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Abstract

In this paper we develop a new strutural approach to measuring the gains from

economic integration based on a Ricardian model in which heterogeneous factors of

production are allocated to multiple sectors in multiple local markets based on com-

parative advantage. We implement our approach using data on crop markets in ap-

proximately 1,500 U.S. counties from 1880 to 2002. Central to our empirical analysis is

the use of a novel agronomic data source on predicted output by crop for small spatial

units. Crucially, this dataset contains information about the productivity of all units

for all crops, not just those that are actually being grown. Using this new approach we

find that the long-run gains from economic integration among US agricultural markets

have been substantial.



1 Introduction

How large are the gains from economic integration? Since researchers never observe markets

that are both closed and open at the same time, the fundamental challenge in answering

this question lies in predicting how local markets, either countries or regions, would behave

under counterfactual scenarios in which they suddenly become more or less integrated with

the rest of the world.

The standard approach in the international trade literature consists in estimating or cali-

brating fully specified models of how countries behave under any trading regime. Eaton and

Kortum (2002) is the most influential application of this approach. A core ingredient of such

models is that there exists a set of technologies that a country would have no choice but to

use if trade were restricted, but which the country can choose not to use when it is able to

trade. Estimates of the gains from economic integration, however defined, thereby require

the researcher to compare factual technologies that are currently being used to inferior, coun-

terfactual technologies that are deliberately not being used and are therefore unobservable to

the researcher. This comparison is typically made through the use of untestable functional

form assumptions that allow an extrapolation from observed technologies to unobserved ones.

The goal of this paper is to develop a new structural approach with less need for ex-

trapolation by functional form assumptions in order to obtain knowledge of counterfactual

scenarios. Our basic idea is to focus on agriculture, a sector of the economy in which sci-

entific knowledge of how essential inputs such as water, soil and climatic conditions map

into outputs is uniquely well understood. As a consequence of this knowledge, agronomists

are able to predict– typically with great success– how productive a given parcel of land (a

‘field’) would be were it to be used to grow any one of a set of crops. Our approach combines

these agronomic predictions about factual and counterfactual technologies with an assign-

ment model in which heterogeneous fields are allocated to multiple crops in multiple local

markets based on comparative advantage.

We implement our approach in the context of U.S. agricultural markets from 1880 to

2002– a setting with an uncommonly long stretch of high-quality, comparable micro-data

from an important agricultural economy experiencing large changes in transportation costs.

Our dataset consists of approximately 1,500 U.S. counties which we treat as separate local

markets that may be segmented by barriers to trade– analogous to countries in a stan-

dard trade model. Each county is endowed with many ‘fields’ of arable land.1 At each

of these fields, a team of agronomists, as part of the Food and Agriculture Organization’s

(FAO) Global Agro-Ecological Zones (GAEZ) project, have used high-resolution data on soil,

1While we use the term ‘fields’to describe the finest spatial regions in our dataset, fields are still relatively
large spatial units. For example, the median U.S. county contains 26 fields.
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topography, elevation and climatic conditions, fed into state-of-the-art models that embody

the biology, chemistry and physics of plant growth, to predict the quantity of yield that each

field could obtain if it were to grow each of 17 different crops in 2000.

Our empirical analysis relies on one key identifying assumption: the pattern of compar-

ative advantage of fields across crops within counties is stable over time. That is, if agrono-

mists predict that a field is 10% more productive at producing wheat than corn in 2000

compared to another field in the same county, then we assume that is 10% more productive

in all prior years, though productivity levels are free to vary across crops, counties and years.

Under this assumption, we first demonstrate how one can combine modern GAEZ data and

historical Census data to identify the spatial distribution of crop prices and crop-specific

productivity shocks across U.S. counties over time. The basic idea is to find the vector of

crop-specific productivity shocks such that the predictions of our assignment model exactly

match total output per crop as well as the total acres of land allocated to each crop in each

county. Using classical results in general equilibrium theory, we first provide mild suffi cient

conditions– which we will be able to test in the data– under which such a vector of shocks

exists and is unique. Having identified productivity shocks, we then back out the vector of

crop prices that, according to the model, must have supported this allocation as an equi-

librium outcome. The difference or wedge between “local”crop prices, estimated from the

model at the county level, and “world” prices, observed in historical data, finally give us

a measure of trade costs between each U.S. county and the rest of the world from 1880 to

2002.

In order to quantify the gains from economic integration, we focus on the following

counterfactual question: “For any pair of periods, t and t′, how much higher (or lower) would

the total value of agricultural output across U.S. counties in period t have been if trade costs

were those of period t′ rather than period t?” In our assignment model, our estimates of

historical productivity shocks and the modern GAEZ data provide suffi cient information to

construct the production possibility frontier associated with each U.S. county at any point in

time. Thus at this point, addressing the previous counterfactual question reduces to solving

a simple linear programming problem. We find that the gains from economic integration,

measured in this way, are substantial. For example, the estimated gains from 1880-1920

amount to 148% of 1880 agricultural output and those from 1950-1997 amount to 98% of

1950 output.

Another attractive feature of our new structural approach is that it allows us to estimate

simultaneously trade costs and productivity shocks. Thus we can compare– using the same

theoretical framework and the same data sources– how the gains from economic integration

compare to productivity gains in agriculture over that same period. Formally, we ask: “For

any pair of periods, t and t′, how much higher (or lower) would the total value of agricultural
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output across U.S. counties in period t have been if crop-and-county-specific productivity

shocks were those of period t′ rather than period t? Answering this question again boils

down to solving a simple linear programming problem. We find that the gains from trade

cost reductions are similar in magnitude to those of agricultural productivity improvements.

In the existing trade literature, most structural work aimed at quantifying the gains

from market integration is based on the seminal work of Eaton and Kortum (2002). A non-

exhaustive list of recent quantitative papers building on Eaton and Kortum’s (EK) approach

includes Dekle, Eaton, and Kortum (2008), Chor (2010), Donaldson (2010), Waugh (2010),

Ramondo and Rodriguez-Clare (2010), Caliendo and Parro (2010), Costinot, Donaldson, and

Komunjer (2011), and Fieler (2011), Ossa (2011), Levchenko and Zhang (2011). The EK

approach can be sketched as follows. First, combine data on bilateral imports and trade costs

to estimate the elasticity of import demand (most often through a simple gravity equation).

Second, use functional forms in the model together with elasticity of import demand to

predict changes in real GDP associated with a counterfactual change in trade costs; see

Arkolakis, Costinot, and Rodriguez-Clare (2011).

Our approach, by contrast, focuses entirely on the supply-side of the economy. First we

combine data on output and productivity to estimate producer prices, and in turn, trade

costs. Second we use the exact same data to predict the changes in nominal GDP associated

with a counterfactual change in trade costs. As emphasized above, the main benefit of our

approach is that it weakens the need for extrapolation by functional form assumptions. The

main cost of our approach– in addition to the fact that it applies only to agriculture– is that

it only allows us to infer production gains from trade. In order to estimate consumption gains

from trade, we would also need consumption data, which is not available at the county-level

in the United States over the extended time period that we consider.

Our paper is related more broadly to work on the economic history of domestic market

integration; see e.g. Shiue (2002) and Keller and Shiue (2007). Using market-level price data

this body of work typically aims to estimate the magnitude of deviations from perfect market

integration. Our approach, by contrast, first estimates market-level prices (and hence can

be applied in settings, like ours, where price data is not available), and then goes beyond

the previous literature by estimating the magnitude of the production effi ciency gains that

would occur if market integration improved.

The rest of this paper is organized as follows. Section 2 introduces our theoretical

framework,describes how to measure local prices and, in turn, how to measure the gains

from economic integration. Section 3 describes the data that feeds into our analysis. Section

4 presents our main empirical results and Section 5 explores the robustness of those results.

Finally, Section 6 concludes. All formal proofs can be found in the Appendix.
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2 Theoretical Framework

In this section we describe the theoretical framework that we use throughout our analysis.

Our approach can be broken into two steps. First, we show (using Theorem 1 and Corollary

1 in Section 2.2 below) that available data on aggregate (ie county-wide) production and

land allocation can be used, along with agronomic data on the productivity of fields across

crops, to infer the farm-gate prices that farmers appear to be facing, as well as unobserved

shocks to farmers’productivity, for any crop, county and year in our sample. Second, we

describe (in Section 2.3 below) how these estmated farm-gate prices can be used to infer the

costs that farmers appear to be facing to trade goods, as well as how to calculate the gains

(or losses) that would obtain under a counterfactual change to these trade costs.

2.1 Endowments, Technology, and Market Structure

Our theoretical framework is a comparative advantage-based assignment model, as in Costinot

(2009). At any date t we consider an economy with multiple local markets indexed by

i ∈ I ≡{1, ..., I}– in which production occurs– and one wholesale market– in which goods
are sold. In our empirical analysis, local markets will be U.S. counties. In each local

market, the only factors of production are different types of land or fields indexed by

f ∈ Fi ≡ {1, ..., Fi}. We denote by V f
i ≥ 0 the number of acres covered by field f in

market i. Fields can be used to produce multiple goods indexed by k ∈ K ≡{1, ..., K + 1}.
In our empirical analysis, goods 1, ..., K will be crops (of which there are 16 in our sample),

whereas good K+1 will be an outside good. We think of the outside good as manufacturing,

forestry, or any agricultural activity (such as livestock production) that does not correspond

to the crops included in our dataset.

Fields are perfect substitutes in the production of each good, but vary in their exogenously-

given productivity per acre, Afkit > 0. Total output Qk
it of good k in market i at date t is

given by

Qk
it =

∑
f∈Fi A

fk
it L

fk
it , (1)

where Lfkit ≥ 0 denotes the endogenous number of acres of field f allocated to good k in

market i at date t. Note that Afkit may vary both with f and k. Thus although fields are

perfect substitutes in the production of each good, some fields may have a comparative as

well as absolute advantage in producing particular goods.

All goods are produced by a large number of price-taking farms in local markets and then

shipped to the wholesale market. The profits of a representative farm producing good k in
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a local market i at date t are given by

Πk
it =

(
p̄kt

1 + τ kit

)(∑
f∈F A

fk
it L

fk
it

)
−
∑

f∈F r
f
itL

fk
it ,

where p̄kt is the selling price of good k in the wholesale market; τ
k
it ≥ 0 is an iceberg trade

cost associated with shipping good k from i to the wholesale market; and rfit is the rental rate

per acre of field f in local market i at date t. We denote by pkit ≡ p̄kt /
(
1 + τ kit

)
the farm-gate

price of good k in market i at date t. Profit maximization by farms further requires

pkitA
kf
it − r

f
it ≤ 0, for all k ∈ K, f ∈ Fi, (2)

pkitA
kf
it − r

f
it = 0, for all k ∈ K, f ∈ Fi such that Lfkit > 0. (3)

Local factor markets are segmented (ie land cannot move). Thus factor market clearing

requires ∑
k∈K L

fk
it = V f

i , for all f ∈ Fi. (4)

We leave goods market clearing conditions unspecified, thereby treating the wholesale market

as a small open economy. Formally, p̄t ≡ (p̄kt )k∈K is exogenously given. In the remainder

of this paper we denote by pit ≡
(
pkit
)
k∈K the vector of farm gate prices, rit ≡ (rfit)f∈F the

vector of field prices, and Lit ≡ (Lfkit )k∈K,f∈F the allocation of fields to goods in local market

i. Armed with this notation, we formally define a competitive equilibrium as follows.

Definition 1 A competitive equilibrium in a local market i at date t is a field allocation,

Lit, and a price system, (pit, rit), such that conditions (2)-(4) hold.

2.2 Measuring Local Prices and Productivity Shocks

In this section, we describe how we use theory and data to infer measures of local prices

and productivity across time and space. We separate this description into two parts. The

first and most important part focuses on “non-zero”crops, i.e. crops for which we observe

production in a given location at a particular point in time, while the second one deals with

“zero”crops, i.e. crops for which we do not.

“Non-zero”crops. Our dataset contains, for each local market i ∈ I, year t, and crop
k ∈ K/ {K + 1} ,historical measures of each of the following variables: (i) total farms’sales,

Ŝit, (ii) total output per crop, Q̂k
it, (iii) total acres of land allocated to each crop, L̂kit, as well

as (iv) total acres of land covered by each field, V̂ f
i . Throughout our empirical analysis, we

assume (in Assumption A1) that none of these variables is subject to measurement error–

that is, that these variables in the model (written without hats) equal their equivalents in
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the data (written with hats).

A1. In all local markets i ∈ I and at all dates t, we assume that

∑
k∈K/{K+1} p

k
itQ

k
it = Ŝit, (5)

Qk
it = Q̂k

it, for all k ∈ K/ {K + 1} , (6)∑
f∈Fi L

fk
it = L̂kit, for all k ∈ K/ {K + 1} , (7)

V f
i = V̂ f

i , for all f ∈ Fi. (8)

By contrast, we do not have access to historical productivity measures. Instead we have

access to measures of productivity per acre, Âfki2011, for each field in each market if that

field were to be allocated to the production of crop k in 2011– the agronomists who have

assembled the GAEZ project data in 2011 aim for it to be relevant to contemporaneous

farmers, not those in the distant past. Since we only have access to these measures at

one point in time, we assume (in Assumption A2) that the true productivity Afkit is equal to

measured productivity (ie Âfki2011) times some crop-and-market-and-year specific productivity

shock (denoted by αkit).

