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Abstract: We develop a test of whether selective universities admit applicants with the highest

academic potential and a measure of "nonacademic-bias" when they don�t. E¢ cient admissions

should equate the expected future performance of marginal candidates �the admission-threshold

�across demographic groups but such thresholds are di¢ cult to calculate due to unobserved char-

acteristics. We assume that applicants who are better-quali�ed on standard observable indicators

would on average, but not necessarily with certainty, appear academically stronger to admission-

tutors based on characteristics observable to them but not us. This assumption yields informative

bounds on di¤erences in admission standards faced by di¤erent demographic groups, which are ro-

bust to omitted-characteristics problems. An application to admissions-data at a selective British

university, using blindly-marked, future exam-performance as potential outcome, shows that males

face signi�cantly higher admission-standards and private school applicants less so. In contrast,

application success-rates are equal across both gender and school-type.

Keywords: University admissions, a¢ rmative action, economic e¢ ciency, marginal admit, un-

observed heterogeneity, threshold-crossing model, conditional stochastic dominance, partial identi-

�cation, bounds.

1 Introduction

Admission practices at selective universities generate considerable public interest and political con-

troversy, owing to their implications for socioeconomic mobility. For example, in the UK a highly

publicized 2011 Sutton Trust report shows that nationally just 3% of schools �mostly expensive,

independent (i.e., private) institutions �account for 32% of undergraduate admissions to Oxford
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and Cambridge, while these universities claim to admit solely on the basis of academic merit. On

the other hand, background-based admission quotas such as caste-based reservation in India�s pub-

lic universities and race-based a¢ rmative action in American state-funded colleges have been the

subject of intense controversy, the latter recently re-surfacing in the high-pro�le "Fisher versus Uni-

versity of Texas" lawsuit. In this context, it is of signi�cant policy interest to measure the extent of

equity-e¢ ciency trade-o¤ implicit in current admission protocols, based on micro-level admissions

data. In this paper, we develop a rigorous empirical methodology to model such trade-o¤s and

use it to devise a test for whether all applicants are held to the same academic standard during

admissions.

Our approach is based on the productivity based view of optimal decisions, in the tradition of

Becker (1957), and focuses on the expected future performance of university-entrants. Viewed in

this light, if admissions are purely meritocratic, then the marginal admitted student from a state-

school should be expected to perform just as well as the marginal admit from a private school.

But her expected performance would be worse if a¢ rmative action leads to admitting state-school

students who are not expected to perform at or above the same standard as marginal private school

students in future exams. The di¤erence between expected performances of marginal candidates

across demographic groups can therefore be interpreted as a direct measure of e¢ ciency loss. A

challenge in implementing this approach is that a researcher typically observes a subset of the

relevant applicant characteristics used by admissions-tutors and the distributions of the unobserved

characteristics may �and usually do �di¤er across groups. Such "omitted characteristics" problems

jeopardize the researcher�s attempt at reconstructing the decision-maker�s perceptions and make

it hard to assess whether the decision-maker acted in an academically unbiased way. This type

of problem has been recognized by previous researchers, especially in the context of labor market

hiring; see, for instance, Heckman (1998), Blank et al. (2004) and the references therein. In

the present paper, we use methods from the recent econometric literature on partial identi�cation

analysis to devise a test for academically fair admissions, based on the di¤erences in admission-

thresholds faced by di¤erent demographic groups which are robust to the omitted characteristics

problem.

Speci�cally, we construct an empirical, threshold-crossing model of admissions involving ob-

served applicant covariates and unobserved heterogeneity, i.e., applicant characteristics observed

by admission-tutors but unobserved by the researcher. In our model, academic fairness corresponds

to using identical thresholds of expected future performance across applicants from di¤erent de-

mographic groups. Our key assumption � for which we will provide empirical evidence � is that
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applicants who are signi�cantly better in terms of easily observable indicators of academic potential

should statistically �not with certainty �be more likely to appear stronger to the admission tutor,

based on characteristics observed by her but not by the researcher. The distribution of unobserv-

ables, conditional on observables, is otherwise allowed to be arbitrarily di¤erent across demographic

groups. We show that under this assumption, one can identify a lower bound on the magnitude

of the threshold di¤erences in admission thresholds applied to di¤erent demographic groups. We

apply these methods to analyze admissions data from a popular undergraduate programme of study

at a selective UK University, focusing on future academic performance as the potential outcome

of interest. In our sample, the application success rates are almost identical across gender and

type of school attended by the candidate (an "independent" school being an indicator of higher

socioeconomic status), both before and after controlling for key covariates. However, applying our

method of threshold detection, we �nd that admission standards faced by applicants who are male

or from independent schools exceed those faced by females or state school applicants. This �nding

is suggestive of some degree of a¢ rmative action �either explicit or implicit �within the admission

process, which is not apparent from the equal success rates, thereby illustrating the usefulness of

our approach. We also �nd evidence suggestive of "catch up", whereby the performance gap in the

third year �nal examinations between marginal candidates who are female or from state-schools

and marginal candidates who are male or from independent schools appears to be smaller than that

in �rst year performance.

Related literature: A large volume of research exists in educational statistics on the analysis

of admissions to selective colleges and universities, focusing mainly on the United States. For a

broad, historical perspective on selectivity in US college admission, see Hoxby (2009). We are

not aware of any previous attempt in the academic literature in education, economics or applied

statistics to formally test outcome-oriented e¢ ciency �in Becker�s sense �of college admissions. A

distinguishing feature of the present paper is that it focuses on the predicted eventual outcomes of

the students and thereby shows that equal success rate in admissions across demographic groups

can be consistent with very di¤erent admission standards across these di¤erent groups. Indeed,

that is precisely what we conclude in our empirical application. These conclusions are based on

the outcome of the marginal admits in di¤erent demographic groups, which is in contrast to many

other studies �both academic and policy-oriented �which compare either average pre-admission

test-scores (c.f. Zimdars et al., 2009, Herrnstein and Murray, 1994) or average post-admission

performance across all admitted students from di¤erent socioeconomic groups (c.f. Keith et al.,

1985, Sackett et al., 2009, Kane and William, 1998). To our knowledge, the only other work in

3



this literature which focuses on marginal admits is Bertrand, Hanna and Mullainathan (2010), who

examined the consequences of a¢ rmative action in admission to an Indian college. In their setting,

admission was based on score in a single entrance exam; admission thresholds di¤ered by applicants�

social caste and were publicly announced. This set-up removes a key empirical challenge �that of

de�ning and identifying the marginal admits and rejects �arising in general admissions contexts

where entrance is based on several background variables, there is unobserved heterogeneity across

applicants and admission thresholds are not explicitly announced. Our methodology is designed to

deal with this more general scenario.

In Economics, our paper complements an existing literature on analyzing the consequences of

a¢ rmative actions in college admissions. Fryer and Loury (2005) provide a critical review of the

relevant theoretical literature and a comprehensive bibliography. On the empirical end, Arcidiacono

(2005) uses a structural model of admissions to simulate the potential, counterfactual consequences

of removing a¢ rmative action in US college admission and �nancial aid on applicant earning, while

Card and Krueger (2005) describe the reduced-form impact of eliminating a¢ rmative action on

minority students�application behavior in California. In contrast to these works, the present paper

may be viewed as one that attempts to detect the presence and quantify the extent of a¢ rmative

action in prevalent admission practises, based on admissions-related micro-data.

The rest of the paper is organized as follows: Section 2 sets up a simple theoretical model; Section

3 the corresponding empirical model of meritocratic admissions; Section 4 contains the identi�cation

analysis; Section 5 discusses inference; Section 6 discusses the data setting and reports a simulation

exercise based on it; Section 7 reports the empirical �ndings and some robustness checks regarding

the interpretation of the results; and Section 8 concludes. Technical proofs are collected in an

Appendix.

2 Benchmark Optimization Model

We start by laying out a benchmark economic model of admissions to help �x ideas. Based on this

economic model, in the next section we develop a corresponding econometric model incorporating

unobserved heterogeneity, which can be taken to admissions data.

Let W denote an applicant�s pre-admission characteristics, observed by the university. We

let W := (X;G), where G denotes one or more discrete components of W capturing the group

identity of the applicant (such as sex, race or type of high school attended) which forms the basis

of commonly alleged mistreatment. The variables in X are the applicant�s other characteristics
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observed prior to admission which include one or more continuously distributed components like

standardized test-scores. Also, let Y denote the applicant�s future academic performance if admitted

to the university (assumed to take on non-negative values, e.g., GPA), and the binary indicator

D denote whether the applicant received an admission o¤er and the binary indicator A denote

whether the admission o¤er was accepted by the applicant.

Let W denote the support of W , FW (�) denote the marginal cumulative distribution function

(C.D.F.) of W ; �� (w) denote a w-type student�s expected performance (w 2 W) if he/she enrols;

and let � (w) denote the probability that a w-type student upon being o¤ered admission eventually

enrols. Let c 2 (0; 1) be a constant denoting the fraction of applicants who are to be admitted,

given the number of available spaces.

