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The recent macroeconomic literature stresses the importance of managing heterogeneous
expectations in the formulation of monetary policy. We use a simple frictionless dynamic
stochastic general equilibrium (DSGE) model to investigate inflation dynamics under
alternative interest rate rules when agents have heterogeneous expectations, and update
their beliefs based on past performance, as in Brock and Hommes [Econometrica 65(5),
1059–1095 (1997)]. The stabilizing effect of different monetary policies depends on the
ecology of forecasting rules (i.e., the composition of the set of predictors), on agents’
sensitivity to differences in forecasting performance, and on how aggressively the
monetary authority sets the nominal interest rate in response to inflation. In particular, if
the monetary authority responds only weakly to inflation, a cumulative process with rising
inflation is likely. On the other hand, a Taylor interest rate rule that sets the interest rate
more than point for point in response to inflation stabilizes inflation dynamics, but does
not always lead the system to converge to the rational expectations equilibrium, as
multiple equilibria may persist.
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1. INTRODUCTION

The rational representative agent approach is still the core assumption in macro-
economics. In contrast, in behavioral finance, models with bounded rationality
and heterogeneous expectations have been developed as a concrete alternative
to the standard rational representative agent approach. These heterogeneous-
agents models mimic important observed stylized facts in asset returns, such
as fat tails, clustered volatility, and long memory, as discussed, e.g., in the
extensive surveys of Hommes (2006) and LeBaron (2006). Although bounded
rationality and adaptive learning have become increasingly important in macroe-
conomics, most models still assume a representative agent who is learning about
the economy [see, e.g., Sargent (1999) and Evans and Honkapohja (2001) for
extensive overviews] and thus ignore the possibility of heterogeneity in expec-
tations and its consequences for monetary policy and macroeconomic stability.
Some recent examples of macro models with heterogeneous expectations in-
clude those of Brock and de Fontnouvelle (2000), Evans and Honkapohja (2003,
2006), Branch and Evans (2006), Honkapohja and Mitra (2006), Berardi (2007),
Tuinstra and Wagener (2007), Brazier et al. (2008), Assenza and Berardi (2009),
Branch and McGough (2009, 2010), and Lines and Westerhoff (2010). Carroll
(2003), Mankiw et al. (2003), Branch (2004), and Pfajfar and Santoro (2010)
recently provided empirical evidence in support of heterogeneous expectations
using survey data on inflation expectations, whereas Hommes et al. (2005),
Adam (2007), Assenza et al. (2011), and Pfajfar and Zakelj (2011) find evi-
dence for heterogeneity in learning-to-forecast laboratory experiments with human
subjects.

The importance of managing expectations for conducting monetary policy has
been recognized and stressed, e.g., in Woodford (2003, p. 15). However, the
question of how to manage expectations when forecasting rules are heterogeneous
has hardly been addressed. The aim of our paper is to investigate whether the
central bank can enhance macroeconomic stability, in the presence of heteroge-
neous expectations about future inflation, by implementing simple interest rate
rules. In particular, we investigate how the ecology of potential forecasting rules
affects the stabilizing properties of a simple Taylor rule. Moreover, we study
how, in a world where expectations are heterogeneous, the aggressiveness of the
monetary authority in responding to fluctuations of the inflation rate affects these
stabilizing properties. See also De Grauwe (2011) for a recent discussion of how
heterogeneous expectations may affect monetary policy.

To study the potential (de-)stabilizing role of heterogeneous expectations, we
use a simple frictionless model of inflation. In our stylized model, agents form
expectations about the future rate of inflation using different forecasting rules. We
employ the heterogeneous-expectations framework of Brock and Hommes (1997),
where the ecology of forecasting rules is disciplined by endogenous evolutionary
selection of strategies, with agents switching between forecasting rules on the
basis of their past performance.
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FIGURE 1. Inflation time series. Left: U.S. annualized inflation: quarterly data for the period
1960–2007. Right: Simulated data.

Our paper relates to the literature on interest rate rules and price stability under
learning dynamics. Howitt (1992) pointed out that interest rate rules that do not
react aggressively to inflation are deceptive to people trying to acquire rational
expectations (RE) through learning. Indeed, in a world in which any departure
of expected inflation from its equilibrium level causes an overreaction of actual
inflation and generates a misleading signal for the agents, a forecasting rule that
tries to learn from past mistakes will lead the economy away from equilibrium,
causing a cumulative process of accelerating inflation or deflation.1 Howitt (1992)
shows that the cumulative process arises for any plausible backward-looking
learning rule2 in a homogeneous-expectations setting. Moreover, he shows that,
by reacting more than point for point to inflation when setting the interest rate, the
monetary authority can avoid the cumulative process. This monetary policy rule
has become known as the “Taylor principle,” after Taylor (1993).

The present paper investigates the dynamical consequences of committing to an
interest rate feedback rule in a world with endogenously evolving heterogeneous
expectations. As we will see, the answer to whether a Taylor rule can stabilize
the cumulative process depends in interesting ways on the ecology of forecasting
rules and on how aggressively the monetary authority adjusts the interest rate in
response to inflation.

To illustrate the empirical relevance, we performed stochastic simulations of
our model in order to reproduce some qualitative features of U.S. inflation time
series. In Figure 1 we confront the simulated dynamics of a stochastic version
of our model buffeted with shocks to economic fundamentals (right panel) with
actual time series of U.S. inflation (left panel). The model is simulated for 192
periods, corresponding to quarters. An immediate observation is that the simulated
inflation series is highly persistent. Hence, even in a frictionless dynamic stochastic
general equilibrium (DSGE) model, heterogeneous-expectations rules may lead
to highly persistent inflation [e.g., Milani (2007)]. The monetary policy rule in the
simulation exhibits a structural break in period 80, when the central bank changes
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the coefficient (measuring its aggressiveness in responding to actual inflation)
of the interest rate rule. This break corresponds to the policy shift instituted
by Fed chairman Paul Volcker in 1979. Before the structural break, in setting
the interest rate, the central bank responds relatively weakly to inflation. In our
nonlinear model with heterogeneous expectations, when the central bank only
responds weakly to inflation, multiple steady states arise and, as a consequence,
self-fulfilling expectations contribute to and reinforce a strong rise in inflation
initially triggered by shocks to fundamentals, consistent with U.S. data. In period
T = 80, after the structural break, the central bank modifies the monetary policy
rule to respond more aggressively, i.e., adapts the nominal interest rate more than
point for point in response to inflation. Because of this policy change, some of the
high-level steady states disappear and inflation stabilizes to low levels, consistent
with U.S. data.3 Our model thus explains the strong rise in U.S. inflation between
1960 and 1980 as being triggered by shocks to economic fundamentals (such as
the oil shocks in 1973 and 1979), reinforced by evolutionary selection among
heterogeneous forecasting rules under a too–weakly responding Taylor rule in
the pre-Volcker period, and the subsequent strong decline in U.S. inflation data
between 1980 and 2007 (the Great Moderation), enforced by a more aggressive
interest rate rule.

The paper is organized as follows. Section 2 briefly recalls the ideas behind the
cumulative process and recalls the microfounded benchmark model. The model
with heterogeneous expectations is introduced in Section 3, where we test the
validity of the Taylor principle both in the case of a small number of constant
forecasting rules (e.g., three or five) and in the case of an arbitrarily large number
of rules, applying the notion of large type limit [Brock et al. (2005)]. In Section 4
we discuss a calibration of our model to U.S. inflation data. Finally, Section 5
concludes.

2. INTEREST RATE RULES AND CUMULATIVE PROCESS

In this section we recall the instability problem implied by the Wicksellian cu-
mulative process. We follow Benhabib et al. (2002), Woodford (2003), Cochrane
(2005, 2010), and many others in describing a frictionless economy. Consumers
maximize the expected present discounted value of utility,

max Êt

∞∑
j=0

δju(Ct+j ) ,

where ÊtCt+j indicates subjective expectations of private agents in period t re-
garding consumption Ct+j in period t + j , and 0 < δ < 1 is a discount factor.
Consumers face a budget constraint given by

PtCt + Bt = (1 + it−1)Bt−1 + PtY ,
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where Pt is the price of the good, Bt represents holdings of one-period bonds, it is
the nominal interest rate, and Y is a constant nonstorable endowment. We assume
that the government issues no debt, so that Bt = 0, and that public expenditure is
equal to zero. The market-clearing condition thus requires Ct = Y .