A2. In all local markets i ∈ I and at all dates t, we assume that

Afkit = αkitÂ
fk
i2011, for all k ∈ K/ {K + 1} , f ∈ Fi. (9)

The key restriction imposed by Equation (9) on the structure of local productivity shocks

is that they do not affect the pattern of comparative advantage across fields. If field f1

is deemed to be relatively more productive than field f2 at producing crop k1 than k2 in

2011, Âf1k1i2011/Â
f1k2
i2011 > Âf2k1i2011/Â

f2k2
i2011, then we assume that it must have been relatively more

productive in all earlier periods, Af1k1it /Af1k2it > Af2k1it /Af2k2it . In addition, since we do not

have any productivity data in the outside sector, we assume (in Assumption A3) that in any

given local market, all fields have a common (unknown) productivity in the outside sector.

A3. In all local markets i ∈ I and at all dates t, we assume that

Af,K+1
it = αK+1

it , for all f ∈ Fi. (10)

Now let K∗it ≡ {k ∈ K/ {K + 1} : Q̂k
it > 0}∪{K + 1} denote the set of crops with strictly

positive output in local market i at date t plus the outside good. In our empirical analysis

we will restrict attention to local markets and dates (i, t) such that the following restriction

holds.

A4. For any N ≥ 2, there does not exist a sequence {kn}n=1,...,N+1 ∈ K∗it and a sequence
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{fn}n=1,...,N ∈ Fi such that (i) k1 = kN+1 and kn 6= kn′ for all n′ 6= n, n 6= 1, n′ 6= 1,

(ii) f1 6= fN and fn 6= fn+1 for all n, and (iii) measured productivity in local market i

satisfies Âf1k1i2011 6= ÂfNk1i2011 and
∏N

n=1

(
Âfnkni2011/Â

fnkn+1
i2011

)
= 1, with the convention ÂfK+1

i2011 ≡ 1 for

all f ∈ Fi.

Assumption A4 is a mild technical restriction, which we will be able to test county-by-

county and year-by-year. In the case of N = 2, it simply states that there do not exist

two distinct goods, k1 and k2, and two distinct fields, f1 and f2, such that Â
f1k1
i2011/Â

f1k2
i2011 =

Âf2k1i2011/Â
f2k2
i2011. In other words, the pattern of comparative advantage across goods is strict.

Intuitively, without such a restriction and its generalization to N > 2, we cannot identify

crop-and-market-and-year specific productivity shock since changes in observed output con-

ditional on changes in the land allocation may not only reflect true productivity changes, but

also the reallocation across crops of fields with the same pattern of comparative advantage,

but different absolute advantage.

From now on we refer to Xit ≡
[
Ŝit, Q̂

k
it, L̂

k
it, V̂if , Â

fk
i2011

]
k∈K/{K+1},f∈Fi

as an observation

for market i at date t and to X as the set of observations such that Assumptions A1-A4

hold. We denote by A∗it ≡ {α ∈ RK+1
+ : αk > 0 if k ∈ K∗it} and P∗it ≡ {p ∈ RK+1

+ : pk > 0

if k ∈ K∗it} the set of productivity shocks and prices, respectively, that could be consistent
with an observation Xit. We also denote by Li ≡ {L ∈ R(K+1)×Fi

+ :
∑

k∈K L
fk ≤ V̂ f

i for all

f ∈ Fi} the set of feasible allocations of fields to crops. Finally, for any αit ∈ A∗it, we let
L (αit, Xit) ≡ arg maxL∈Li mink∈K∗it{

∑
f∈Fi α

k
itÂ

fk
i2011L

fk/Q̂k
it}, with the convention Q̂K+1

it ≡ 1

for all i and t. As we formally establish in the Appendix, L (αit, Xit) corresponds to the set

of effi cient allocations that, conditional on a vector of productivity shocks αit, are consistent

with relative output levels observed in the data. This set of allocations will play a crucial

role in our analysis.

Before stating our main theoretical result, we introduce the following definition.

Definition 2 Given Xit ∈ X , a vector of productivity shocks and good prices (αit, pit) ∈
A∗it × P∗it is admissible if and only if there exists a field allocation, Lit, and a vector of field
prices, rit, such that (Lit, pit, rit) is a competitive equilibrium consistent with Xit.

Put differently, a vector of unobservable productivity shocks and good prices (αit, pit) is

admissible if, given these unobserved variables, the observed variables in Xit are compatible

with perfect competition. The next theorem characterizes the set of admissible vectors of

productivity shocks and good prices.

Theorem 1 For any Xit ∈ X , the set of admissible vectors of productivity shocks and good
prices is non-empty and satisfies the two following properties: (i) if (αit, pit) ∈ A∗it × P∗it is
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admissible, then the vector
(
αkit
)
k∈K∗it/{K+1} is equal to the unique solution of∑

f∈F α
k
itÂ

fk
i2011L

fk
it = Q̂k

it for all k ∈ K∗it/ {K + 1} , (11)∑
f∈Fi L

fk
it = L̂kit for all k ∈ K∗it/ {K + 1} , (12)

where Lit ∈ L (αit, Xit); and (ii) conditional on αit ∈ A∗it and Lit ∈ L (αit, Xit) satisfying

Equations (11) and (12), (αit, pit) ∈ A∗it × P∗it is admissible if and only if∑
k∈K∗i /{K+1} p

k
itQ̂

k
it = Ŝit, (13)

αk
′

it p
k′

it Â
fk′

i2011 ≤ αkitp
k
itÂ

fk
i2011 for all k,k

′ ∈ K, f ∈ Fi, if Lfkit > 0. (14)

The proof of Theorem 1 builds on four classical results in general equilibrium theory:

the First Welfare Theorem; the Second Welfare Theorem; the existence of a competitive

equilibrium; and the uniqueness of this equilibrium in an endowment economy under the

Gross-Substitute Property. The main argument can be sketched as follows.

By the First and Second Welfare Theorems, a land allocation L is part of a competitive

equilibrium consistent with relative output levels, Q̂k
it/Q̂

k′
it for all k,k

′ ∈ K∗it, if and only if
L ∈ L (αit, Xit) ≡ arg maxL∈Li mink∈K∗it{

∑
f∈F α

k
itÂ

fk
i2011L

fk/Q̂k
it}. Thus to find a vector of

admissible productivity shocks and good prices, one can start by finding a vector
(
αkit
)
k∈K∗it

,

up to a normalization, such that Equations (11) and (12) hold. Mathematically, the problem

of finding
(
αkit
)
k∈K∗it

such that Equation (12) holds is akin to the problem of proving the

existence and uniqueness of a vector of competitive prices in an endowment economy, with

the observed allocation L̂kit playing the role of the exogenous endowments. Since a version

of the Gross-Substitute Property holds in our environment, such an
(
αkit
)
k∈K∗it

exists and is

unique, up to a normalization. The overall productivity level can then be chosen so that

the land allocation L not only matches relative output levels, but also absolute levels. This

is the idea behind Equation (11). Once productivity shocks have been identified and the

associated equilibrium allocation has been constructed, Condition (14) directly derives from

the zero-profit conditions (2) and (3). Finally, given relative prices, the overall price level

can be chosen so that total sales in equilibrium are equal to total sales in the data. That is

the idea behind Equation (13).

According to Theorem 1, productivity shocks are identified whenever a crop is produced.

By contrast, Theorem 1 allows, in principle, for a large number of admissible good prices.

For almost all observations Xit ∈ X , however, this is not so. Namely, admissible good
prices for crops that are produced must also be unique. To see this, note that for almost

all observations, the output vector associated with the equilibrium allocation is not colinear

to a vertex of the Production Possibility Frontier (PPF). This is illustrated in Figure 1,
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Figure 1: Production possibility frontiers (PPF) for one county and year in our dataset in
which only two crops were produced. The blue line (“HN-M1-adjusted”) illustrates the PPF
after adjustment for selection into the outside good, but before adjustment for productivity
shocks; the green line (“NHN-M1 adjusted") illustrates the PPF after additional adjustment
for productivity shocks. The red dot (where the two lines cross) is the county’s actual
production point in this year.

which corresponds to one of the approximately 20,000 county-years in our dataset, Tuscola,

MI, in 2002; this county-year is chosen because it is a rare case in which a county-year is

producing only two non-zero crops. Whenever we are in such a situation, for any pair of

crops k, k′ ∈ K∗it/ {K + 1}, there exists a field f ∈ Fi such that Lfkit × L
fk′

it > 0. Condition

(14) therefore implies that the relative price of these two crops is uniquely determined by

pk
′
it /p

k
it = αkitÂ

fk
i2011/α

k′
it Â

fk′

i2011. The overall level can then be computed using Equation (13).

We can state the following corollary to Theorem 1.

Corollary 1 For almost all Xit ∈ X ,
(
pkit
)
k∈K∗it/{K+1} is equal to the unique solution of∑

k∈K∗i /{K+1} p
k
itQ̂

k
it = Ŝit, (15)

pk
′
it

pkit
=

αkitÂ
fk
i2011

αk
′
it Â

fk′

i2011

, for any f ∈ Fi such that Lfkit × L
fk′

it > 0, (16)

where
(
αkit
)
k∈K∗it/{K+1} and Lit are as described in Theorem 1.

Theorem 1 and Corollary 1 have two attractive features. First, they imply that for any

“non-zero”crop k, i.e. any crop with strictly positive output in county i at date t, the pro-

ductivity shock, αkit, and the local price, p
k
it, are almost always identified– and in our dataset,

they always will be. Second, they imply that conditional on a vector of productivity shocks,
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αit, the problem of solving for prices, pit, is a linear program.2 Since our dataset includes

approximately 1,500 counties over 12 decades, this is very appealing from a computational

standpoint. In spite of the high-dimensionality of the problem we are interested in– the

median U.S. county in our dataset features 16 crops and 26 fields– it is therefore possible

to characterize the set of unknowns (i.e. αi and pi) in each county in a short period of time

using standard software packages.

“Zero” crops. Theorem 1 and Corollary 1 only provide information about crops that

are produced in a local market at a given date. This is intuitive. For k /∈ K∗it, we know
that output is zero, but since the amount of resources allocated to these crops is also zero,

we do not know whether this outcome reflects low prices or low productivity levels. For

our counterfactual exercises, however, we will need to take a stand on what productivity

shocks and prices were for “zero”crop, i.e. crops that were not produced. To fill this gap

between theory and data, we first assume that whenever a crop is not produced in a given

county-year, the productivity shock is equal to the national average of observed productivity

shocks for that crop (ie shocks for counties where that crop is produced) in that year.

A5. In all local markets i ∈ I and at all dates t, we assume that

αkit =
1

Nk
t

∑
j∈I:k∈K∗jt/{K+1} α

k
jt, for all k /∈ K∗it, (17)

where Nk
t is the number of markets with positive output of crop k in period t.

Second we use the fact that conditional on αkit, Inequality (14) in Theorem 1 pro-

vides an upper-bound on the relative price of crops with zero ouput. Formally, Theo-

rem 1 implies that if k /∈ K∗it, then pkit must be bounded from above by p̃kit/α
k
it, where

p̃kit ≡ mink′∈K∗it/{K+1}

{
pk
′
itα

k′
it minf :Lfk′>0

{
Âfk

′

i2000/Â
fk
i2000

}}
. In our baseline counterfactual

exercises, we simply assume that this upper-bound is binding.

A6. In all local markets i ∈ I and at all dates t, we assume that

pkit = p̃kit/α
k
it, for all k /∈ K∗it, (18)

where αkit is given by Equation (17).

Section 5 discusses the sensitivity of our results to these two assumptions.

2Solving for productivity shocks is only slighlty more complicated since it requires looking for the fixed
point of a function that itself is defined as the solution of a linear program.
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2.3 Measuring Aggregate Gains from Economic Integration and

Productivity Improvements in Agriculture

The goal of Section 2.2 above was to infer the unkown farm-gate prices (pkit) and productivity

shocks (αkit) that prevailed in each local market i, year t and crop k in our dataset. We

have described a procedure by which these unknowns can be identified from aggregate (ie

county-wide) data on farmers’choices about what to grow using how much land. We now

turn to the second stage of our analysis, in which we aim to measure the gains from a

counterfactual rise in economic integration.

In order to measure gains from economic integration, we first need to estimate trade costs

and how they vary over time. For any crop k ∈ K/ {K + 1}, Corollary 1 and Assumption
A6 provide measures of pkit. Thus using our model, we can estimate trade costs using

τ kit =
p̄kt
pkit
− 1, for all k ∈ K/ {K + 1} . (19)

Given these measures of trade costs, we then estimate gains (or losses) from changes in the

degree of economic integration across markets between two periods t and t′ > t by answering

the following counterfactual question: “How much higher (or lower) would the total value

of crops produced in period t have been if trade costs were those of period t′ rather than

period t?”The counterfactual equilibrium that we construct to address this question has

two features that are worth emphasizing.

