deviation across all firms is σ. We are primarily interested in how σ affects the actual inflation

rate realized at the end of date t. Our full model of inflation determination is developed

in Section 4 so the goal at present is to distill only the key forces that will emerge. On

one hand, we will have a Jensen’s inequality effect which is fairly standard in the finance

literature.4 As σ increases, compounding of inflation expectations into price expectations

skews the distribution of price expectations right and, all else constant, drives up market

clearing prices. In finance, the market clearing price is typically a nominal bond price. In

our model, it will be a nominal input price. On the other hand, as the nominal input price

increases, low expectation firms in our environment have less incentive to operate (i.e., all

else is not constant). The Jensen’s effect, J (σ), thus triggers a countervailing exit effect,

Q (σ), where J (0) = Q (0) = 0, J ′ (·) > 0, and Q′ (·) > 0. With a natural upper bound on

exit though, the Jensen’s effect eventually outpaces the exit effect and yields the following:

Lemma 1 If there exists a σA > 0 such that Q (σA) = J (σA) and Q′ (σA) > J ′ (σA), then

there exists a σB > σA such that Q (σB) = J (σB) and Q (σ) > J (σ) for all σ ∈ (σA, σB).

Provided there is a positive relationship between input and output prices, the mapping of

inflation expectations into realized inflation is π∗t ≈ g+λ (σ) [J (σ)−Q (σ)], where λ (·) > 0.

4See, for example, Veronesi and Yared (2000) and Xiong and Yan (2010).
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Central Bank Announcements To introduce announcements into this environment,

suppose the central bank releases an inflation forecast of πt at the beginning of date t.

Under Lemma 1, we can consider two forecasting rules for firms: Rule A which draws π̂it

from N (πt, σA) and Rule B which draws π̂it from N (gt, σB). We discuss these rules more

formally in Section 5.1. For now, we only emphasize that Rule A forecasts according to the

central bank’s cues while Rule B represents an alternative forecasting rule.

Let ξt ∈ [0, 1] denote the fraction of firms that use Rule A. Lemma 1 implies π∗t ≈ πt if

ξt = 1 and π∗t ≈ gt if ξt = 0. Both rules thus provide unbiased forecasts of inflation if adopted

by all firms but only Rule A achieves the central bank’s announcement when gt 6= πt. What

happens when gt = πt? In this case, the standard deviation of expectations across all firms

is σ (ξt) =
√
ξtσ

2
A + (1− ξt)σ2

B so Lemma 1 implies π∗t < πt if ξt ∈ (0, 1). For any gt then,

ξt = 1 will allow the central bank to achieve inflation goals using only communication. As

such, we can also interpret ξt as a measure of central bank credibility.

Conditional on the forecasting rules N (πt, σ
2
A) and N (gt, σ

2
B), it is now apparent that

the pass-through from an inflation announcement πt to realized inflation π∗t will hinge on ξt.

Completing our framework thus requires modeling the evolution of ξt.

Evolution of Expectations We posit that agents whose forecasts are consistently out-

performed by their peers will want to change how they forecast. The question then becomes

how an agent discovers he is being outperformed and how much of this outperformance he

attributes to one-time shocks rather than fundamentals. Social dynamics provide a simple

yet powerful way to address these questions and endogenize the evolution of ξt.

The details are presented in Section 3. What we emphasize here is that ξt is endoge-

nously determined through social dynamics. That ξt is endogenous rather than deterministic

is fundamental. As we saw above, π∗t ≈ πt if ξt = 1. However, to reach high ξt endogenously,

firms must be convinced that the central bank’s announcements provide a good basis for

forecasting. The announcements will indeed provide a good basis if ξ has been high his-
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torically. Therefore, there is a two-way feedback between selection of forecasting rules and

realized inflation which both disciplines how central bank announcements steer inflation and

introduces non-trivial inflation dynamics into the model.

3 Social Dynamics

As described above, we adopt social dynamics to endogenize the fraction of firms who use

central bank announcements as a basis for their forecasts. To this end, we initialize ξ1 = 0

then let ξt+1 evolve via tournament selection and mutation.

We use tournament selection to simulate the transmission of information in a complex

world. Versions of this approach appear in Carroll (2003a), Arifovic et al. (2010), Arifovic,

Bullard and Kostyshyna (2012), and Burnside, Eichenbaum and Rebelo (2013). Relative to

other studies, our tournaments (1) favor agents who are endogenously more successful and

(2) permit success to be judged over multiple observations. In particular, firms meet in pairs

and compare forecast errors after the realization of π∗t . Denote firm i’s forecasting rule by

Ruleit ∈ {A,B} and consider a meeting between i and j. Firm i counts one strike against his

rule if Ruleit 6= Rulejt and
∣∣π̂it − π∗t ∣∣ > ∣∣π̂jt − π∗t ∣∣. Recall from Section 2 that π∗t depends on

ξt. For example, if ξt is too low, then π∗t will be close to gt so |gt−πt| � 0 will allow Rule B

to outperform Rule A in many meetings. Strikes will thus tend to be counted against Rule

A, suggesting ξt+1 ≤ ξt. In contrast, if ξt is sufficiently high, then π∗t will be close to πt and

strikes will tend to be counted against Rule B, suggesting ξt+1 ≥ ξt. This is the sense in

which success is endogenous.

Whether strikes actually lead to ξt+1 6= ξt depends on how stubborn firms are in their

beliefs. Experimental evidence suggests that people are very reluctant to contradict their own

information, even when Bayesian updating suggests they should (e.g., Weizsacker (2010) and

Andreoni and Mylovanov (2012)). We thus allow firms to accumulate several strikes before

deciding to switch forecasting rules. This is the sense in which success is judged over multiple
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observations. Going forward, we use S to denote the number of strikes needed for a switch

(i.e., after S strikes, firm i switches rules and begins counting strikes against his new rule).

We also refer to S as stubbornness, with higher S implying more stubborn beliefs. To gauge

the importance of S, we will simulate our model for different values. As Section 5.3 will

show, the extent of stubbornness is an important input into our social dynamics.

Strikes accumulate across meetings and periods so we must now specify how pairwise

meetings come about. In our baseline specification, pairs are drawn randomly with replace-

ment from the entire population. Drawing with replacement ensures that each firm can have

zero to many meetings in a given period. Drawing from the full population ensures that even

firms who do not operate are represented in tournaments. This is appealing since operation

decisions are driven by expectations. In an alternative specification, we allow tournaments

to occur within neighborhoods rather than at random. More specifically, imagine that firms

lie along a circle and each firm meets its right and left neighbors every period. With in-

teractions set up as such, firms always meet the same people. As we will see in Section 5,

this will create clusters of firms that use the same forecasting rule. Firms at the center of a

cluster are thus more likely to meet other firms using the same rule, increasing their effective

stubbornness for any value of S. Notice that this suggests an alternative interpretation for

our S: higher values of S are a stand-in for more localized interactions.

Lastly, to capture the fact that some changes may not be performance-driven, we incor-

porate mutations: at the beginning of date t + 1, a very small fraction µ ∈ (0, 1) of firms

randomly switches rules regardless of strikes.

The timing of our social forces can be summarized as follows: (i) mutation turns the

fraction of Rule A forecasters into ξ̃t = (1− µ) ξt + µ (1− ξt) if t ≥ 2; (ii) each firm i

draws expectation π̂it from its forecasting rule; (iii) the set of expectations
{
π̂it | i ∈ [0, 1]

}
determines π∗t as per the model developed next in Section 4; (iv) tournament selection

transforms ξt into ξt+1 if t = 1 and ξ̃t into ξt+1 if t ≥ 2.
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4 Economic Model

While instructive, our discussion of inflation determination in Section 2 was highly stylized.

We now develop a more formal model. Subsection 4.1 presents the environment. Subsections

4.2 and 4.3 then flesh out the details to derive the specific functions we use in our simulations.

4.1 Environment

Consider a continuum of firms, each producing a differentiated perishable good i ∈ [0, 1].

Demand for good i is D
(
γtPt
pit

)
, where pit is the price charged by firm i at date t, Pt is the

aggregate price level, and γt ∈ [1− ε, 1 + ε] is an exogenous and independently distributed

aggregate taste shock. Assume D′ (·) > 0 so that the demand for good i is decreasing in the

relative price pit
Pt

and increasing in the taste shock. Supply of good i is chosen by firm i which

possesses a technology to transform inputs into output. The technology is summarized by

F (`it, ·), where `it denotes the labor input used by firm i. The aggregate stock of labor is

normalized to one and inelastically available at unit wage wt.

Firms have to make pricing and production decisions before γt and Pt are realized - that

is, before they know the actual demand for their products. At the beginning of date t, all

firms forecast a taste shock of one. Each firm i also forecasts an aggregate price level of

P̂ i
t ≡ exp(π̂it)P

∗
t−1, where P ∗t−1 is last period’s realized price level and π̂it is the firm’s inflation

expectation for the current period. All firms make decisions for the current period based on

their forecasts. We will return to the forecasting rules for π̂it shortly. For now, we only note

that they constitute a deviation from rational expectations (RE) since π̂it is not updated

whenever new information becomes available.