The first-order condition for the optimization problem is given by the Euler
equation

uc(Ct ) = δ(1 + it )Êtuc(Ct+1)

(
Pt

Pt+1

)
,

together with the budget constraint holding as an equality at each date.4 Using the
consumers’ Euler equation and the market-clearing condition, we have that the
interest rate follows a Fisher relation,

1

1 + it
= δÊt

(
Pt

Pt+1

)
,

which can be linearized to get

it = r + Êtπt+1, (1)

where πt+1 is the inflation rate and r is the constant real interest rate.5

Assume that the monetary authority responds to the inflation rate according to
the following Taylor rule:

it = r + φππt . (2)

We can solve the model by substituting out the nominal interest rate, in order to
get the equilibrium condition

πt = 1

φπ

Êtπt+1 . (3)

Following Howitt (1992), it is possible to show that interest rate rules with a
reaction coefficient φπ < 1 lead to a cumulative process when expectations are
revised in an adaptive, boundedly rational way. To illustrate the failure of interest
rate rules reacting less than point for point to inflation, let us assume that the
economy is in the zero steady state and people expect a small amount of inflation.
Equilibrium condition (3) implies that realized inflation will be even higher than
expected when φπ < 1. This means that the signal that agents receive from the
market is misleading. Even though inflation was overestimated with respect to
the equilibrium level, realized inflation suggests that agents underestimated it.
Any reasonable rule that tries to learn from past mistakes will then lead agents to
expect even higher inflation, causing a cumulative process of accelerating inflation.
Similarly, if people expect deflation, an interest rate rule with a reaction coefficient
φπ < 1 will lead to a cumulative process of accelerating deflation.

The actual inflation dynamics depends, of course, on the forecasting rule that
agents use to form their expectations. As an illustrative example, consider the case
of naive expectations, i.e., when agents expect that past inflation will persist in
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the future, Êtπt+1 = πt−1. Using (3), we can describe the dynamics under naive
expectations by the linear equation

πt = 1

φπ

πt−1, (4)

whose unique steady state corresponds to the REE π∗ = 0. This steady state is,
however, unstable, and thus any initial nonequilibrium level of inflation will lead
to a cumulative process.

When the central bank implements a monetary policy rule that makes the
nominal interest rate respond to the rate of inflation more than point for point,
i.e., it obeys the Taylor principle, the cumulative process can be avoided. Assume
that in the preceding example the central bank adopts a policy rule with a reaction
coefficient φπ > 1. It is immediately clear that for such a Taylor rule the RE
equilibrium is globally stable and the cumulative process will not arise.

Finally, notice that under RE the expected inflation coincides with the actual
inflation, so that dynamics can be described by

πt = 1

φπ

πt+1.

It is easy to see that when φπ < 1, the RE steady state π∗ = 0 is indeterminate—
i.e., it is approached by many RE paths—whereas when φπ > 1, the REE is
determinate.6

3. INTEREST RATE FEEDBACK RULES WITH FUNDAMENTALISTS
AND BIASED BELIEFS

Will the cumulative process arise in an economy where agents have heterogeneous
expectations about the future level of the inflation rate? Will an interest rate rule
that obeys the Taylor principle succeed in stabilizing inflation? To address these
questions, we employ the framework of adaptive belief systems proposed in Brock
and Hommes (1997) to model heterogeneous expectations. Assume that agents
can form expectations choosing from H different forecasting rules. We denote
by Êh,tπt+1 the forecast of inflation by rule h. The fraction of agents using
forecasting rule h at time t is denoted by nh,t . Assuming linear aggregation of
individual expectations,7 actual inflation in equation (3) is given by

πt = 1

φπ

H∑
h=1

nh,t Êh,tπt+1 . (5)

The evolutionary part of the model describes the updating of beliefs over time.
Fractions are updated according to an evolutionary fitness measure. The fitness
measures of all strategies are publicly available, but subject to noise. Fitness is
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derived from a random utility model and given by

Ũh,t = Uh,t + εh,i,t ,

where Uh,t is the deterministic part of the fitness measure and εh,i,t represent i.i.d.
idiosyncratic noise at date t across types h = 1, . . . , H and agents i. Assuming
that the noise εh,i,t is drawn from a double exponential distribution, in the limit,
as the number of agents goes to infinity, the probability that an agent chooses
strategy h is given by the well-known discrete choice fractions [see Manski and
McFadden (1981)]:

nh,t = eβUh,t−1∑H
h=1 eβUh,t−1

. (6)

Note that the higher the fitness of a forecasting rule h, the higher the probability
that an agent will select strategy h. The parameter β is called the intensity of choice
and reflects the sensitivity of the mass of agents to selecting the optimal prediction
strategy. The intensity of choice β is inversely related to the variance of the noise
term. The case β = 0 corresponds to the situation of infinite variance, in which
differences in fitness cannot be observed, so that agents do not switch between
strategies and all fractions are constant and equal to 1/H . The case β = ∞
corresponds to the situation without noise in which the deterministic part of the
fitness can be observed perfectly and in every period all agents choose the best
predictor. A natural performance measure is past squared forecast errors,

Uh,t−1 = −(πt−1 − Êh,t−2πt−1)
2 − Ch, (7)

where Ch is the per-period information-gathering cost of predictor h.
Consider an environment in which agents can choose between different constant

steady state predictors to forecast future inflation. This represents a situation in
which agents roughly know the fundamental steady state of the economy, but they
are boundedly rational and disagree about the correct value of the fundamental
inflation rate. Forecasting the REE value of inflation, π∗ = 0, requires some
cognitive efforts and information-gathering costs, which will be incorporated into
the cost C ≥ 0.8 Realized inflation and expectations will coevolve over time,
and evolutionary selection based on reinforcement learning will decide which
forecasting rule performs better and will survive in the evolutionary environment.
The class of constant forecasts is extremely simple, but it should be emphasized that
it is also broad, because it includes all possible point predictions of the next period’s
inflation level. Moreover, learning to forecast laboratory experiments with human
subjects shows that individuals use very simple rules, including constant predictors
[see Assenza et al. (2011); Hommes (2011)]. For this simple class of rules it will
be possible to obtain analytical results under heterogeneous expectations. We will
consider simple examples with only a few rules as well as examples with a large
number, even a continuum of rules, representing an ecology of predictors including
all possible steady state predictions.
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3.1. Evolutionary Dynamics with Few Constant Belief Types

As a first step, we consider the simplest scenario, in which agents can choose
between three different forecasting rules,

Ê1,tπt+1 = 0,

Ê2,tπt+1 = b,

Ê3,tπt+1 = −b,

with bias parameter b > 0. Type 1 agents believe that the inflation rate will always
be at its RE level. Type 2 agents have a positive bias, expecting that inflation will be
above its fundamental level, whereas type 3 agents have a negative bias, expecting
an inflation level below the fundamental value.9 Assuming that the equilibrium
predictor is available at cost C ≥ 0 and substituting the forecasting rules of the
three types into (5), we get

πt = 1

φπ

(n2,t b − n3,t b) = fβ(πt−1), (8)

where fractions are updated according to the discrete choice model (6); that is,

n2,t = e−β(πt−1−b)2

Zt−1
, n3,t = e−β(πt−1+b)2

Zt−1
,

and
Zt−1 = e−β(π2

t−1+C) + e−β(πt−1−b)2 + e−β(πt−1+b)2
.

Dynamics in (8) is described by a one-dimensional map. This map fβ is increasing,
bounded, and symmetric w.r.t. the point π = 0; see Appendix A. This implies
that the dynamics always has a steady state π∗ = 0, which is the REE. However,
this RE steady state may not be globally or even locally stable. In some cases the
dynamics may converge to other stable steady states, which will be denoted as
π+ > 0 and π− = −π+ < 0. In what follows, we provide a complete analysis of
the global dynamics of (8) and show how this dynamics depends on the parameters
b, C, β, and φπ . We will distinguish between two cases: a “low cost” case, when
C < b2, which includes the case of a freely available equilibrium predictor, and a
“high cost” case, when C ≥ b2.

Let us start with the case in which the fundamental predictor has small or
even zero costs. We introduce two constants φw

π (b, C) = φw
π < φa

π = φa
π(b, C),

described in equations (B.4) and (B.5) of Appendix B, respectively. Three different
situations can be distinguished on the basis of the strength of the policy reaction
coefficient φπ . When φπ < φw

π , we define the monetary policy implemented by
the central bank as weak. The corresponding dynamics are described in Propo-
sition 3.1. When φs

π < φπ < φa
π , the monetary policy is defined as moderate,

whereas when φs
π > φa

π , the monetary policy is defined as aggressive.10 These
cases are analyzed in Propositions 3.2 and Proposition 3.3, respectively.
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FIGURE 2. Low–information costs case. The map fβ in the system with three belief types
for different values of β. The parameter values are b = 1, C = 0, and φπ = 0.5.

PROPOSITION 3.1. Let C < b2 (low costs) and φπ < φw
π (weak policy). Then

values 0 < β∗
1 ≤ β∗

2 < β∗
3 ≤ β∗

4 exist such that

• for β < β∗
1 the RE steady state is unique and globally stable;

• for β∗
2 < β < β∗

3 three steady states exist, the unstable RE steady state π∗

and two other stable non-RE steady states, π+ and π−;
• for β > β∗

4 five steady states exist, three steady states that are locally stable
(π∗, π+ and π−) and two other steady states that are unstable.