First, and most importantly, we assume that crop producers in market i at date t maxi-

mize profits facing the counterfactual prices,
(
pkit
)′

= p̄kt /
(
1 + τ kit′

)
, rather than the observed

prices pkit = p̄kt /
(
1 + τ kit

)
, where trade costs at both dates are computed using Equation

(19). Second, we assume that the overall land allocation to crops is the same in the observed

equilibrium and the counterfactual equilibrium. Namely, if Lf,K+1 acres of a field f are

allocated to the outside good in the initial equilibrium, then Lf,K+1 acres remain allocated

to the outside good in the counterfactual equilibrium. This implies that our measure of the

gains from economic integration will abstract from any reallocation from the outside good

to crops and vice versa. Given our lack of information about the outside good, in general,

and the trade costs that it might face at different points in time, in particular, we believe

that this is the right approach. The only role of the outside good in our paper is to solve for

endogenous sorting of fields into the economic activities for which we have data, i.e. crops.

Let
(
Qk
it

)′
denote the counterfactual output level of crop k in market i at date t. Using

this notation, we measure the gains (or losses) from changes in the degree of economic

11



integration between two periods t and t′ > t as:

∆τ
tt′ ≡

∑
i∈I
∑

k∈K
(
pkit
)′ (

Qk
it

)′∑
i∈I
∑

k∈K p
k
itQ̂

k
it

− 1. (20)

By construction, ∆τ
tt′ measures how much larger (or smaller) the total value of output across

crops would have been in period t if trade costs were those of period t′ rather than those

of period t. It is important to note that in Equation (20), we use local prices to evaluate

output both in the original and the counterfactual equilibrium. This is consistent with the

view that differences in local crop prices reflect “true”technological considerations: farmers

face the “right”prices, but local prices are lower because of transportation costs. One can

therefore think of ∆τ
tt′ as a measure of aggregate productivity gains in the transportation

sector, broadly defined, between t and t′.3

We follow the same approach to estimate the gains (or losses) from productivity changes in

agriculture. Namely, for any pair of periods t and t′ > t, we ask: “Howmuch higher (or lower)

would the total value of output across local markets in period t have been if productivity

shocks were those of period t′ rather than period t?”The answer to this question provides

an aggregate measure of productivity changes in agriculture between these two periods. In

line with the previous counterfactual exercise, we construct the counterfactual equilibrium

under the assumption that the overall land allocation to crops is the same as in the initial

equilibrium. Let
(
Qk
it

)′′
denote the counterfactual output level of crop k in market i at date t

if farms in this market were maximizing profits facing the counterfactual productivity shocks(
αkit
)′′

= αkit′ rather than the true productivity shocks α
k
it. Using this notation, we measure

the gains (or losses) from productivity changes in agriculture between two periods t and

t′ > t as:

∆α
tt′ ≡

∑
i∈I
∑

k∈K p
k
it

(
Qk
it

)′′∑
i∈I
∑

k∈K p
k
itQ̂

k
it

− 1. (21)

In the rest of this paper, we implement the strutural approach described in this section in

the context of U.S. agricultural markets from 1880 to 2002.

3 Data

Our analysis draws on three main sources of data: modern data on predicted productivity

by field and crop (from the FAO-GAEZ project); historical county-level data (from the US

Agricultural Census) on output by crop, cultivated area by crop, and total sales of all crops;

and historical data on reference prices. We describe these here in turn.

3We discuss alternative interpretations of price gaps in Section 5.
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3.1 Modern Productivity Data

The first and most novel data source that we make use provides measures of productivity

(i.e. Âci (f) in the model above) by crop c, county i, and field f . These measures comes

from the Global Agro-Ecological Zones (GAEZ) project run by the Food and Agriculture

Organization (FAO).4 The GAEZ aims to provide a resource that farmers and government

agencies can use (along with knowledge of prices) to make decisions about the optimal crop

choice in a given location that draw on the best available agronomic knowledge of how crops

grow under different conditions.

The core ingredient of the GAEZ predictions is a set of inputs that are known with

extremely high spatial resolution. This resolution governs the resolution of the final GAEZ

database and, equally, that of our analysis– what we call a ‘field’ (of which there are 26

in the median U.S. county) is the spatial resolution of GAEZ’s most spatially coarse input

variable. The inputs to the GAEZ database are data on an eight-dimensional vector of soil

types and conditions, the elevation, the average land gradient, and climatic variables (based

on rainfall, temperature, humidity, sun exposure), in each ‘field’. These inputs are then

fed into an agronomic model– one for each crop– that predicts how these inputs affect the

‘microfoundations’of the plant growth process and thereby map into crop yields. Naturally,

farmers’decisions about how to grow their crops and what complementary inputs (such as

irrigation, fertilizers, machinery and labor) to use affect crop yields in addition to those

inputs (such as sun exposure and soil types) over which farmers have very little control.

For this reason the GAEZ project constructs different sets of productivity predictions for

different scenarios of farmer inputs. In our baseline results we use the scenario that relates

to ‘mixed inputs, with possible irrigation.’We come back to other scenarios in Section 5.

Finally it is important to emphasize that while the GAEZ project has devoted a great

deal of attention to testing their predictions on knowledge of actual growing conditions (e.g.

under controlled experiments at agricultural research stations) the GAEZ project does not

form its predictions by estimating any sort of statistical relationship between observed inputs

around the world and observed outputs around the world. Indeed, the model outlined above

illustrates how inference from such relationships could be misleading; the average productiv-

ity among fields that produce a crop in any given market and time period is endogenous and

conditioned on the set of fields who endogenously produce that crop at prevailing prices.

4This database has been used by Nunn and Qian (2011) to obtain predictions about the potential pro-
ductivity of European regions in producing potatoes, in order to estimate the effect of the discovery of the
potato on population growth in Europe.
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3.2 Historical Output, Area and Sales Data

The second set of data on which we draw contains records of actual output by crop, Q̂c
i ,

area of land harvested under each crop, L̂ci , and the nominal value of total sales of all

crops taken together, Ŝi, in each U.S. county from 1880-2002.5 These measures come from

the Census of Agriculture that began in 1840 and has been digitized in Haines (2005).6 The

Census was conducted decadally until 1950 and then roughly once every five years thereafter;

however, the 1930 and 1940 data are not available in digital form (for all counties in our

sample). Although the total output of each crop in each decade in each county is known,

such measures are not available for spatial units smaller than the county (such as the ‘field’).

An important consideration in using the data on total crop sales (in order to construct Ŝi)

is that farmers from 1880-1920 were asked to report the total value of crops produced (which

is appropriate for our analysis), whereas from 1950 onwards farmers were asked to report

the value of crops actually sold. For this reason in our preliminary use of the data here we

simply avoid making comparisons across the 1920-1950 period in which the two proxies for Ŝi
differ. We use only the approximately 1,500 counties that reported agricultural output data

in 1880.7 Although the total output of each crop in each decade in each county is known,

such measures are not available for spatial units smaller than the county (such as the ‘field’,

f).

3.3 Historical Price Data

A final source of data that we use is actual data on observed producer (i.e. farm-gate) prices.

While price data is not necessary for our analysis, below we perform some simple tests of

our exercise by comparing farm-gate price data to the predicted prices that emerge from

our exercise. Unfortunately, the best available price data is at the state-, rather than the

county-, level. Indeed, if county-level farm-gate price data were available the first step of

our empirical analysis below, that in which we estimate local prices, would be unnecessary.

The state-level price data we use comes from two sources. First, we use the Agricultural

Time Series-Cross Section Dataset (ATICS) from Cooley, DeCanio and Matthews (1977),

which covers the period from 1866 (at the earliest) to 1970 (at the latest).8 Second, we have

5We refer to the years in our dataset by the yeasr in which the corresponding Census was published (eg
1880) rather than the year in which farmers were enumerated (1879).

6While the Agricultural Census began in 1840 it was not until 1880 that the question on value of total
crop sales was added. For this reason we begin our analysis in 1880.

7This figure is approximate because the exact set of counties is changing from decade to decade due to
redefinitions of county borders. None of our analysis requires the ability to track specific counties across
time so we work with this unbalanced panel of counties (although the exact number varies only from 1,447
to 1,562).

8We are extremely grateful to Paul Rhode for making a copy of this data available to us.
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extracted all of the post-1970 price data available on the USDA (NASS) website so as to

create a price series that extends from 1880 to 2002.

4 Empirical Results

This section presents preliminary estimates of the gains from economic integration within

US crop agriculture from 1880-2002. Before presenting these estimates, however, we first

discuss (in the next subsection to follow below) the empirical plausibility of our estimates of

farm gate prices, which are central to our analysis.

4.1 Do Estimated Farmgate Prices Look Sensible?

The first step of our analysis uses Corollary 1 to estimate the local price for each of our 16

crops (or upper bound on each crop that is not grown) in each of our approximately 1,500

counties, in each of our sample years from 1880 to 2002.

Having done this, we first ask how well these estimated prices correspond to actual price

data. The procedure we follow here is not intended to be a formal test of our model (and

the underlying agronomic model used by GAEZ). As mentioned before, the best farm-gate

price data available is at the state-level, whereas our price estimates are free to vary at the

county-level. Our goal here is more modest. We simply aim to assess whether the price

estimates emerging from our model bear any resemblance to those in the data.

In order to compare our price estimates to the state-level price data we therefore simply

compute averages across all counties within each state, for each crop and year. (We do

not use the price estimates obtained for zero-output crops in calculating these averages.)

We then simply regress our price estimates on the equivalent prices in the data (without a

constant), year by year (on all years in our sample after the start of the Cooley et al (1977)

price data, 1866), pooling across crops and states.

Table 1 contains the results of these simple regressions. In all cases we find a positive

and statistically significant correlation between the two price series, with a coeffi cient that

varies between 0.69 and 1.05 depending on the specification.9 While most of the coeffi cient

estimates are below one (the result that would obtain if price estimates agreed perfectly with

price data) this is unsurprising given that the regressor, actual price data, is mismeasured

from our perspective because it constitutes a state-level average of underlying price observa-

tions whose sampling procedure is unknown. Given this, we consider the results in Table 1

to be encouraging. Our procedure for estimating local prices had nothing to do with price

9We have also looked at the correlation between relative (ie across crops, within state-years) price esti-
mates and price data by running regressions across all (unique and non-trivial) such crop pairs for which
data are available. The coeffi cients are again positive, statistically significant, and range from 0.58 to 0.89.
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Table 1: Correlation between estimated prices and price data

     Dep. variable:

(1) (2) (3) (4) (5) (6) (7) (8)

observed producer 0.810*** 0.713*** 0.680*** 0.692*** 1.049*** 0.842*** 0.804*** 0.835***
price (from real (0.0186) (0.0215) (0.0336) (0.0395) (0.00553) (0.0217) (0.0258) (0.0506)
world)

Logs or levels Levels Levels Levels Levels Logs Logs Logs Logs
constant No Yes Yes Yes No Yes Yes Yes
crop fixed effect No No Yes Yes No No Yes Yes
year fixed effect No No No Yes No No No Yes

R­squared 0.408 0.285 0.370 0.431 0.929 0.352 0.614 0.714

observations 2,766 2,766 2,766 2,766 2,766 2,766 2,766 2,766

estimated price (from model)

Notes:  Robust standard errors, clustered at the state­level, in parentheses. *** indicates statistically significant at

0.1% level. Columns (1) and (5) report uncentered R­squared values.

data at all– its key inputs were data on quantities and technology. But reassuringly there

is a robust correlation between our price estimates and price estimates in real data.

4.2 Gains from Economic Integration

We now turn to our preliminary estimates of the gains from economic integration. As

discussed in Section 2.3 above, we formulate these gains as the answer to the following

counterfactual question: “How much higher (or lower) would the total value of output across

local markets in period t have been if ‘wedges’were those of period t′ rather than period t?”

Given our ability to construct the PPF for each county using the GAEZ productivity data,

answering this question is straightforward once we know the prices that would prevail in

each county under this counterfactual scenario. In order to formulate those prices, however,

we are required to take a stand on the reference price to use in period t; recall from Section

2.3 above that we model the local farm gate price as pcit = p̄ct/ (1 + τ cit).

To construct reference prices we make two extreme assumptions that will be relaxed in

future work. First, we assume that all of the counties in our sample (of Eastern U.S. counties)

were trading at least some of their output with one major agricultural wholesale market, that

in New York City. This implies that the New York City price can be used as the reference

price (since free arbitrage would ensure that, under this assumption, pcit = p̄ct/ (1 + τ cit) always

holds). Second, we assume that trade costs within New York state were small (relative to

the costs of trading at longer distances) such that we can obtain a preliminary estimate of
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Figure 2: The gains (or losses) from a counterfactual change in economic integration in
which trade costs (price gaps) and agricultural productivity levels from year t are replaced
with those from year t′ = 1920. The red line (solid dots) plots ∆τ

tt′(gains when price
gaps are interpreted as pure transport costs) and the blue line (open dots) plots ∆̃α

tt′(gains
from agricultural technological change holding price gaps constant), but where the reported
numbers expressed as an annual compounding growth rate from year t to year t′.

the reference price, the New York City wholesale market price, from the New York state

farm-gate price which is available in the Cooley et al (1977) and USDA state-level price

dataset.