Admission protocols: We de�ne an admission protocol as a probability p (�) : W ! [0; 1]

such that an applicant with characteristics w is o¤ered admission with probability p (w). A generic

objective of the university may be described as

sup
p(�)2F

Z
w2W

p (w)h (w)� (w)�� (w) dFW (w) subject to
Z
w2W

p (w)� (w) dFW (w) � c:

Here, F denotes the set of all possible p�s, and h (w) denotes a non-negative welfare weight, captur-

ing how much the outcome of a w-type applicant is worth to the university. For a¢ rmative action

policies, h (�) will be larger for applicants from disadvantaged socioeconomic backgrounds or under-

represented demographic groups. The overall objective is thus to maximize total welfare-weighted

outcome among the admitted applicants, subject to a capacity constraint. The solution to the

above problem takes the form described below in Proposition 1, which holds under the following

condition:

Condition C: h (w) > 0 and � (w) > 0 for any w 2 W.1 Further, for some � > 0,Z
w2W

� (w)1 f�� (w) � 0g dFW (w) � c+ �;

i.e., admitting everyone with �� (w) � 0 will exceed the capacity in expectation.

Proposition 1 Under Condition C, the solution to the problem:

sup
p(�)2F

Z
w2W

p (w)h (w)� (w)�� (w) dFW (w) subject to
Z
w2W

p (w)� (w) dFW (w) � c

1Alternatively, we can simply rede�ne W to be the subset of the support of W with � (w) > 0.
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takes the form:

popt (w) =

8>>><>>>:
1 if � (w) > ;

q if � (w) = ;

0 if � (w) < ;

(1)

where

� (w) := h (w)�� (w) ;  := inffr :
Z
w2W

� (w)1 f� (w) > rg dFW (w) � cg;

and q 2 [0; 1] satis�esZ
w2W

� (w) [1 f� (w) > g+ q1 f� (w) = g] dFW (w) = c:

The solution (1) is unique in the FW -almost-everywhere sense (i.e., if there is another solution, it

di¤ers from (1) only on sets whose probabilities are zero with respect to FW ).

The result basically says that the planner should order individuals by their values of � (W )

and �rst admit applicants with those values of W for which � (W ) is the largest, then to those for

whom it is the next largest and so on till all places are �lled. If the distribution of � (W ) has point

masses, then there could be a tie at the margin, which is then broken by randomization (hence

the probability q). In the absence of any point masses in the distribution of � (W ), the optimal

protocol is of a simple threshold-crossing form popt (w) = 1 f� (w) � g. For the rest of the paper,

we will assume that this is the case. It is useful to note that � (w) a¤ects the admission rule only

through its impact on ; the intuition is that individuals who do not accept an o¤er of admission

contribute nothing to the budget constraint and this is taken into account in the admission process.

Academically e¢ cient admissions: We de�ne an academically e¢ cient admission protocol

as one which maximizes total performance of the incoming cohort subject to the restriction on

the number of vacant places. Such an objective is also "academically fair" in the sense that the

expected performance criterion gives equal weight to the outcomes of all applicants, regardless

of their value of W , i.e., h (w) is a constant. In this case, the previous solution takes the form

popt (w) = 1 f�� (w) � g, where  solves

c =

Z
w2W

� (w)1 f�� (w) � g dFW (w) :

The key feature of the above rule is that  does not depend onW and so the value of an applicant�s

W a¤ects the decision on his/her application only through its e¤ect on �� (W ). To get some

intuition on this, consider the case where one of the covariates in W is gender and assume that

the admission threshold for women, female, is strictly lower than that for men, male. Then
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the marginal female, admitted with w = (x; female), contributes female � � (x; female) to the

expected aggregate outcome and takes up � (x; female) places, implying a contribution of female

(= � (x; female) female=� (x; female)) to the objective of average realized outcome. Similarly,

the marginal rejected male, if admitted, would contribute male to the average outcome. Since

male > female we can increase the average outcome if we replaced the marginal female admit

with the marginal male reject. Thus di¤erent thresholds cannot be consistent with the objective of

maximizing the overall outcome. The following graph illustrates the idea.
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density: Male density: Female

Equal threshold versus equal admission rate

In this graph, the solid curve represents the marginal density of predicted future performance for

males and the dotted curve that for females. Under identical thresholds, marked by the solid

vertical line, the probability of acceptance equals the area � to the right of the line �under the

solid density curve for male applicants and under the dotted density curve for female applicants.

The graph shows that the latter area is signi�cantly smaller, suggesting that if a common threshold

were used, admission rate for female applicants would be lower. Conversely, equating admission

probabilities across gender requires employing a larger threshold (marked by long dash) for males

than for females (smaller dash). The di¤erence between the thresholds is then a logical measure of

deviation from meritocratic admissions. Indeed, if the density curves have identical right tails, then

equal thresholds can be consistent with equal admission rates. Our goal is to use actual admissions

data to understand whether admission o¢ cers use identical thresholds across socio-demographic

groups. The key challenge is to allow for the possibility that the predictions were based on more
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characteristics than we the researchers observe, so that we cannot replicate the two density curves

as in the previous graph.

3 Econometric Model

To set up our empirical framework, we assume that we observe the covariates X;G and the binary

admission outcome D (= 1 if admitted, and = 0 otherwise) for applicants in the current year.

In addition, we have data on several cohorts of applicants in past years who had enrolled in the

university. For each such enrolled applicant, we observe X;G and the outcome of interest Y (e.g.,

examination score in the university). When referring to variables from past years or expectations

calculated on the basis of past variables, we will use the superscript "P ". Thus, our aim is to

evaluate academic e¢ ciency of current year�s admission, given data on (X;G;D) for all current

year applicants and (Y P ; XP ; GP j AP = 1) for past years�(successful) applicants, where AP = 1

denotes having enrolled in the university. For later use, de�ne

�P (x; g) = E
�
Y P jXP = x;GP = g;AP = 1

�
; (2)

the conditional expectation of outcome Y P for a past enrolled applicant given his/her characteristics

(XP ; GP ) = (x; g). Let Xg, Xh denote the support of X for applicants of type g and h, respectively

in the current year. Also, let XPg denote the values of XP which occur among the admits of type

g in past years and so one can estimate the values of �P (x; g) when x 2 XPg .

Now, let Z denote a scalar index of academic ability of a current applicant, based on character-

istics which are unobservable to the analyst but observed by the admission-tutor. This may also

include any random idiosyncrasies in the tutors�expectation formation process. We assume that

larger values of Z, without loss of generality, denote higher perceived academic potential.

Under meritocratic admissions, admission tutors would decide on whether to admit applicant i

in the current year, based on ��i � � (Xi; Gi; Zi), their subjective assessment of how applicant i will

perform when admitted. In accordance with our economic model, we assume that a current year

applicant i(2 f1; : : : ; ng) with Gi = g, Zi = z and Xi = x 2 Xg is o¤ered admission (i.e., Di = 1)

if and only if ��i = � (x; g; z) � g, where �
�
i denotes the subjective conditional expectation of

applicant i�s future performance calculated by the admission-tutor handling his �le and g denotes

the university-wide baseline threshold for applicants of demographic type g. That is,

Di =

8<: 1 if � (Xi; Gi; Zi) � Gi and Xi 2 X
P
Gi
;

0 otherwise.
(3)
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Academically e¢ cient admissions: In the above setting, we de�ne an admission practice

to be academically e¢ cient/fair if and only if g is identical across g. The underlying intuition is

that the only way covariates G should in�uence the admission process is through their e¤ect on

the expected academic outcome. Having a larger  for, say, females than males implies that a male

applicant with the same expected outcome as a female applicant is more likely to be admitted.

Conversely, under a¢ rmative action type policies, g will be lower for those gs which represent

historically disadvantaged groups. Therefore, we are interested in identifying the value of the

threshold g for various values of g and testing if they are identical across g. We will call g the

"admission threshold" for group g.

It is important to note that here we are not making any assumption about whether or not G

a¤ects the distribution of the outcome, conditional on X. In our set-up, a male applicant with

identical X as a female candidate can have a higher probability of being admitted and yet the

admission process may be academically fair if males have a higher expected outcome than females

with identical X. This contrasts sharply with the notion of fairness employed, for example, in

Bertrand and Mullainathan (2004, BM) which concluded racial bias if two job applicants with

identical CVs but of di¤erent race had di¤erent probabilities of being called for interview. In

order for BM�s �nding to imply ine¢ ciency according to our criterion, one needs to assume that,

conditional on the information in CVs, race has no impact on average worker productivity.

4 Identi�cation Analysis

In order to develop a test of meritocratic admissions, we will make a set of assumptions using the

following notation. For any pair of individuals i and j, where i is of type g and has a value ofX equal

to xg and j is of type h and has X = xh with xg 2 Xg and xh 2 Xh, the notation xg �" xh will mean

that applicants i and j are identical with respect to all qualitative attributes and, moreover, every

continuously-distributed component of xg is at least " (� 0) standard deviations larger than the

corresponding component of xh. For example, if G = �school type�and X = (SAT;GPA;male),

then xg �" xh means that applicant i and j are both male or both female and that SATi >

SATj + "�SAT and GPAi > GPAj + "�GPA, where, �GPA and �SAT are the standard deviation of

1We assume that applicants with x =2 XP
g are o¤ered admission with probability 1 (if they are stronger than the

best admitted candidate on whom data exist) or 0 (if they are worse than the worst admitted candidate on whom

data exist).
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GPA and SAT for the entire population of applicants.