Proof. See Appendix B, where we also provide numerical evidence that β∗
3 =

β∗
4 and that when φπ is small enough, β∗

1 = β∗
2 .

Figure 2 shows the maps fβ under a weak monetary policy for low, medium, and
high values of the intensity of choice, β. We set costs C = 0 and the policy reaction
coefficient φπ = 0.5. When the intensity of choice is relatively low, there exists
only one steady state, the RE steady state, which is globally stable. For low intensity
of choice, agents are more or less evenly distributed over the different forecasting
rules; thus realized inflation will remain relatively close to the fundamental steady
state. As the intensity of choice increases, the RE steady state loses stability and
two new stable nonfundamental steady states are created. However, as β increases
further, the RE steady state becomes stable again and two additional unstable
steady states are created. In the case of low costs for fundamentalists, we thus have
three stable steady states, π+ > 0, π− < 0, and also π∗ = 0, for high values of the
intensity of choice β. The economic intuition behind the fact that nonfundamental
steady states exist for high intensity of choice is simple (cf. Proposition B.2 in
Appendix B). Suppose that the intensity of choice is high and that, at time t ,
inflation rate πt is close to the optimistic belief, that is, πt ≈ b. The positive bias
forecast will perform better than the negative bias and the fundamental belief.
Therefore, when the intensity of choice is high, almost all agents will forecast
inflation with the positive bias, i.e., n2,t+1 ≈ 1, implying that πt+1 ≈ b/φπ . The
same intuition explains the existence of a negative nonfundamental steady state
for high intensity of choice. However, with low costs C, when the system is close
to the fundamental steady state, a relatively cheap fundamental rule is the best
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FIGURE 3. Low–information costs case. The map fβ in the system with three belief types
for different values of β. The parameter values are b = 1, C = 0, and φπ = 1.5.

predictor, causing more agents to switch to the fundamental rule and leading the
dynamics to converge to the REE π∗ = 0.

When the central bank implements a moderate interest rate rule, the following
applies.

PROPOSITION 3.2. Let C < b2 (low costs) and φw
π < φπ < φa

π (moderate
policy). Then values 0 < β∗

1 ≤ β∗
2 exist such that

• for β < β∗
1 the RE steady state is unique and globally stable;

• for β > β∗
2 five steady states exist, three steady states (π∗, π+ and π−) that

are locally stable and two other steady states that are unstable;

Proof. See Appendix B, where we also provide numerical evidence that β∗
1 =

β∗
2 .

Figure 3 shows the maps fβ under a moderate monetary policy for low, medium,
and high values of the intensity of choice, β. We set costs C = 0 and the policy re-
action coefficient φπ = 1.5. As before, when the intensity of choice β is relatively
low, we have a unique globally stable fundamental steady state π∗ = 0. When the
intensity of choice increases, the REE remains locally stable and four additional
steady states, two stable and two unstable, are created. The difference from the
previous case is that the zero steady state does not lose local stability. Therefore, a
relatively strong reaction of the interest rate to inflation in a neighborhood of the
RE steady state leads the dynamics to converge to the fundamental equilibrium.
However, when the intensity of choice is high and inflation is out of the basin of
attraction of π∗ and close, for example, to the optimistic belief, the implemented
policy is not aggressive enough in reacting to inflation, causing more and more
agents to adopt the positive bias forecast and leading the economy to converge to
the positive nonfundamental steady state. The same intuition explains the existence
of a negative nonfundamental steady state.

When the central bank implements an aggressive monetary policy, we have the
following.
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FIGURE 4. Low–information costs case. The map fβ in the system with three belief types
for different values of β. The parameter values are b = 1, C = 0, and φπ = 2.5.

PROPOSITION 3.3. Let C < b2 (low costs) and φπ > φa
π (aggressive policy).

Then the RE steady state is unique and globally stable for any β.

Proof. See Appendix B.

Figure 4 shows the maps fβ under an aggressive monetary policy for low,
medium, and high values of the intensity of choice, β. We set costs C = 0 and
the policy reaction coefficient φπ = 2.5. By reacting aggressively to inflation,
the monetary authority manages to avoid multiplicity of equilibria and keeps the
REE globally stable. The intuition for this result is simple. Consider the limiting
case β = ∞ and suppose that, at time t , inflation rate πt is close to the optimistic
belief; that is, πt ≈ b. When β = ∞, all agents will forecast inflation with the
positive bias, i.e., n2,t+1 = 1, implying that πt+1 = b/φπ . When costs C = 0, the
threshold value φa

π = 2. For φπ > 2 we have that πt+1 < b/2, so that the zero
predictor will be the closest to realized inflation. This leads all agents to adopt
the fundamental forecasting rule, thus driving the system to the REE. The result
in Proposition 3.3 implies that, given parameters b and C, the central bank can
always implement an interest rate rule that satisfies φπ > φa

π > 1 and keep the
REE unique and globally stable.

Consider now the case in which the fundamental predictor has relatively high
costs. Then

PROPOSITION 3.4. Let C ≥ b2 (high costs). Then there exists β∗ such that

• for β < β∗ the RE steady state is unique and globally stable;
• for β > β∗ three steady states exist, the unstable RE steady state π∗ and

two other locally stable non-RE steady states, π+ and π−.

Proof. See Appendix B.

Figure 5 shows the maps fβ when costs C are relatively high for low, medium,
and high values of the intensity of choice, β. We set costs C = 1 and the policy
reaction coefficient to φπ = 1.5. When the intensity of choice is relatively low,
there exists only one steady state, the RE steady state, which is globally stable.
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FIGURE 5. High–information costs case. The map fβ in the system with three belief types
for different values of β. The parameter values are b = 1, C = 1, and φπ = 1.5.

As before, for low intensity of choice, agents are more or less evenly distributed
over the different forecasting rules; thus realized inflation will remain relatively
close to the fundamental steady state. As the intensity of choice increases, the
RE steady state loses stability and two new stable nonfundamental steady states
are created. When costs for the fundamental predictor are high, the central bank
cannot implement a monetary policy that keeps the REE stable when the intensity
of choice is relatively high. In fact, the costs for the fundamental predictor are
so high that they overcome the forecasting error of the biased beliefs, even when
inflation is close to the REE. However, the more aggressive the monetary policy,
the higher the bifurcation value β∗ and the smaller the distance between the stable
nonfundamental equilibria and the RE steady state.

A similar analysis can be made for other examples with larger numbers of
constant beliefs. Figure 6 illustrates graphs of the 1-D map when there are five
strategy types bh ∈ {−1,−1/2, 0, 1/2, 1}, the costs C of the fundamental predictor
are low, and the monetary policy rule is such that multiple equilibria exist but
the RE steady state remains locally stable. We also show the creation of five
multiple–steady state equilibria as the intensity of choice increases by means of
the bifurcation diagram.

For low and medium values of β, the bifurcation scenario is similar to the three
types-case. However, for high values of the intensity of choice, four additional
steady states, two stable and two unstable, are created. The intuition for the
appearance of the new stable steady states is much as before. Any available
predictor would give the most precise forecast if the past inflation rate were
sufficiently close to it. A high intensity of choice causes a large group of agents to
choose this successful predictor, locking the inflation dynamics into a self-fulfilling
stable equilibrium steady state close to that predictor. One can construct similar
examples for any finite (odd) number, H = 2K + 1, of forecasting strategies
generating H multiple stable equilibria. A finite class of forecasting rules seems
reasonable, as boundedly rational agents may exhibit digit preference and restrict
their inflation predictions to values in integer numbers, e.g., 2%, 3%, or to half
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FIGURE 6. Top panels: The map fβ in the system with five belief types, bh ∈
{−1, −1/2, 0, 1/2, 1}, for different values of β. The parameter values are b = 1, C = 0,
and φπ = 1.1. Bottom panel: Bifurcation diagram for this system with the same parameter
values with respect to the intensity of choice. Solid lines indicate stable equilibria and
dashed lines unstable equilibria. For high values of β, nine different steady states co-exist,
five stable separated by four unstable steady states.

percentages, e.g., 2.5% or 3.5%, within the range of historically observed values,
from, say, −5% to +15%.11

The results in this section show that, in the presence of few belief types and
evolutionary selection between different predictors, the Taylor principle is no
longer sufficient to guarantee uniqueness and stability of the RE steady state. As a
concrete example, the reaction coefficient suggested by Taylor (1993), φπ = 1.5,
might not be sufficient to guarantee the determinacy (uniqueness and stability) of
the REE (see Figures 3 and 5).