Armed with data on reference prices, p̄ct , for each year and crop we follow the procedure

in Section 2.3 above to compute the gains from various counterfactual scenarios of economic

integration. As described in Section 3.2 the sales data (used to construct Ŝi) cannot be

used– without auxiliary information that we aim to incorporate in future work– to draw

comparisons between years prior to 1920 and years after 1950. For this reason we simply

describe two counterfactual scenarios here: that for the gains from 1880-1920 (i.e. t corre-

sponds to years from 1880 − 1910 and t′ corresponds to 1920) and that for the gains from

1950-1997 (i.e. t = 1950 to 1997 and t′ = 2002).

Our results are presented in Figure 1 (for 1880-1920) and Figure 2 (for 1950-2002). Figure

1 plots (in red) the value of ∆τ
tt′ by year t for the case of t

′ = 1920 and Figure 2 does the

same for t′ = 2002. In both cases ∆τ
tt′ is expressed in compounding annual growth rates from

year t to t′ to aid interpretation across different lengths of time period (from t to t′).
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Figure 3: The gains (or losses) from a counterfactual change in economic integration in
which trade costs (price gaps) and agricultural productivity levels from year t are replaced
with those from year t′ = 2002. The red line (solid dots) plots ∆τ

tt′(gains when price
gaps are interpreted as pure transport costs) and the blue line (open dots) plots ∆̃α

tt′(gains
from agricultural technological change holding price gaps constant), but where the reported
numbers expressed as an annual compounding growth rate from year t to year t′.
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We find that, according to the formula in equation (20), ∆t=1880,t′=1920 = 1.48 and

∆t=1950,t′=2002 = 0.98. These estimates imply that substantial inter-spatial price differ-

ences have existed within the United States, but that these differences have become smaller

over time (both before and after the second World War). Further, the gains from economic

integration that have accrued as spatial price gaps have fallen are substantial– for example,

equal to 2.3% compounding per annum growth from 1880-1920 or 1.3% from 1950-2002.

To put these estimates in context we compare them, in Figures 1 and 2, to the growth of

productivity within the agricultural sector; that is, we plot (in blue) the value of ∆αtt′ for

each year t. It is straightforward to do so within our framework because we have estimated

technology shifters, αci,t, by county, crop and year. If we consider instead a counterfactual

scenario in which year t technology is replaced with year t′technology (holding wedges fixed

at their year t levels) we find that the per annum gains, according to Equation (20) are

1.50% from 1880-1920 and 1.53% from 1950-2002. That is, gains from economic integration

are on the same order of magnitude as the gains from pure agricultural productivity growth.

There remains much to be done in exploring these estimates further– breaking them

down by region, exploring their robustness to alternative methods for obtaining reference

prices and estimating wedges, and implementing important robustness checks. Nevertheless

these preliminary results strike us as both encouraging and plausible.

5 Robustness

To measure the gains from economic integration, we have proceeded in two steps. First, we

have made assumptions on the production functions of various crops and how they vary over

time to infer the distribution of price gaps between local markets and wholesale markets over

time. Most notably, we have assumed that land was the only factor of production (Equation

1) and that the pattern of comparative advantage across heterogeneous parcels of land was

stable over time (Assumption A2). Second, we have interpreted the price gaps inferred from

our model as transportation costs between local and wholesale markets (Equation 20). We

now discuss the sensitivity of our estimates of the gains from economic integration to these

two sets of assumptions.

5.1 Alternative Interpretations of Price Gaps

For now, let us take the price gaps estimated in Section 4 at face value. There are two

separate issues associated with the interpretation of these price gaps. The first issue is

whether the price gaps represent true transportation costs, in which case the prices used to

estimate the value of output should be local prices as in Equation (20), or whether the price
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gaps represent distortions broadly defined, in which case the prices used to estimate the value

of output should be the prices in the wholesale market. The second issue is: assuming that

price gaps reflect true transportation costs, which transportation costs do they measure? In

the model, local markets are assumed to export output to the wholesale market. Thus price

gaps must reflect the cost of shipping cost from the local market to the wholesale market. In

practice, however, local markets may be exporting to other local markets or even importing

crops from the wholesale market.

Price gaps as distortions. To address the first issue, we consider the following alternative
measure of the gains from economic integration:

∆̃τ
tt′ ≡

∑
i∈I
∑

k∈K p̄
k
t

(
Qk
it

)′∑
i∈I
∑

k∈K p̄
k
t Q̂

k
it

− 1. (22)

Like in Section 5,
(
Qk
it

)′
denotes the counterfactual output level of crop k in market i at

date t when crop producers in market i at date t maximize profits facing the counterfactual

prices,
(
pkit
)′

= p̄kt /
(
1 + τ kit′

)
, rather than the observed prices pkit = p̄kt /

(
1 + τ kit

)
. The only

difference between Equations (20) and (22) is that Equation (22) evaluates output using

prices in the wholesale market rather than local prices. As alluded to above, the implicit

assumption underlying ∆̃τ
tt′ is that differences in local crop prices reflect “true”distortions.

In order to maximize total agricultural revenue in the United States, local farmers should

be maximizing profits taking the reference prices p̄kt as given, but because of various local

policy reasons, they do not. This alternative measure of the gains from economic integration

is close in spirit to the measurement of the impact of misallocations on TFP in Hsieh and

Klenow (2009). In Equation (22) τ kit is interpreted as a “wedge,”i.e. a tax, that may vary

across crops over space.

Figures 3 and 4 report the gains from economic integration using this alternative measure

(ie ∆̃τ
tt′) alongside the estimates seen earlier in Figures 1 and 2 (ie based on ). It is clear

that, as expected, an interpretation of price gaps as pure transportation costs (that consume

resources in shipping) leads to larger estimated gains than an interpretation of these price

gaps as pure policy distortions (that redistribute revenue lump-sum) But even the pure pol-

icy distortions interpretation of price gaps suggests that the gains from economic integration

have been significant.

Price gaps as directed trade costs. To address the second issue, the ideal approach
would consist in combining the price gaps inferred from the model with data on trade flows

from and to local markets. Such data, unfortunately, are unavailable. We therefore settle on

the following approach: we propose an alternative assumption about the direction of trade

flows that also is consistent with our measures of prices and explore how this alternative
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Figure 4: The gains (or losses) from a counterfactual change in economic integration in which
trade costs (price gaps) from year t are replaced with those from year t′ = 1920. The red
line (solid dots) plots ∆τ

tt′(gains when price gaps are interpreted as pure transport costs)
and the blue line (open dots) plots ∆̃τ

tt′(gains when price gaps are interpreted as pure policy
distortions that are redistributed lump sum), but where the reported numbers expressed as
an annual compounding growth rate from year t to year t′.
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Figure 5: The gains (or losses) from a counterfactual change in economic integration in which
trade costs (price gaps) from year t are replaced with those from year t′ = 2002. The red
line (solid dots) plots ∆τ

tt′(gains when price gaps are interpreted as pure transport costs)
and the blue line (open dots) plots ∆̃τ

tt′(gains when price gaps are interpreted as pure policy
distortions that are redistributed lump sum), but where the reported numbers expressed as
an annual compounding growth rate from year t to year t′.
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assumption affects our measures of the gains from economic integration.

In our baseline results, we have assumed that all local markets export to the wholesale

market. Under this assumption, local prices should always be lower than prices in the

wholesale market. In the data, they are not. Thus our baseline results implicitly rely on the

assumption that there is measurement error in the prices of the wholesale market, which we

find quite reasonnable. The idea is that if some local prices appear to be higher, it is only

because the true wholesale price is lower than what is observed in the data.10 An alternative

approach would be to assume that prices in the wholesale market are measured without

error. Under the maintained assumption that local markets are trading with the wholesale

market, a higher local price should now be interpreted as a measure of exporting cost from

the wholesale market to the local market. Compared to our baseline results, a very high

local price should be interpreted as a very high trade cost, not a very low trade cost subject

to high measurement error.

Formally, let Ik−t ≡
{
i ∈ I|pkit < p̄kt

}
and Ik+

t ≡
{
i ∈ I|pkit ≥ p̄kt

}
denote the set of coun-

ties with local prices lower and higher, respectively, than the price of crop k in the local

market. Compared to Section 2.3, we now propose to measure trade costs as

τ kit =
p̄kt
pkit
− 1, for all k ∈ K/ {K + 1} and i ∈ Ik−t , (23)

τ kit =
pkit
p̄kt
− 1, for all k ∈ K/ {K + 1} and i ∈ Ik+

t . (24)

Conditional on this new mapping between price gaps and trade costs, we then measure the

gains from economic integration as

∆−τtt′ ≡
∑

k∈K
∑

i∈Ik−
(
pkit
)′ (

Qk
it

)′∑
k∈K

∑
i∈Ik− p

k
itQ̂

k
it

− 1,

where
(
Qk
it

)′
again denotes the counterfactual output level when crop producers face the coun-

terfactual prices,
(
pkit
)′

= p̄kt /
(
1 + τ kit′

)
, rather than the observed prices pkit = p̄kt /

(
1 + τ kit

)
.

Note that ∆−τtt′ implictly assumes that (i) changes in trade costs do not revert the direction

of trade flows and (ii) trade costs are symmetric, i.e. the cost of shipping crops from the

local markets to the wholesale market is the same as the cost of shipping crops from the

wholesale market to the local markets.
10As long as measurement error is constant across crops and over time, measurement error does not affect

the measure of the gains from economic integration given by Equation (20).
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5.2 Alternative Forms of Technological Change

Over the time period that we consider, 1880-2002, U.S. agriculture has experienced dramatic

technological change, from increased irrigation and mechanization to the adoption of fertil-

izers and hybrid seeds. While our dataset provides an unusually rich picture of differences

in productivity across fields over space, it does not contain any information about how the

previous technological changes may have affected productivity over time. In order to esti-

mate local prices at various point in time, our empirical strategy therefore relies on one key

identifying assumption: the pattern of comparative advantage of fields across crops within

counties is stable over time (Assumption A2). The goal of this subsection is to explore the

sensitivity of our results to this assumption.

To do so, we take advantage of another attractive feature of the GAEZ data mentioned

in Section 3: the predicted productivity of a given parcel of land is available under various

scenarios. For our baseline resuts, we have chosen the scenario that relates to ‘mixed inputs,

with available irrigation’for all years. One might expect that scenarios with lower levels of

non-land inputs are a better description of U.S. agriculture in the earlier years of our sample.

If so, the question is: Would allowing for that particular form of technological change– i.e.,

variations in GAEZ scenarios over time– have large effects on our results? The short answer

is no.

The main reason behind the roubustness of our results is that Assumption A2 holds

reasonably well across GAEZ scenarios in the sense that the relative productivity of fields

across crops is fairly stable. Namely, if we regress the predicted productivity of field f for

crop k in county i under each available alternative scenario on a crop-county-scenario fixed

effect, we find that the R-squared ranges from 0.78-0.82. In other words, changes in the

pattern of comparative advantage across GAEZ scenarios only account for approximately

20% of the variation in productivity across crops and fields. Since our empirical strategy is

only sensitive to changes in the pattern of comparative advantage, assuming different GAEZ

scenarios over time leads to very small differences in our estimates of the gains from economic

integration.

5.3 Other Factors of Production

Although the only factors of production in our baseline model are heterogeneous fields, it

should be clear that– fortunately– our results do not hinge on the assumption that land is

the only factor of production in the world. Instead, our baseline results implicitly rely on

the assumption that each crop is produced using land and other factors of production in a

similar Leontieff fashion over time. Specifically, the baseline results in Section 4 above rely

on the assumption that productivity in the GAEZ data, Âfki2011, can be interpreted as the

24



productivity of “equipped”land and that the time variation in land “equipment”does not

violate Assumption A2.

In this subsection, we generalize our approach to allow for some substitution between

factors of production and for factor intensity to vary over time and space. Formally, we

assume the production for each crop k in a local market i at date t is now given by

Qk
it =

∑
f∈F A

fk
it

(
Lfkit

)βit (
N fk
it

)1−βit
,

where βit ∈ [0, 1] measures the land intensity of crop k and Nk
it ≥ 0 denotes the number of

workers producing that cropy. In the same way that land was interpreted as equipped land

in our baseline model, labor should now be interpreted as equipped labor.

Let wit denote the wage in county i at date t. The profits of a representative farm

producing crop k in a local market i and selling it to the wholesale market are now given by

Πk
it =

[
p̄kt /
(
1 + τ kit

)](∑
f∈F A

fk
it

(
Lfkit

)βit (
N fk
it

)1−βit
)
−
∑

f∈F

(
rfitL

fk
it + witN

fk
it

)
. (25)

Compared to Section 2.1, cost minimization by farms now requires

N fk
it =

1− βit
βit

rfit
wit

Lfkit .