Throughout the rest of the paper, we will maintain the following assumption:

Assumption M (Median restriction) (i) There exists " > 0 such that for any e � ", if xg 2 Xg
and xh 2 Xh and xg �e xh, then,

Median [ZjX = xg; G = g] � Median [ZjX = xh; G = h] ;

for any g and h; (ii) ��i = � (Xi; Gi; Zi) (de�ned just before equation (3)) is continuously

distributed conditionally on any realization of (Xi; Gi).

A stronger version of Assumption M is �rst-order stochastic dominance, which has the same

intuitive interpretation as Assumption M:

Assumption SD (Stochastic Dominance) There exists " > 0 such that for any e � ", if xg 2

Xg and xh 2 Xh with xg �e xh, then the distribution of Z conditional on X = xg, G = g �rst

order stochastic dominates that of Z conditional on X = xh, G = h:

Pr [Z � ajX = xg; G = g] � Pr [Z � ajX = xh; G = h] ;

for any a and for all g; h; (ii) ��i = � (Xi; Gi; Zi) is continuously distributed conditionally on

any realization of (Xi; Gi).

Discussion: Crudely speaking, Assumption M/SD means that applicants who are " (or more)

standard deviations better along standard, observable indicators of academic ability are likely to

be viewed as better �"on average" �in terms of the index of unobserved characteristics which the

tutors weigh positively in determining admissions. The motivation for this assumption comes from

the fact that in our admission scenario, the outcome of interest Y is a measure of future academic

performance in college whereas the measures in X are a set of past academic performance in high-

school or admissions-related assessments. It is therefore likely that candidates who have performed

signi�cantly better in all past assessments are statistically more likely to have performed better in

those assessments (unobserved by the researcher) which admission tutors view as positive deter-

minants of college performance and hence, under the assumption of being academically motivated,

would weigh positively in the decision to admit.

The magnitude of " controls the strength of Assumption M. Thus " = 0 corresponds to the

benchmark case where we are comparing a pair of g and h type applicants, such that the former

has scored higher in each previous assessment than the latter. A larger value of " corresponds to a
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weaker assumption, since xg �" xh will imply that the g-type individual is much better than the

h-type one in terms of observables and hence it is more likely that the conclusion of Assumption

M holds. In Subsection 7.2, below, we discuss a prescriptive method of choosing " in generic

applications, based on observables. We note however that for any choice of " � 0, no matter how

small, our identi�cation relevant information (see section 4) will come from all pairs (g; h) where

xg �" xh, including those where the g-type is much better than the h-type in terms of observables.

Assumption M is similar in spirit but substantively much weaker than two informal arguments

often used in applied work �viz., (i) when the distribution of the observable covariates are balanced

across treatment and control groups in quasi-experimental designs, it is taken to imply that they

are also balanced in terms of unobservables (e.g., Greenstone and Gayer, 2009) and (ii) orthogonal-

ity of an instrument with observed covariates is taken as suggestive evidence that it is orthogonal

with unobserved covariates (e.g., Angrist and Evans, 1998, p. 458). In our context, the type of

variables typically unobservable to researchers but likely to a¤ect admissions include achievements

such as winning special academic prizes, participation in science or math olympiads, high intellec-

tual enthusiasm conveyed by applicants�personal essays and the subjective impressions of previous

teachers implied via reference letters. Such speci�c information can identify individual applicants

and therefore are most likely to be withheld from researchers owing to privacy considerations. Such

characteristics may also be di¢ cult to record for past applicants in a manner that is accessible by

current admission tutors. However, while making admission decisions, tutors are likely to observe

these characteristics for current applicants via their dossiers or through personal interactions. It is

intuitive that such achievements are statistically more likely to have occurred for individuals who

score higher in terms of easily observable entrance assessments and aptitude tests than those who

score lower. See Section 6 below for evidence that is suggestive and supportive of this assumption,

for our application. The continuity condition in Assumption M (ii) rules out "gaps" in the distri-

bution of Z, which helps to relate the probability of admission to the admission thresholds. Such

continuity is intuitive, especially when Z is a function of several underlying performance indicators

which are themselves continuously distributed.

Remark 1 Note that assumption M/SD does not say that applicants with higher X have higher

Z with probability one; it simply says that their values of Z tend to be higher in a stochastic sense.

Remark 2 Assumption M allows the distribution of the unobservable Z to di¤er by background

variables; in particular, we allow both the location as well as the scale of Z to depend on G (condi-

tional on X) and thus also allow for the realistic situation of larger uncertainty regarding applicants
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from historically under-represented communities.

In addition to Assumption M or SD, we will make a further assumption regarding the structure

of � (Xi; Gi; Zi), viz.,

Assumption AS The tutors�subjective assessment � satis�es

��i � � (Xi; Gi; Zi) = �P (Xi; Gi) + Zi;

where �P (x; g) is de�ned in (2).2 ; 3

Discussion: Assumption AS concerns the structure of the "production" function � (�; �; �), as

perceived by admission tutors, when faced with both "hard" information which is easy to record

for past and current applicants and "soft information", observable to admission tutors only for

the current applicants but otherwise di¢ cult to record and hence unobservable to researchers. For

example, tutors can infer the intellectual enthusiasm of each applicant in the current pool from

his/her personal essay. But it is unlikely that tutors would remember such information about past

cohorts, especially when faced with hundreds of applications to process every year. Therefore, a

plausible method of selection is that when considering a current applicant, tutors form an initial

impression of his/her future success ��P (X;G), based on the easily observable "hard" information

like aptitude test score (e.g., SAT), high-school GPA etc. Then they adjust this initial impression,

using an index of ability Z inferred from the "soft" information for each applicant in the current

year which are unobserved by analysts (e.g., quality of reference letters and personal statements)

to form the overall expectation �P (Xi; Gi) + Zi.

2Note that in general �P (x; g), will di¤er from E[Y P jXP = x;GP = g] which is typically unknown to admission

tutors in universities because they, like us, do not observe potential outcomes of applicants who were not admitted or

chose not to enrol. Indeed, a large literature in educational statistics on so-called "validation studies" use predicted

performance of admitted candidates to infer the relative predictive ability of standardized test scores vis-a-vis high

school grades and socioeconomic indicators and prescribe policies based on this analysis. See for example, Kobrin

et al. (2001), Kuncel et al. (2008) and Sawyer (1996, 2010). Since our analysis evaluates what admission tutors

are likely to do �rather than what one could have done under ideal circumstances like having experimental data �

using �P (x; g) rather than E[Y P jXP = x;GP = g] � is the correct approach here. Obviously, under selection on

observables, these two quantities are identical.
3We are implicitly assuming that regressing outcome data for past applicants observed by the analyst yields a

consistent estimate of �P (X;G) used by admission-tutors, which is likely when tutors rely on more recent data,

rather than historical data unobserved by analysts, to make predictions.
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Assumptions AS and M yield a lower bound on the threshold di¤erences. To see this, de�ne

the function

p (x; g) := Pr [D = 1jX = x;G = g] ;

and the setM (g; h; ") as

M (g; h; ") := f(xg; xh) 2 Xg �Xh : xg �" xh; p (xg; g) � 0:5 < p (xh; h)g : (4)

Note that the set M (g; h; ") can be directly computed from the data because it depends only on

observables. Also, let Q� [Zjx; g] denote the �th quantile of the random variable Z, conditional on

(X;G) = (x; g), with � = 0:5 corresponding to the median. Now, note that

1� p (Xg; g) : = 1� Pr [D = 1jX = xg; G = g]

= Pr
�
Z < g � �P (xg; g) jX = xg; G = g

�
:

This implies that

g = �
P (xg; g) +Q

1�p(xg ;g) [Zjxg; g] ;

since Z is continuously distributed (by part (ii) of Assumption M). Similarly for individuals with

(X;G) = (xh; h) with g 6= h,

h = �
P (xh; h) +Q

1�p(xh;h) [Zjxh; h] :

Then,

g � h = �P (xg; g)� �P (xh; h) +Q1�p(xg ;g) [Zjxg; g]�Q1�p(xh;h) [Zjxh; h] .

Now if p (xg; g) < 0:5 � p (xh; h), then

g � h > �P (xg; g)� �P (xh; h) +Q1�0:5 [Zjxg; g]�Q1�0:5 [Zjxh; h]

= �P (xg; g)� �P (xh; h) +Median [Zjxg; g]�Median [Zjxh; h] .