3.2. Many Belief Types

The previous analysis shows that in an economy with an ecology of three or five
fundamentalists and biased beliefs, a cumulative process leading to accelerating
inflation or deflation does not arise. Rather, for high intensity of choice and
depending on the strength of policy reactions to inflation, the system might lock
in one of multiple steady state equilibria, with a majority of agents using the
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forecasting rule with the smallest error at that equilibrium steady state. A natural
question is, what happens when the number of constant forecasting rules increases
and approaches infinity? As we will see, if agents select beliefs from a continuum
of forecasting rules, representing an ecology containing all constant predictions,
the cumulative process will reappear when the policy rule does not satisfy the
Taylor principle.

Suppose there are H belief types bh, all available at zero cost. The evolutionary
dynamics with H belief types is given by

πt = 1

φπ

·
∑H

h=1 bhe
−β(πt−1−bh)

2∑H
h=1 e−β(pit−1−bh)2

=: f H
β (πt−1) . (9)

The dynamics of the system with H belief types bh is described by a 1-D map
f H

β . What can be said about the dynamical behavior when H is large? In general,
it is difficult to obtain analytical results for systems with many belief types. We
apply the concept of large type limit (LTL henceforth) introduced in Brock et al.
(2005) to approximate the evolutionary system with many belief types in (9).
Suppose that at the beginning of the economy, i.e., at period t = 0, all H belief
types b = bh ∈ R are drawn from a common initial distribution with density
ψ(b). We can derive the LTL of the system as follows. Divide both numerator and
denominator of (9) by H and rewrite the “H -type system” as

πt = 1

φπ

·
1
H

∑H
h=1 bhe

−β(πt−1−bh)
2

1
H

∑H
h=1 e−β(πt−1−bh)2

.

The LTL is obtained by replacing the sample mean with the population mean in
both the numerator and the denominator, yielding

πt = 1

φπ

·

∫
be−β(πt−1−b)2

ψ(b)db∫
e−β(πt−1−b)2

ψ(b)db

=: Fβ(πt−1) . (10)

As shown in Brock et al. (2005), when the number of strategies H is sufficiently
large, the LTL dynamical system (10) is a good approximation to the dynamical
system with H belief types given by (9). In particular, if H is large, then with
high probability the steady states and their local stability conditions coincide for
both the LTL map Fβ and the H -belief system map f H

β . In other words, properties
of the evolutionary dynamical system with many types of agents can be studied
using the LTL system.

For suitable distributions ψ(b) of initial beliefs, the LTL (10) can be computed
explicitly. As an illustrative example consider the case when ψ(b) is a normal
distribution, ψ(b) � N(m, s2). By plugging the normal density into (10), a
straightforward computation shows that the LTL map Fβ is linear with slope
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FIGURE 7. Graphs of the LTL map Fβ in (11) when the Taylor principle is not satisfied
for a normal distribution ψ(b) � N(0, 0.25) of initial beliefs. The reaction coefficient is
φπ = 0.5. Left: β = 1. Right: β = 10.

increasing in β, given by

Fβ(π) = 1

φπ

· m + 2βs2π

1 + 2βs2
. (11)

In particular, when the initial beliefs distribution is centered around m = 0, the
unique steady state of the LTL map is the REE, π∗ = 0. This case is illustrated
in Figure 7, where we show the LTL map for different values of the intensity of
choice when the interest rate rule does not satisfy the Taylor principle.

For β = β∗ = φπ

2s2(1−φπ )
, the slope of the linear map is exactly 1. Hence, the REE

is globally stable for β < β∗ and unstable otherwise. When m 	= 0, i.e., when
the initial belief distribution is not symmetric with respect to the fundamental
equilibrium, the unique steady state of the LTL system is not the REE, but the
stability result and critical value β∗ do not change (cf. note 9).

We can conclude, therefore, that when initial beliefs are drawn from a normal
distribution centered on the REE and the number of belief types is sufficiently
high, an increase in the intensity of choice, beyond the bifurcation value β∗, leads
to instability of the system. Indeed, when β is low, agents are more or less equally
distributed among predictors. This means that the average expected inflation will
be close to zero. Hence, realized inflation will be close to the steady state value,
more agents will adopt the steady state predictor, and inflation will converge.
However, when the intensity of choice increases and agents can switch faster to
better predictors, the system becomes unstable. This is so because, for example,
when the inflation rate is above its steady state value, most agents will switch to
an even more positive bias belief, leading to an even higher realized inflation rate.
A cumulative process of ever-increasing inflation arises again.
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Note that increasing the variance s2 of the normal distribution of initial beliefs
has exactly the same effect on the LTL dynamics (11) as increasing the intensity
of choice. When φπ < 1 we have that for s2 < φπ

2β(1−φπ )
the LTL map is globally

stable, and it is unstable otherwise. Hence, when many initial beliefs are drawn
from a normal distribution with small variance, the system will be stable; otherwise
it will be unstable and a cumulative process will arise. The spread of initial beliefs
is therefore an important element for the stability of the economy.

In the previous example we have assumed a normal distribution ψ(b) of initial
beliefs. Applying the results derived in Hommes and Wagener (2010), similar
conclusions can be obtained for general distribution functions of initial beliefs.
In fact, for systems with many belief types bh and initial beliefs drawn from a
fixed strictly positive distribution function, when the intensity of choice becomes
sufficiently large, a cumulative process arises with high probability.12

To get some intuition for this result, it will be instructive to look at the lim-
iting case β = ∞. When there is a continuum of beliefs, the best predictor in
every period, according to past forecast error, will be the predictor that exactly
coincides with last period’s inflation realization, bh = πt−1. For β = ∞, all
agents will switch to the optimal predictor. Hence, for β = ∞, the economy
with heterogeneous agents updating their beliefs through reinforcement learning
behaves exactly the same as an economy with a representative naive agent, for
which we have shown that a cumulative process will arise when the monetary
policy rule does not satisfy the Taylor principle [see Section 2, equation (4)].

Finally, consider a monetary authority implementing an interest-rate rule that
obeys the Taylor principle; i.e., φπ > 1. It should be clear that the “unstable”
situation shown in the right panel of Figure 7 cannot occur. Indeed, in this case
we will have that

lim
β→∞

Fβ(π) = 1

φπ

π. (12)

Hence an interest rate rule that responds aggressively to actual inflation, i.e., φπ >

1, will fully stabilize the system, for all values of the intensity of choice β.
In contrast, if the policy rule of the central bank is not sufficiently aggressive,
i.e., φπ < 1, then inflation dynamics will only be stable for low values of the
intensity of choice, but the cumulative process will reappear when the intensity of
choice is high. Therefore, when the model is indeterminate under RE, there is a
cumulative process for both the representative-agent adaptive-learning specifica-
tion and the heterogeneous-expectations case with many belief types. The same
result holds for a normal initial distribution of beliefs centered on m 	= 0, even
though the steady state of the dynamics will differ from the REE in this case.

4. STOCHASTIC SIMULATIONS

In this section we discuss stochastic simulations of our nonlinear model with
heterogeneous expectations in order to match some characteristics of U.S. inflation
quarterly data over the period 1960–2007. We consider an ecology of H = 12
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forecasting rules, bh ∈ {1, . . . , 11},13 so that the dynamics of inflation is given by

πt = f H
φπ

(πt−1) + εt ,

where the map f H
φπ

is defined as14

f H
φπ

(πt−1) = 1

φπ

·
∑H

h=1 bhe
−β(πt−1−bh)

2∑H
h=1 e−β(πt−1−bh)2

+ c, (13)

and the exogenous random shocks εt are drawn from a normal distribution with
mean 0 and standard deviation σε = 0.5. The notation f H

φπ
(πt−1) stresses the

fact that the nonlinear map depends on the monetary policy parameter φπ , the
coefficient in the Taylor rule. In all stochastic simulations there is a structural
break in period T = 80 in the central bank’s reaction function. In the first part of
the simulations the policy rule reacts weakly to inflation (i.e., φπ < 1), whereas
in the second part the interest rate reacts more than point to point to inflation (i.e.,
φπ > 1). In particular, we consider a reaction coefficient φπ = 0.98 for periods
t = 1 − 79 and a reaction coefficient φπ = 1.05 for periods t = 80 − 192.15

The stochastic time series in Figure 8 replicates the observed pattern of a strong
rise in U.S. inflation until 1980 and a sharp decline and stabilization of inflation
thereafter (see also Figure 1). Of course the particular realization shown in the top
left panel is affected by stochastic shocks, but this pattern is quite common and
reproduced by the time series of average inflation, averaged over 1,000 stochastic
simulations, in Figure 8 (top right panel). The plot of the corresponding variance of
the stochastic simulations shows that the variance is low after the structural break,
implying that the strong decline in inflation after the structural break is a robust
feature of the nonlinear model with heterogeneous beliefs and a monetary authority
that obeys the Taylor principle. On the other hand, before the structural break the
variance of the stochastic simulations is high, showing that the rise in inflation can
be either slow or fast depending upon the realizations of the exogenous stochastic
shocks. In particular, a few large positive shocks to inflation, such as large oil
shocks, may trigger an increase in inflation, which then becomes amplified by the
evolutionary pressure of self-fulfilling forecasting rules predicting high inflation.