The timeline after P̂ i
t has been set is as follows. First, the firm decides on a labor demand

function `
(
wt; P̂

i
t

)
and an individual pricing function p

(
wt; P̂

i
t

)
. Second, the wage is set

by an auctioneer to clear the labor market. In particular, the auctioneer sets w∗t to solve∫
`
(
w∗t ; P̂

i
t

)
di = 1. Third, if `

(
w∗t ; P̂

i
t

)
> 0, then firm i posts price p∗it ≡ p

(
w∗t ; P̂

i
t

)
and
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uses inputs to produce its expected demand y∗it ≡ D
(
P̂ it
p∗it

)
. Fourth, the taste shock γt is

realized and the aggregate price level is computed as a consumption-weighted average of

individual prices. At aggregate price Pt, realized demand for good i is D
(
γtPt
p∗it

)
which may

differ from the available supply y∗it. Consumption is thus the minimum of demand and supply

so the auctioneer computes P ∗t to solve P ∗t =
∫

cit∫
cjtdj

p∗itdi and cit = min
{
y∗it, D

(
γtP

∗
t

p∗it

)}
.5

Putting everything together, we now have the following mapping from a set of expecta-

tions
{
P̂ i
t | i ∈ [0, 1]

}
to the realized price level P ∗t :

∫
Ot(w∗t )

`
(
w∗t ; P̂

i
t

)
di = 1 where Ot (w∗t ) ≡

{
i | `

(
w∗t ; P̂

i
t

)
> 0
}

(1)

P ∗t
∫

Ot(w∗t )

D

(
min{P̂ it ,γtP ∗t }
p(w∗t ;P̂ it )

)
di =

∫
Ot(w∗t )

D

(
min{P̂ it ,γtP ∗t }
p(w∗t ;P̂ it )

)
p
(
w∗t ; P̂

i
t

)
di (2)

Realized inflation is defined as π∗t ≡ ln
(
P ∗t /P

∗
t−1

)
. The rest of this section puts structure on

D (·), p (·), and ` (·) to refine the mapping in equations (1) and (2).6

4.2 Additional Structure

We will assume D
(
γtPt
pit

)
=
(
γtPt
pit

) 1
1−ρ

with ρ ∈ (0, 1) and derive p (·) and ` (·) from a static

profit maximization problem. The following proposition disciplines our approach:

Proposition 1 If p (·)and ` (·) maximize p (·)D
(
P̂ it
p(·)

)
− wt` (·), then F (`, ·) = ` implies:

1. p
(
w∗t ; P̂

i
t

)
is independent of P̂ i

t

2. If π̂it ∼ N (g, σ2) and `
(
w∗t ; P̂

i
t

)
> 0 for all i, then π∗t = g + σ2

2(1−ρ)

5While our results are robust to different consumption aggregators, we use
∫
cjtdj to ensure that our

consumption weights sum to one. Weights computed using a CES aggregator only sum to one if consumption
is homogeneous across goods, a condition which does not hold in our framework.

6As equations (1) and (2) show, our model is one where actual inflation is determined entirely by expected
inflation. In other words, the central bank can only change inflation by changing expectations. While our
abstraction from conventional policy tools is done to isolate the effect of communication, current work by
Campbell (2013) demonstrates that it may in fact be optimal for policymakers to rely on open mouth
operations, even when open market operations are available.
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The first part of Proposition 1 says that a linear one-to-one production technology delivers

homogeneous price-setting behavior among firms, regardless of expectations. The second part

says that it also delivers realized inflation above the mean expectation when expectations are

heterogeneous and all firms produce. The latter is the Jensen’s inequality result discussed in

Section 2. It is exacerbated by more heterogeneity (i.e., higher σ) and more substitutability

between goods (i.e., higher ρ). As σ increases, compounding of inflation expectations into

price expectations skews the distribution of price expectations further right. The highest

expectation firms thus drive input costs and prices up more than the lowest expectation

firms drive them down. The effect is strongest when goods are more substitutable because

high expectation firms foresee a huge increase in sales by undercutting the aggregate price

level and thus participate more actively in the labor market.

As per Woodford (2013), “it is appealing to assume that people’s beliefs should be ra-

tional, in the ordinary-language sense, though there is a large step from this to the RE

hypothesis.” Together with the results of Proposition 1, this prompts us to adopt F (`, ·) 6= `

and allow `
(
w∗t ; P̂

i
t

)
= 0 for some i. Why is F (`, ·) 6= ` desirable? Our taste shock is

realized after the auctioneer computes w∗t so, as long as
∂p(w∗t ;P̂ it )

∂P̂ it
6= 0, the auctioneer cannot

also compute P ∗t before firms post prices and undertake production. While our firms deviate

from the RE hypothesis by not updating P̂ i
t based on w∗t , they would also be deviating from

rationality in the ordinary-language sense if they did not update P̂ i
t based on P ∗t . We thus

adopt F (`, ·) 6= ` to generate
∂p(w∗t ;P̂ it )

∂P̂ it
6= 0 and delay the revelation of P ∗t . Similar reasoning

motivates our allowance of `
(
w∗t ; P̂

i
t

)
= 0. If all firms use the same general forecasting

rule, namely πit = g + εit with εit ∼ N (0, σ2), then π∗t = g (henceforth mean rationality) is

desirable. In other words, the economy should not converge to a situation where all firms

use a rule that is always wrong on average. Mathematically, this requires overcoming the σ2

term generated by Jensen’s inequality. Intuitively, it requires giving low expectation firms

more pull to overcome the pull that compounding gives high expectation firms. Allowing low

expectation firms to not produce is a natural step in this direction and we pursue it below.
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4.3 The Full Model

Suppose good i is produced according to F (`it, zit) = `αitz
1−α
it , where `it is again labor, zit is

firm effort, and α ∈ (0, 1). All firms also have a real outside option U , thus allowing for exit

and (re)entry. Effort is exerted by the firm and imparts (real) disutility
zθit
θ

, where θ > 1. If θ

is finite, then production exhibits diminishing returns to labor but constant returns overall.

If θ is infinite, then effort is always unity and the production function is effectively decreasing

returns to scale. Our numerical exercises will employ the limiting case of θ →∞ to simplify

the parameter space. However, we will derive the key properties of our model for any θ > 1

to show that they do not hinge on decreasing returns to scale.

If firm i charges pit, its anticipated demand is
(
P̂ it
pit

) 1
1−ρ

and it will need
(
P̂ it
pit

) 1
α(1−ρ)

z
1− 1

α
it

units of labor to produce this quantity. Therefore, in real terms, the firm solves:

max

{
max
pit,zit

[
pit
P̂ it

(
P̂ it
pit

) 1
1−ρ − wt

P̂ it

(
P̂ it
pit

) 1
α(1−ρ)

z
1− 1

α
it − zθit

θ

]
, U

}

From the inner maximization problem, the price and effort choices of an operating firm are:

p
(
wt; P̂

i
t

)
=

[(
wt
αρ

)θα(
1

ρ(1−α)

(
P̂ i
t

) θ−ρ
1−ρ
)1−α] (1−ρ)

θ(1−αρ)−ρ(1−α)

(3)

z
(
wt; P̂

i
t

)
=
[
ρ (1− α)1−αρ

(
α
wt
P̂ i
t

)αρ] 1
θ(1−αρ)−ρ(1−α)

From the outer maximization problem, the set of operating firms is then:

Ot (wt) =
{
i | P̂ i

t ≥ ψ (α, ρ, θ, U)wt

}
(4)

where

ψ (α, ρ, θ, U) ≡ 1
αρ

[
1

ρ(1−α)

] 1−α
θα
[

θU
θ(1−αρ)−ρ(1−α)

] θ(1−αρ)−ρ(1−α)
θαρ

If i /∈ Ot (wt), then the firm’s labor demand is `
(
wt; P̂

i
t

)
= 0. Otherwise, the first order
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conditions from the inner problem yield:

`
(
wt; P̂

i
t

)
=

[
ρθ (1− α)ρ(1−α)

(
α
wt
P̂ i
t

)θ−ρ(1−α)
] 1
θ(1−αρ)−ρ(1−α)

(5)

Notice that U = 0 implies Ot (wt) = [0, 1] so `
(
wt; P̂

i
t

)
> 0 for all firms. Having U > 0 is

thus what will permit `
(
wt; P̂

i
t

)
= 0 for some i. The market clearing wage is then determined

according to equation (1), with Ot (w∗t ) given more precisely by equation (4) and `
(
wt; P̂

i
t

)
as per equation (5). This yields:

w∗t = χ (α, ρ, θ)

[ ∫
Ot(w∗t )

(
P̂ i
t

) θ−ρ(1−α)
θ(1−αρ)−ρ(1−α)

di

] θ(1−αρ)−ρ(1−α)
θ−ρ(1−α)

(6)

where

χ (α, ρ, θ) ≡ α
[
ρθ (1− α)ρ(1−α)

] 1
θ−ρ(1−α)

Finally, the aggregate price level is determined according to equation (2), with p
(
wt; P̂

i
t

)
and

Ot (w∗t ) as per (3) and (4). The above equations show that operating firms with higher price

expectations charge higher prices. They also hire more labor and exert more effort, resulting

in more output. Furthermore, for any given wage, firms with higher price expectations are

more likely to operate. The higher the wage though, the smaller the set of operating firms,

the lower the output of each operating firm, and the higher the prices charged.