So if in addition, xg �" xh, then by Assumption M, Median [Zjxg; g] � Median [Zjxh; h] and hence

g � h > �P (xg; g)� �P (xh; h) :

Taking the supremum of the RHS over (xg; xh) satisfying (xg; xh) 2 S (g; h; ") and (xg; xh) 2

XPg �XPh (so that we can compute �P (xg; g)� �P (xh; h) for all these pairs), we get

g � h � sup
(xg ;xh)2M(g;h;")

�
�P (xg; g)� �P (xh; h)

�
� � (g; h) : (5)
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The RHS of the above inequality is based only on observables and is easy to compute once we specify

regression models for �P (�; �) and p (�; �). If this lower bound is positive, then we can conclude that

group g is facing a higher admission threshold. Under the stronger condition of Assumption SD,

we can analogously de�ne

SD (g; h; ") := f(xg; xh) 2 Xg �Xh; xg �" xh; p (xg; g) � p (xh; h)g ; (6)

whence we have the bound

g � h � sup
(xg ;xh)2SD(g;h;")

�
�P (xg; g)� �P (xh; h)

�
: (7)

Intuitively speaking, here the identi�cation-relevant information comes from those pairs of g-

type and h-type applicants for whom the dominance condition xg �" xh holds and yet the g-

type�s probability of being accepted is lower. Assumption M (or SD) guarantees that these g-type

applicants are also better, in a stochastic sense, in terms of unobservables. Therefore, if these

gtype applicants have higher predicted performance based on observables, then they must have

been facing a higher threshold. Other pairs of applicants for whom dominance does not hold do

not contribute to the identi�cation.

4.1 Alternative identi�cation strategies

We are not aware of any existing empirical method of identifying the extent of a¢ rmative action

or of rigorously testing outcome-based e¢ ciency of college admissions. In the context of healthcare,

Chandra and Staiger (2009) attempt to identify di¤erence in expected outcome thresholds for

surgery by assuming an index restriction on the unobservable�s distribution. This approach fails

when the distribution of the unobservables di¤ers across G, conditional on observables, which is

known to be a key di¢ culty in detecting who the marginal treatment recipients are. For example,

in the admission context, it is quite likely that students from disadvantaged backgrounds have

larger mean and variance in academic ability, conditional on having obtained the same score in

school-leaving examinations as students from wealthier backgrounds. Our analysis imposes no

such restriction on the unobservables�distribution. In the healthcare context, Bhattacharya (2013)

suggests an alternative approach to testing outcome-oriented treatment assignment via a partial

identi�cation analysis using a combination of observational data and prior experimental �ndings

from randomized controlled trials. Such experimental results are typically di¢ cult to come by in

the college admission context.
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In other contexts such as law-enforcement and healthcare provision, researchers have used eco-

nomic optimization based reasoning to detect racial prejudice (c.f. Persico, 2009 for a survey). For

instance, Knowles, Persico and Todd (2004) evoke the assumption that potential criminals respond

optimally to drug-enforcement protocols by adjusting the amount of contraband they carry. This

insight justi�es the equating of the unobservable marginal with the observable average outcomes

across "treated" individuals (i.e., motorists who are apprehended) and thus can be used to test

whether marginal outcomes are equated across demographic groups. However, these approaches

rely on the speci�cs of the context and do not generalize to situations involving university admis-

sions. For example, it is both di¢ cult for university-applicants to alter their potential academic

outcomes in response to admission protocols and impractical for them to want to do this, given the

one-shot nature of admission exercise.

5 Estimation and Inference

Given the identi�cation analysis above, our next task is to develop a formal sample-based method

for testing threshold-di¤erences. For this purpose, we will make the stronger assumption of SD,

rather than M. Indeed, these two assumptions have the same intuitive interpretation; the evidence

for SD (see part B of the Appendix) is strong and conducting statistical inference under it is

slightly simpler. The �rst task regarding inference is to test whether SD (g; h; ") (de�ned in (6))

is nonempty. Indeed, � (g; h) is well-de�ned only when SD (g; h; ") is nonempty while it is �1

otherwise, suggesting that we have no information about g � h. We will focus on the case where

� (�; �) and p (�; �) are parametrically speci�ed via linear and probit models, respectively. That is,

�P (xg; g) = x0g�0;g; �
P (xh; h) = x

0
h�0;h;

p (xg; g) ( = Pr [D = 1j (X;G) = (xg; g)]) = �
�
x0g�0;g

�
; and p (xh; h) = �

�
x0h�0;h

�
;

where (�0;g;�0;h) and (�0;g; �0;h) are the true linear-regression and probit coe¢ cients; and � is the

C.D.F. of the standard normal. In principle, one can also use nonparametric estimates for � (�; �)

and p (�; �) but due to relatively small sample-size, the two-sample nature of the problem and the

complicated construction of "intersection bounds" for nonparametric estimates (needed for testing

emptiness), we do not consider such methods here. Note that under our parametric speci�cation,

�(x0g�g) � �(x0h�h) is equivalent to x0g�g � x0h�h and thus

SD (g; h; ") =
�
xg �" xh; x0g�0;g � x0h�0;h

	
:
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Testing emptiness: Observe that the null hypothesis of an empty SD (g; h; ") is equivalent

to the hypothesis that �0 � 0, where

�0 := inf
(xg ;xh)2Xg�Xh; xg�"xh

[p (xg; g)� p (xh; h)]

The quantity �0 is of a form analyzed in Chernozhukov et al (CLR, 2013). We construct a one-

sided 95% con�dence interval Ĉn (0:95) =
�
�1; �̂n0 (0:95)

�
for �0 by adapting the CLR method, as

outlined in part C of the Appendix, for each choice of g and h. If �̂n0 (0:95) < 0, then we conclude

that SD (g; h; ") is non-empty.

Quantile-based lower bound estimator and its asymptotic distribution: For the ap-

plication, when bounding the magnitude of threshold di¤erences, we consider a slightly more con-

servative bound which is easier to conduct inference on. Note from (5) that the key parameter

of interest is a supremum over the domain SD (g; h; "), de�ned in (6). Now, since p (xg; g) needs

to be estimated, we need to conduct inference on the supremum of an estimated object, viz.,

�P (xg; g)��P (xh; h) over an estimated domain. This problem is not covered by existing methods

in the literature on partial identi�cation or moment inequalities. Instead of developing distribution

theory for this supremum, we will work with a slightly conservative version of the bound, viz., we

replace the supremum � (g; h) (de�ned in (5)) by the upper �th quantile, and conduct inference on

it. That is, we use the implication of (5) that for any � 2 (0; 1),

g � h � � (g; h) � ��0 (g; h) ; (8)

where ��0 (g; h) is the �th quantile of the di¤erence in (5):

�� (g; h) := Q�

24�P (Xg; g)� �P (Xh; h)
������ (Xg; Xh) 2 Xg �Xh; Xg �" Xh;p (Xg; g) � p (Xh; h)

35 : (9)

For any � (bounded away from 0 and 1), we obtain a corresponding lower bound for g � h. If

��0 (g; h) is larger than zero, then so is � (g; h) and thus we can conclude that g > h. In the

application, we show results for � = 0:80. In the terminology of partial identi�cation analysis, this

is analogous to calculating an "outer identi�cation region" for model parameters. Our estimator of

��0 (g; h) is the natural sample analog of (9):

�̂
�
(g; h) = Q̂�

�
�̂P (Xg; g)� �̂P (Xh; h) jXg �" Xh; p̂ (Xg; g) � p̂(Xh; h)

�
;

where Xg is associated with G = g, and Xh with G = h; Q̂� is the �th quantile based on the

empirical distribution of (Xg; Xh); and �̂P and p̂ are functions estimated in a preliminary step.
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This can be stated as two-sample moment condition problem where the moments are nonsmooth in

the parameters. As such, the distribution theory for obtaining con�dence intervals for ��0 (g; h) does

not follow directly from existing results in the econometrics literature and requires an independent

analysis. In an online appendix posted on the second author�s website, we show that the asymp-

totic distribution of the eventual estimator �̂
�
(g; h) is asymptotically normal with a consistently

estimable asymptotic variance. Based on the estimate of the asymptotic variance, we can construct

con�dence intervals for the lower bound ��0 (g; h).

6 Empirical Analysis

Background: Our empirical analysis is based on admissions data for three recent cohorts of

applicants to an undergraduate degree programme in a popular subject at a selective UK University.

Like in many other European and Asian countries, students enter British universities to study a

speci�c subject from the start, rather than the US model of following a broad general curriculum

in the beginning, followed by specialization in later years. Consequently, admissions are conducted

primarily by faculty members (i.e., admission tutors) in the speci�c discipline to which the candidate

has applied. An applicant competes with all other applicants to this speci�c subject and no switches

are permitted across disciplines in later years. The admission process is held to be strictly academic

where extra-curricular achievements, such as leadership qualities, suitability as team-members,

engagement with the community etc., are given no weight. In that sense, these admissions are

more comparable with Ph.D. admissions in US universities. Furthermore, almost all UK applicants

sit two common school-leaving examinations, viz., the GCSE and the A-levels before entering

university. Each of these examinations requires the student to take written tests in speci�c subjects

�e.g., Math, History, English, Physical and Biological Sciences etc. The examinations are centrally

conducted and hence scores of individual students on these examinations are directly comparable,

unlike high-school GPA in the US where candidates undergo school-speci�c assessments which may

not be directly comparable across schools. In addition, all applicants take a multiple-choice aptitude

test, similar to the SAT in the US, and write an essay that is graded.

Choice of sample: For our empirical analysis, we focus on UK-based applicants. The ap-

plication process consists of an initial stage whereby a standardized "UCAS" form is �lled by the

applicant and submitted to the university. This form contains the applicant�s unique identi�er

number, gender, school type, prior academic performance record, personal statement and a letter

of reference from the school. The aptitude-test and essay scores are separately recorded. All of
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this information is then entered into a spread-sheet held at a central database which all admission

tutors can access. About one-third of all applicants are selected for interview by the university on

the basis of UCAS information, aptitude test and essay, and the rest rejected. Selected candidates

are then assessed via a face-to-face interview and the interview scores are recorded in the central

database. This sub-group of applicants who have been called to interview will constitute our sample

of interest. Therefore, we are in e¤ect testing the academic e¢ ciency of the second round of the

selection process, taking the �rst round as given. Accordingly, from now on, we will refer to those

summoned for interview as the applicants. The �nal admission decision is made by considering all

the above information from among the candidates called for interviews. For our application, we use

anonymized data for three cohorts of applicants from their records held at the central admissions

database at the university. For the admitted students, we merged these with their performance in

the �rst year, in which students sit tests in three papers. The scores across the three papers are

averaged to calculate the overall performance, which we take to be the outcome of interest. As an

alternative and for comparison, we consider performance in the �nal examinations taken at the end

of three years in eight papers. We have the �nals data for the two earlier cohorts and not the third

one.

Choice of covariates: We chose a preliminary set of potential covariates to be the observables,

based on the information recorded on UCAS forms and the university�s application records. We use

as observable components X aptitude test scores, the examination essay-score and the interview

score. A more detailed description of these covariates is provided in Table 0, below. The unob-

servable index of achievement Z is thus based on recommendation letters, the applicant�s personal

essay (not the substantive essay they write as part of the aptitude test), any prizes or distinctions

obtained among possibly other indicators. Given that those summoned for interview constitute

our "population" of interest, we found that in terms of A-level grades, GCSE scores and whether

the applicant previously read two subjects recommended for entry, there is very little variation

across these applicants and including these covariates makes no di¤erence to our eventual results.

Therefore, we eventually dropped these variables from the analysis.

Group identities G: We consider academic e¢ ciency of admissions with regards to two dif-

ferent group identities, viz., type of school attended by the applicant and the applicant�s gen-

der. Selective universities in the UK are frequently criticized for the relatively high proportion of

privately-educated students admitted (see the Introduction). The implication is that applicants

from independent schools, where spending per student is very much higher than in state schools

(Graddy and Stevens, 2005), have an unfair advantage in the admission process. In the UK, as in

18



most OECD countries, the higher education participation rate is higher for women, having over-

taken that for men in 1993. However, selective universities in the UK appear to have lagged behind

the trend: in 2010-11, 55% of undergraduates across all UK universities were female, but 44% of

students admitted to the university we are analyzing were female. Typically, gender imbalances

are more pronounced in certain programmes and includes the one we study, where male enrolment

is nearly twice the female enrolment.

Outcome: After entering university, the candidates take preliminary examinations in three

papers at the end of their �rst year. Each script is marked blindly, i.e., the marking tutors do not

know anything about the candidate�s background or gender. We use the average score over the three

papers as the �rst outcome �labelled prelim_tot �which can range from 0 to 100. An advantage

of using the preliminary year score as the relevant outcome measure is that every admitted student

sits the same preliminary exam in any given year; so there is no confounding from the di¤erence

in score distributions across di¤erent optional subjects, as often happens in the �nal examinations

at the end of the 3-year course. The disadvantage of using the �rst year score is that applicants

from relatively modest socioeconomic backgrounds are more likely to "catch up" at the end of three

years and thus an assessment based on prelim scores may bias a researcher towards overestimating

the extent of a¢ rmative action.

In view of these considerations, we use as a second outcome the students�performance in the

�nal examinations in eight papers which are taken at the end of three years and based on which

the student receives his/her degree. At this stage, students do not all sit the same papers; but the

marking is still blind and the scores re�ect relative competence with respect to the others taking

the same paper. The disadvantage of this outcome is that students take examinations in di¤erent

papers which they self-select into and therefore any real improvement relative to the �rst-year

is, to some extent, confounded with e¢ cient sorting into options. Using Duke University data,

Arcidiacono et al. (2011) have recently documented large di¤erences in patterns of major choice

between candidates who are the likely bene�ciaries of a¢ rmative action policies during admissions

compared to the major choice patterns of other enrolled students. However, unlike in Arcidiacono

et al., here the sorting is not into easier and harder subjects (like STEM and non-STEM majors)

but only into di¤erent options which are intellectually similarly demanding.

Summary statistics: We provide summary statistics for our sample in Table 1. The left half

of table 1 shows that male applicants have better aptitude test scores and interview averages and

male admits score an average of about 1 percentage point (20% of the overall standard deviation)

higher in the �rst year exams. They perform slightly worse on average in their GCSE and A-levels.
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These di¤erences are statistically signi�cant at the 5% level. Note that there is no signi�cant

di¤erence in o¤er rates between male and female candidates. The independent and state school

applicants are quite similar in terms of most characteristics except for a slightly higher gcsescore.

In Table 2 we report the results of a probit regression of receiving an o¤er across all applicants.

Table 2 strengthens the �ndings from Table 1 by showing that even after controlling for covariates,

gender and school-type do not a¤ect the average admission-success rate among applicants. The

value of McFadden�s pseudo-R2 for the probit model is about 50% and the corresponding R2 for a

linear probability model (not reported here) is about 45% �which are about 10 times higher than

the goodness-of-�t measures typically reported by applied researchers working with cross-sectional

data. This suggests that the commonly observed covariates explain a very large fraction of admission

outcomes. Moreover, Table 2 also shows that the aptitude test and interview scores have the largest

impact upon receiving an o¤er for the applicant population (in terms of the t-statistics).

Evidence of median-dominance: Among the pre-admission variables that we observe in

our dataset it�s only the performance in the interview that is assigned by tutors. This is the type

of variable most likely to be missing in other datasets since they re�ect subjective assessment by

the admission-tutors. We will �rst check our Assumption M by treating the interview score as the

unobservable component. That is, we will verify whether the median interview score is stochastically

higher for those types of applicants who are better in terms of all other "tutor-independent" test-

scores obtained in prior assessments. If that is true, then our Assumption M regarding the truly

unobservable determinants of admissions is also more credible. The concrete steps leading to our

test are as follows. Consider X = (Aptitude_test_score;Exam_essay)0. First, run a median

regression of interview score (which now plays the role of Z) on X and quadratics in components

of X plus G, where G represents gender or school-type, and compute the predicted values. These

represent Median[ZjX;G]. We then compare these predicted values for pairs of applicants where

the �rst applicant is of type G = g and the second applicant is of type G = h. In Figure 2, we

depict histograms capturing the marginal distribution of the conditional median di¤erences, for

di¤erent combinations of g and h. The analog of our Assumption M here is that these histograms

should have an entirely positive support, up to estimation error. For example, the histogram in the

top left panel of Figure 2 shows the estimated marginal distribution of the variable

Median[interview j Xg; g = male]�Median[interview j Xh; h = female]

across all paired realizations (Xg; Xh) satisfying Xg �" Xh. We choose " = 0:0; if we demonstrate

median dominance for " = 0:0, then dominance will hold for all higher values of ".
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Figure 2: Evidence of Median Dominance

It is evident that all four of these histograms have entirely positive support, suggesting that the

median dominance conditions hold. In the appendix, we also show analogous histograms for the

25th and 75th quantiles with " = 0:0. There is overwhelming evidence that these histograms also

have positive support and thus that the stronger SD condition is also likely to be true.

6.1 A thought experiment

Before performing empirical analysis of the actual data, we conduct a thought experiment where

we investigate the usefulness of our approach in a situation where the "truth" is known. The idea

is to treat one of the observed covariates �viz., the interview score �as unobserved, note that this

"missing" covariate satis�es our assumption of median monotonicity (see Figure 2) and then run

a simulation experiment where tutors accept applicants based on all characteristics including the

interview score but the researcher does not observe it. In this simulation experiment, we vary the

acceptance thresholds and check how small a di¤erence in thresholds can our bounds-based method

detect when the interview score remains "unobserved" to us.

Simulation exercise: We now conduct a simulation exercise, whose purpose is to investigate

how well our method works when we a priori know the admission thresholds. In order to do this,

we use the above dataset where we treat a school type as G, and aptitude test and examination

essay scores and gender as the commonly observed covariates, X. The interview score is taken

to be unobserved by us (researchers) but observed by admission tutors for the present cohort for

whom the admission decision is to be made. This will play the role of Z. We generate arti�cial

observations on admissions in the following way. Using past academic performance in the �rst year
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examination as the outcome, we estimate a regression model where X are used as regressors. We

then generate the predicted outcomes for each current year applicant by using coe¢ cient estimates

from the previous regression and adding a contribution from the "unobserved" interview score Z1

(normalized to have mean zero across the entire sample). If this sum plus a stochastic slippage error

exceeds a threshold value of 61:5 for state-school students (G = h) and 61:5 + � for independent

school applicants (G = g), then the student is assumed to have been o¤ered admission, i.e., the

admission-dummy D is set to be 1. It is set to be 0 otherwise. That is, we set

�g =
hXn

i=1
1 fGi = ggXiX 0

i

i�1Xn

i=1
1 fGi = ggXiYi;

�h =
hXn

i=1
1 fGi = hgXiX 0

i

i�1Xn

i=1
1 fGi = hgXiYi;

Di = 1
�
X 0
i�g1 fGi = gg+X 0

i�h1 fGi = hg+ 0:05Z1;i + ui � 61:5 + � � 1 fGi = gg
	
;

where 0:05Z1;i is the contribution from an "unobserved" interview score; ui is the stochastic slippage

component drawn from the normal distribution N (0;1 fGi = gg+ 2� 1 fGi = hg) and thus the

sum 0:05Z1;i+ui represents the unobserved index variable Zi; and �nally, �, which is set externally

by us, is the extent of a¢ rmative action. A positive value of � indicates that independent school

applicants are being held to a higher threshold of expected performance.

For each value of �, we then perform our bounds analysis by pretending that we observe X

but not the interview score. This is meant to capture the situation that admission tutors may

base their decision on some subjectively assessed performances Z, unobserved by the researcher, in

addition to the prediction based on the commonly observed covariates. Since the interview-score

satis�es Assumption M (see Figure. 2), our bounds analysis is applicable in this case. Accordingly,

Table 3 reports true values of � and the corresponding lower bounds on it, obtained by using our

method with � = 0:5 (median), � = 0:80 as well as the mean. The table can be read as follows.

The �rst column reports the true value of �, the second column shows the fraction of times we

have p (xg; g) < p (xh; h) among all pairs satisfying xg �" xh with " = 0:1. The point estimates

for median, mean and 80th percentile of the di¤erence � (Xg; g) � � (Xh; h) over SD (g; h; ") are

reported in the next three columns. Finally, equal tailed con�dence intervals (obtained by repeated

sampling from this design) are reported below the estimates.

It can be seen from Table 3 that threshold di¤erences of 2 or more points out of 100 (overall

standard deviation of the outcome distribution is about 5 points) are clearly detected; a positive

di¤erence of 1 or less still yields positive point-estimates for � but the associated con�dence intervals

contain 0. For a negative value of �, the fraction f is calculated to be zero, as one would expect.

Overall, this table presents strong evidence that our method works well in practice. As such, this
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exercise increases the credibility of the results obtained by applying our methods to the full dataset

where interview scores are observed together with the covariates included in X but some other

characteristics which are potentially used by tutors in predicting future performance, may remain

unobserved to us.

7 Results

We now turn to the real application where we use the aptitude test score, the examination essay

score and the interview score as the covariates X for de�ning dominance. That is, if a g-type

candidate has scored " standard deviations higher on each of these three key assessment scores than

an h-type candidate, then the conditional distribution (or median) of the unobservable component

of assessment for the former will dominate that for the latter for all g and h, as per Assumption M

or SD above.

In accordance with the discussion in Section 5 the �rst step is to examine emptiness of SD (g; h; ").

We �rst do this graphically by plotting the marginal C.D.F. of the di¤erence in acceptance prob-

abilities p (Xg; g) � p (Xh; h) for pairs of (Xg; Xh) satisfying Xg �" Xh for " = 0:1 for various

combinations of g and h.4 When the event fXg �" Xhg happens with positive probability, an

empty SD (g; h; ") is equivalent to Pr [Xg �" Xh; p (Xg; g) < p (Xh; h)] = 0, where the probability

is taken with respect to the distributions of Xg and Xh. Therefore, a positive mass at and below

zero for these C.D.F.�s indicates that SD (g; h; ") is nonempty. In the left panel, when g = male,

h = female, the C.D.F. is represented by the solid curve labelled male_fem; and when g = female

and h = male, it is the dashed curve, labelled fem_male.

4Since we concluded dominance with " = 0:0, with Z being the interview score, we chose a slightly higher (i.e.,

more conservative) value of " = 0:1 to investigate emptiness of SSD" (g; h).
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Figure 3: Evidence of Emptiness

Clearly, the �rst curve has signi�cant mass below zero and the dashed curve has almost no mass

below zero, suggesting a positive probability that p (Xmale;male) < p (Xfemale; female) although

Xmale �" Xfemale. This evidence is still present in the right panel with independent and state

schools replacing male and female, respectively, but to a slightly lesser extent, suggesting that

indep may be only slightly larger than state. To perform the test formally, in Table 4, we report

�̂0n (0:95), the upper limit of a one-sided con�dence interval, calculated using the method of CLR,

as explained in Section 5. A negative upper limit indicates that the set SD (g; h; ") is nonempty

and consequently we reject the null of g � h in favour of g > h. It is evident from Table 4

that we reject emptiness for g = male, h = female and for g = indep, h = state but do not reject

emptiness in the other cases.

Given the conclusion of the test of emptiness, we now compute lower bounds for male�female
and indep � state, based on � = 0:8 (c.f. eq. (9)). We use a value of " = 0:1 and later we

compare estimates obtained using " = 0:25 with those obtained using " = 0:1. In Tables 5A and

5B we report the estimated lower bounds �̂
�
for � = 0:80, given by (5) and (7), using prelim

and �nals performance as outcomes, respectively. The �rst column, labeled "upper limit", reports

�̂0n (0:95) from the previous table. When this number is negative, it indicates that the SD (g; h; ")

is nonempty, whence we proceed to compute �̂
�
. Imposing the assumption AS and calculating lower

bounds on the magnitude of the threshold di¤erences, we get values of 3:78 and 2:14 for gender and

school-type, respectively, suggesting that the marginal male admits and the marginal independent

school admit perform signi�cantly better in their �rst year examinations. In terms of the overall
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distribution of �rst year exam scores, these di¤erences amount to about 65% and 40%, respectively,

of one standard deviation.

Comparing these results with the �nals performance reported in Table 5B, we see that the

magnitude of the lower bound has now shrunk by more than 50%. That is, the marginal male

admit is expected to perform at least 1:95 points higher than the marginal female admit. This

gender di¤erence is still signi�cant but the one for school-type is not. Since it is the lower bound

which has shrunk, it is not immediate whether the actual di¤erence has also shrunk. However,

the large magnitude di¤erence does suggest some shrinking of the actual gaps resulting from either

catch-up over time and/or some extent of e¢ cient sorting into options.

Table 5C reports the bounds where the outcome is the indicator of whether a student gets a �rst-

class mark (i.e. 70% or more) in the �nals. Eventual degrees of all graduating students are classi�ed

into four categories ��rst, upper second, lower second and pass. On average, approximately 25-

30% of students get a �rst-class degree in the subject we are studying; a �rst-class degree from

university is associated with signi�cant academic prestige and signi�cantly improves one�s chances

of admission to high-ranked post-graduate programmes and prospects of securing attractive jobs

beyond graduation. It can be seen from Table 5C that the qualitative conclusions remain the same

as before �a large gender gap exists but the gap across school-types is insigni�cant. Finally, in

Table 6, we compare estimates using " = 0:25 with those obtained using " = 0:1. The di¤erences

in results can be seen to be very small.

The exact magnitudes of the lower bounds reported in Tables 5-6 vary slightly across functional

speci�cations (e.g. whether higher order terms and interactions in the test scores are or are not used

to estimate �P (�; �)), but three empirical �ndings are robust across all speci�cations: (a) the gender

gap is large, persistent and statistically signi�cant in every case; (b) the independent-state school

di¤erence is comparatively smaller; and (c) the lower bounds based on the �nal-year examinations

are smaller then the ones based on �rst-year performance but the gender gap in admission thresholds

remains signi�cant.

In order to gain some visual insight into how the threshold discrepancies arise, in Figure 4, we

plot the empirical marginal C.D.F.�s of the estimated �P (Xmale;male) and �P (Xfemale; female)

(the left panel) and those of the estimated �P (Xindep; indep) and �P (Xstate; state) (the right panel).

Here we take �rst-year performance as the outcome of interest. It is clear that the male distribution

�rst-order stochastically dominates the female distribution. This means that if admissions are de-

terministic, conditional on �P (i.e., there is no unobserved heterogeneity), any common acceptance

rate across gender will result in a higher �P for the marginal accepted male than the marginal
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accepted female.
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Figure 4: Graphical Illustration of higher threshold

This can be seen in Figure 4, by looking along any �xed cuto¤ on the vertical axis. Any such

horizontal cut-o¤ line5 will intersect the female C.D.F. at a point that will lie strictly to the left

of the point of intersection with the male C.D.F. Given the results presented in the tables, it is

evident that the presence of unobserved heterogeneity does not alter this fundamental dominance

situation. A similar, albeit relatively weaker, dominance situation occurs for school-type, as can be

seen in the right-hand panel in Figure 4.