The bottom panel in Figure 8 illustrates how the number of steady states in
the nonlinear model with heterogeneous expectations changes when the monetary
policy coefficient φπ increases from 0.98 to 1.05. Before the structural break there
are 21 steady states, 11 stable ones separated by 10 unstable steady states, ranging
approximately from a low level of 1 to a high level of 11. A careful look at Figure 8
(bottom right panel) reveals an important asymmetry in the basins of attraction
of each stable steady state: the basin of attraction (whose endpoints consist of
the two neighboring unstable steady states) is relatively large to the left of the
stable steady state and relatively small to the right. In the presence of (symmetric)
stochastic shocks to inflation, jumps to the basin of attraction of a higher level
of stable steady states are therefore more likely than jumps to a lower level. This
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FIGURE 8. Top panels: Simulated inflation time series. Left: Simulated inflation for a
particular realization of the stochastic shocks. Right: Average inflation (solid line) and its
variance (dashed line) over 1,000 simulations. Bottom panels: Steady states of the dynamics
before and after the structural break. Left: The steady states of the dynamics as intersection
points of the 45◦ line with the map f H

0.98(π) before the structural break (solid) and the map
f H

1.05(π) after the structural break (dashed). Right: Plot of the maps f H
φπ

(π) − π . The same
steady states are now clearly visible as intersections with the horizontal axis. The stable
(unstable) steady states are marked with black (white) dots. The basin of attraction of a
stable steady state is the interval between two adjacent unstable steady states.

explains why, for φπ = 0.98, on the average, inflation will rise from low levels to
high levels, as shown by the average inflation of the stochastic simulations.

After the structural break, when the central bank switches to a more aggressive
Taylor rule, the number of steady states has decreased from 21 to 11, with 6
stable steady states separated by 5 unstable ones, ranging from approximately 1
to 6. Hence, an increase of the monetary policy parameter φπ causes a number of
high-level steady states to disappear,16 implying more stable inflation dynamics
in the stochastic nonlinear system, as illustrated in the stochastic simulations after
the structural break.

It is interesting to note that similar results occur when we allow for (infinitely)
many constant prediction rules. Indeed, our results concerning the LTL system in
(10) in Section 3.2 show that, when agents are sensitive to difference in forecasting
performance (i.e., for high values of the intensity of choice β), the inflation
dynamics with an ecology of many steady state predictors drawn from a normal
distribution of initial beliefs is well approximated by the linear map in (12), with
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slope 1/φπ . This implies globally stable inflation dynamics approaching the REE
rate of inflation when φπ > 1, but exploding inflation dynamics when φπ < 1.
Hence, in an ecology with many steady state predictors, when the central bank
uses a Taylor rule with φπ < 1, a cumulative process of rising inflation is very
likely, whereas the monetary authority can manage heterogeneous expectations
and achieve global macroeconomic stability by using a more aggressive Taylor
rule with φπ > 1.

5. CONCLUDING REMARKS

We have used a simple frictionless DSGE model to study the role of heteroge-
neous expectations about future inflation and the potential (de-)stabilizing effect of
different interest-rate rules. We use the heterogeneous expectations framework of
Brock and Hommes (1997), in which the ecology of forecasting rules is disciplined
by endogenous evolutionary selection of strategies, with agents switching toward
more successful rules.

Macroeconomic stability and inflation dynamics depend in interesting ways on
the set of forecasting strategies and the coefficient of an interest rate rule à la
Taylor. When the monetary authority responds weakly to inflation, heterogeneous
agents trying to learn from their forecast errors receive misleading signals from the
market. Instead of leading the economy closer to equilibrium, these signals cause a
cumulative process of rising inflation, triggered by exogenous shocks to economic
fundamentals and reinforced by self-fulfilling expectations of high inflation. In
contrast, when the nominal interest rate is adjusted more than point for point in
response to inflation, the monetary authority can manage heterogeneous expecta-
tions by sending signals that help agents to correct their forecast errors instead of
compounding them. The rationale for an aggressive monetary policy is therefore
rather different in the case of heterogeneous beliefs than in the homogeneous RE
case. In the presence of heterogeneous expectations, by reacting aggressively to
inflation, the central bank sends correct signals for the evolutionary selection of
strategies and induces stable dynamics converging to the RE steady state. Under
RE, by obeying the Taylor principle, the monetary authority induces dynamics
that will explode in any equilibrium but one. Ruling out explosive paths then
guarantees uniqueness of the equilibrium.17

However, although the Taylor principle is sufficient to ensure convergence to
the RE steady state in the case of a continuum of beliefs, the standard policy
recommendation, φπ > 1, is no longer sufficient to guarantee uniqueness and
global stability of the RE steady state in the case of finitely many belief types.
In fact, in order to avoid multiple equilibria, the policy rule must be aggressive
enough (e.g., φπ > φa

π ≥ 2 in the three–belief types example with small costs
of Section 3.1) to ensure that realized inflation is sufficiently close to the RE
steady state, so that the fundamental predictor will perform relatively better than
other strategies in the economy. The intuition is that with a continuum of beliefs
and any φπ > 1, there is always a belief type closer to the fundamental than
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current inflation performing better, thus pushing inflation gradually towards the
fundamental. In contrast, with finitely many types and φπ > 1, but not large enough
(i.e., φπ < φa

π ), the system may get locked in an almost self-fulfilling steady state
belief. We would like to stress that the case of finitely many belief types seems
empirically relevant, as digit preference has been observed in experimental and
survey data [see, e.g., Curtin (2005), Duffy and Lunn (2009), and Assenza et al.
(2011)], and as our stochastic simulations illustrate.

Future work should further investigate the effect of heterogeneous expectations
on the dynamics of aggregate output and inflation in models with frictions and
nominal rigidities, such as the New Keynesian framework, and the conditions
under which monetary policy rules may stabilize or may fail to stabilize aggregate
macroeconomic variables.

In a recent paper, Branch and McGough (2010) studied heterogeneous ex-
pectations in the New Keynesian model. However, they only present numerical
simulations showing instability and complex dynamics. An interesting topic for
future work would be, for example, to apply our analytical framework to the
full-fledged New Keynesian model setting.

NOTES

1. Friedman (1968) argued that interest rate pegging is not a sound monetary policy, even if the
chosen interest rate is consistent with the Wicksellian natural rate of interest, and hence consistent
with a rational expectation equilibrium. For even in that case, any small discrepancy between the
inflation expectations of the public and the ones required for the realization of the rational expectations
equilibrium (REE) will drive expectations even farther from consistency with the REE. Howitt (1992)
reformulates Friedman’s argument as a failure of convergence of learning dynamics to REE.

2. Adaptive learning in the sense of Evans and Honkapohja (2001) belongs to the class of learning
rules considered by Howitt (1992).

3. In our model, under the Taylor rule, inflation does not necessarily converge to the RE level, as
different coexisting equilibria may persist. This result differs from the standard representative-agent
adaptive learning literature, where the interest rate rules that satisfy the Taylor principle lead to a
unique, E-stable REE; see, e.g., Bullard and Mitra (2002). Preston (2005) shows that, under adaptive
learning, monetary policy rules obeying the Taylor principle lead to a unique, E-stable REE when
agents have heterogeneous but symmetric information sets.

4. As standard, we require that the agent’s subjective transversality condition, given by

lim
j→∞

Êt δ
j uc(Ct+j )

Bt+j

Pt+j
= 0,

is satisfied ex post. See Evans et al. (2011) for a discussion.
5. In equilibrium we have that the real interest rate is constant and given by r = δ−1 − 1.
6. This result is well known also for the full version of the New Keynesian model with frictions;

see Woodford (2003).
7. Averaging of individual forecasts represents a first-order approximation to general nonlinear

aggregation of heterogeneous expectations. Recent papers following the same approach include Adam
(2007), Arifovic et al. (2007), Brazier et al. (2008), Branch and McGough (2010), and De Grauwe
(2011). Aggregate dynamics under heterogeneous expectations can be decoupled from the dynamics
of the wealth distribution if one assumes, e.g., that the markets are complete and all assets are in
zero net supply. Branch and McGough (2009) developed a New Keynesian model with heterogeneous
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expectations in which the laws of motion of aggregate variables are comparable to those obtained
under homogeneous RE. The model used in this paper can be considered as a frictionless version of
their model.

8. In our model formulation the fundamental steady state is deterministic, but the model can be
reformulated with a stochastic fundamental. The costs C ≥ 0 then represent information-gathering
costs of a time-varying fundamental steady state.