4.3.1 One Forecasting Rule

The following proposition establishes the key implications of our full model when all expec-

tations are neatly captured by a single normal distribution:

Proposition 2 If π̂it ∼ N (g, σ2) for all i, then:

1. π∗t = g + f (σ)

2. If α = 1 and U = 0, then f (σ) = σ2

2(1−ρ)
as per Proposition 1.
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3. If α ≤ 1 and U > 0, then the set of operating firms is shrinking in σ.

4. If α = 1 and U ≥ 1− ρ, then f (σ0) = 0 for a unique σ0 > 0. Moreover, f ′ (σ0) > 0.

5. There exist constants α ∈ (0, 1) and U > U > 0 such that α ∈ (α, 1) and U ∈
(
U,U

)
yield f (σA) = f (σB) = 0 for σB > σA > 0. Moreover, f ′ (σA) < 0 and f ′ (σB) > 0.

The first part of Proposition 2 says that excess inflation (π∗t − g) depends only on the ex-

tent of expectations heterogeneity. The second part then says that linear production and

no outside option return the results of Proposition 1. The remainder of Proposition 2 re-

stricts attention to positive outside options. In particular, the third part establishes that

σ decreases operation when the option is positive. As discussed in Subsection 4.2, higher

σ amplifies the asymmetric effect that high expectation firms have on wage determination.

Since higher wages cut into expected firm profits, the presence of a positive outside option

means that more firms will choose not to operate. This puts downward pressure on wages

and, as described in Section 2, helps offset the Jensen’s inequality effect. Indeed, with linear

production, the fourth part of Proposition 2 shows that a sufficiently lucrative outside option

introduces a point σ0 > 0 with no excess inflation (i.e., a point where f (·) = 0 or, equiv-

alently, a point of mean rationality). This is illustrated by the solid gray line in Figure 1.

Existence of such a point is robust to non-linearities in production and, under some restric-

tions on α and U , the fifth part of Proposition 2 says that our full model actually produces

two mean rational points. This is a more formal version of Lemma 1, with conditions to

ensure the existence of both points.

Figure 2 provides a visual of the relevant parameter restrictions when ρ = 0.9 and θ →∞.

As both the proposition and the figure show, we will have two mean rational points if α is not

too small and U falls within an intermediate range. Moreover, for any parameter combination

represented by a blue dot in Figure 2 (i.e., for any combination that yields two mean rational

points), the plot of f (·) will resemble the blue line in Figure 1. Notice from this line that

f (·) is negative between the two mean rational points. In other words, realized inflation
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falls below the mean expectation. We refer to this situation as negative excess inflation. To

see why it arises, recall the competing effects of higher σ on wages in equation (6). As σ

increases, we know that the compounding of inflation expectations into price expectations

skews the distribution of price expectations right and puts upward pressure on the wage

through the labor demands of high expectation firms. As the wage increases though, we also

know that low expectation firms find it more profitable to take their outside option and the

resulting decline in operation puts downward pressure on the wage. For lower values of σ,

the exit of low expectation firms dominates and dampens the wage but, when σ becomes

sufficiently large, the labor demands of high expectation firms take over. The dependence of

w∗t on σ is thus U-shaped. What does this mean for prices? We know from equation (3) that

individual prices respond positively to wages so, all else constant, the shape of w∗t feeds into

P ∗t and π∗t (for a given P ∗t−1). Notice, however, that there is additional upward pressure on P ∗t

at the price aggregation stage. Since only firms with sufficiently high expectations produce,

the individual prices aggregated by equation (2) are p
(
w∗t ; P̂

i
t

)
with P̂ i

t high. Therefore, the

pass-through from w∗t to P ∗t varies across σ but, for α ∈ (α, 1) and U ∈
(
U,U

)
, it is enough

to generate two mean rational points with a U-shaped pattern in between. If the outside

option is too high or the returns to labor are too low, then exit is too strong relative to labor

demand and we get only one mean rational point with negative excess inflation to the left

of that point and positive excess inflation to the right. If the outside option is too low, then

exit is weak and we get positive excess inflation everywhere with no mean rational points.

4.3.2 Two Forecasting Rules

We now investigate what happens if expectations are characterized by a mixture of normal

distributions, namely a group of size ξt distributed according to π̂it ∼ N (gA, σ
2
A) and a

group of size 1− ξt distributed according to π̂it ∼ N (gB, σ
2
B). Notice that we now have two

dimensions of heterogeneity: within groups (i.e., σA > 0 and σB > 0) and across groups (i.e.,
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gA 6= gB and/or σA 6= σB). It will be instructive to begin with gA = gB = g for any g.7 To

simplify the exposition, define the following constants:

κ ≡ θ−ρ(1−α)
θ(1−αρ)−ρ(1−α)

, δ ≡ (θ−ρ)(1−α)
θ(1−αρ)−ρ(1−α)

, and υj ≡ σj
1−ρ

Also define variables yt ≡ π∗t−g
1−ρ and xt ≡

ln(ψw∗t /P ∗t−1)−g
1−ρ . We use yt (multiplied by 1 − ρ) to

denote excess inflation when expectations come from two normal distributions and reserve

f (·) for when they come from one normal distribution. Interpretation of xt is with reference

to equation (4). In particular, if the difference between a firm’s inflation forecast and the

mean forecast is greater than or equal to xt, then the firm operates. The full model with a

mixture of normal expectations yields xt implicitly defined by:

xt = 1
1−ρ ln

(
ψχ
)

+ 1
(1−ρ)κ

ln [ξth ((1− ρ)κ, υA, xt) + (1− ξt)h ((1− ρ)κ, υB, xt)]

where

h (β, υ, x) ≡ exp
(

(βυ)2

2

)
Φ
(
βυ − x

υ

)
If xt ≥ Υ (xt, ξt) + ln (γt), then yt = Υ (xt, ξt) where:

Υ (x, ξ) ≡ 1
ρ

ln
(
θ(1−αρ)−ρ(1−α)

θU

)
+ θακ(1−ρ)x

θ−ρ(1−α)
+ ln

(
ξh(−ρδ,υA,x)+(1−ξ)h(−ρδ,υB ,x)
ξh(−δ,υA,x)+(1−ξ)h(−δ,υB ,x)

)
(7)

If xt < Υ (xt, ξt) + ln (γt), then yt solves:

yt = 1
ρ

ln
(
θ(1−αρ)−ρ(1−α)

θU

)
+ θακ(1−ρ)xt

θ−ρ(1−α)
+ 1

1−ρ ln
(
ξtN(xt,yt+ln(γt),υA)+(1−ξt)N(xt,yt+ln(γt),υB)
ξtD(xt,yt+ln(γt),υA)+(1−ξt)D(xt,yt+ln(γt),υB)

)
(8)

where

N (x, y, υ) ≡ h (1− ρδ, υ, x)− h (1− ρδ, υ, y) + exp (y)h (−ρδ, υ, y)

D (x, y, υ) ≡ h (1− δ, υ, x)− h (1− δ, υ, y) + exp (y)h (−δ, υ, y)

7The derivations that follow parallel those in the proof of Proposition 2, Part 1 and are thus omitted. The
only difference is the use of a mixture of normals rather than a single normal when evaluating any integrals.
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The limiting cases of ξt = 0 and ξt = 1 return the full model with expectations characterized

by a single normal distribution. For a mixture of distributions, we have:

Proposition 3 Suppose π̂it ∼ N (g, σ2
A) for a group of measure ξt and π̂it ∼ N (g, σ2

B) for

the rest, where f (σA) = f (σB) = 0. If α = 1, then yt = 0 for all ξt ∈ (0, 1).

Under α = 1, Proposition 3 says that the entire population is mean rational when each

subpopulation is individually mean rational. We know from Proposition 1 that all firms set

the same price when α = 1 so any heterogeneity in expectations only affects the economy

through labor market clearing, namely equation (1). The latter aggregates linearly across

subpopulations so, if the component distributions are parameterized such that yt = 0, then

their mixture will also deliver yt = 0.

In contrast, Figure 3 shows what can happen when heterogeneity enters the more com-

plicated aggregation defined by equations (1) and (2): the mixture distribution produces

negative excess inflation even if each subpopulation possesses the mean rational property.