Interpretation of the empirical �ndings: It would be natural to conjecture that the ob-

served threshold di¤erences arise primarily from the implicit or explicit practice of a¢ rmative ac-

tion, viz., the overweighting of outcomes for historically disadvantaged groups. A second possibility

is that, in face of political and/or media pressure, admission tutors try to equate an application

success rate for, say, males with one for females, which is also consistent with our empirical �ndings

(see Tables 1A and 1B). This would make the e¤ective male threshold higher if, say, the conditional

male outcome distribution has a thicker right tail (see Figure 4). A third possibility is that female

applicants are set a lower admission threshold in order to encourage more female candidates to

apply in future. Note from Table 1A that the number of female applications is nearly half the

number of male ones. Regardless of what the underlying determinants of the tutors� behavior

are, we can conclude from our analysis that the admission practice under study deviates from

the outcome-oriented benchmark and makes male or independent school applicants face e¤ectively
5For instance, if the top 30% of applicants are accepted among both males and among females, then we should be

looking along the horizontal line at 1� 0:3 = 0:7 on the vertical axis.
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higher admission thresholds. Some of the di¤erence observed in the �rst-year performance is mit-

igated when one examines the �nal-year performance. This is likely caused by a combination of

academic improvement by the lower performing students who are female or from state-schools and

a more e¢ cient sorting into optional courses. As explained above, the various optional courses do

not necessarily pose di¤erent levels of intellectual challenges and hence the observed shrinking of

the initial di¤erences should be viewed as a sign of relative improvement by those performing the

worst in the �rst-year exams.

7.1 Robustness of interpretation

We now investigate whether our �ndings could be consistent with two alternative explanations.

G-blind admissions: The �rst possibility is where admission tutors ignore G completely in

forming their assessment and use a common admission cut-o¤ across G; the question is whether

by including G in our analysis, we are "detecting" threshold di¤erences that are not there in the

actual admission process. Even if this is the case, we would argue that in order for admissions to

be meritocratic, admission tutors should take G into account. For example, suppose G denotes a

school type, state-school students are more able than independent school students with the same

test score, and therefore perform better in university exams. If tutors ignore G, then an independent

and a state school student with identical pre-admission test scores will have equal probability of

admission, even though the state-school student is more meritorious, which would contradict the

notion of meritocratic admissions. Nonetheless, for interpreting our �nding of di¤erent thresholds,

one might investigate G-blindness as a possible explanation. Accordingly, let ��P (X) denote the

expected future performance based on X but not G and consider an alternative admission rule

D = 1
�
��P (X) + Z � G

	
;

where, under a G-blind admission process, G will not vary by G. Now, for xg 2 Xg,

p (xg; g) := Pr [D = 1j(X;G) = (xg; g)] = Pr[Z � g � ��P (X) j(X;G) = (xg; g)];

Then, we have

g = ��
P (xg) +Q

1�p(xg ;g) [Zjxg; g] :

Similarly, for xh 2 Xh,

h = ��
P (xh) +Q

1�p(xh;h) [Zjxh; h] ;

and thus

g � h = ��P (xg)� ��P (xh) +Q1�p(xg ;g) [Zjxg; g]�Q1�p(xh;h) [Zjxh; h] ;

27



implying, under Assumption M, that

g � h � sup
(xg ;xh)2SD(g;h;")

�
��P (xg)� ��P (xh)

�
;

where SD (g; h; ") is de�ned exactly as above. If the supremum exceeds zero, then we can conclude

that admissions were not generated in a fully G-blind way. The RHS lower bound is similar to

(5) except that �P (�) is not conditioned on G. We compute the 80th percentile instead of the

supremum, as before and report this in column 1 of the following table (under the heading "G-

blind"), for " = 0:1 and for the outcome being the �nals performance.

Alternative Interpretations

Category G-blind No-Interview Benchmark

Male-Female 1.97 2.85 1.93

Indep-State 1.65 0.96 0.75

The table shows that the threshold di¤erences are in fact slightly larger if we assume that G is

not used to predict future outcomes and thus G-blind admissions are unlikely to be an explanation.

Biased interviews scores: A second issue concerns the use of interview scores in calculating

the lower bounds. Suppose that tutors are biased in favour of type-g applicants and award them

higher interview marks (relative to true performance) than type h. But as we saw in Figure 2, the

interview score does appear to satisfy Assumption M (with " = 0), which would be unlikely if one

type of candidates was systematically awarded higher interview scores relative to their performance

in the other more "objective" tests. For example for g = male and h = female, if males are awarded

systematically higher interview scores, then we would expect to see a signi�cant mass in the negative

orthant of the top right histogram in Figure 2, which is clearly not the case. Furthermore, our

method of identifying threshold di¤erences is based on the predicted performance in university

exams as a function of interview and other test-scores, rather than the test scores in themselves.

Under biased interview scores, g-type candidates with low ability but high interview scores (due

to the bias) will perform relatively poorly upon being admitted and thus have lower values of

�P (x; g) for �xed x. This will make our bounds, based on the di¤erence �P (x; g) � �P (xh; h)

for those with p (x; g) < p (xh; h), negative (or less positive). So interpreting a positive lower

bound as symptomatic of nonacademic bias against g-type candidates is robust to interview scores

being biased in favor of g-type applicants. The bounds obtained upon ignoring interview scores

altogether are reported in the third column of the previous table. The lower bound on the male-

female di¤erence is now much larger than the benchmark case and the independent-state di¤erence
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similar in magnitude (both being statistically insigni�cant). Thus our substantive conclusions

remain valid.

8 Summary and Conclusion

This paper has proposed an empirical method for testing, on the basis of micro-data, whether an

existing admission protocol is meritocratic when a researcher observes some but not all applicant-

speci�c information observed by admission tutors. Our approach works by obtaining bounds on

the di¤erence in admission thresholds faced by applicants of di¤erent demographic groups. These

bounds are robust to the unobserved characteristics problem, under an intuitive assumption about

the ranking of applicants by unobservable attributes. The bounds reveal information about the

extent of bias in the admission process relative to the meritocratic ideal of admitting students with

the highest academic potential. Since our methods are based on predicted probability of accep-

tance and predicted performance in university, they can be applied to situations where applicants

come from diverse backgrounds and report scores from di¤erent aptitude tests, since the necessary

predicted values can be calculated based on candidate-speci�c covariates. Furthermore, we do not

require any information for past applicants who were not accepted, which is convenient since univer-

sities normally do not store such data. Applying our methods to admissions data for a selective UK

university, we �nd that admission thresholds faced by male applicants are signi�cantly higher than

females while those for private-school applicants slightly higher relative to state school applicants.

In contrast, average admission rates are nearly identical across gender and across school-type, both

before and after controlling for other covariates.

We have left several substantive issues to future research. For example, we do not consider peer-

e¤ects in our analysis because it is unlikely that admission tutors have enough information regarding

peer e¤ects to base their admission decisions on it. Second, it may be useful to repeat the empirical

analysis using other outcomes �such as wage upon graduation �which are more directly related

to social mobility. However, we suspect that college performance data are much more readily

available than wage data because the latter requires costly follow-up of alumni and can entail

non-ignorable non-response. Lastly, our methods are potentially useful for testing outcome-based

fairness of binary decisions in non-admission contexts such as approval of mortgage applications,

referrals to expensive medical treatment etc., where allegations of unfair decision are common and

where eventual outcomes are observed for those who were approved or treated.
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Table 0: Variable-Label
gcsescore Overall score in GCSE, 0-4

alevelscore Average A-level scores 80-120
took subject 1 Whether studied 1st recommended subject at A-level
took subject 2 Whether studied 2nd recommended subject at A-level
aptitude test Overall score in Aptitude Test 0-100

essay Score on Substantive Essay 0-100
Interview Performance score in interview 0-100

prelim_avg Average score in first year university exam; 0-100
finals_avg Average Score in final year examination; 0-100

offer Whether offered admission
accept Whether accepted admission offer

The alevelscore is an average of the A-levels achieved by or predicted for the candidate by his/her school, excluding general studies. Scores are calculated on 
the scale A=120, A/B = 113, B/A = 107, B = 100, C = 80, D = 60, E = 40, as per England-wide UCAS norm. gcsescore is an average of the GCSE grades 
achieved by the candidate for eight subjects, where A* = 4, A = 3, B = 2, C = 1, D or below =0. The grades used are mathematics plus the other seven best 
grades. The University recommends that candidates study two specific subjects at A-levels for entry into the undergraduate programme under study. Subject 1 
and Subject 2 are dummies for whether an applicant did study them at A-level.
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Table 1. Means by Gender and by Schooltype

Variable Female (N=365) Male (N=620) pvalue_diff State (N=548) Indep (N=437) pvalue_diff
gcsescore 3.83 3.75 0 3.70 3.87 0

took subject 1 0.69 0.68 0.54 0.64 0.73 0.02
took subject 2 0.48 0.52 0.27 0.53 0.49 0.004

alevelscore 119.73 119.44 0.01 119.60 119.73 0.02
aptitude test 62.53 65.24 0 63.82 64.94 0.0015

essay 63.23 64.49 0 64.06 64.07 0.5
interview 64.23 65.29 0.04 65.02 65.17 0.65

Prelim_avg 60.98 61.89 0.04 61.15 62.10 0.03
Finals_avg 64.89 65.34 0.28 65.02 65.37 0.88

offer 0.363 0.357 0.41 0.361 0.357 0.5
accept 0.34 0.34 0.5 0.33 0.35 0.46

Table 2. Probit of receiving offer

Regressor Coef. Std. Err. z p-value

gcsescore 0.26 0.25 1.04 0.30
alevelscore 0.08 0.06 1.26 0.21

took subject 1 -0.06 0.17 -0.33 0.74
took subject 2 -0.25 0.15 -1.65 0.10
aptitude test 0.09 0.01 7.01 0.00

essay 0.01 0.01 0.44 0.66
interview 0.23 0.02 10.59 0.00

indep -0.13 0.15 -0.88 0.38
male -0.18 0.16 -1.13 0.26

N=985, Pseudo-R-squared=0.5

Note: The data pertain to three cohorts of applicants. The variable names are explained in table 0. Column 6 records the p-value corresponding to a test of
equal means against a one-sided alternative. Differences in unconditional offer rates across school-types (highlighted) are seen to be statistically
indistinguishable from zero at 5%. 
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Table 3: Simulation: Indep-State
True difference, δ Fraction_negative Median Mean 80%ile

4 24.2 3.32 3.35 4.02
(1.35, 4.93) (1.59, 5.02) (2.21, 6.21)

3 17.7 1.92 1.88 2.63
(0.28, 3.22) (0.05, 3.01) (1.96, 4.07)

2 12.99 1.33 1.31 1.54
(0.76, 2.78) (0.28, 2.31) (0.51, 2.88)

1 3.12 0.86 0.86 1.21
(0.14, 1.60) (-0.08, 1.36) (-0.88, 1.99)

0 0.2 -0.06 0.11 0.29
(-1.88, 0.47) (-1.78, 0.47) (-1.45, 0.61)

-2 0 . . .

Table 4: Test Emptiness of S(g,h) for ε=0.1

Difference Upper limit of CLR CI
g=male, h=female -1.53
g=female, h=male 0.35
g=indep, h=state -0.33
g=state, h=indep 0.79

Note: Results of Simulation exercise as described in section 6.1 of text. The first column is the true threshold difference used in the simulation. Column 2
reports the fraction of covariate pairs satisfying the relation described by the set S(g,h) among all possible covariate pairs. A larger fraction indicates that the
set S is more likely to be non-empty. The last thress columns report the estimated lower bounds on the threshold differences, based on the median, mean and
80th percentiles of the conditional mean differences over the set S(g,h).

Upper limit of 95% confidence interval for a test of empty conditioning set S(g,h) based on CLR.Negative value indicates non-empty set and implies that 
group g faces a higher threshold, resulting from assumptions CM and SD in the text.
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Table 5A: Threshold Differences, Prelim, Mean=61.58, s.d.=5.91

Difference test emptiness lower bd: 80 %ile pvalue lower bd
male-female -1.53 3.78 0.07
female-male 0.35 . .
indep-state -0.33 2.14 0.04
state-indep 0.79 . .

Table 5B: Threshold Differences, Finals, Mean=64.94, s.d.=4.22

Difference test emptiness lower bd: 80 %ile pvalue lower bd
male-female -1.53 1.95 0.09
female-male 0.35 . .
indep-state -0.33 0.75 0.46
state-indep 0.79 . .

Table 5C: Threshold difference, Outcome=First Class, Mean=0.30

Difference test emptiness lower bd: 80 %ile pvalue lower bd
male-female -1.53 0.153 0.02
indep-state -0.33 0.094 0.25

Table 6: Threshold Differences for different ε 

PRELIM, Mean=61.58, s.d.=5.91 FINALS, Mean=64.94, s.d.=4.22
ε 0.1 0.25 ε 0.1 0.25

male-female 3.78 3.11 male-female 1.95 2.03
pvalue 0.07 0.1 pvalue 0.09 0.12

indep-state 2.14 2.64 indep-state 0.75 0.99
pvalue 0.04 0.04 pvalue 0.46 0.5

Notes: The data pertain to three cohorts of applicants. The first column presents upper limit of 95% confidence interval for a test of empty conditioning set 
based on CLR; negative value indicates non-empty set. Upon rejecting emptiness, we compute lower bound on threshold differences and corresponding p-
values, as per subsections 4.4 and 5.2 of text.
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Appendix
Part A: Proof of Proposition 1

Consider any feasible rule p (�) satisfying the budget constraint. Since popt (�) satis�es the budget

constraint with equality (recall the de�nition of  and q) and p (�) is feasible, we must haveR
w2W � (w) p

opt (w) dFW (w) = c �
R
w2W � (w) p (w) dFW (w); (10)

implying that R
w2W � (w)

�
popt (w)� p (w)

�
dFW (w) � 0: (11)

Let W (p) :=
R
w2W p (w)� (w)� (w) dFW (w). Now, the productivity resulting from p (�) di¤ers

from that from popt (�) by

W
�
popt

�
�W (p)

=
R
w2W

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w) + 

R
w2W

�
popt (w)� p (w)

�
� (w) dFW (w)

�
R
w2W

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w)

=
R
�(w)>

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w)

+
R
�(w)<

�
popt (w)� p (w)

�
� (w) [� (w)� ] dFW (w)

=
R
�(w)> [1� p (w)] [� (w)� ]� (w) dFW (w) +

R
�(w)< p (w) [ � � (w)]� (w) dFW (w) � 0;(12)

where the �rst inequality holds by (11) and that  > 0. Therefore, we have W
�
popt

�
� W (p) for

any feasible p (�), and the solution popt (�) given in (1) is optimal.

To show the uniqueness, consider any feasible rule p (�) which di¤ers from popt (�) on some set

whose measure is not zero, i.e.,
R
w2S(p) dFW (w) > 0 for S (p) := fw 2 W j popt (w) 6= p (w)g. Now,

assume that the last equality in (12) holds for this p (�). In this case, since the last equality on the

RHS of (12) holds with equality, p (�) must take the following form:

p (w) =

8<: 1 if � (w) > ;

0 if � (w) < ;

for almost every w (with respect to FW ). This implies that p (w) = popt (w) for almost every w

except when � (w) = . Since the measure of S (p) is not zero, we must have popt (w) 6= p (w) for

� (w) = , and S (p) = fw 2 W j � (w) = g, which, together with the budget constraint, implies

that q > p (w) when � (w) = . However, this in turn implies that we have a strict inequality

in the third line on the RHS of (12), which contradicts our assumption. Therefore, we now have

shown that W
�
popt

�
>W (p) for any feasible p (�) with

R
w2S(p) dFW (w) > 0, leading to the desired

uniqueness property of popt (�).
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Part B: Evidence of dominance: Other quantiles
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Figure 5: Dominance for 25th percentile
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Figure 6: Dominance for 75th percentile
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Part C: Test of emptiness

The null hypothesis of an empty SD (g; h; ") can be stated as �0 � 0, where

�0 = inf
(xg ;xh)2Xg�Xh; xg�"xh

[p (xg; g)� p (xh; h)].

The quantity �0 is of a form analyzed in Chernozhukov, Lee and Rosen (2013, CLR).6 We con-

sider constructing a 95% con�dence interval for �0 in the parametric case p (xg; g) = �
�
x0g�0h

�
and p (x0h�0h) by following the CLR method. Accordingly, denote the dimension of (�0g; �

0
h)
0 by

k, a k-variate standard normal by Nk and the asymptotic variance of (�̂
0
g; �̂

0
h)
0 by 
, that is,

AVar[(�̂
0
g; �̂

0
h)
0] = 
. Now the null hypothesis is equivalent to

inf
(xg ;xh)2Xg�Xh; xg�"xh

[x0g�0;g � x0h�0;h] � 0

In order to map the notation of this paper into the CLR notation, let

v = (xg; xh) ;  = (�g; �h) ;

V = f(xg; xh) 2 Xg �Xh : xg �" xhg ;

�̂n (v) = [x0g�̂g � x0h�̂h];

sn (v) = jj(x0g;�x0h)
̂1=2jj; ZFn (v) =
(x0g;�x0h)
̂1=2

jj(x0g;�x0h)
̂1=2jj
Nk;

kn;V (p) = Qp[supv2V Z
F
n (v)];

�̂n0 (p) = infv2V [�̂n (v) + kn;V (p) sn (v)]:

Then a 100p% one-sided con�dence interval (CI) for �0 is given by Ĉn (p) =
�
�1; �̂n0 (p)

�
. If

�̂n0 (p) < 0, then we conclude that SD (g; h; ") is non-empty. In the application, we use p = 0:95

and report the CI, Ĉn (0:95), for each choice of g; h.

6We note that �0 and �̂n (as well as some other components) depend upon upon the choice of " (� 0), but for

notational simplicity, we suppress their dependence on " (the same remark also applies to part D).
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