9. Notice that this example has “symmetric” beliefs, in the sense that the positive and negative
biases are exactly balanced around the REE. The main reason that we assume symmetry of the belief
types, is that under such an assumption the REE is among the steady states of the dynamical system.
Thus, with symmetric belief types, we can address the important question of stability of the REE. We
stress, however, that symmetry of beliefs is not essential for many qualitative features of the model,
e.g., bifurcations of multiple steady state with increase of intensity of choice. The insight of the model
can therefore be used to study the consequences of policy changes (after which the symmetry would be
lost, because the belief types would not respond to the policy shift immediately), as we do in Section 4.

10. When C = 0, the threshold values of the monetary policy reaction coefficient φw
π and φa

π are
independent of b (see Appendix B). In particular we have that, when C = 0, φw

π = 0.93 and φa
π = 2.

11. Digit preference has been observed in both survey measures of expectations and experimental
data. Curtin (2005) and Duffy and Lunn (2009) find evidence for digit preference respectively in the
Michigan Survey data and in the EU Consumer Survey for Ireland. Assenza et al. (2011) observed
digit preference in learning-to-forecast experiments adopting the New Keynesian model. In particular,
they find that about 14% of predictions of participants are integers and about 32% of predictions have
a precision of one decimal. Overall, about 99.6% of predictions have a maximum precision of two
decimals.

12. This result follows by applying Lemma 1, p. 31 of Hommes and Wagener (2010), which states
that for any strictly positive distribution function ψ describing initial beliefs, as the intensity of choice
goes to infinity, the corresponding LTL map converges to a linear map with slope 1/φπ .

13. The constant forecasting rules considered are within the range of integer predictors described
by Curtin (2005) in the Michigan Survey data on inflation expectations.

14. The presence of constant c in map (13) stems from the fact that, in general, the constant term
in the Taylor rule (2) might differ from the equilibrium interest rate r . In our simulations we assume a
Taylor rule of the form it = φππt , so that c = r/φπ . Assuming a standard discount factor δ = 0.99,
we have that c ≈ 0.01/φπ .

15. The value of φπ influences the number of steady states. The number of steady states increases
with φπ when φπ < 1, and it decreases with φπ when φπ > 1.

16. As φπ increases from 0.98 to 1.05, the high-level steady states disappear in pairs of two (one
stable and one unstable) through a number of subsequent saddle-node bifurcations.

17. See Cochrane (2010) for a discussion.
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APPENDIX A: MODEL WITH A FINITE
NUMBER OF TYPES

In this Appendix we consider the dynamics of the general model with H types, as introduced
at the beginning of Section 3. The dynamics are given by

πt = 1

φπ

·
∑H

h=1 bh exp(βUh,t−1)∑H
h=1 exp(βUh,t−1)

= 1

φπ

·
∑H

h=1 bh exp{−β[(πt−1 − bh)
2 + Ch]}∑H

h=1 exp{−β[(πt−1 − bh)2 + Ch]} . (A.1)

Recall that agents can choose one of the H forecasting rules Êt,hπt+1 = bh available at cost
Ch. The reaction coefficient φπ > 0 in the interest rate rule (2) measures the aggressiveness
of the monetary policy.

The map πt = f (πt−1), where f denotes the RHS of (A.1), defines a one-dimensional
dynamical system, whose properties are described in the following technical lemma.

LEMMA 1. Let f : R → R describe the dynamics of the system with a finite number
of types. Let b = minh{bh} and b̄ = maxh{bh} denote the smallest and the largest available
forecasts. Then

1. For β > 0, function f is strictly increasing.
2. f (x) → b/φπ for x → −∞ and f (x) → b̄/φπ for x → ∞.
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Proof. To show that the map f is increasing we use the same strategy as in Hommes
and Wagener (2010). Multiplying both numerator and denominator by exp(−βπ2

t−1), the
map can be rewritten as

f (πt−1) = 1

φπ

·
∑H

h=1 bh exp
[−β

(−2πt−1bh + b2
h + Ch

)]∑H
h=1 exp

[−β
(−2πt−1bh + b2

h + Ch

)] .

We write xh := exp(−β[−2πt−1bh + b2
h + Ch]), introduce the normalization factor Z =∑H

h=1 xh, and notice that nh,t = xh/Z. Then the derivative f ′ is given by

f ′(πt−1) = 1

φπ

·
H∑

h=1

2βb2
hyhZ − bhyh

∑H
h=1 2βbhyh

Z2

= 2β

φπ

·
(∑

h

b2
hxh

Z
−

∑
h

bhxh

Z

∑
h

bhxh

Z

)

= 2β

φπ

·
(∑

h

b2
hnh,t −

( ∑
h

bhnh,t

)2
)

. (A.2)

The term in the last brackets is positive, because it can be interpreted as the variance of a
discrete stochastic variable ξ taking values bh with probability nh,t . Thus, f ′(πt−1) > 0 for
β > 0, i.e., function f is strictly increasing.

When πt−1 is large enough, the forecasting rule with Êt−2πt−1 = b̄ has the highest
performance measure, because the squared error term dominates constant costs. Hence, as
πt−1 → ∞, asymptotically all the agents use this forecasting rule; i.e., nb̄ → 1, whereas the
fractions of all the other rules converge to 0. Because f (πt−1) = ∑

h bhnh,t /φπ , we obtain
that f (πt−1) → b̄/φπ for πt−1 → ∞. The proof that f (πt−1) → b/φπ for πt−1 → −∞ is
similar.

This lemma implies that the dynamics (A.1) is quite simple. Independent of the initial
condition, they monotonically converge to one of the finite number of steady states. For the
generic case in which there are only hyperbolic steady states (i.e., no steady state π∗ exists
with f ′(π∗) = 1), the number of steady states is odd and the locally stable steady states
alternate with the unstable steady states. The basin of attraction of a stable steady state is
the largest possible interval containing a given steady state without any other steady states;
see the illustration in the lower left panel of Fig. 8. Furthermore, the dynamics are bounded
within the interval (b/φπ , b̄/φπ).

APPENDIX B: DYNAMICS OF THE MODEL
WITH THREE TYPES

This appendix investigates the global dynamics of the three-type system considered in
Section 3.1. We refer the reader to Kuznetsov (1995) for a detailed mathematical treatment
of bifurcation theory.
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With three forecasting rules, Ê1,tπt+1 = 0, Ê2,tπt+1 = b, and Ê3,tπt+1 = −b, where
b > 0 is the bias parameter; system (A.1) becomes πt = fβ(πt−1), where

fβ(π) = b

φπ

· e−β(π+b)2 + e−β(π−b)2

e−β(π2+C) + e−β(π+b)2 + e−β(π−b)2 = b

φπ

· 1 − e−4βbπ

1 + e−4βbπ + e−β(C−b2+2bπ)
.

(B.1)

The following result will be useful.

LEMMA 2. The equation 2 + ex − xex = 0 has a unique solution x∗ ∈ (1, 2). For
x < x∗ we have 2 + ex − xex > 0, and for x > x∗ we have 2 + ex − xex < 0.

Proof. Consider the function g(x) = 2 + ex − xex . Notice that limx→−∞ g(x) = 2,
limx→∞ g(x) = −∞, g(0) = 3, and derivative g′(x) = −xex . Hence, for x ≤ 0, function
g increases from 2 to 3 and has no zeros. For x > 0, function g is strictly decreasing and
has at most one zero. On the other hand, g(1) = 2 > 0, whereas g(2) = 2 − e2 < 0,
because ex > 1 + x for x = 2 becomes e2 > 3. Applying the intermediate value theorem,
we obtain that there exists x∗, a zero of function g, and that x∗ ∈ (1, 2).

We proceed as follows. First, we derive two useful and important results. In Proposi-
tion B.1 we analyze the local stability of the RE steady state, whereas in Proposition B.2
we derive the dynamics for the limiting case β = +∞. These results will allow us to
distinguish between the cases of high and low costs, and, in the latter case, between weak,
moderate, and aggressive monetary policy. Second, we study the concavity of function fβ

in Lemma 3. Combining it with Proposition B.1, we will then be able to give a full charac-
terization of dynamics for the high-cost case and to prove Proposition 3.4. Third, inspired
by Proposition B.2, we formalize in Lemma 4 the intuition that whenever nonfundamental
steady states exist for β = +∞, they will also exist for β high enough. Combining this
lemma with the results of Proposition B.1, we will derive Propositions 3.1 and 3.2. Finally,
we will prove the important result of Proposition 3.3 on global stability in the low-cost case
with aggressive monetary policy.

The following result gives the conditions for the local stability of the RE steady
state.

PROPOSITION B.1 (Local Stability of the RE Steady State). Consider the dynamics
given by (B.1). Let x∗ denote the unique solution of the equation 2 + ex − xex = 0.
The following cases are possible:

(1) C ≥ b2 (“high costs”). Then there exists a positive value β∗, such that for β < β∗

the RE steady state is locally stable, and for β > β∗, the RE steady state is unstable.
(2) C < b2 (“low costs”), Then two cases are possible:

(2a) When φπ < 2(x∗ − 1) b2

b2−C
, two values 0 < β∗

1 < β∗
2 exist such that for

β /∈ [β∗
1 , β∗

2 ] the RE steady state is locally stable, and for β ∈ (β∗
1 , β∗

2 ) the RE
steady state is unstable.