Subsituting for the optimal input mix in Equation (25), we can rearrange farmer’s profit

function as

Πk
it = pkit

∑
f∈F

Afkit −
(
rfit

)βit
(wit)

1−βit

(βit)
βit (1− βit)

1−βit

(1− βit
βit

rfit
wit

)1−βit

Lfkit .

In line with Section 2.1, profit maximization by farms therefore requires

pkitA
fk
it − c

f
it ≤ 0, for all c ∈ C, f ∈ F , (26)

pkitA
fk
it − c

f
it = 0, for all c ∈ C, f ∈ F such that Lfkit > 0. (27)

where cfit = (rfit)
βit (wit)

1−βit
/

(βit)
βit (1− βit)

1−βit . Factor market clearing in market i still

requires ∑
k∈K L

fk
i ≤ V f

i , for all f ∈ Fi. (28)

Finally, we assume that the wage wit is exogenously pinned down by labor market conditions

in counties or economic activities outside of our dataset. Definition 1 generalizes to this new

environment in a straightforward manner.
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In order to implement our structural approach in this more general environment, we use

historical data on an additional variable, also available from the U.S. Census of Agriculture:

β̂it, the average labor intensity in county i at date t computed as the ratio of total farm

sales to total labor expenditure. In line with Section 2.2, we assume that this variable is

not subject to measurement error: βit = β̂it. Given this new information, and without

any risk of confusion, we now refer to an observation for market i at date t as Xit ≡[
ŵit , β̂it, Ŝit, Q̂

k
it, L̂

k
it, V̂if , Â

fk
i2011

]
k∈K/{K+1},f∈F

. Finally, we let Zi ≡ {(L,N) ∈ Li×R(K+1)×Fi
+ }

denote the set of feasible allocations in county i and let

Z (αit, Xit) ≡ arg max
(L,N)∈Zi

{
min
k∈K∗it
{
∑

f∈Fi α
k
itÂ

fk
i2011

(
Lfkit

)βkit (
N fk
it

)1−βkit
/Q̂k

it} − wit
∑

k∈K∗it

∑
f∈Fi N

fk
it

}
(29)

denote the the set of effi cient allocations that, conditional on a vector of productivity shocks,

are consistent with relative output levels observed in the data. Using this notation, our main

theorem generalizes as follows.

Theorem 2 For any Xit ∈ X , the set of admissible vectors of productivity shocks and good
prices is non-empty and satisfies the two following properties: (i) if (αit, pit) ∈ A∗it × P∗it is
admissible, then the vector

(
αkit
)
k∈K∗it/{K+1} is equal to the unique solution of

∑
f∈Fi α

k
itÂ

fk
i2011

(
Lfkit

)βit (
N fk
it

)1−βit
= Q̂k

it for all k ∈ K∗it/ {K + 1} , (30)∑
f∈F L

fk
it = L̂kit for all k ∈ K∗it/ {K + 1} , (31)

where (Lit, Nit) ∈ Z (αit, Xit); and (ii) conditional on αit ∈ A∗it and (Lit, Nit) ∈ Z (αit, Xit)

satisfying Equations (11) and (12), (αit, pit) ∈ A∗it × P∗it is admissible if and only if∑
k∈K∗i /{K+1} p

k
itQ̂

k
it = Ŝit, (32)

αk
′

it Â
fk′

i2011p
k′

it ≤ αkitÂ
fk
i2011p

k
it for all k,k

′ ∈ K, f ∈ Fi, if Lfkit > 0. (33)

The broad logic behind Theorem 2 is the same as in Section 2.2. The only key difference

is that once we have solved for a vector of productivity shocks and an effi cient allocation

that matches the land allocation observed in the data, we now need to take into account

the fact that differences in output levels across crops reflect both differences in total factor

productivity, αkitÂ
fk
i2011, and differences in labor allocation,

(
N fk
it

)1−βit
. This is the idea

behind Equation (30). Since there are no differences in factor intensity across crops– βit
does not vary with k– all other conditions are unchanged.
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Armed with Theorem 2, we can estimate trade costs and the gains from economic inte-

gration in the exact same way as we did in Section 2.3. These results are to be computed.

6 Concluding Remarks

In this paper we have developed a new approach to measuring the gains from economic inte-

gration based on a Roy-like assignment model in which heterogeneous factors of production

are allocated to multiple sectors in multiple local markets. We have implemented this ap-

proach using data on crop markets in approximately 1,500 U.S. counties from 1880 to 2002.

Central to our empirical analysis is the use of a novel agronomic data source on predicted

output by crop for small spatial units. Crucially, this dataset contains information about the

productivity of all spatial units for all crops, not just the endogenously selected crop that

farmers at each spatial have chosen to grow in some equilibrium. Using this new approach

we have estimated (i) the spatial distribution of price wedges across U.S. counties in 1880

and 2002 and (ii) the gains associated with changes in the level of these wedges over time.

Our restimates imply that the gains from integration amount US counties from 1880-2002

have been substantial.
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A Proofs
For notational convenience, and without any risk of confusion, we drop all market and time
indices, i and t, from the subsequent proofs. For any α ∈ A∗, we let z (α,X) denote the
“excess demand”for goods in K:

z (α,X) ≡ {(z1, ..., zK+1) : zk =
∑

f∈F L
fk − L̂k, for some L ∈ L(α,X)},

with the convention L̂K+1 ≡
∑

f∈F V̂
f −

∑
k∈K∗/{K+1} L̂

k. Before establishing Theorem 1,
we establish a number of preliminary results.

A.1 z(α,X) is single-valued

The goal of this section is to show that z(α,X) is single-valued. Throughout our proofs, we
repeatedly use the fact that, by Assumption A2, if L ∈ L(α,X), then

L ∈ arg max
L̃∈L

min
k∈K∗

{∑
f∈F A

fkL̃fk/Q̂k
}
. (34)

We first use a version of the second welfare theorem to show that any allocation in L (α,X)
is associated with a competitive equilibrium.

Lemma 1 (Competitive Prices) For any X ∈ X and any α ∈ A∗, if L ∈ L(α,X), then
there exist p ∈ P∗ and r ∈ RF+ such that (L, p, r) is a competitive equilibrium.

Proof. Let Q ≡
{
Qk
}
k∈K denote the production vector associated with L ∈ L(α,X).

By definition of L(α,X), Q is effi cient. To see this, note that if there were Q′ ≥ Q with
Q′ 6= Q, then we would have

∑
f∈F A

fkL′fk ≥
∑

f∈F A
fkLfk for all k, with strict inequality

for some k0 ∈ K. Thus starting from Q′, we could reallocate a small amount of at least
one field from k0 to all other goods in K∗. By construction, the new allocation L′′ would be
such that mink∈K∗

{∑
f∈F A

fkL′′fk/Q̂k
}
> mink∈K∗

{∑
f∈F A

fkLfk/Q̂k
}
, which contradicts

L ∈ L(α,X). Since Q is effi cient and production functions are linear– which implies that the
production set is convex– Proposition 5.F.2 in Mas-Colell et al. (1995) implies the existence
of non-zero price vectors p ∈ RK+1

+ and r ∈ RF+ such that Conditions (2) and (3) are satisfied.
Furthermore, p must be such that pk > 0 for all k ∈ K∗. To see this note that if there exists
k0 ∈ K∗ such that pk0 = 0, then equation (3) implies rf = 0 for some f ; in turn, condition (2)
implies pk = 0 for all k ∈ K; and finally, equation (3) implies rf = 0 for all f , contradicting
the fact that (p, r) is non-zero. Finally, since L ∈ L(α,X) implies L ∈ L, Equation (4) is
satisfied as well, which concludes our proof.

The next Lemma establishes joint properties of any pair of elements of L(α,X), which
we will later use to establish that z(α,X) is single-valued.

Lemma 2 For any X ∈ X , any α ∈ A∗, and any pair of allocations L, L′ ∈ L(α,X),
let ∆L ≡ L − L′. If there exist f ∈ F and two goods k 6= k′ ∈ K∗ such that ∆Lfk 6= 0
and ∆Lfk

′ 6= 0, then Afk/Afk
′

= pk
′
/pk = p′k

′
/p′k, where p and p′ are competitive prices

associated with L and L′, respectively.
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Proof. Consider two allocations L, L′ ∈ L(α,X). By Lemma 1, we know that there exist
(p, r) and (p′, r′) such that (L, p, r) and (L′, p′, r′) are competitive equilibria. Let us introduce
the following notation. First let K0 = K̄0 = K∗ and for n ≥ 1, let Kn and K̄n be such that

Kn = arg min
k∈K̄n−1

{
p′k/pk

}
,

K̄n = K̄n−1/Kn.

By construction, there exists n ≥ 1 such that {K1, ...,Kn} is a partition of K∗. Second for
any subset K̃ ⊂ K∗, let Lf

(
K̃
)
≡
∑

k∈K̃ L
fk and L′f

(
K̃
)
≡
∑

k∈K̃ L
′fk. Third let Fn and

F ′n denote the subset of fields such that Lf
(
K̄n
)
> 0 and L′f

(
K̄n
)
> 0, respectively.

We will first show by iteration that for all n ≥ 0, (i) Lf (Kn) = L′f (Kn) and Lf
(
K̄n
)

=

L′f
(
K̄n
)
for all f ∈ F , and (ii) Fn = F ′n. For n = 0, this is trivial since L, L′ ∈ L(α,X)

implies Lf (K∗) = L′f (K∗) = V̂ f and Fn = F ′n = F . Now suppose that this it is true for
n ≥ 0 and let us show that is true for n + 1. If Fn = F ′n = ∅, this is trivial again since
Lf
(
Kn+1

)
= L′f

(
Kn+1

)
= 0, Lf

(
K̄n+1

)
= L′f

(
K̄n+1

)
= 0, and Fn+1 = F ′n+1 = ∅. Thus

suppose that Fn = F ′n 6= ∅. We proceed in two steps.
Step 1: For all f ∈ F , L′f

(
K̄n+1

)
≥ Lf

(
K̄n+1

)
.

First note that if f /∈ Fn, then L′f
(
K̄n+1

)
= Lf

(
K̄n+1

)
= 0. Thus the above inequality

holds. Now consider f ∈ Fn. We proceed by contradiction. Suppose that L′f
(
K̄n+1

)
<

Lf
(
K̄n+1

)
. Since Lf

(
K̄n
)

= L′f
(
K̄n
)
, this implies L′f

(
Kn+1

)
> Lf

(
Kn+1

)
≥ 0. Thus there

must be k1 ∈ Kn+1 such that L
′fk1 > 0. By Conditions (2) and (3), this further implies

p′k1Afk1 ≥ p′kAfk for all k ∈ K∗, which can be rearranged as

p′k1

p′k
≥ Afk

Afk1
for all k ∈ K∗.

Since p′k1/pk1 ≤ p′k/pk for all k ∈ K̄n, with strict inequality for k ∈ K̄n+1, this implies

pk1

pk
≥ Afk

Afk1
for all k ∈ K̄n, with strict inequality if k ∈ K̄n+1.

Together with Conditions (2) and (3), the previous series of inequalities implies Lf
(
K̄n+1

)
=

0, which contradicts Lf
(
K̄n+1

)
> L′f

(
K̄n+1

)
≥ 0.

Step 2: For all f ∈ F , L′f
(
K̄n+1

)
= Lf

(
K̄n+1

)
, Lf

(
Kn+1

)
= L′f

(
Kn+1

)
, and Fn+1 =

F ′n+1.

First note that if f /∈ Fn, then L′f
(
K̄n+1

)
= Lf

(
K̄n+1

)
= 0 and Lf

(
Kn+1

)
= L′f

(
Kn+1

)
=

0. Thus the two previous equations hold. Now consider f ∈ Fn. Suppose that there ex-
ists f ∈ Fn such that L′f

(
K̄n+1

)
> Lf

(
K̄n+1

)
. By Step 1, we know that L′f

′ (K̄n+1

)
≥

Lf
′ (K̄n+1

)
for all f ′ ∈ F . By assumption, we also know that Lf ′

(
K̄n
)

= L′f
′ (K̄n) for all

f ′ ∈ F . We must therefore have L′f ′
(
Kn+1

)
≤ Lf

′ (Kn+1

)
with strict inequality for some

f ′. This implies that the ratio of output of at least one good in K̄n+1 to another good in
Kn+1 cannot be the same under L and L

′, which contradicts L,L′ ∈ L(α,X). Thus, we must
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have L′f
(
K̄n+1

)
= Lf

(
K̄n+1

)
for all f ∈ F , L′f

(
K̄n+1

)
= Lf

(
K̄n+1

)
, which also implies

Lf
(
Kn+1

)
= L′f

(
Kn+1

)
and Fn+1 = F ′n+1.

Now note that to establish Lemma 2 , it suffi ces to show that if there exist f0 ∈ F and
k0 ∈ K∗ such that∆Lf0k0 6= 0, then pk0Af0k0 = rf0 and p′k0Af0k0 = r′f0 . Note that∆Lf0k0 6= 0
implies that either Lf0k0 > 0 or L′f0k0 > 0. Without loss of generality, suppose that Lf0k0 >
0. In this case pk0Af0k0 = rf0 = maxk∈K∗

{
pkAf0k

}
follows from the profit maximization

condition (3). Thus we need to establish that p′k0Af0k0 = r′f0 = maxk∈K∗
{
p′kAf0k

}
. Let n0

be such that k0 ∈ Kn0 . By the previous result we know that if Lf0k0 > 0, then there must
be k′0 ∈ Cn0 such that L′f0k

′
0 > 0, which implies p′k

′
0Af0k

′
0 = maxk∈K∗

{
p′kAf0k

}
. Let us now

show that p′k0Af0k0 ≥ p′k
′
0Af0f

′
0 . We know that

pk0Af0k0 = max
k∈K∗

{
pkAf0k

}
= max

k∈Kn0

{
pkAf0k

}
.

For all k ∈ Kn0 , we also know that p′k = θpk, where θ ≡ mink∈K̄n0−1
{
p′k/pk

}
. Multiplying

the previous expression by θ, we therefore obtain p′k0Af0k0 ≥ p′k
′
0Af0k

′
0 . Together with

p′k
′
0Af0k

′
0 = maxk∈K∗

{
p′kAf0k

}
, this implies p′k0Af0k0 = r′f0 = maxk∈K∗

{
p′kAf0k

}
, which

concludes the proof of Lemma 2.

We are now ready to establish that z(α,X) is single-valued.

Lemma 3 (Single-Valued) For any X ∈ X and any α ∈ A∗, z (α,X) is single-valued.

Proof. We proceed by contradiction. Suppose that there exist z, z′ ∈ z(α,X) such that
z 6= z′. By definition of z(α,X), there must be L,L′ ∈ L(α,X) such that L 6= L′ and∑

f∈F L
fk 6=

∑
f∈F L

′fk for some k ∈ K∗. By Lemma 1, we know that there exist vectors
of prices, (p, r) and (p′, r′), such that (L, p, r) and (L′, p′, r′) are competitive equilibria. In
addition to the property established in Lemma 2, ∆L ≡ L−L′ must satisfy the two following
properties.

Property 1: If there exist f ∈ F and k ∈ K∗ such that ∆Lfk 6= 0, then there exists
k′ 6= k ∈ K∗ such that ∆Lfk

′ 6= 0.

Property 1 directly derives from the fact that if L,L′ ∈ L (α,X), then we must have∑
k∈K∗ L

fk =
∑

k∈K∗ L
′fk = Vf for all f ∈ F .

Property 2: If there exist f ∈ F and k ∈ K∗ such that ∆Lfk 6= 0, then there exists f ′ 6= f
in F such that ∆Lf

′k 6= 0.

Property 2 directly derives from the fact that if L,L′ ∈ L (α,X), then we must have∑
f∈F A

fkLfk =
∑

f∈F A
fkL′fk for all k ∈ K∗.

The rest of the proof of Lemma 3 proceeds as follows. Since L 6= L′, there exist k1 ∈ K∗
and f1 ∈ F such that ∆Lf1k1 6= 0. This further implies the existence of k2 6= k1 such that
∆Lf1k2 6= 0, by Property 1, and the existence of f2 6= f1 such that and ∆Lf2k2 6= 0, by
Property 2. By iteration, we can therefore construct an infinite sequence of goods {kn}n≥1

and an infinite sequence of fields {fn}n≥1 such that kn+1 6= kn and fn+1 6= fn. Since the
number of goods in K∗ is finite, there must be M < N such that kn 6= kn′ for all n 6= n′,
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n,n′ ∈ {M, ..., N} but kM = kN+1. By construction, this subsequence is such that∆Lfnkn 6= 0
and ∆Lfnkn+1 6= 0 for all n ∈ {M, ..., N}. Thus Lemma 2 implies

∏N
n=M

Afnkn

Afnkn+1
=
∏N

n=M

pkn

pkn+1
= 1, (35)

where the second equality comes from the fact that kM = kN+1. By Assumptions A2 and
A3 (using the convention ÂfK+1 ≡ 1), we also know that

∏N
n=M

Âfnkn

Âfnkn+1
=
∏N

n=M

Afnkn

Afnkn+1
∏N

n=M

αkn+1

αkn
=
∏N

n=M

Afnkn

Afnkn+1
. (36)

By Equations (35) and (36), we have therefore constructed a sequence of goods and fields
{kM , ..., kN+1} and {fM , ..., fN} such that (i) kM = kN+1, kn 6= kn′ for all n 6= n′, n,n′ ∈
{M, ..., N} and Q̂kn > 0 whenever kn ∈ K/ {K + 1} and (ii) fn 6= fn+1 for all n, and
measured productivity satisfies ∏N

n=M

Âfnkn

Âfnkn+1
= 1. (37)

There are two possible cases.

Case 1: There exists n0 ∈ {M, ..., N − 1} such that Âfn0kn0+1 6= Âfn0+1kn0+1.

In this case we can rearrange Equation (37) as

∏N
n=M

Âfnkn

Âfnkn+1

=

(
Âfn0+1kn0+1

Âfn0+1kn0+2

)(
Âfn0+2kn0+2

Âfn0+2kn0+3

)
...

(
ÂfNkN

ÂfNkN+1

)(
ÂfMkM

ÂfMkM+1

)
...

(
Âfn0kn0

Âfn0kn0+1

)
= 1.

If fM 6= fN , {kn0+1, kn0+2, ..., kN , kM , ..., kn0} and {fn0+1, fn0+2..., fN , fM , ..., fn0} violate As-
sumption A4. If fM = fN , then ÂfNkN+1 = ÂfMkM . Thus {kn0+1, kn0+2, ..., kN , kM+1, ..., kn0}
and {fn0+1, fn0+2..., fN , fM+1, ..., fn0} violate Assumption A4.

Case 2: Âfnkn+1 = Âfn+1kn+1 for all n ∈ {M, ..., N − 1}.
In this case starting from L1 ≡ L′, we construct a new allocation L2 as follows. Without

loss of generality, assume that LfMkM − LfMkM
1 < 0. Thus the same arguments as in the

proofs of Property 1 and Property 2 imply that {kM , ..., kN+1} and {fM , ..., fN} are such
that Lfnkn−Lfnkn1 < 0 and Lfnkn+1−Lfnkn+11 > 0 for all n ∈ {M, ..., N}. We set L2 such that

Lfnkn2 = Lfnkn1 − min
n∈{M,...,N}

∣∣∣Lfnkn − Lfnkn1

∣∣∣ , for all n ∈ {M, ..., N} ,

L
fnkn+1
2 = L

fnkn+1
1 + min

n∈{M,...,N}

∣∣∣Lfnkn − Lfnkn1

∣∣∣ , for all n ∈ {M, ..., N} ,

Lfk2 = Lfk1 , otherwise.
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By construction the new allocation L2 ∈ L. Furthermore, L2 satisfies∑
f∈F L

fk
2 =

∑
f∈F L

′fk, for all k ∈ K, (38)∑
f∈F A

fkLfk2 =
∑

f∈F A
fkL′fk, for all k ∈ K, (39)

where the second equality uses Âfnkn+1 = Âfn+1kn+1 for all n ∈ {M, ..., N − 1}. Since L2 ∈ L,
Equation (39) implies L2 ∈ L (α,X).
Starting from L2, we can therefore follow the same procedure as above to create a new

sequence of goods and fields satisfying conditions (i) and (ii) as well as Equation (37). Either
the new sequence falls into Case 1, which violates Assumption A4, or it falls into Case 2,
in which case we can construct L3 ∈ L (α,X) satisfying Equation (38) in the exact same
way we have just constructed L2. We can iterate the following process. Since after each
iteration j ≥ 1, there is one less field-good pair (f, k) such that L−Lj 6= 0, there must be a
sequence that falls into Case 1 after a finite number of iterations. Otherwise, given the finite
number of fields and goods, there would be an allocation Lj satisfying Equation (38) such
that Lj = L, which contradicts

∑
f∈F L

fk 6=
∑

f∈F L
′fk for some k ∈ K∗. Thus Assumption

A4 must be violated, which establishes that z (α,X) is single valued.

A.2 Existence of Admissible Productivity Shocks

The goal of this section is to show that there exists α ∈ A∗ such that Equation (12) holds.
Since z(α,X) is single-valued for any X ∈ X by Lemma 3, we slightly abuse notation
from now on and also denote by z(α,X) the unique element of z(α,X). The next Lemma
establishes properties of z(α,X) that parallel the properties of excess demand functions in
Proposition 17.B.2 in Mas-Colell et al. (1995).

Lemma 4 For any X ∈ X , the excess demand function z (α,X), defined for all α ∈ A∗,
satisfies the following properties:

(i) z (·, X) is continuous;

(ii) z (·, X) is homogeneous of degree zero;

(iii)
∑

k∈K z
k (α,X) = 0 for all α;

(iv) For a sequence {αn} ∈ A∗, αn → α, where α 6= 0, αk1 > 0 for some k1 ∈ K∗, and
αk2 = 0 for some k2 ∈ K∗, there exists N > 0 such that for any k ∈ K∗ satisfying
αk > 0, zk (αn, X) < 0 for all n ≥ N .

Proof. Condition (i) derives from the definition of L(α,X) and the Maximum Theorem.
Conditions (ii) directly derives from the definition of L(α,X). Condition (iii) derives from
the fact that L(α,X) must satisfy

∑
f∈F

∑
k∈K L

fk (α,X) =
∑

f∈F V̂
f . We now turn to

Condition (iv).
Without loss of generality, consider a sequence {αn} ∈ A∗ such that αn → α, with α 6= 0,

αk
∗
1 > 0, and αk

∗
2 = 0, for k1, k2 ∈ K∗. Since αn → α, for any ε1 > 0 and ε2 > 0, there exists
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Nε1,ε2 such that α
k1
n > αk1 − ε1 and αk2n < ε2 for all n ≥ Nε1,ε2 . Let Ã

fk ≡ Âfk/Q̂k. Using
this notation, L(αn, X) is given by

L(αn, X) = arg max
L̃∈L

min
k∈K∗
{αkn

∑
f∈F

ÃfkL̃fk}.

For all n, if Ln ∈ L(αn, X), we must have∑
f∈F

αk1n Ã
fk1Lfk1n =

∑
f∈F

αk2n Ã
fk2Lfk2n .

This implies

min
f∈F

{
min
k∈K∗
{Ãfk}

} ∑
f∈F

αk1n L
fk1
n ≤ max

f∈F

{
max
k∈K∗
{Ãfk}

} ∑
f∈F

αk2n L
fk2
n ,

and in turn, for all n ≥ Nε1,ε2 ,

min
f∈F

{
min
k∈K∗
{Ãfk}

}
(αk1 − ε1)

∑
f∈F

Lfk1n < max
f∈F

{
max
k∈K∗
{Ãfk}

}
ε2

∑
f∈F

Lfk2n . (40)

Let V̂ ≡
∑

f∈F V̂
f . We must have

∑
f∈F

Lfk1n +
∑
f∈F

Lfk2n ≤ V̂ . (41)

By Inequality 40 and 41, for all n ≥ Nε1,ε2 , we therefore have

∑
f∈F

Lfk1n <
maxf∈F

{
maxk∈K∗{Ãfk}

}
ε2

minf∈F

{
mink∈K∗{Ãfk}

}
(αk1 − ε1) + maxf∈F

{
maxk∈K∗{Ãfk}

}
ε2

V̂ .

Now let us set ε1 and ε2 such that ε1 = αk1/2, and ε2 =
minf∈F{mink∈K∗{Ãfk}}αk1 L̂k1

2 maxf∈F{maxk∈K∗{Ãfk}}(V̂−L̂k1 )
. The

previous inequality simplifies into
∑

f∈F L
fk1
n < L̂k1 . At this point, we have established

the existence of Nk1 ≡ Nε1,ε2 such that z
1 (αn, X) < 0 for all n ≥ Nk1 . To conclude, let

K+ ≡ {k ∈ K∗ : αk > 0} and let N ≡ maxk∈K+{Nk}. By construction, for all n ≥ N , we
must have zk (αn, X) < 0 for all k ∈ K∗ satisfying αk > 0.

The next lemma uses the properties of the excess demand function established in Lemma 4
to establish the existence of a unique vector of productivity shocks such that any L ∈ L(α,X)
matches the land allocation observed in the data. The proof is almost identical to the proof
of Proposition 17.C.1 in Mas-Colell et al. (1995). The only difference between the present
proof and the one given in Mas-Colell et al. (1995) is that our excess demand function does
not satisfy two of the five conditions invoked in Proposition 17.C.1, namely Conditions (iii)
and (v). Nevertheless, as we demonstrate below, Conditions (iii) and (iv) in Lemma 4 are
suffi cient for the same argument to go through.
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Lemma 5 (Existence) For any X ∈ X , there exists α ∈ A∗ such that∑
f∈F L

fk = L̂k for all k ∈ K,

where L ∈ L (α,X).

Proof. Throughout this proof we use the following notation. We let {k∗1, ...., k∗K∗} denote
the set of goods with positive output; for any α ∈ RK+1

+ , we let α ≡
(
αk
∗
1 , ..., αk

∗
K∗
)
denote

the vector of productivity shocks associated with these goods; and for any α ∈ A∗, α ∈ RK∗++,
and j = 1, ..., K∗, we let

zj(α,X) ≡
∑

f∈F L
fk∗j − L̂k∗j , for some L ∈ L(α,X),

denote the excess demand for the j-th good in K∗ as a function of α only. The properties of
z(α,X) easily transfer to z(α,X) ≡ [zj(α,X)]j=1,...,K∗. By Conditions (i) and (ii) in Lemma
4, z(·, X) is continuous and homogeneous of degree zero. Furthermore, since zk(α,X) = 0

for all k /∈ K∗, Condition (iii) in Lemma 4 implies
∑K∗

j=1 z
j(α,X) = 0. Finally, Condition

(iv) in Lemma 4 implies that for a sequence {αn} ∈ RK
∗

++, αn → α, where α 6= 0, αk
∗
j1 > 0

for some j1 ∈ {1, ..., K∗}, and αk
∗
j2 = 0 for some j2 ∈ {1, ..., K∗}, there exists N > 0 such

that for any j ∈ {1, ..., K∗} satisfying αk∗j > 0, zj (αn, X) < 0 for all n ≥ N .
We first show that for any X ∈ X , there exists α∗ ∈ RK∗++ such that

z(α∗, X) = 0. (42)

Following Mas-Colell et al. (1995), we define

∆ ≡
{
α ∈ RK∗+ :

∑K∗

j=1 α
j = 1

}
.

Since z(·, X) is homogeneous of degree zero, we can restrict our search for a solution of
Equation (42) to α in ∆. Note that z(·, X) is well defined only for α in the set

Interior ∆ ≡ {α ∈ ∆ : αj > 0 for all j = 1, ..., K∗}.

To establish existence of a solution of equation (42) in Interior ∆, the strategy in Mas-Colell
et al. (1995) consists in constructing an upper hemicontinuous correspondence f from ∆
to ∆ such that solutions of (42) correspond to fixed points of f and applying Kakutani’s
fixed-point theorem. We reproduce the key steps here and highlight the two minor points at
which the present proof differs from the original one.

Step 1: Construction of the fixed-point correspondence for α ∈ Interior ∆.

For α ∈ Interior ∆, we define

f(α) ≡ {γ ∈ ∆ : z(α,X) · γ ≥ z(α,X) · γ′ for all γ′ ∈ ∆}.
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Since for any γ ∈ ∆, the sum of its coordinates is equal to 1, we must have

f(α) = {γ ∈ ∆ : γj = 0 if zj(α,X) < max
j′=1,...,K∗

{zj′(α,X)}} (43)

At this point, Mas-Colell et al. (1995) use the fact that by Walras’Law, if z(α,X) 6= 0,
then there must be zj(α,X) > 0 and zj

′
(α,X) < 0 for some j 6= j′. Here, we do not have

α · z(α,X) = 0. However,
∑K∗

j=1 z
j(α,X) = 0 also implies that if z(α,X) 6= 0, then there

must be zj(α,X) > 0 and zj
′
(α,X) < 0 for some j 6= j′. Thus, for such an α, any γ ∈ f(α)

has γj
′
= 0, and then f(α) ⊂ Boundary ∆ = ∆/Interior ∆.

Step 2: Construction of the fixed-point correspondence for α ∈ Boundary ∆.

This step is exactly the same as in Mas-Colell et al. (1995). For α ∈ Boundary ∆, let

f(α) ≡ {γ ∈ ∆ : α · γ = 0} = {γ ∈ ∆ : γj = 0 if αj > 0}. (44)

Because αj = 0 for some j, we have f(α) 6= ∅. Also note that with this construction, we
cannot have α ∈ f(α), because α · α > 0. In other words, no α ∈ Boundary ∆ can be a
fixed point.

Step 3: If α∗ is a fixed point of f(·), then α∗ ∈ RK∗++ and z(α∗, X) = 0.

This step is also exactly the same as in Mas-Colell et al. (1995). Take α∗ ∈ f(α∗). By Step
2, we must haveα∗ ∈ Interior ∆ ⊂ RK∗++. By Step 1, z(α∗, X) 6= 0 implies α∗ ∈ Boundary ∆.
Thus if α∗ ∈ f(α∗), then α∗ ∈ RK∗++ and z(α∗, X) = 0.

Step 4: The fixed-point correspondence f(·) is convex-valued and upper hemicontinuous.
Following Mas-Colell et al. (1995), note that, both when α ∈ Interior ∆ and when

α ∈ Boundary ∆, f(α) equals a level set of a linear function defined on the convex set ∆,
so f(·) is convex.
To establish upper hemicontinuity, consider sequences αn → α, γn → γ with γn ∈ f(αn)

for all n. We have to show that γ ∈ f(α). There are two cases: α ∈ Interior ∆ or
α ∈ Boundary ∆. Suppose first that α ∈ Interior ∆, then αn ∈ RK

∗
++ for n suffi ciently

large. From γn · z(αn, X) ≥ γ′ · z(αn, X) for all γ′ ∈ ∆ and the continuity of z(·, X), we get
γ · z(α,X) ≥ γ′ · z(α,X) for all γ′. Thus γ ∈ f(α).
Now suppose that α ∈ Boundary ∆. Take any j such that αj > 0. We want to show that

for n suffi ciently large we have γjn = 0 and therefore γj = 0, which establishes that γ ∈ f(α).
The argument differs slightly from the proof in Mas-Colell et al. (1995) since our excess
demand function does not satisfy max

{
z1 (αn) , ..., zK

∗
(αn)

}
→ ∞. Because αj > 0, there

must exist M > 0 such that αjn > 0 for all n ≥ M . By the counterpart of Condition (iv) in
Lemma 4 described above, since αj > 0 and αj

′
= 0 for some j′ ∈ {1, ..., K∗}, there must also

exist N > 0 such that zj(αn, X) < 0 for all n ≥ N . Since
∑K∗

j′=1 z
j′ (α,X) = 0, this implies

zj(αn, X) < maxj′=1,...,K∗{zj
′
(αn, X)}. Now consider n ≥ max(M,N). If αn ∈ Boundary

∆, then αjn > 0, γn ∈ f(αn), and Equation (44) imply γjn = 0. If, instead, αn ∈ Interior ∆,
then zj(αn, X) < maxj′=1,...,K∗{zj

′
(αn, X)}}, γn ∈ f(αn), and Equation (43) imply γjn = 0

as well. Thus f (·) is upper hemicontinuous.
Step 5: A fixed point exists.
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The final step is exactly the same as in Mas-Colell et al. (1995). By Kakutani’s fixed-
point theorem, a convex-valued, upper hemicontinuous correspondence from a non-empty,
compact, convex set into itself has a fixed point. Since∆ is non-empty, convex, and compact,
and since f(·) is a convex-valued upper hemicontinuous correspondence from ∆ to ∆, we
conclude that there exists α∗ ∈ ∆ with α∗ ∈ f(α∗). By Step 3, we have α∗ ∈ RK∗++ and
z(α∗, X) ≡ 0.

To conclude the proof of Lemma 5, take any α ∈ A∗ such that
(
αk
∗
1 , ..., αk

∗
K∗
)

= α∗. By
construction of α∗, we have ∑

f∈F L
fk = L̂k for all k ∈ K∗,

where L ∈ L (α,X). Given our definition of L(α,X), if k /∈ K∗, then
∑

f∈F L
fk = 0. Thus

we trivially have ∑
f∈F L

fk = L̂k for all k /∈ K∗,

which completes the proof of Lemma 5.

A.3 Uniqueness of Admissible Productivity Shocks

The next lemma shows that the excess demand for goods in K∗ has the gross substitute
property.

Lemma 6 (Gross Substitute) If α, α′ ∈ A∗ are such that α′k0 > αk0 for some k0 ∈ K∗
and α′k = αk for all k 6= k0 in K∗, then zk (α′, X) > zk (α,X) for all k 6= k0 in K∗.

Proof. Consider α and α′ such that α′k0 > αk0 for some k0 ∈ K∗ and α′k = αk for all k 6= k0

in K∗. Take L ∈ L (α,X) and L′ ∈ L (α′, X). Throughout this proof we let Ãfk ≡ Âfk/Q̂k.
Using this notation, we therefore have

L = arg max
L̃∈L

min
k∈K∗
{αk

∑
f∈F

ÃfkL̃fk},

L′ = arg max
L̃∈L

min
k∈K∗
{α′k

∑
f∈F

ÃfkL̃fk},

where L ≡
{
L ∈ (R+)

(K+1)×F
:
∑

k∈K L
fk ≤ V̂ f for all f ∈ F

}
. We need to show that

∑
f∈F L

′fk >∑
f∈F L

fk for all k 6= k0 in K∗. We follow a guess and verify strategy.
Consider the allocation L′′ such that

L′′f(k)k = Lf(k)k + εk, for all k ∈ K∗, k 6= k0,

L′′fk0 = Lfk0 −
∑

k:f(k)=f ε
k, for all f ∈ F ,

L′′fk = Lfk, otherwise.
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where {f (k)}k 6=k0 and {εk}k 6=k0 are chosen such that

f (k) = arg max
f∈F

{
Ãfk/Ãfk0 : Lfk0 > 0

}
, (45)

εk =
α′k0 − αk0
αkÃf(k)k

∑
f∈F Ã

fk0Lfk0

1 + α′k0
∑

k′ 6=k0

(
Ãf(k

′)k0

αk′ Ãf(k′)k′

) . (46)

Since k0 ∈ K∗, Assumption A4 implies that f (k) exists and is unique for all k ∈ K∗,
k 6= k0. In addition, since α′k0 > αk0 , we have εk > 0 for all k ∈ K∗, k 6= k0, which implies∑

f∈F L
′′fk >

∑
f∈F L

fk for all k ∈ K∗, k 6= k0. First note that if α′k0 − αk0 is small enough,
then L′′fk0 ≥ 0 for all f since, by construction,

∑
k:f(k)=f ε

k > 0 only if Lfk0 > 0. We now
restrict ourselves to such a situation. The rest of the argument proceeds by contradiction.
Suppose that for any δ > 0, there exists α′k0 − αk0 ∈ (0, δ) such that L′′ 6= L′. Since
L′ ∈ L(α′, X), the same argument as in the proof of Properties 1 and 2 in Lemma 3 imply∑

k∈K∗ L
′fk = V̂ f , for all f ∈ F , (47)∑

f∈F α
′kÃfkL′fk =

∑
f∈F α

′k′Ãfk
′
L′fk

′
, for all k, k′ ∈ K∗. (48)

Since L ∈ L(α,X), the same conditions hold for L with productivity shocks given by
{
αk
}
.

By construction of {εk}k 6=k0 , this further implies∑
k∈K∗ L

′′fk = V̂ f , for all f ∈ F , (49)∑
f∈F α

′kÃfkL′′fk =
∑

f∈F α
′k′Ãfk

′
L′′fk

′
, for all k, k′ ∈ K∗. (50)

Let ∆L = L′ − L′′ 6= 0. By Equations (47)-(50), we therefore have

∑
k∈K∗ ∆Lfk = 0, for all f ∈ F (51)∑

f∈F α
′kÃfk∆Lfk =

∑
f∈F α

′k′Ãfk
′
∆Lfk

′
, for all k, k′ ∈ K∗. (52)

Since L′ ∈ L(α′, X) 6= L′′, we know that

min
k∈K∗
{
∑
f∈F

α′kÃfkL′fk} > min
k∈K∗
{
∑
f∈F

α′kÃfkL′′fk}.

By Equations (48), (50), and (52), we therefore have mink∈K∗{
∑

f∈F α
′kÃfk∆Lfk} > 0,

which implies mink∈K∗{
∑

f∈F α
kÃfk∆Lfk} > 0, and in turn,

min
k∈K∗
{
∑

f∈F α
kÃfk(Lfk + ∆Lfk)} > min

k∈K∗
{
∑

f∈F α
kÃfkLfk}, (53)

where we have used the fact that
∑

f∈F α
kÃfkLfk =

∑
f∈F α

k′Ãfk
′
Lfk

′
. Since L ∈ L(α,X),

Inequality (53) implies (L + ∆L) /∈ L. Thus for any δ > 0, there exists α′k0 − αk0 ∈ (0, δ)
such that (i) L′′+ ∆L = L′ ∈ L; (ii)

∑
k∈K∗ ∆Lfk = 0 for all f ∈ F ; and (iii) (L+ ∆L) /∈ L.
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As α′k0 − αk0 converges to zero, L′ and L′′ must both converge to L, and in turn, ∆L
must converge to zero. Thus conditions (i)-(iii) require the existence of (f1, k1) such that
L′′f1k1 > 0 and Lf1k1 = 0. By construction of L′′, this further requires f1 = f(k1). Since
k1 ∈ K∗, we know that there exists f 6= f1 = f (k1) such that Lfk1 > 0. By equation (45),
f1 = f(k1) and f 6= f1 must satisfy

Ãf1k1

Ãf1k0
>
Ãfk1

Ãfk0
. (54)

Now starting from L, consider the following reallocation. Take ε ∈
(
0, Lf1k0

)
acres of field

f1 from good k0 and reallocate them to good k1. Then take η ∈
(
εÃf1k0/Ãfk0 , εÃf1k1/Ãfk1

)
acres of field f from good k1 and reallocate them to good k0. Finally, take εÃf1k1/Ãfk1 − η
acres of field f from good k1 and reallocate them uniformly to all other goods in K∗. Since
Lf1k0 > 0, Lfk1 > 0 and Inequality (54) holds, such a reallocation is feasible. Furthermore,
the change in the output of good k0 is equal to −Ãf1k0ε + ηÃfk0 > 0; the change in the
output of good k1 is equal to Ãf1k1ε−ηÃfk1 > 0; and the change in all other goods is strictly
positive. This contradicts L ∈ L (α,X).
At this point we have shown that there exists δ > 0 such that if α′k0 − αk0 ∈ (0, δ), then

L′′ = L′. By construction, we have
∑

f∈F L
′′fk >

∑
f∈F L

fk for all k ∈ K∗, k 6= k0. Thus we
have established that Lemma 6 holds for small changes, α′k0 −αk0 ∈ (0, δ). Since this is true
for any initial value of α, Lemma 6 must hold for large changes as well.

Using the fact that the gross substitute property holds, one can establish the uniqueness,
up to a normalization, of the vector of productivity shocks for goods in K∗ such that L(α,X)
matches the observed land allocation.

Lemma 7 (Uniqueness) For any X ∈ X , there exists at most one vector
(
αk
)
k∈K∗ ∈ R

K∗
++,

up to a normalization, such that∑
f∈F L

fk = L̂k for all k ∈ K∗/ {K + 1} ,

where L ∈ L (α,X).

Proof. In order to establish Lemma 7, it is suffi cient to show that if zk(α,X) = zk(α′, X) = 0
for all k ∈ K, then there must be µ > 0 such that αk = µα′k for all k ∈ K∗. The argument
is the same as in Proposition 17.F.3 in Mas-Colell et al. (1995). One can proceed by
contradiction. Suppose that there exist α and α′ such that zk(α,X) = zk(α′, X) = 0 for all
k ∈ K, but there does not exist λ > 0 such that αk = λα′k for all k ∈ K∗. Since z (·, X) is
homogeneous of degree zero, we must therefore α′′ such that (i) zk(α′′, X) = 0 for all k ∈ K
and (ii)

(
α′′k
)
k∈K∗ 6=

(
αk
)
k∈K∗, α

′′k ≥ αk for all k ∈ K∗, and α′′k0 = αk0 for some k0 ∈ K∗.
Now consider lowering α′′ to obtain α in K∗ − 1 steps, lowering (or keeping unaltered) the
productivity shock associated with each good k 6= k0 ∈ K∗ one at a time. By Lemma 6
and property (ii), the excess demand for good k0 never increases and strictly decreases in
at least one step since

(
α′′k
)
k∈K∗ 6=

(
αk
)
k∈K∗. This implies z

k0 (α,X) < zk0 (α′′, X), which
contradicts property (i).
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A.4 Proof of Theorem 1

We now use the previous intermediary results to establish the proof of Theorem 1.

Proof of Theorem 1. We proceed in four steps.

Step 1: For all X ∈ X , there exists α ∈ A∗ such that Equations (11)-(12) hold for L ∈
L(α,X). Furthermore, if there exists another α′ ∈ A∗ such that Equations (11)-(12) hold
for L′ ∈ L(α′, X), then αk = α′k for all k ∈ K∗.
By Lemmas 5, we know that there exists α0 ∈ A∗ such that Equation (12) holds for

L0 ∈ L(α0, X). Now pick k0 ∈ K∗/ {K + 1} and consider α = λα0 and L ∈ L(α,X), where

λ ≡ Q̂k0/
[∑

f∈F α
k0
0 Â

fk0Lfk00

]
. By construction, we have

∑
f∈F α

k0Âfk0Lfk0 = λ
∑

f∈F α
k0
0 Â

fk0Lfk00 = Q̂k0 ,

where the first equality uses the fact that L (·, X) is homogeneous of degree zero by Lemma 4

Condition (ii). Since L (α,X) = arg maxL∈Lmink∈K∗
{∑

f∈F α
kÂfkLfk/Q̂k

}
, we know that

∑
f∈F α

kÂfkLfk

Q̂k
=

∑
f∈F α

k0Âfk0 (f)Lfk0

Q̂k0
for all k ∈ K∗.

The two previous expressions imply that Equation (11) holds as well. Thus we have con-
structed α ∈ A∗ such that Equations (11)-(12) hold. Now suppose that there exists another
α′ ∈ A∗ such that Equations (11)-(12) hold for L′ ∈ L(α′, X). Since Equation (12) holds,
Lemma 7 implies the existence of µ > 0 such that α′k = µαk0 for all k ∈ K∗. Since Equation
(11) holds as well, the previous argument implies µ = λ, and so, αk = α′k for all k ∈ K∗.
Step 2: Conditional on α ∈ A∗ and L ∈ L (α,X) satisfying Equations (11)-(12), the set of
prices p ∈ P∗ such that Conditions (13)-(14) hold is non-empty.

By Lemma 1, we know that for any X ∈ X and α ∈ A∗, if L ∈ L(α,X), then there
exist p0 ∈ P∗ and r0 ∈ RF+ such that (L, p0, r0) is a competitive equilibrium. Thus this must
also be true for α ∈ A∗ and L ∈ L (α,X) satisfying Equations (11)-(12). By Definition 1,
(L, p0, r0) must satisfy Conditions (2)-(3). Combining this observation with Assumptions
A2 and A3, we have therefore found p0 ∈ P∗ such that Condition (14) holds. To conclude,

consider p = µp0, where µ ≡ Ŝ/
[∑

k∈K∗i /{K+1} p
k
0Q̂

k
]
. By construction, p ∈ P∗ and p satisfies

Conditions (13)-(14).

Step 3: For any X ∈ X , if a vector of productivity shocks and good prices (α, p) ∈ A∗×P∗
are such that there exists L ∈ L (α,X) satisfying Conditions (11)-(14), then it is admissible.

By Definitions 1 and 2, we want to show that one can construct a vector of field prices, r,
and an allocation of fields, L, such that conditions (2)-(7) hold. A natural candidate for the
allocation is L ∈ L (α,X) such that Equations (11)-(14) hold. The fact that Equation (4)
holds for allocation L is immediate from the fact that L ∈ L (α,X). The fact that Equations
(5)-(7) hold derives from Equations (11)-(13), together with the fact that if k /∈ K∗, then∑

f∈F A
fkLfk =

∑
f∈F L

fk = 0. Let us now construct the vector of field prices, r, such that
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rf = maxk∈K pkαkÂfk for all f ∈ F . By Assumptions A2 and A3, we can rearrange the
previous expression as

rf = max
k∈K

pkAfk.

This immediately implies Inequality (2). To conclude, note that by Condition (14), together
with Assumptions A2 and A3, we must have pkAfk = maxk′∈K p

k′Afk
′
= rf if Lfk > 0. Thus

Equation (3) holds as well.

Step 4: For any X ∈ X, if a vector of productivity shocks and good prices (α, p) ∈ A∗×P∗
is admissible then there exist α̃ ∈ A∗ satisfying α̃k = αk for all k 6= K+ 1, p̃ ∈ P∗ satisfying
p̃k = pk for all k 6= K + 1, and L ∈ L (α̃, X) such that Conditions (11)-(14) hold.

By Definitions 1 and 2, if (α, p) ∈ A∗ × P∗ is admissible given X ∈ X , then there exist
r and L such that conditions (2)-(9) hold. Equations (6) and (7) imply Equations (11)
and (12), respectively. Conditions (2) and (3)– together with Assumptions A2 and A3–
imply Condition (14), with our convention ÂfK+1 = 1. Finally, Equations (5) and (6) imply
Equation (13). Furthermore, since good K + 1 only appears in Condition (14), Conditions
(11)-(13) must also hold for any α̃ ∈ A∗ satisfying α̃k = αk for all k 6= K+ 1 and any p̃ ∈ P∗
satisfying p̃k = pk for all k 6= K + 1 provided that α̃K+1p̃K+1 = αK+1pK+1. Thus all we
need to establish at this point is that one can construct α̃ ∈ A∗ such that α̃k = αk for all
k 6= K + 1 and L ∈ L (α̃, X).
We follow a guess and verify strategy. Let us construct α̃ ∈ A∗ such that α̃k = αk for all

k 6= K + 1 and α̃K+1 = Q̂K+1/
∑

f∈F Â
fK+1LfK+1, with our convention Q̂K+1 = ÂfK+1 = 1.

By conditions (2)-(4), L is a feasible allocation that maximizes total profits. Thus, by the
First Welfare Theorem (Mas-Colell et al. Proposition 5.F.1), L must be a solution of

max
L̃∈L

∑
f∈F α

K+1ÂfK+1L̃fK+1

∑
f∈F α

kÂfkL̃fk ≥ Q̂k, for all k 6= K + 1.

By construction of α̃, we therefore also have

max
L̃∈L

∑
f∈F α̃

K+1ÂfK+1L̃fK+1 (P)∑
f∈F α̃

kÂfkL̃fk ≥ Q̂k, for all k 6= K + 1. (55)

The rest of the proof proceeds by contradiction. Suppose that there exists L′ ∈ L such that

min
k∈K∗

{∑
f∈F α̃

kÂfkL′fk/Q̂k
}
> min

k∈K∗

{∑
f∈F α̃

kÂfkLfk/Q̂k
}
. (56)

By Equation (6) and the definition of α̃, we know that mink∈K∗
{∑

f∈F α̃
kÂfkLfk/Q̂k

}
= 1.

Thus Inequality (56) implies∑
f∈F α̃

kÂfkL′fk > Q̂k, for all k ∈ K∗. (57)
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Since L′fk ≥ 0 for all k ∈ K, f ∈ F , we also trivially have∑
f∈F α̃

kÂfkL′fk ≥ Q̂k, for all k /∈ K∗. (58)

By Inequalities (57) and (58), L′ satisfies constraint (55). By Inequality (57) evaluated at
k = K + 1, we also have∑

f∈F α̃
K+1ÂfK+1L′fK+1 >

∑
f∈F α̃

K+1ÂfK+1LfK+1,

which contradicts the fact that L is a solution of (P ). Thus there cannot be L′ ∈ L such that
Inequality (56) holds, which implies that L ∈ L (α̃, X). This completes the proof of Step 4.

For any X ∈ X , Steps 1 and 2 imply the existence of (α, p) ∈ A∗ ×P∗ and L ∈ L(α,X)
such that Conditions (11)-(14) hold. By Step 3, for any X ∈ X , there therefore exists a
vector of productivity shocks and good prices (α, p) ∈ A∗ × P∗ that is admissible. So the
the set of admissible productivity shocks and prices in A∗ × P∗ is non-empty.
To conclude, we need to show that Properties (i) and (ii) hold. We start with Property

(i). Suppose that there exist (α1, p1) ∈ A∗ ×P∗ and (α2, p2) ∈ A∗ ×P∗ that are admissible
and satisfy αk01 6= αk02 for some k0 ∈ K∗/ {K + 1}. By Step 4, there must exist α̃1 and α̃2

such that for j = 1, 2, α̃kj = αkj for all k 6= K + 1 and there exists Lj ∈ L (α̃j, X) satisfying
Equations (11)-(12). By Step 1, however, there exists a unique α such that L ∈ L(α,X)
satisfies Equations (11)-(12). Thus we must have αk1 = αk2 for all k 6= K+1, which contradicts
αk01 6= αk02 . This establishes Property (i).
We now turn to Property (ii). Suppose that α ∈ A∗ and L ∈ L (α,X) satisfy Equations

(11)-(12). By Step 3, if Conditions (13)-(14) hold, then (α, p) ∈ A∗ × P∗ is admissible.
Conversely, if (α, p) ∈ A∗ × P∗ is admissible, then Step 4 implies the existence of α̃ and
L̃ ∈ L (α̃, X) such that Conditions (11)-(14) hold. Since α ∈ A∗ and α̃ ∈ A∗ are both such
that there exist L ∈ L (α,X) and L̃ ∈ L (α̃, X) satisfying Equations (11)-(12), Step 1 implies
α = α̃. Thus (α, p) ∈ A∗ × P∗ are such that Conditions (13)-(14) hold. This establishes
Property (ii) and completes the proof of Theorem 1.
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