Using ρ = 0.9 and θ →∞ as before, panel (a) reveals that combinations of α and U which

generate two distinct mean rational distributions also generate negative excess inflation for

any mixture of these distributions. Panel (b) then provides a representative plot of yt as a

function of ξt. Notice that the shape of yt over ξt ∈ [0, 1] resembles the shape of f (·) over

σ ∈ [σA, σB]. This is useful as it permits interpretation of our results vis-à-vis Figure 1: if

one views ξt ∈ (0, 1) and gA = gB = g as generating a roughly normal aggregate distribution

with σ ∈ (σA, σB), then π∗t < g follows for the reasons discussed in Subsection 4.3.1.

5 Simulations: Introducing Inflation Targets

From the economic model of Section 4, we can calculate π∗t conditional on ξt and the forecast-

ing rules. Using social dynamics as per Section 3, we can then determine ξt+1 conditional on

π∗t , ξt, and the forecasting rules. We now investigate how a central bank can use inflation an-
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nouncements in this environment. We first parameterize the model then conduct simulations

to study the effectiveness of announcing inflation targets to achieve a large disinflation.

5.1 Parameterization

We set ρ = 0.9 to capture an economy where goods are highly but not perfectly substitutable.

We also take the limiting case of θ → ∞. To obtain two individually mean rational sub-

populations (i.e., to obtain two forecasting rules that are each unbiased when adopted by all

firms), we pick α and U from the blue region in Figure 2. We set α = 0.9 and U = 0.18 but

any choice from the aforementioned region will deliver qualitatively similar results. Lastly,

we assume the taste shock is distributed according to γt ∼ U [0.99, 1.01]. These parameters

deliver σA = 0.0036 and σB = 0.0643 as the solutions to f (·) = 0.

To complete the characterization of the forecasting rules, we need gA and gB. In a special

question, the 2012Q2 Philadelphia Fed Survey of Professional Forecasters (SPF) asked each

respondent to indicate whether his/her forecasts were consistent with the Fed’s inflation

target. The results reveal that forecasters who self-identify as consistent with the Fed’s

target form a tight distribution around this target. In contrast, the remaining forecasters

form a wider distribution around past inflation. As in Section 2, let πt denote the central

bank’s date t announcement. Since individual expectations and professional forecasts are

not unrelated (e.g. Carroll (2003b)), we can map the SPF results into our model as follows:

Definition 1 Fed Followers (FFs): π̂it ∼ N (πt, σ
2
A)

Definition 2 Random Walkers (RWs): π̂it ∼ N
(
π∗t−1, σ

2
B

)
The fraction of FFs is ξt. That our first group uses the central bank to guide its expectations

can be interpreted vis-à-vis Faust and Wright (2012) who find that the Fed’s Greenbook fore-

casts are difficult to beat. The existence of our first group is also consistent with evidence

from Campbell et al. (2012) and Gurkaynak et al. (2005) that at least some market partici-

pants believe FOMC statements contain new and reliable information about future economic
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conditions. By endogenizing ξt, we are effectively endogenizing the fraction of participants

with such beliefs. That our second group follows a random walk can then be interpreted vis-

à-vis Atkeson and Ohanian (2001) who find that random walk forecasts of inflation perform

very well against more sophisticated econometric models.

5.2 Results for Baseline Specification

In our baseline social dynamics, randomly matched firms compare forecasting performance

and switch rules after being outperformed eight times (i.e., S = 8). We use 1000 firms and

draw 1000 matches (with replacement) at the end of each period. Figure 4 presents results

for the introduction of a 2% inflation target in an economy with 20% initial inflation. Blue

lines average over 100 simulations while shaded areas are [10%, 90%] confidence intervals.

Initially, ξ1 = 0 so all firms are forecasting according to π̂i1 ∼ N (20%, σ2
B) and the mean

rational property yields π∗1 = 20%. Consider first a central bank that introduces its target

abruptly, announcing πt = 2% for all t ≥ 2. The bank’s announcement introduces a new

forecasting rule which a small fraction of firms, µ = 0.02, mutate towards. Figure 4(a)

demonstrates that inflation converges to 2% but is followed by a temporary overshooting of

the target. Recall from Section 4.3 that firms with low expectations (relative to their peers)

are less likely to operate. FFs thus do not participate in the labor market early on, putting

downward pressure on input prices and lowering inflation. To see why overshooting emerges,

turn to the fraction of FFs just before the economy reaches 2%. With realized inflation near

target and σA < σB, Fed Following is often a better forecasting rule than Random Walking.

If beliefs were not stubborn (i.e., if S was low), RWs would switch very quickly and ξt would

rise sharply. Virtually all firms would then forecast according to π̂it ∼ N (2%, σ2
A) and we

would thus observe π∗t = 2%. With stubbornness, however, the economy reaches 2% with a

mix of FFs and RWs which, as per Subsection 4.3.2, generates π∗t < 2%. Over time though,

RWs accumulate enough strikes to compel them to become FFs, returning inflation to target.

Figure 4(b) shows that overshooting can be avoided with gradual targets - that is, a
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path which interpolates between initial inflation and the long-run target. By achieving

interim targets along this path, the central bank converts more firms into FFs on the way

to 2%. In turn, the economy is very close to a situation where all firms forecast according

to π̂it ∼ N (2%, σ2
A) when 2% is actually reached. The prediction that gradual targets can

avoid the overshooting associated with abrupt targets is consistent with empirical evidence.

In particular, data from Mishkin and Schmidt-Hebbel (2007) reveals that countries such as

Chile, Mexico, Columbia, and Peru introduced their targets more gradually than countries

such as Canada, Sweden, the UK, and the Czech Republic. Incidentally, the first group

seems to have experienced less overshooting than the second.

5.3 Results for Alternative Specifications

Lower Stubbornness The results so far have considered firms that are somewhat stub-

born in their beliefs, refusing to switch forecasting rules at the first sign of a better rule.

We now use S = 1 to see what happens if beliefs are less stubborn. Figure 5 shows that

an abrupt introduction no longer leads to overshooting. As noted earlier, RWs who are

not stubborn will switch rules very quickly once inflation approaches 2%, implying excess

inflation of virtually zero. Notice, however, that S = 1 converges more slowly than S = 8

and with wider confidence bands. Slower convergence stems from fewer FFs persisting in

early tournament selections. Without a large endowment of FFs, realized inflation remains

relatively close to 20% for the first few periods so the huge gap between 20% and the mean

FF forecast of 2% implies that FF forecasts are almost always outperformed by RW fore-

casts. Under low stubbornness, this will prompt FFs to switch rules very quickly and return

to the labor market, thus mitigating the downward pressure through input prices. Wider

confidence bands stem from ξt (and thus π∗t ) being more sensitive to the specific pattern of

random meetings during tournament selection now that firms do not distinguish between

one-time outperformance and sustained outperformance. Stubbornness thus has advantages

and disadvantages for a central bank trying to achieve a drastic reduction in inflation. On
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one hand, higher stubbornness among FFs yields faster and more certain convergence to the

bank’s target but, on the other hand, higher stubbornness among RWs leads to a temporary

overshooting of the target if the target is introduced abruptly.

Local Interactions We now return to S = 8 and relax the assumption that firms meet at

random to compare forecasting rules. Suppose instead that tournaments occur locally, with

each firm meeting its right and left neighbors every period. As discussed in Section 3, this

set up will lead to clusters of FFs and clusters of RWs, increasing the effective stubbornness

of firms at the center of each cluster. Figure 6 illustrates the clustering for a subset of 300

firms. A white (blue) dot at coordinate (i, t) means that firm i is a RW (FF) at date t.

Figure 7 then shows that overshooting will be more pronounced under an abrupt target and

the central bank will need to be more gradual to prevent it if interactions are local rather

than random. This is consistent with local interactions generating more stubbornness.

5.4 Comparison to Benchmarks

Fixed Proportions A key insight from the above discussion is that the occurrence of

overshooting hinges on the fraction of FFs when the economy reaches the long-run target.

To better appreciate the role of social dynamics in determining this fraction, it will be

instructive to compare our baseline results with a benchmark that fixes ξt = ξ for all t. The

comparison is presented in Figure 8 for different values of ξ. If ξ = 0 (i.e., if the central

bank is never credible and no one uses its announcements as a basis for forecasting), then

inflation is stable at 20% and announcements are never effective. In contrast, if ξ = 1 (i.e.,

if the central bank is always credible and everyone uses its announcements as a basis for

forecasting), then the introduction of abrupt targets makes inflation fall to 2% immediately

and with no overshooting. Consider now ξ ∈ (0, 1) so that the mix of FFs and RWs is

constant but interior. The introduction of targets still succeeds in lowering inflation but

we do not drop to 2% immediately. Moreover, if the mix of FFs and RWs is sufficiently
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interior, then inflation settles noticeably below 2%. With a constant mix, ξt is independent

of how the central bank introduces its target and how well different rules perform so there

is no mechanism to eliminate overshooting. Endogenizing credibility thus introduces an

important channel through which central bank announcements affect inflation, providing a

richer and more plausible set of dynamics.

Mutation Only Recall that our social dynamics have two elements: mutation and tour-

nament selection. To see the impact of each, Figure 9 compares the full dynamics from

Figure 4 against the results that would arise under only mutation. With just mutation,

ξt+1 = (1− µ) ξt + µ (1− ξt) for all t so the fraction of FFs converges smoothly to 0.5. The

contribution of tournaments over and above mutation is visible at several points. When

targets are introduced abruptly, many FF forecasts are initially outperformed by RWs so

tournaments slow the accumulation of FFs and extend the time needed to hit 2%. Around

2% though, the tables turn and many RW forecasts are outperformed by FFs so tournaments

accelerate the accumulation of FFs and ensure convergence to 2%. Moreover, when targets

are introduced gradually, the accelerated accumulation occurs before 2% is actually reached,

allowing convergence to be achieved without even a temporary overshooting. Again then,

letting credibility evolve within the model generates fundamentally different predictions.

6 Simulations: Eliminating Deflation

Having seen how communication can be used to reduce inflation, we now investigate how

it can be used to pull the economy out of deflation. We keep the parameterization as in

Subsection 5.1 and start by considering announcements regarding the 2% target. We then

move to announcements like the Fed’s recent Quantitative Easing (QE) program which have

the potential to skew the entire distribution of inflation expectations.
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6.1 Using Targets

Suppose the economy starts at −2% inflation and the central bank announces that it will

target 2% for all t. In our previous simulations, FFs were the low expectation firms and their

initial impact was to decrease inflation via exit. Now, however, FFs are the high expecta-

tion firms so their initial impact is to increase inflation via price-setting. For our baseline

specification, Figure 10 shows that the accumulation of FFs - at first through mutation and

later through tournament selection - eventually brings the economy up to 2%. Figure 11(a)

then shows that convergence to 2% now occurs more quickly under lower stubbornness. The

difference between initial inflation of −2% and the mean FF forecast of 2% is such that

FFs are not always outperformed by RWs in early tournaments. As a result, some Random

Walkers incur strikes early on and, the faster they switch rules, the faster 2% is reached. As

discussed in Subsection 5.3, local interactions increase effective stubbornness so, for a given

value of S, local rather than random interactions would increase the time it takes to reach

2% when the economy begins at −2%. This is confirmed by Figure 11(b).

So far, we have assumed that the central bank keeps the target at 2% for all t. What

happens if it instead decides to gradually lead the economy back to 2%? As Figure 12(a)

reveals, a very gradual strategy involves more persistent deflation early on. Recall from

Subsection 4.3 that firms with higher price expectations set higher prices. The central

bank’s gradual path initially implies π1 = −2% + ε where ε > 0 is small so the average

FF only sets a slightly higher price than the average RW. The upward pressure from FF

price-setting thus does not outpace the downward pressure from RW exit and the economy

continues to experience deflation.

Lastly, Figure 12(b) shows that aggressive communication may be the best at eliminating

deflation. The path we consider is one where the central bank announces short-term targets

that are well above the long-run goal of 2%. Aggressive short-term targets induce any FFs to

set very high prices, pushing realized inflation upwards. At the same time, however, the big
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gap between realized and targeted inflation does nothing to help the central bank accumulate

more FFs and bring ξt towards 1. Therefore, when the target returns to 2% and the economy

approaches it from above, we have the same overshooting problem we had in Figure 4(a).

In order to eliminate this dip, the central bank would have to implement a gradual path on

the way down to 2% and thus keep the economy above 2% for longer. To some extent, these

results suggest that price-level targeting - which would indeed require the bank to balance

out periods of deflation with periods of high inflation - has some advantages over inflation

targeting in dealing with deflations when expectations exhibit some stubbornness.

6.2 Quantitative Easing

Our focus thus far has been on how central banks can use precise announcements about

inflation to steer the course of actual inflation. To avoid any premature assumptions about

the power of the bank, we restricted the direct effect of its announcements to just the mean

of the FF distribution. If the bank has absolutely no followers, then the announcements

are irrelevant as illustrated in Figure 8(a). If the bank has at least a few followers, then

we showed how announcements can be tailored to endogenously increase this following by

capitalizing on the social dynamics between firms.

We now consider what happens if central bank communication is more potent than pre-

viously assumed. In particular, instead of just changing the mean of the FF distribution,

suppose announcements can directly affect the skewness of the economy-wide distribution.

A practical example is what Krishnamurthy and Vissing-Jorgensen (2011) dub the inflation

channel of QE - that is, the curtailment of deflation expectations due to publicity surround-

ing the Fed’s recent large-scale asset purchases. We introduce this channel into our model

via redraws. More precisely, some firms with deflationary expectations redraw their π̂it’s after

hearing that the central bank will take a proactive approach to stimulating the economy.

Each redraw comes from the same distribution as the original draw so not all deflationary

expectations will be eliminated. However, redraws do have the effect of skewing the RW
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and FF distributions so that more mass exists to the right of the mean. Since very few FFs

actually expect deflation, the skew is stronger for RWs but, either way, the effect of QE

communications is to increase expectations, reduce dispersion, enlarge the set of operating

firms (by extension of Proposition 2, part 3), and put upward pressure on inflation.

We consider two dimensions of QE: rounds and intensity. In our context, rounds means

the number of periods with media coverage about QE and, therefore, the number of periods

that have redraws. Intensity means the fraction of deflationary firms that are exposed to

this coverage and, therefore, the fraction that redraw in a given period. Our central bank

again faces −2% inflation but, as an inflation targeter, would like to return the economy to

2% without changing its short-term targets (i.e., without pursuing the aggressive strategy

in Figure 12(b)). Figures 13 and 14 illustrate how this can be achieved in our baseline

specification (S = 8, random interactions) by varying rounds and intensity.

To isolate the effect of rounds, Figure 13 fixes intensity at 1. In other words, QE an-

nouncements are so pervasive and authoritative that all firms with deflationary expectations

redraw. Panel (a) demonstrates that one round of QE announcements helps increase infla-

tion but more time is needed to accumulate FFs and reach 2%. Panel (b) shows that two

rounds of QE announcements actually push the economy above 2% for a short-time then

below 2% for several periods. If the central bank wants to eliminate the dip back below tar-

get, it must increase the number of rounds. However, increasing rounds without decreasing

intensity means that the bank has to tolerate more above-target inflation.

Figure 14(a) shows that two rounds with less than full intensity can bring the economy

to 2% quickly and without any time above target. However, once the rounds run out, the

economy dips back below target for several periods. Just as redraws skew the distributions

and increase operation, the end of redraws unskews the distributions and decreases operation.

Therefore, if the fraction of FFs is low when the redraws stop, exit among RWs returns the

overshooting problem of Figure 4(a).
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Finally, Figure 14(b) illustrates the outcome of many rounds and low intensity. Why

do many rounds make it possible to find a monotonicity-inducing intensity? Avoiding the

rise above 2% experienced in Figure 13(b) requires stopping QE right when inflation hits its

target. At the same time, avoiding the dip below 2% experienced in Figure 14(a) requires

a very high fraction of FFs when QE stops. Therefore, with T rounds of QE, the bank has

T periods to accomplish two things: hit 2% and accumulate a lot of FFs. As we shorten T ,

accumulating a lot of FFs requires higher intensity. However, higher intensity also hastens

the return to 2%. When firms are stubborn in their beliefs, a small increase in intensity

will have a stronger effect on the speed of recovery than it will on the accumulation of FFs.

The intensity increase needed to accumulate enough FFs thus exceeds the intensity increase

needed to hit 2%. Stated otherwise, decreasing the number of rounds makes it harder to

find an intensity that returns inflation to 2% monotonically.

7 Conclusion

This paper has investigated the effectiveness of central bank communication when price-

setters with heterogeneous inflation expectations are subject to social dynamics. Prolonged

periods of divergence between realized inflation and central bank announcements can lead

to a loss of credibility through these dynamics and make future announcements much less

effective. In this context, we identified how central bank communications can be tailored

to endogenously build credibility. We demonstrated that the abrupt introduction of lower

inflation targets can lead to a temporary overshooting of the target. In contrast, gradually

introducing the target (i.e., via interim targets) directs the economy to the long-term goal

more smoothly. Our next set of results concerned communications to guide the economy

away from deflation. We found that avoiding a protracted deflation requires an aggressive

rather than gradual approach, with price-level targeting conferring some communication-

based benefits over inflation targeting. We then studied two dimensions of quantitative
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easing: number of rounds and intensity of announcements. Our results indicated that the

inflation channel of QE is an effective way for an inflation targeting central bank to guide

the economy out of deflation without announcing higher short-term targets. However, the

mix of rounds and intensity needed to guide the economy out monotonically depends on the

stubbornness of agents’ beliefs.

References

Andreoni, James and Tymofiy Mylovanov, “Diverging Opinions,” American Economic

Journal: Microeconomics, 2012, 4 (1), pp. 209–232.

Arifovic, Jasmina, Herbert Dawid, Christophe Deissenberg, and Olena

Kostyshyna, “Learning Benevolent Leadership in a Heterogenous Agents Economy,”

Journal of Economic Dynamics and Control, 2010, 34 (9), pp. 1768–1790.

, James Bullard, and Olena Kostyshyna, “Social Learning and Monetary Policy

Rules,” The Economic Journal, 2012.

Ashraf, Quamrul and Peter Howitt, “How Inflation Affects Macroeconomic Perfor-

mance: An Agent-Based Computational Investigation,” 2008. Working Paper, Brown

University.

Atkeson, Andrew and Lee E. Ohanian, “Are Phillips Curves Useful for Forecasting

Inflation?,” FRB Minneapolis Quarterly Review, 2001, 25 (1), pp. 2–11.

Berardi, Michele and John Duffy, “The Value of Transparency when Agents are Learn-

ing,” European Journal of Political Economy, 2007, 23 (1), pp. 9–29.

Blinder, Alan S., Michael Ehrmann, Marcel Fratzscher, Jakob De Haan, and

David-Jan Jansen, “Central Bank Communication and Monetary Policy: A Survey of

Theory and Evidence,” Journal of Economic Literature, 2008, 46 (4), pp. 910–945.

27



Boivin, Jean, “How People Think and How It Matters,” 2011. Remarks to the Canadian

Association for Business Economics, Kingston, ON.

Branch, William A. and George W. Evans, “Unstable Inflation Targets,” 2011. Work-

ing Paper, University of California, Irvine.

Burnside, Craig, Martin Eichenbaum, and Sergio Rebelo, “Understanding Booms

and Busts in Housing Markets,” 2013. Working Paper, Northwestern University.

Campbell, Jeffrey R., “Open Mouth Operations,” 2013. Mimeo, FRB Chicago.

, Charles L. Evans, Jonas D.M. Fisher, and Alejandro Justiniano, “Macroe-

conomic Effects of FOMC Forward Guidance,” Brookings Papers on Economic Activity,

2012, Spring 2012, pp. 1–54.

Carney, Mark, “A Monetary Policy Framework for All Seasons,” 2012. Remarks to the

U.S. Monetary Policy Forum, New York, NY.

Carroll, Christopher D., “The Epidemiology of Macroeconomic Expectations,” in

L. Blume and S. Durlauf, eds., The Economy as an Evolving Complex System, III, Oxford

University Press, 2003.

, “Macroeconomic Expectations of Households and Professional Forecasters,” Quarterly

Journal of Economics, 2003, 118 (1), pp. 269–298.

Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, “Nominal

Rigidities and the Dynamic Effects of a Shock to Monetary Policy,” Journal of Political

Economy, 2005, 113 (1), pp. 1–45.

Clarida, Richard, Jordi Gali, and Mark Gertler, “The Science of Monetary Policy: A

New Keynesian Perspective,” Journal of Economic Literature, 1999, 37 (4), pp. 1661–1707.

28



Colander, David, Peter Howitt, Alan Kirman, Axel Leijonhufvud, and Perry

Mehrling, “Beyond DSGE Models: Toward an Empirically Based Macroeconomics,”

American Economic Review: Papers and Proceedings, 2008, 98 (2), pp. 236–240.

Cukierman, Alex and Allan H. Meltzer, “A Theory of Ambiguity, Credibility, and

Inflation under Discretion and Asymmetric Information,” Econometrica, 1986, 54 (5), pp.

1099–1128.

D’Amico, Stefania and Thomas B. King, “Flow and Stock Effects of Large-Scale Trea-

sury Purchases,” 2010. Finance and Economics Discussion Series 2010-52, Federal Reserve

Board.

Eggertsson, Gauti B. and Benjamin Pugsley, “The Mistake of 1937: A General Equi-

librium Analysis,” Monetary and Economic Studies, 2006, 24 (S-1), pp. 1–58.

Ellison, Glenn and Drew Fudenberg, “Rules of Thumb for Social Learning,” Journal

of Political Economy, 1993, 101 (4), pp. 612–643.

Eusepi, Stefano and Bruce Preston, “Central Bank Communication and Expectations

Stabilization,” American Economic Journal: Macroeconomics, 2010, 2 (3), pp. 235–271.

Faust, Jon and Jonathan H. Wright, “Forecasting Inflation,” 2012. Working Paper,

John Hopkins University.

Gagnon, Joseph, Matthew Raskin, Julie Remache, and Brian Sack, “Large-Scale

Asset Purchases by the Federal Reserve: Did They Work?,” 2010. Federal Reserve Bank

of New York Staff Reports.

Gurkaynak, Refet S, Brian Sack, and Eric T Swanson, “Do Actions Speak Louder

Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements,”

International Journal of Central Banking, 2005, 1 (1), pp. 55–93.

29



Hamilton, James D. and Jing Cynthia Wu, “The Effectiveness of Alternative Monetary

Policy Tools in a Zero Lower Bound Environment,” Journal of Money, Credit & Banking,

2012, 44 (s1), 3–46.

Judd, Kenneth L. and Leigh Tesfatsion, Handbook of Computational Economics: Agent-

Based Computational Economics, North Holland, 2006.

King, Mervyn, “Monetary Policy: Practice Ahead of Theory,” 2005. Mais Lecture, Cass

Business School, London.

Krishnamurthy, Arvind and Annette Vissing-Jorgensen, “The Effects of Quanti-

tative Easing On Interest Rates: Channels and Implications for Policy,” 2011. NBER

Working Paper No. 17555.

Kroszner, Randall S., “Communications Strategy, Expectations Management, and Cen-

tral Bank Credibility,” 2012. Fall 2011 Brookings Papers on Economic Activity Conference,

Washington, DC.

LeBaron, Blake, “Evolution and Time Horizons in an Agent Based Stock Market,” Macroe-

conomic Dynamics, 2001, 5 (2), pp. 225–254.

Mankiw, N. Gregory, Ricardo Reis, and Justin Wolfers, “Disagreement about Infla-

tion Expectations,” NBER Macroeconomics Annual 2003, 2004, 18, pp. 209–248.

Melosi, Leonardo, “Signaling Effects of Monetary Policy,” 2012. Federal Reserve Bank of

Chicago WP 2012-05.

Mishkin, Frederic S. and Klaus Schmidt-Hebbel, “Does Inflation Targeting Make a

Difference?,” 2007. NBER Working Paper No. 12876.

Orphanides, Athanasios and John C. Williams, “Imperfect Knowledge, Inflation Ex-

pectations, and Monetary Policy,” in B. Bernanke and M. Woodford, eds., The Inflation-

Targeting Debate, University of Chicago Press, 2005, pp. 201–234.

30



Page, Scott E., “Aggregation in Agent-Based Models of Economics,” The Knowledge En-

gineering Review, 2012, 27 (2), pp. 151–162.

Pezzey, John C.V. and Jason J. Sharples, “Expectations of Linear Functions with

respect to Truncated Multinormal Distributions,” Environmental Modelling and Software,

2007, 22 (7), pp. 915–923.

Smets, Frank and Raf Wouters, “An Estimated Dynamic Stochastic General Equilibrium

Model of The Euro Area,” Journal of the European Economic Association, 2003, 1 (5),

pp. 1123–1175.

Stein, Jeremy C., “Cheap Talk and the Fed: A Theory of Imprecise Policy Announce-

ments,” American Economic Review, 1989, 79 (1), pp. 32–42.

Veronesi, Pietro and Francis Yared, “Short and Long Horizon Term and Inflation Risk

Premia in the US Term Structure,” 2000. Working Paper, Chicago Booth.

Weizsacker, Georg, “Do We Follow Others when We Should? A Simple Test of Rational

Expectations,” American Economic Review, 2010, 100 (5), pp. 2340–2360.

Williams, John C., “Unconventional Monetary Policy: Lessons from the Past Three

Years,” 2011. FRBSF Economic Letter.

Woodford, Michael, Interest and Prices: Foundations of a Theory of Monetary Policy,

Princeton, NJ: Princeton University Press, 2003.

, “Central Bank Communication and Policy Effectiveness,” 2005. Proceedings of the

Federal Reserve Bank of Kansas City Symposium at Jackson Hole, pp. 399-474.

, “Macroeconomic Analysis without the Rational Expectations Hypothesis,” 2013. Forth-

coming, Annual Review of Economics.

Xiong, Wei and Hongjun Yan, “Heterogeneous Expectations and Bond Markets,” Review

of Financial Studies, 2010, 23 (4), pp. 1433–1466.

31



Figure 1: Graphical Representation of Proposition 2
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Figure 3: Parameter Space Example for Mixture Distribution

(a) Parameters with yt < 0 when ξt ∈ (0, 1)
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Figure 4: Introduction of IT: S = 8, Random Interactions
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(b) Gradual Strategy
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Figure 5: Introduction of IT: S = 1, Random Interactions
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Figure 6: FF Accumulation for Different Interaction Types (S = 8)
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Figure 7: Introduction of IT: S = 8, Local Interactions
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(b) Gradual Strategy
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Figure 8: Comparison to Fixed Proportions
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Figure 9: Comparison to Mutation-Only

(a) Abrupt Strategy
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Figure 10: Eliminating Deflation: S = 8, Random Interactions

0 5 10 15 20 25 30 35 40 45 50

−0.02

−0.01

0

0.01

0.02

Inflation Rate

 

 

Realized
Target

10 20 30 40 50
0

0.5

1
Fraction of Fed Followers

10 20 30 40 50

0.7

0.8

0.9

1
Consumption

10 20 30 40 50

0

0.5

1

Fraction Operating

 

 

All
FF
RW

39



Figure 11: Eliminating Deflation: Alternative Specifications

(a) S=1, Random Interactions

0 5 10 15 20 25 30 35 40 45 50

−0.02

−0.01

0

0.01

0.02

Inflation Rate

 

 

Realized
Target

10 20 30 40 50
0

0.5

1
Fraction of Fed Followers

10 20 30 40 50

0.7

0.8

0.9

1
Consumption

10 20 30 40 50

0

0.5

1

Fraction Operating

 

 

All
FF
RW

(b) S=8, Local Interactions
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Figure 12: Eliminating Deflation: S = 8, Random Interactions

(a) Gradual Strategy
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(b) Aggressive Strategy
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Figure 13: QE Announcements

(a) Rounds = 1; Intensity = 1
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(b) Rounds = 2; Intensity = 1
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Figure 14: QE Announcements

(a) Rounds = 2; Intensity = 0.75
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(b) Rounds = 25; Intensity = 0.1
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Appendix - Proofs

Proof of Proposition 1

Recall that firm i aims to produce its expected demand
(
P̂ it
pit

) 1
1−ρ

. Under F (`, ·) = `, this will

require
(
P̂ it
pit

) 1
1−ρ

units of input so i’s profit maximization problem is max
pit

(pit − wt)
(
P̂ it
pit

) 1
1−ρ

.

Optimization yields p
(
wt; P̂

i
t

)
= wt

ρ
and thus `

(
wt; P̂

i
t

)
=
(
ρP̂ it
wt

) 1
1−ρ

. Notice that p
(
wt; P̂

i
t

)
does not depend on P̂ i

t . Substituting p
(
w∗t ; P̂

i
t

)
into equation (2) gives P ∗t =

w∗t
ρ

and substi-

tuting `
(
w∗t ; P̂

i
t

)
into equation (1) gives

w∗t
ρ

=

[∫ (
P̂ i
t

) 1
1−ρ

di

]1−ρ

. Combining these two ex-

pressions and using the definitions of π̂it and π∗t then yields π∗t = (1− ρ) ln
(∫

exp
(

π̂it
1−ρ

)
di
)

.

With π̂it ∼ N (g, σ2), we can use the moment generating function of the normal distribution

to simplify the preceding integral. Given `
(
w∗t ; P̂

i
t

)
> 0 for all i, the integral is taken over

the entire set so the moment generating function produces π∗t = g + σ2

2(1−ρ)
. �

Proof of Proposition 2

Part 1 Let φ (·) and Φ (·) denote the standard normal PDF and CDF respectively. From

Pezzey and Sharples (2007), the moment generating function of a truncated normal random

variable with mean 0 and variance σ2 is:

∫
x≥c

exp (rx)φ
(
x, σ2

)
dx = exp

(
r2σ2

2

)
Φ
(
rσ − c

σ

)
(9)

Using P̂ i
t = exp

(
π̂it
)
Pt−1 and π̂it = g+εit with εit ∼ N (0, σ2) in equation (4), we can rewrite

the operation constraint as:

εit ≥ ln

(
ψwt
Pt−1

)
− g ≡ X (10)

To ease notation, define the following constants:

κ1 ≡ θ−ρ(1−α)
θ(1−αρ)−ρ(1−α)

, κ2 ≡ θα
θ(1−αρ)−ρ(1−α)

, and κ3 ≡ (θ−ρ)(1−α)
(1−ρ)[θ(1−αρ)−ρ(1−α)]
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Combining equations (9) and (10) with the wage equation in (6) then yields an implicit

definition of X which is independent of g:

X = 1
ρκ2

ln
(
κ2U
α

)
+ 1−α

[θ−ρ(1−α)]κ2
ln
(

1
ρ(1−α)

)
+ κ1σ2

2
+ 1

κ1
ln Φ

(
κ1σ − X

σ

)
(11)

Turn now to inflation. Substitute the firm pricing equation (3) into the price aggregator (2)

and simplify to get:

∫
π̂it≥ln

(
ψw∗t
P∗t−1

) exp

(
min

{
π̂it

1−ρ ,
π∗t+ln(γt)

1−ρ

}
−κ3π̂it

)
di∫

π̂it≥ln

(
ψw∗t
P∗t−1

) exp

(
min

{
π̂it

1−ρ ,
π∗t+ln(γt)

1−ρ

}
−ρκ3π̂it

)
di

=

[(
w∗t
αρ

)κ2 (
P ∗t−1

)κ3](1−ρ)

P ∗t [ρ (1− α)]
(1−α)(1−ρ)

θ(1−αρ)−ρ(1−α)

(12)

Combining equations (11) and (12) then taking logs yields:

π∗t = ln


∫
π̂it≥ln

(
ψw∗t
P∗t−1

) exp

(
min

{
π∗t+ln(γt)

1−ρ −ρκ3π̂it,κ1π̂it
})

di∫
π̂it≥ln

(
ψw∗t
P∗t−1

) exp

(
min

{
π∗t+ln(γt)

1−ρ −κ3π̂it,κ2π̂it
})

di

 (13)

+ (1− ρ)κ2

g + κ1σ2

2
+ (1−ρ)κ3

(θ−ρ)κ1κ2
ln
(

1
ρ(1−α)

)
+ 1

κ1
ln Φ

κ1σ −
ln

(
ψw∗t
P ∗t−1

)
−g

σ




Now use π̂it = g + εit and εit ∼ N (0, σ2) with equation (9) to simplify (13). It will be useful

to define the following:

Υ (X, σ) ≡
[
κ1κ2 (1− ρ)2 − (1+ρ)(θ−ρ)2(1−α)2

[θ(1−αρ)−ρ(1−α)]2

]
σ2

2(1−ρ)
(14)

+ (1−α)(1−ρ)
θ−ρ(1−α)

[
ln
(

1
ρ(1−α)

)
+ θα

1−α ln Φ
(
κ1σ − X

σ

)]
+ ln

(
Φ(−ρκ3σ−Xσ )
Φ(−κ3σ−Xσ )

)

If X ≥ Υ (X, σ) + ln (γt), then π∗t − g = Υ (X, σ). Otherwise:
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π∗t − g =
[
κ2

1 − κ2
2 + (1− ρ)κ1κ2

]
σ2

2
+ (1−α)(1−ρ)

θ−ρ(1−α)

[
ln
(

1
ρ(1−α)

)
+ θα

1−α ln Φ
(
κ1σ − X

σ

)]
(15)

+ ln

(
Φ(κ1σ−Xσ )−Φ

(
κ1σ−

ln(γt)+π
∗
t−g

σ

)
+exp

(
(ρ2κ23−κ21)σ

2

2
+

ln(γt)+π
∗
t−g

1−ρ

)
Φ

(
−ρκ3σ−

ln(γt)+π
∗
t−g

σ

)
Φ(κ2σ−Xσ )−Φ

(
κ2σ−

ln(γt)+π
∗
t−g

σ

)
+exp

(
(κ23−κ22)σ

2

2
+

ln(γt)+π
∗
t−g

1−ρ

)
Φ

(
−κ3σ−

ln(γt)+π
∗
t−g

σ

)
)

Either way, we have a definition of π∗t − g which is independent of g. �

Part 2 Follows directly from Proposition 1. �

Part 3 The fraction of firms not operating is ∆ ≡ Φ
(
X
σ

)
. Taking derivatives yields

d∆
dσ
∝ dX

dσ
− X

σ
so what we want to show is dX

dσ
> X

σ
. Using equation (11) from the proof of

Part 1 above:

dX

dσ
= κ1σ +

X
σ

1 +
Φ

(
κ1σ−

X
σ

)
φ

(
κ1σ−

X
σ

)κ1σ

(16)

The desired inequality is thus
(
κ1σ − X

σ

) Φ

(
κ1σ−

X
σ

)
φ

(
κ1σ−

X
σ

) > −1. Using xΦ (x) > −φ (x) as shown

next completes the proof: xΦ (x) = x
x∫
−∞

φ (t) dt >
x∫
−∞

tφ (t) dt = −
x∫
−∞

φ′ (t) dt = −φ (x). �

Part 4 If α = 1, then the equations in Part 1 reduce to:

X = 1−ρ
ρ

ln
(

U
1−ρ

)
+ σ2

2(1−ρ)
+ (1− ρ) ln Φ

(
σ

1−ρ −
X
σ

)
(17)

π∗t − g = σ2

2(1−ρ)
+ (1− ρ) ln Φ

(
σ

1−ρ −
X
σ

)
(18)

We can thus write f (σ) = X− 1−ρ
ρ

ln
(

U
1−ρ

)
with X dependent on σ as per (17). To make this

dependency explicit, we further write X (σ) in place of just X. Consider any σ0 > 0 satisfying

f (σ0) = 0. That is, consider any σ0 > 0 satisfying X (σ0) = 1−ρ
ρ

ln
(

U
1−ρ

)
. If U ≥ 1 − ρ,

then X (σ0) ≥ 0 which, given dX
dσ

> X
σ

from the proof of Part 3, implies X ′ (σ0) > 0. Notice
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f ′ (·) = X ′ (·). This means that, if U ≥ 1−ρ, then any σ0 > 0 satisfying f (σ0) = 0 must also

satisfy f ′ (σ0) > 0. There is therefore at most one σ0 > 0 such that f (σ0) = 0. To show that

there is exactly one such σ0 > 0, it will be sufficient to show lim
σ→0+

f (σ) < 0 and lim
σ→∞

f (σ) >

0. Equation (17) yields X (0) ≡ lim
σ→0+

X (σ) = (1− ρ)

[
1
ρ

ln
(

U
1−ρ

)
+ ln Φ

(
lim
σ→0+

−X(σ)
σ

)]
.

Notice that X (0) > 0 is impossible while X (0) < 0 is only possible if U < 1− ρ. Therefore,

U ≥ 1− ρ implies X (0) = 0 and thus lim
σ→0+

f (σ) = −1−ρ
ρ

ln
(

U
1−ρ

)
< 0. Equation (17) also

yields lim
σ→∞

X (σ) = ∞ and thus lim
σ→∞

f (σ) = ∞. Putting everything together, we can now

conclude that there is exactly one σ0 > 0 such that f (σ0) = 0. Moreover, f ′ (σ0) > 0. �

Part 5 Define τ (U) ≡ 1
ρ

ln
(

θU
θ(1−αρ)−ρ(1−α)

)
+ 1−α

θ−ρ(1−α)
ln
(

1
ρ(1−α)

)
and Ũ ≡ τ−1 (0). Also

define U ≡ 1 − αρ − ρ(1−α)
θ

and focus on U ≤ U . If θ is finite, then Ũ < U and

it will suffice to establish the result for some subset of
(
Ũ , U

)
. We proceed with this

case before turning to θ infinite. At σ = 0, equation (11) yields X (0) ≡ lim
σ→0+

X (σ) =

1
κ2

[
τ (U) + θα

θ−ρ(1−α)
ln Φ

(
lim
σ→0+

−X(σ)
σ

)]
. Notice that X (0) > 0 is impossible while X (0) <

0 is only possible if τ (U) < 0 or, equivalently, U < Ũ . Therefore, U > Ũ implies

X (0) = 0 and thus m ≡ lim
σ→0+

−X(σ)
σ

= Φ−1
(

exp
(
− [θ−ρ(1−α)]τ(U)

θα

))
. Using equation (16)

yields lim
σ→0+

1
σ

[
X ′ (σ)− X(σ)

σ

]
=
(

1 + Φ(m)m
φ(m)

)
κ1. Using equations (14) and (15) then yields

f (0) ≡ lim
σ→0+

f (σ) = 1−ρ
ρ

ln
(
U
U

)
and f ′ (0) ≡ lim

σ→0+
f ′ (σ) = (θ−ρ)(1−α)

θU

[
φ(m)
Φ(m)

− θα(1−ρ)
(θ−ρ)(1−α)

m
]
.

At this point, it will be instructive to consider U = U and hence f (0) = 0. Define

η ≡ [ρ (1− α)]
1−α
θα . If θα(1−ρ)

(θ−ρ)(1−α)
>

φ(Φ−1(η))
ηΦ−1(η)

, then f ′ (0) < 0. By properties of the standard

normal,
φ(Φ−1(η))
ηΦ−1(η)

is decreasing in η for η > 0.5. Moreover, dη
dα
∝ 1

α
ln
(

1
ρ(1−α)

)
−1 which is pos-

itive for α sufficiently large. Since θα(1−ρ)
(θ−ρ)(1−α)

is increasing in α, it then follows that f ′ (0)� 0

if α is above some threshold α ∈ (0, 1). Next, notice that f (0), m, and f ′ (0) are continuous in

U , with df(0)
dU

< 0, dm
dU

> 0, and df ′(0)
dU

< 0. Therefore, there exists an ε > 0 such that f (σA) = 0

and f ′ (σA) < 0 for some σA > 0 if α ∈ (α, 1) and U ∈
(
U,U

)
, where U ≡ max

{
Ũ , U − ε

}
.

That there is a σB > σA such that f (σB) = 0 and f ′ (σB) > 0 follows from lim
σ→∞

f (σ) =∞.

Turn now to θ → ∞. In this case, Ũ = U = 1 − αρ so we will establish the result for
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some subset of
(
0, U

)
. At U = U , we have X (0) = 0, lim

σ→0+

−X(σ)
σ

= ∞, f (0) = 0, and

f ′ (0) = α(1−ρ)
1−αρ X

′ (0). Since X ′ (0) ≡ lim
σ→0+

X ′ (σ) ∼= X(h)−X(0)
h−0

= X(h)
h

h→0+−−−→ −∞, it follows

that f ′ (0) < 0. Taken together, f (0) = 0 and f ′ (0) < 0 imply existence of a σ > 0 such that

f (σ) < 0. Combined with lim
σ→∞

f (σ) =∞, this then implies existence of a σB > 0 satisfying

f (σB) = 0 and f ′ (σB) > 0. For f (·) continuous in U , we can thus find an ε̂ > 0 such

that there also exists a σB > 0 satisfying f (σB) = 0 and f ′ (σB) > 0 when U ∈
(
U − ε̂, U

)
.

Now, for any U ∈
(
0, U

)
, we have X (0) ∈ (−∞, 0), f (0) = 0, and f ′ (0) = α(1−ρ)

1−αρ X
′ (0),

where X ′ (0) = 1−αρ
X(0)

lim
σ→0+

(
X(σ)
σ

)2

φ
(
−X(σ)

σ

)
= 0. Also notice Υ (X (0) , 0) = 0 so, for small

taste shocks, the properties of f ′′ (·) around zero are dictated by equation (15). After some

algebra (available upon request), we obtain f ′′ (0) ≡ lim
σ→0+

f ′′ (σ) = (1−α)(α−ρ)+α(1−ρ)2

(1−αρ)2(1−ρ)
which is

positive for α ∈

(
1− ρ(1−ρ)

2
−
√(

1− ρ(1−ρ)
2

)2

− ρ, 1

)
≡ (α̂, 1). Therefore, there must exist

a σA ∈ (0, σB) satisfying f (σA) = 0 and f ′ (σA) < 0 when U ∈
(
U − ε̂, U

)
and α ∈ (α̂, 1). �

Proof of Proposition 3

To simplify notation, define λ ≡ 1
ρ

ln
(

U
1−ρ

)
. If α = 1, then the mixture equations reduce to:

exp (yt) = ξt exp
(
υ2A
2

)
Φ
(
υA − yt+λ

υA

)
+ (1− ξt) exp

(
υ2B
2

)
Φ
(
υB − yt+λ

υB

)
(19)

Under ξt = 0, equation (19) yields exp (yt) = exp
(
υ2B
2

)
Φ
(
υB − yt+λ

υB

)
. Under ξt = 1, it

yields exp (yt) = exp
(
υ2A
2

)
Φ
(
υA − yt+λ

υA

)
. Since yt = f (σB) = 0 at ξt = 0 and yt = f (σA) =

0 at ξt = 1, it follows that exp
(
υ2A
2

)
Φ
(
υA − λ

υA

)
= 1 and exp

(
υ2B
2

)
Φ
(
υB − λ

υB

)
= 1.

Consider now ξt ∈ (0, 1). If yt < 0, then exp
(
υ2i
2

)
Φ
(
υi − yt+λ

υi

)
> exp

(
υ2i
2

)
Φ
(
υi − λ

υi

)
= 1

for i ∈ {A,B} so equation (19) implies yt > 0 which is a contradiction. If yt > 0, then

exp
(
υ2i
2

)
Φ
(
υi − yt+λ

υi

)
< exp

(
υ2i
2

)
Φ
(
υi − λ

υi

)
= 1 for i ∈ {A,B} so equation (19) implies

yt < 0 which is a contradiction. Therefore, yt = 0 for ξt ∈ (0, 1). �
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