(2b) When φπ > 2(x∗ − 1) b2

b2−C
, the RE steady state is locally stable for any β ≥ 0.

Proof. The fractions of three rules in the RE steady state are given by n∗
1 = e−βC/Z and

n∗
2 = n∗

3 = e−βb2
/Z, where Z = e−βC + 2e−βb2

. Substituting these fractions into (A.2), we
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find the derivative of map fβ in the RE steady state,

f ′
β(0) = 4b2β

φπ

· e−βb2

2e−βb2 + e−βC
= 4b2β

φπ

· 1

2 + e−β(C−b2)
.

The condition of local stability is given by f ′
β(0) < 1, or, equivalently, by h(β) < φπ ,

where the function h is defined as

h(β) = 4b2β

2 + e−β(C−b2)
. (B.2)

Notice that h(0) = 0 and the derivative of the function in β is given by

h′ = 4b2(
2 + e−β(C−b2)

)2

(
2 + e−β(C−b2) + β(C − b2)e−β(C−b2)

)

= 4b2

(2 + ex)2 (2 + ex − xex),

where we introduced the variable x = (b2 − C)β.
In the high-costs case, C ≥ b2, variable x is negative and, according to Lemma 2, the

function h strictly increases in β from 0 to ∞. Thus, when β becomes higher than the
bifurcation value β∗ defined as β∗ = h−1(φπ ), the RE steady state loses stability.

If C < b2, variable x is positive and changes from 0 to ∞ together with β. We have
then that function h is initially increasing in β and then decreasing. The function h takes
its maximum value at the point where x = x∗, i.e., when β = x∗/(b2 − C). The value of
the function h in this point is given by

h

(
x∗

b2 − C

)
= 4b2

2 + ex∗ · x∗

b2 − C
= 4b2

2 + 2
x∗−1

· x∗

b2 − C
= (x∗ − 1)

2b2

b2 − C
.

The maximum value of h is positive according to Lemma 2. If it is larger than φπ , then the
two solutions of equation h(β) = φπ define an interval (β1, β2) where h(β) > φπ , and so
the RE steady state is unstable. In the opposite case, if the maximum value of h is smaller
than φπ , then h(β) < φπ for any β and the RE steady state is always locally stable.

PROPOSITION B.2 (Steady States for β = +∞). Consider the dynamics given by
(B.1) for the special case β = +∞. Let π∗ = 0, π+ = b/φπ , and π− = −b/φπ .
The following cases are possible:

(1) C ≥ b2 (“high costs”). Then there are two locally stable steady states, π+ and π−,
with corresponding basins of attraction (0,∞) and (−∞, 0). The RE steady state
π∗ is unstable.

(2) C < b2 (“low costs”). Then two cases are possible:
(2a) When φπ < 2b2

b2−C
the system has three locally stable steady states, π∗, π+, and

π−. The basin of attraction of the RE steady state is
(
− b2−C

2b
, b2−C

2b

)
.

(2b) When φπ > 2b2

b2−C
there exists a unique, globally stable RE steady state.

Proof. We will derive the map f∞ governing the dynamics in the case β = ∞ explicitly.
In this case the best-performing rule will be chosen by the entire population at any period.
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The performances of three rules are given by

U1,t−1 = −π 2
t−1 − C, U2,t−1 = −π 2

t−1 + 2bπt−1 − b2, U3,t−1 = −π 2
t−1 − 2bπt−1 − b2 .

Assume, first, that πt−1 > 0. Then the second rule (Ê2,tπt+1 = b) is always better than the
third one (Ê3,tπt+1 = −b). Comparing the second rule with the first one (Ê1,tπt+1 = 0),
we find that

U2,t−1 > U1,t−1 ⇔ 2bπt−1 − b2 > −C ⇔ πt−1 >
b2 − C

2b
.

For C < b2 the RHS of the last inequality gives a threshold after which the agents would
use the non-RE forecasting rule. When C > b2, the RE forecasting rule will never be used
if πt−1 > 0.

Analogously, we find that for πt−1 < 0 the third rule always outperforms the second one
and it is better than the first if and only if πt−1 is less than the threshold −(b2 − C)/(2b).
When C > b2, the RE forecasting rule will never be used if πt−1 < 0.

We conclude that function f∞ has the following form. For C ≥ b2,

f∞(πt−1) =

⎧⎪⎨⎪⎩
b

φπ
if πt−1 > 0

0 if πt−1 = 0

− b
φπ

if πt−1 < 0,

whereas for C < b2,

f∞(πt−1) =

⎧⎪⎪⎨⎪⎪⎩
b

φπ
if πt−1 > b2−C

2b

0 if πt−1 ∈
(
− b2−C

2b
, b2−C

2b

)
− b

φπ
if πt−1 < − b2−C

2b
.

In the high-cost case two steady states π+ and π− always exist and the function f∞ is flat
around them. This proves part (1) of the lemma. In the low-cost case the non-RE steady
state π+ exists if and only if the 45◦ line has an intersection with the upper horizontal parts
of f∞, i.e., when it intersects the line b/φπ at some π > (b2 − C)/(2b). The condition for
this is b/φπ > (b2 − C)/(2b) or, equivalently, φπ < (2b2)/(b2 − C), which distinguishes
cases 2(a) and 2(b) of the lemma. The lower non-RE steady state π− exists if and only if
the upper non-RE steady state π+ exist because of the symmetry of map f∞.

LEMMA 3. If C ≥ b2, the function fβ is concave on the set (0,∞) for every β > 0. If
C < b2, the function fβ defined on (0,∞) is concave for every 0 < β < ln 4

b2−C
.

Proof. We find by direct computation that the second derivative of fβ is given by

f ′′
β (π) = − 4b3β2(1 − e−4bπβ)e−(C+2bπ)β

φπ

(
eCβ + eb(b−2π)β + e(C−4bπ)β

)3

[
e(b2−C)β − e2(b2−C−bπ)β + 8e−2bπβ

+ e(b2−C−4bπ)β
]
.

The fraction in this expression is positive for π > 0. The term between brackets can be
rewritten as

e(b2−C)β(1 + e−4bπβ) + e−2bπβ
(

8 − e2(b2−C)β
)

.
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In the high-cost case, C ≥ b2, this expression is positive because e2(b2−C)β ≤ 1. It implies
that f ′′

β (π) < 0 for π > 0 and β > 0.
Consider the low-cost case, C < b2, and fix β such that 0 < β < ln 4

b2−C
. When π = 0,

the term between brackets becomes 8 + 2e(b2−C)β − e2(b2−C)β = 8 + 2x − x2, where we
introduce x = e(b2−C)β . Notice that 1 < x < 4 for a given β and therefore the term is
positive. Hence, by continuity of the second derivative, f ′′

β < 0 for small π > 0. With
a further increase of π , the sign of the second derivative will change when the term in
brackets is zero, i.e., when

e(b2−C)β

8 − e2(b2−C)β
= − e−2bπβ

1 + e−4bπβ
. (B.3)

The left-hand side can be written as the function x/(8 −x2) and for x ∈ (1, 4) we have that
the left-hand side does not take values in the interval [−0.5, 0). However, the right-hand
side does take values only in this interval, as a function −t/(1 + t2) of t = e−2bπβ ∈ (0, 1].
It means that there is no π to satisfy equality (B.3) and f ′′

β does not change its sign.
We established that f ′′

β (π) < 0 for a given β and for any π > 0. This completes the
proof.

HIGH COST CASE

Proof of Proposition 3.4. The previous lemma shows that for the high-cost case, C ≥ b2,
the function fβ is concave for π > 0 irrespective of β > 0. In Proposition B.1(1) we found
that there is a critical value β∗ such that, when β < β∗, the RE steady state is locally
stable. For such β, the global stability then follows immediately from the concavity of fβ

for positive π and the symmetry of this function w.r.t. π = 0. When the RE steady state is
unstable, concavity together with the boundedness of f implies that there exists a unique
steady state with π+ > 0, and that this steady state is locally stable. By symmetry, there
also exists a steady state π− < 0, also locally stable. �

We comment that in the high-cost case the region of instability always exists. The
threshold is defined by β∗ = h−1(φπ ), where h is defined in (B.2). The RE steady state
loses its stability at β = β∗ through pitchfork bifurcation. Proposition B.2 implies that for
β → ∞ the nonfundamental and locally stable steady states π+ and π− converge to b/φπ

and −b/φπ , respectively. Therefore, an aggressive policy of the central bank (i.e., high φπ )
reduces both the interval of instability and the deviations from the RE steady state.

LOW COST CASE

Assume that we are in the low cost case, C < b2. Let us introduce the positive quantity

φw
π (b, C) = 2(x∗ − 1)

b2

b2 − C
. (B.4)

When the reaction coefficient φπ < φw
π (b, C), we define the monetary policy as “weak.”

In fact, in this case, the policy rule fails to ensure even local stability of the RE steady state
when β increases (see Proposition B.1(2)). We can find numerically that x∗ ≈ 1.46, so that
φw

π (b, C) is approximately given by 0.93 b2

b2−C
. Given the parameters b and C, the central
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bank can implement an interest rate rule with φπ > φw
π (b, C) and keep the RE steady state

locally stable.
However, as Proposition B.2(2) shows, this value of φπ can be insufficient for the global

stability of the RE steady state. Let us introduce another positive quantity,

φa
π (b, C) = 2b2

b2 − C
. (B.5)

When the reaction coefficient φπ > φa
π (b, C), we define the monetary policy as “aggres-

sive.” According to Proposition B.2(2), in this case the RE steady state is unique and
globally stable, at least for β = +∞. Of course, φw

π (b, C) < φa
π (b, C) (this follows

from Lemma 2), and when φπ ∈ (φw
π (b, C), φa

π (b, C)) we define the monetary policy as
“moderate.” It is strong enough to guarantee local stability of the RE steady state for every
β, but it is not sufficiently aggressive to guarantee the global stability of the RE steady state
for β = +∞.

Intuitively, when β gets larger, the map fβ in (B.1) gets closer to the piecewise map f∞
derived in the proof of Proposition B.2. Therefore, when the monetary policy is weak or
moderate, we expect to observe the non-RE steady states for β high enough. The following
result confirms this intuition.

LEMMA 4. Suppose C < b2 and φ < φa
π(b, C). For high enough β, the dynamics

given by (B.1), has locally stable steady states π+ > 0 and π− = −π+ < 0.

Proof. We will prove the existence of π+. The existence of π− will then follow from
the symmetry of fβ .

Take ε = 1/φπ − 1/φa
π (b, C) = 1/φπ − (b2 − C)/(2b2) > 0, define δ = ε(b2 −

C)/(2b) > 0, and consider the set U = {π : π > (b2 − C)/(2b) + δ}. The set U is bounded
from below and on this set fβ(π) converges to f∞(π) = b/φπ from below when β → ∞.
Hence, for any π ∈ U for sufficiently high β, it holds that

fβ(π) >
b

φπ

· 1 + ε

1 + 2b2

b2−C
ε

= b

φπ

· 1 + ε

1
φπ

2b2

b2−C

= b2 − C

2b
(1 + ε) = b2 − C

2b
+ δ .

Thus, increasing and bounded from above, fβ maps set U into itself. Therefore, there should
exist a locally stable steady state within set U .

Proof of Proposition 3.1. According to Proposition B.1(2a), the RE steady state is
locally stable for small β but loses and again acquires its local stability through two
subsequent pitchfork bifurcations. Together with concavity of fβ , proved in Lemma 3, it
implies global stability of the RE steady state for small β. Consider now the moment of the
first pitchfork bifurcation, which we denote as β = β∗

2 . At this moment the RE steady state
loses its stability, but it might do it in two different ways. If, at this instant, the function
fβ is concave for π > 0, then the bifurcation at β∗

2 is supercritical and two stable non-RE
steady states are created (in this case β∗

1 = β∗
2 ). But if the function fβ is not concave (and in

particular it is convex for small π > 0), then this bifurcation is subcritical, which implies
that two unstable steady states had to exist for β < β∗

2 . The only way in which they could
be created is via tangent bifurcation at some smaller β = β∗

1 . Our numerical analysis for
different values of C and b demonstrates that such a scenario may happen for values of φπ

that are very close to φw
π . See illustration in Figure B.1.
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FIGURE B.1. Bifurcation diagram of dynamics in the low-cost case, shown in coordinates
(β, φπ). Parameters are C = 0 and b = 1. The dashed curve gives all the parameters of the
pitchfork bifurcation, whereas the solid line gives the parameters of the tangent bifurcation.
The inset zooms the area where the curve of pitchfork bifurcation (dashed) intersects the
curve of tangent bifurcation (solid). The shaded area represents the region in the parameter
space in which the RE is locally unstable.

The RE steady state regains its stability at β = β∗
3 when the function fβ is convex for

small π > 0. Therefore, at β∗
3 , a subcritical pitchfork bifurcation takes place and two new

unstable steady states are created. But this implies (given that fβ is increasing and bounded)
the existence of two other stable non-RE steady states. These five steady states will be also
observed for high β, as we proved in Lemma 4. Thus, we suspect and have never disproved
through simulations that β∗

3 = β∗
4 . �

Proof of Proposition 3.2. According to Proposition B.1(2b), the RE steady state is
always locally stable. It is unique and therefore globally stable when the function fβ is
concave, i.e., for small β (see Lemma 3). On the other hand, when β is high enough, there
are two other locally stable steady states, π+ and π− (see Lemma 4). These steady states
could be created only via tangent bifurcation. Because we cannot rule out the possibility
of a number of subsequent tangent bifurcations (when the non-RE steady states are created
and caused to disappear), we denote as β∗

1 the instant of the first tangent bifurcation and
as β∗

2 the instant of the last tangent bifurcation. However, in our numerical analysis for
different values of C and b, we never encountered a case in which β∗

1 	= β∗
2 . See illustration

in Figure B.1.

Proof of Proposition 3.3. Because for the aggressive monetary policy φπ > φa
π > φw

π ,
it follows from Proposition B.1(2b) that the RE steady state is locally stable. To prove
that it is globally stable for every β, we will show that it is the unique steady state of the
dynamics. Because fβ is an increasing function, uniqueness will imply global stability.
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Assume that π > 0. Because the function fβ is bounded from above by a horizontal
asymptote b/φπ , i.e., fβ(π) < b/φπ for every π , no steady state can exist within the interval
[b/φπ , ∞). Let us consider π ∈ (0, b/φπ) and show that fβ(π) ∈ (0, b/(2φπ)]. Because fβ

is an increasing map, 0 = fβ(0) ≤ fβ(π) ≤ fβ(b/φπ). Furthermore, because φπ > 2b2

b2−C

and b2 −C > 0, we have that e−β(C−b2+2b2/φπ ) ≥ 1. Combining these inequalities we derive
that

fβ(π) ≤ fβ

(
b

φπ

)
= b

φπ

· 1 − e−4βb2/φπ

1 + e−4βb2/φπ + e−β(C−b2+2b2/φπ )

≤ b

φπ

· 1 − e−4βb2/φπ

2 + e−4βb2/φπ
≤ b

2φπ

.

We now show that there is no fixed point of map fβ for π > b/2φπ .

Suppose, finally, that 0 < π ≤ b/2φπ . Applying the restrictions φπ > 2b2

b2−C
and

b2 −C > 0, we find that the condition on π implies that π < b2−C
4b

, so that 4bπ < (b2 −C)

and C − b2 + 2bπ < (C − b2)/2. We obtain then the following estimate of dynamics on
the interval (0, b/(2φπ)):

fβ(π) = b

φπ

· 1 − e−4βbπ

1 + e−4βbπ + e−β(C−b2+2bπ)
≤ b2 − C

2b
· 1 − e−4βbπ

1 + e−4βbπ + eβ(b2−C)/2
. (B.6)

Let the function on the right-hand side be denoted as g(π). This function is, obviously,
increasing in π , and with direct computations we find that its first two derivatives are given
by

g′(π) = 2β
(
b2 − C

) e−4βbπ
(

2 + eβ(b2−C)/2
)

(
1 + e−4βbπ + eβ(b2−C)/2

)2 ,

and

g′′(π) = −8β2b(b2 − C)
(

2 + eβ(b2−C)/2
)

e−4βbπ 1 − e−4βbπ + eβ(b2−C)/2(
1 + e−4βbπ + eβ(b2−C)/2

)3

For positive π we have that e−4βbπ ≤ 1, and hence, the second derivative is always negative.
Also, notice that

g′(0) = 2β(b2 − C)
1

2 + eβ(b2−C)/2
= 2x

2 + ex/2
,

where x = (b2 − C)β. But the function 2x/(2 + ex/2) has a maximum in a point satisfying
4e−x/2 + 2 − x = 0, which is 2x∗, where x∗ was defined in Lemma 2. The value of this
maximum is then (approximately) 0.93, which is less than 1. Therefore, g′(0) < 1.

Because g is a concave function for π > 0, the last condition implies that g(π) < π for
every π > 0. Combining it with the estimate in (B.6), we conclude that fβ(π) < π for all
0 < π ≤ b/2φπ . This proves that there is no positive steady state for the dynamics given
by fβ . Because the function fβ is odd, this also implies that no negative steady state exists.
This completes the proof. �


