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Abstract 

This paper examines the effect of a social network on prediction markets using a controlled 

laboratory experiment that allows us to identify causal relationships between a social network 

and the performance of an individual participant, as well as the performance of the prediction 

market as a whole. Through a randomized experiment, we first confirm the theoretical 

predictions that participants with more social connections are less likely to invest in information 

acquisition from outside information sources and perform significantly better than other 

participants in prediction markets through free-riding. We further show that when the cost of 

information acquisition is low, a social-network-embedded prediction market outperforms a 

non-networked prediction market. We also find strong support for peer effects in prediction 

accuracy among participants. 
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1. Introduction 

 Prediction markets have long been regarded as an effective way to tap into the wisdom of 

crowds by aggregating dispersed information within a social system [4, 6, 15, 16, 20, 35]. 

Several empirical studies have demonstrated the power of prediction markets in areas such as 

political science [4], supply chain management [6, 22], marketing [10, 16, 33], and finance [5]. 

In most of the previous literature, researchers have assumed that the participants in the prediction 

markets are isolated: They receive small bits and pieces of independent information and cannot 

affect the decisions of other participants. However, in reality, people often mobilize their social 

networks to collect information and opinions on a variety of issues. CNBC recently reported an 

effective information exchange network through which tweeting with fellow farmers has become 

a way for participants in a far-flung and isolating business to compare notes on everything from 

weather conditions to new fertilizers.1 These tweets are dramatically accelerating the flow of 

information that may give investors an edge in the commodities market. With the advance of 

information technologies and the rise of social media, information exchange is ubiquitous these 

days. Indeed, people can use their smartphones or computers to share information with their 

social network neighbors at almost any place, at any time. The ubiquity of information exchange 

on social networks and the lack of understanding about their effects on prediction markets 

motivate us to explore the following research question: How does information exchange among 

the participants of a prediction market affect the behavior and performance of the network’s 

participants? 

 Only a few attempts have been made in the previous literature to address this research 
                                                       
1 The information is from CNBC News, March 8, 2011. The CNBC reporter called the phenomenon "Trading on Twitter." 
Grisafi, known as @IndianaGrainCo on Twitter, said he tweets with at least 15 farmers on a regular basis to check on crop 
conditions. 
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question or other similar questions. For example, in a different context, Coval and Moskowitz 

[13] asked a similar question and found that social networks help fund managers earn 

above-normal returns in nearby investments: The average fund manager generates an additional 

2.67% return per year from local investments, relative to nonlocal holdings. The closest research 

to the present paper is a recent work that used game theory to study the Bayes-Nash equilibrium 

of an incomplete information game among participants in a social-network-embedded prediction 

market [30]. They found a symmetric equilibrium by which participants with few social 

connections typically exert effort to acquire information, whereas participants with many social 

connections typically free-ride others’ information. However, in their stylized model, they made 

several simplifying assumptions: 1) people can always observe information from their direct 

neighbors; and 2) people are fully rational and have infinite computation capacity to integrate 

information in an optimal way.  

 Apparently, these assumptions might not hold in some real-world contexts. However, 

relaxing these assumptions in an analytical model could easily yield intractability of the results. 

To further our understanding of the research question without confining ourselves to these 

assumptions, we take a different approach in this paper by carrying out an experimental study. In 

particular, to address the research question, we test a series of hypotheses through our 

experiments. First, we test how participants’ degree (the number of social connections) in the 

social network influences their decisions regarding whether to invest in information acquisition 

and affects their performance in the form of earnings. Following [30], information acquisition in 

our paper specifically refers to information gathering from outside sources and does not include 

asking network neighbors for information. Unlike an experimental approach, the traditional 

econometric methods are often subject to identification difficulty because the network structure 
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is usually endogenously determined [29], as a result, empirically disentangling the unobserved 

individual characteristics (e.g., the predictive ability) from the actual effects of network degree 

on an individual’s information acquisition and prediction performance is difficult. In our 

controlled experiment, participants are randomly assigned to different network positions, which 

allows us to identify the causal relationship between network structure and the individual’s 

information acquisition and prediction performance. The experimental results are consistent with 

the theoretical prediction: participants with higher degrees in the social network are less likely to 

invest in information acquisition, compared with participants that have lower degrees, and they 

actually earn more by free-riding neighbors’ information. 

 Second, the wisdom of crowd effect has been extensively studied in the literature [28]: 

The average of many individuals’ estimates can cancel out errors and be surprisingly close to the 

truth. However, this approach requires independent estimates, which are rare in a social 

networking world. Lorentz et al. [28] demonstrate that sharing information corrupts the wisdom 

of the crowds. Contrary to previous work, our study shows that information sharing in a social 

network need not undermine the wisdom of crowd effect. The experimental results suggest that 

when the cost of information acquisition is low, a social-network-embedded prediction market 

outperforms a prediction market without a social network in terms of prediction accuracy. On the 

other hand, when the cost of information acquisition is high, we do not find any significant 

difference between the performances of these two types of prediction markets. In addition to 

these two major hypotheses, we also test whether the structure of the underlying social network 

has any effect on the performance of prediction and the experimental results suggest that network 

structure does matter. 

 The rest of the paper is organized as follows. Next, we review the related literature. In the 
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third section, we outline a simple analytical model that motivates our hypotheses tested in the 

experiment. We describe the experiment and the analysis of the experimental results in the fourth 

section. In the fifth section, we present some simulation results on the prediction performance 

that complement our experimental results. In the sixth section, we conclude the paper.  

 

2. Literature Review  

 A large body of literature explores the role of social networks in student alcohol use [19], 

product adoption [1], financial markets [12], the use of technology [34, 35], and health plan 

choice [32]. The standard empirical approach is a regression of an individual’s behavior on his or 

her social connectedness or his or her peers’ behaviors. The growing literature on the 

identification of the effect of network structure and social influence has recognized an 

econometric challenge: The network structure is endogenously determined [18, 29]. In our 

context, the network structure can be the result of past prediction performance. The confounding 

factors, such as participants’ unobserved characteristics, make it difficult to identify the causal 

effect of network structure on an individual’s behavior. For example, the positive correlation 

between social connectedness and individuals’ prediction performance can be driven either by 

the actual social effect or the unobserved individual characteristics. In the first case, individuals 

gain from their social ties. In the second case, individuals self-select their friends and tend to 

associate with the participants having high predictive ability. Both of the two cases are 

theoretically plausible and need to be empirically distinguished. Failure to account for the second 

case might lead to an overestimation of the effect of social connectedness.  

 Researchers in the existing empirical literature have addressed this econometric challenge 

using different strategies. One approach was the use of natural experiment [38]. Sacerdote [31] 
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studied peer effects among college roommates in a natural experiment: Freshmen entering 

Dartmouth College were randomly assigned to dorms and to roommates. A second approach 

relied on the panel nature of the data to control the unobserved charateristics. Sorensen [32] 

examined the effect of social learning on University of California employees’ choices of health 

plans using a rich panel data set. After controlling for the department-specific unobservables, the 

estimated social effects were smaller but remained significant. A third approach was the use of 

exogenous instrument variables. Gaviria and Raphael [19] corrected the spurious estimates of 

school-based peer effects by instrumenting for peer behavior using the average behavior of the 

peers’ parents. Our method belongs to a fourth approach: a randomized laboratory-controlled 

experiment. In our present experiment, participants are randomly assigned to different network 

positions in prediction markets.  

 The present study is also closely related to the literature on prediction markets. 

Researchers in previous studies have focused on how to elicit dispersed private information, for 

example, by using some variation of scoring rules. Scoring rules do not suffer from the irrational 

participation or thin market problems that plague standard prediction markets. They instead 

suffer from a thick market problem, namely how to produce a single consensus estimate when 

different people give differing estimates. Hanson [23] suggested a new mechanism for prediction 

markets, the market scoring rule, which combines the advantages of markets and scoring rules. 

The market scoring rule avoids the problems by being automated market makers in the thick 

market case and simple scoring rules in the thin market case. Fang et al. [15] proposed a proper 

scoring rule that elicits agents' private information, as well as the precision of the information. In 

their work, the agents’ private signals are independent. In our present social-network-embedded 

prediction market, the information that participants have is correlated with that of their friends. 
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 The present work is also related to the work on network games by Galeotti et al. [18], 

who provided a framework to analyze strategic interactions in an incomplete information 

network game. Golub and Jackson [21] discussed how network structure influences the spread of 

information and the wisdom of the crowds.  

 A handful of research has examined the mechanisms of prediction markets using 

laboratory experiments. Healy et al. [24] found that the performance of the prediction market 

mechanisms is significantly affected by the complexity of the environment. Jian and Sami [27] 

compared two commonly used mechanisms of prediction markets: the probability-report 

mechanism and the security-trading mechanism. A great deal of attention has also been paid to 

the experimental work that considers the effect of exogenously specified network structures on 

outcomes [9]. Hinz and Spann [25] examined the effects of different network structures on 

bidding behaviors in name-your-own-price auctions. Bapna et al. [3] studied the effect of the 

strength of social ties on Facebook using a field experiment. To the best of our knowledge, our 

paper is the first to study the effect of network structure on individual behavior and on 

forecasting performance in prediction markets using a laboratory controlled experiment, thus 

enriching the literature by identifying the causal effect of the social network on prediction 

markets.  

 

3. A Simple Model of a Social-Network-Embedded Prediction Market 

3.1 Model Setup 

 In this section, we set up a simple model of a social-network-embedded prediction market, 

which both captures the key features of the experiment and serves as the benchmark for the 

hypotheses we test in the experiment. Table 1 summarizes the notations used for our model. 
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Table 1. Summary of Notations 

V The random variable that the principal wants to forecast 
n The number of participants in the prediction market 
଴ܸ The prior mean of V 
 ௏ The prior precision of Vߩ
݇௜ The number of Participant ݅'s friends 
௜ܵ Participant ݅'s private signal 
 ௜ The signal’s errorߝ
 ఌ The precision of participants’ signal errorߩ 
 ݅ ௜ The prediction reported by Participantݔ 
݉௜ Whether Participant ݅ acquires information 
  ௜ Participant ݅'s mixed strategy of information acquisitionߪ
ܿ The cost of information acquisition  

 
A principal wants to forecast the realization of a random variable V. In reality, V could be 

movie box office revenue, future demand for electricity, or election outcomes. The principal 

resorts to n participants to obtain an accurate prediction. For ease of exposition, we refer to the 

principal as “he” and each participant as “she.” Before receiving any private information, the 

principal and the participants share a common prior on the distribution of V, given by:  

ܸ ׽ ܰሺ ଴ܸ,  ௏ሻ,                             (1)ߩ/1

where ଴ܸ is the mean of the normal distribution, and ߩ௏ is the precision of the prior. 

Participants in the prediction market are linked to each other according to a social 

network, and information is transmitted over the network. The social network Γ ൌ ሺܰ,  ሻ isܮ

given by a finite set of nodes ܰ ൌ ሼ1,2, . . . , ݊ሽ and a set of links ܮ ك ܰ ൈ ܰ. Each node 

represents a participant in a prediction market. The social connections between the participants 

are described by an ݊ ൈ ݊ dimensional matrix denoted by ݃ א ሼ0,1ሽ௡ൈ௡ such that: 

݃௜௝ ൌ ൜ 1, if ሺ݅, ݆ሻ א ܮ
0, otherwise  . 

Let ௜ܰሺ݃ሻ ൌ ሼ݆ א ܰ: ݃௜௝ ൌ 1ሽ represent the set of friends of Participant ݅. The degree of 

Participant ݅ is the number of Participant ݅'s friends: ݇௜ሺ݃ሻ ൌ # ௜ܰሺ݃ሻ. The principal does not 



9 
 

know the social network graph. For simplicity, we assume the network is undirected, but the 

results also hold for directed networks. 

Each participant is risk neutral and can access a private independent information source 

at a cost ܿ. ݉௜ is a binary variable indicating whether Participant ݅ acquires information. 

Participants exchange information over the social network: For simplicity, we assume that they 

can observe their direct friends’ information, but not their second-order friends’ (friend’s friend) 

information. More precisely, if Participant ݅ acquires information from her private source 

(݉௜ ൌ 1), she observes a conditionally independent private signal and passes it to her friends: 

௜ܵ ൌ ܸ ൅ ,௜ߝ ௜ߝ ׽ ܰሺ0,1/ߩఌሻ,                         (2) 

where ߩఌ is the precision of Participant ݅'s information source for ݅ ൌ 1,2, . . . , ݊. The signals' 

errors ߝଵ, . . . ,  ௡ are independent across participants and are also independent of ܸ. We assumeߝ

that the precision of all participants' information sources is equal, which implies that no one is 

especially well informed, and that the valuable information is not concentrated in a very few 

hands.  

The principal designs a quadratic loss function to elicit the private information of 

participants. A participant’s payoff function is given by: 

,ሺ݉௜ݓ ,௜ݔ ܸሻ ൌ ܽ െ ܾሺݔ௜ െ ܸሻଶ െ ݉௜ܿ,                (3) 

where ݔ௜ is the prediction reported by Participant ݅, and ܾሺݔ௜ െ ܸሻଶ is a quadratic penalty term 

for mistakes in the forecast. Notice that the optimal report for Participant ݅  is ݔ௜כ ൌ  ,௜ሿܫ|ሾܸܧ

where ܫ௜ is the information set of Participant ݅, which includes both the information she acquires 

and the information passed to her from the social network Γ. We can also use other strictly 

proper scoring rules (see [15]). The qualitative results remain unchanged. 

A participant follows a two-step decision procedure. In the first stage, all of the 
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participants decide whether to acquire information simultaneously. In the second stage, a 

participant makes use of her signal, as well as of the signals of her friends, to report her best 

prediction.  

We first focus on the optimization problem in the second stage. In the second stage, 

Participant ݅'s best prediction ݔ௜כ depends on whether Participant ݅ and her friends acquire 

information; thus, ݔ௜כ is a function of ݉௜ and ݉ே೔ሺ௚ሻ, where ݉ே೔ሺ௚ሻ א ሼ0,1ሽ
௞೔ is the action 

profile of Participant ݅'s friends, and it represents whether Participant ݅'s friends acquire 

information. 

If Participant ݅ acquires information (݉௜ ൌ 1), she forms her private belief from the 

private signal ௜ܵ, as well as from information she obtains from her neighbors, and her payoff is: 

ܽ െ ൫݉௜כ௜ݔൣܾ ൌ 1,݉ே೔ሺ௚ሻ൯ െ ܸ൧ଶ െ ܿ. 

If the participant has decided not to acquire information (݉௜ ൌ 0), she forms the belief only from 

her neighbors' signals, and her payoff is: 

ܽ െ ൫݉௜כ௜ݔൣܾ ൌ 0,݉ே೔ሺ௚ሻ൯ െ ܸ൧ଶ. 

3.2 Equilibrium Results 

Given the action profile of her friends, Participant ݅’s utility is given by 

൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ ௏ܧ ቂܽ െ ൫݉௜,݉ே೔ሺ௚ሻ൯כ௜ݔൣܾ െ ܸ൧ଶ െ ݉௜ܿቃ,                (4) 

where ܧ௏ is the expectation with respect to ܸ. The utility ݑ൫݉௜,݉ே೔ሺ௚ሻ൯ depends on whether 

Participant ݅ and her neighbors acquire information.  

Following [17], we assume that each participant observes her own degree ݇௜, which 

defines her type, but does not observe the degree or connections of any other participant in the 

network. For example, people who graduated from the same MBA program might have a good 
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sense of their classmates after graduation, but they do not know who the friends of these 

classmates are. Another example is that people only pay attention to a subset of their friends in 

the Facebook and Twitter network, given their limited cognitive resources. They don’t know to 

whom their friends pay attention. 

Each participant’s belief about the degree of her friends is given by: 

Πሺڄ |݇௜ሻ א Δሼ1, . . . , ݇௠௔௫ሽ௞೔, 

where ݇௠௔௫ is the maximal possible degree, and Δሼ1, . . . , ݇௠௔௫ሽ௞೔ is the set of probability 

distribution on ሼ1, . . . , ݇௠௔௫ሽ௞೔. For simplicity, we make an assumption that neighbors' degrees 

are all stochastically independent, which means that Participant ݅'s degree is independent from 

the degree of one of her randomly selected friends. This assumption is true for many random 

networks, such as the Erdös-Rényi random graph [14]. 

A strategy of Participant ݅ is a measurable function ߪ௜: ሼ1. . . , ݇௠௔௫ሽ ՜ Δሼ0,1ሽ, where 

Δሼ0,1ሽ is the set of probability distributions on ሼ0,1ሽ. This strategy simply says that a 

participant observes her degree ݇௜, and on the basis of this information she decides whether to 

acquire information. Notice that Δሼ0,1ሽ means that the participant adopts a mixed strategy: She 

randomizes her actions with some probabilities in ݉௜ ൌ 1 and in ݉௜ ൌ 0. The strategy profile 

of Participant ݅’s friends is denoted by ߪே೔ሺ௚ሻ. 

We focus on symmetric Bayes-Nash equilibria, where all participants follow the same 

strategy ߪ. A Bayes-Nash equilibrium is a strategy profile, such that each participant with 

degree ݇௜ chooses a best response to the strategy profile of her friends. Let ߶൫݉ே೔ሺ௚ሻ, ,ߪ ݇௜൯ be 

the probability distribution over ݉ே೔ሺ௚ሻ induced by Πሺڄ |݇௜ሻ. The expected payoff of 

Participant ݅ with degree ݇௜ and action ݉௜ is equal to: 

ܷ൫݉௜, ;ே೔ሺ௚ሻߪ ݇௜൯ ൌ ௠ಿ೔ሺ೒ሻܧ
൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ ∑ ߶൫݉ே೔ሺ௚ሻ, ,ߪ ݇௜൯ݑ൫݉௜,݉ே೔ሺ௚ሻ൯௠ಿ೔ሺ೒ሻ

, (5) 
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where ܧ௠ಿ೔ሺ೒ሻ
 is the expectation with respect to ݉ே೔ሺ௚ሻ. We say that Participant ݅'s strategy ߪ௜ 

is non-increasing if ߪ௜ሺ݇௜ሻ dominates ߪሺ݇௜ᇱሻ in the sense of first-order stochastic dominance 

(FOSD) for each ݇௜ᇱ ൐ ݇௜. In other words, if the strategy ߪ௜ is non-increasing, high-degree 

participants randomize their actions with less probability in ݉௜ ൌ 1 and thus are less likely to 

acquire information. 

Proposition 1 gives us the basic result of the Bayes-Nash equilibrium. 

Proposition 1. There exists a symmetric Bayes-Nash equilibrium that is non-increasing in 

degree. There exists some threshold ݇כ א ሼ0,1,2, . . . ሽ, such that the probability of choosing to 

acquire information satisfies: 

ሺ݉௜ߪ ൌ 1|݇௜ሻ ൌ ቐ
௜݇ ݎ݋݂          ,1 ൏ כ݇
௜݇ ݎ݋݂          ,0 ൐ כ݇
ሺ0,1ሿ,   ݂ݎ݋ ݇௜ ൌ כ݇

. 

Furthermore, the expected payoffs are non-decreasing in degree. 

The proof is included in the appendix. Proposition 1 has very clear implications. The 

participant's equilibrium action is weakly decreasing in her degree. In other words, the more 

friends she has, the less willing she is to acquire information. Participants can free ride on the 

actions of their friends. If Participant ݅ has more friends, she is more likely to benefit from the 

signals passed around by her friends. It should also be emphasized that participants who have 

more friends earn higher payoffs under the appropriate monotone equilibrium because of the 

positive externalities. Here, higher degree participants exert lower efforts but earn a higher 

payoff than do their less connected peers. The non-increasing property of equilibrium actions 

implies that social connections create personal advantage. In the network game with positive 

externalities, well-connected participants earn more than poorly connected participants. Note that 

the threshold degree ݇כ is a function of parameters such as c, ߩఌ, and ߩ௏. 
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After making the decision on information acquisition, each participant reports the best 

point estimation. The purpose of prediction markets is to generate fairly accurate predictions of 

future events by aggregating the private information of a large population. How does the 

principal aggregate these small bits and pieces of relevant information that exist in the opinions 

and intuitions of diverse individuals? We assume that the principal adopts a simple averaging 

rule, and his prediction is ଵ
௡
∑  ௡
௜ୀଵ  Note that the simple averaging rule is optimal only when all .כ௜ݔ

the participants' forecasts are independent and equally accurate; however, it is a good operational 

rule for limited information (e.g., [2]). In our networked prediction markets, the principal has 

limited information: He does not know the social network graph. In this case, the principal 

cannot propose a weighted averaging rule and simply follows the operational rule of thumb: 

"Use equal weights unless you have strong evidence to support unequal weighting of forecasts" 

([2], p. 422). 

 

4. An Experimental Analysis on Network Structure and Forecasting 

Performance  

In this section, we compare the performance of non-networked prediction markets 

(NNPM) with the performance of social-network-embedded prediction markets (SEPM) using 

controlled laboratory experiments. We also take into account the network structure in which the 

participants are embedded. Our experiment demonstrates that network structure has a significant 

effect on the individual’s behavior of information acquisition and the prediction market 

performance.2 Eighty undergraduate students were recruited as subjects from a large university, 

                                                       
2 An important problem in network games is the existence of multiple equilibria. One way to reduce the equilibrium multiplicity 
is to introduce incomplete information about network structure [17]. Another way is to use an experimental examination. In this 
section, we show that the monotonic equilibrium described in Proposition 1 is consistent with our experimental result. 
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and they had no previous experience in prediction market experiments. There were four 

experimental sessions, each consisting of five groups. We restricted our attention to the case of 

four-person networks, so each group consisted of four randomly assigned participants. The 

average earnings were $8.50 per person, including a $1.50 show-up fee, for a 40-minute session.  

4.1 Experimental Design 

Similar to the setup of the theoretical model, participants were asked to predict a random 

variable ܸ during the experiment. The common prior is given by equation (1) in our model 

setup, and in the experiment we set ଴ܸ ൌ 10 and ߩ௏ ൌ 0.5. Each participant could receive a 

private signal ௜ܵ  at a cost ܿ. The signal ௜ܵ is given by equation (2), and ߩఌ ൌ 1.  

 

Figure 1. Network Structures 

The experiment had a 4 ൈ 2 design: four different treatments of network structures ൈ 

two levels of information acquisition cost. The four treatments of network structures include: 1. 

the baseline treatment, non-networked environment; 2. complete network; 3. star network; and 4. 

circle network. They are illustrated in Figure 1. In all of the treatments, subjects participated in 
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from an outside expert. If they paid the cost of information acquisition c, they would receive a 

private signal. Once all the decisions of information acquisition were made, participants could 

communicate over the given network under each treatment (After the experiment, we checked 

the participants’ chat history and found that no one misreported the private signal to others). In 

this stage, every participant chatted with every neighbor at the same time. It means that focal 

participants might receive information from their second-order friends.  

 

Figure 3. The Flow Chart of the Experiment Round t, t = 1, 2 

After checking the chat history, we found that participants received a substantial amount 

of information from their first-order friends but less information from their second-order friends. 

On average, a participant received information from 61.88% of her first-order friends and 4.38% 

of her second-order friends. This result implies that most participants were willing to exchange 

their private signals with others but were less willing to tell others the information they got from 

someone else. Specifically, we find that central participants in a star network only exchanged 

their own signals with peripheral participants. This information diffusion pattern is consistent 
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with the exchange theory that explains the reciprocity based on the idea of socially embedded 

behavior [26]. Peripheral participants had no other information channels, except for their own 

private signals and the information from the hub. Thus, central participants exchanged only their 

private signals, excluding information from others with peripheral nodes according to reciprocity 

and norms of fairness [11].  

After the experiment, the computer system calculated the total payoff of each participant 

according to the payoff function (3). We set ܽ ൌ 5 and ܾ ൌ 1. Therefore, the maximum payoff 

for each round was $5. We are interested in testing the following four hypotheses. Hypotheses 1 

and 2 are motivated by Proposition 1 in the analytical model.  

Hypothesis 1. Each individual’s information acquisition is non-increasing in the participant’s 

degree. 

Hypothesis 2. The participant’s earnings are non-decreasing in the degree. 

 Hypothesis 3 is motivated by the following arguments: Even if participants are isolated 

in a non-networked environment, individual estimates are no longer independent because of the 

common prior (public information). The existence of a social network facilitates the 

dissemination of private information among participants, which effectively puts more weights on 

private information when participants’ predictions are aggregated in the prediction market. Such 

adjustment is beneficial to the forecasting accuracy because it corrects to a certain extent a 

possible bias toward the common prior. Social networks need not undermine the wisdom of 

crowd effect, especially when people share a common prior. On the other hand, when the cost of 

information acquisition is very high, the existence of a social network can impede information 

acquisition by the community as a whole because of possible free-riding opportunities, thus 

lowering the forecasting accuracy of the prediction market. 



18 
 

Hypothesis 3. An SEPM outperforms an NNPM when the cost of information acquisition is low. 

 Hypothesis 4 is motivated by a large body of literature on the identification and 

estimation of peer effects [1]. Peer effects are economically important because they are present 

in many decision domains, such as students’ academic performance [31], mutual fund managers’ 

portfolio choices [12], and health plan choices [32]. In our experiment, we tested whether the 

prediction performance of a participant is influenced by the members of the group to which they 

belong. 

Hypothesis 4. Peer effects exist in the prediction accuracy among participants.   

 In a star network, the central participant has an above-average influence. Hypothesis 5 is 

motivated by the following arguments: If the hub has a relatively wrong estimate, the 

above-average influence exacerbates the problem and hurts the prediction market performance 

significantly. 

Hypothesis 5. In a star network, the prediction market performance is positively correlated with 

the performance of the central participant.  

4.2 Summary Statistics  

Table 1 summarizes the statistics of participants’ predictions under different network 

structures. We perform two variance-comparison tests: the Variance ratio test (F test) and the 

Brown–Forsythe test. Note that the F test relies on the assumption that the samples come from 

normal distributions, and the Brown–Forsythe test [7] provides robustness against many types of 

non-normal data while retaining good power. By calculating the standard deviations of 

predictions under different treatments, we find that the standard deviation under a complete 

network is significantly lower than the standard deviation under a non-networked environment 

(1.237 vs. 2.186, F test: p < 0.01; Brown–Forsythe test: p < 0.05), which suggests that 
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communications lead to greater consensus about the true value.  

Table 2. Descriptive Statistics of the Participants’ Predictions 

 Mean The Std. Dev. Obs 
Non-Networked Environment 9.853364 2.186319 40 
Complete Network 9.893607 1.237169 40 
Star Network 9.916362 2.025045 40 
Circle Network 9.616113 1.532874 40 

 

 

Figure 4. Predictions under Different Network Structures 

As Table 2 and Figure 4 show, the variation of the prediction also depends on the 

network structure. The standard deviation of the predictions under a star network is significantly 

higher than the standard deviation under a circle network (2.025 vs. 1.533, F test: p < 0.05; 

Brown–Forsythe test: p < 0.05), and the standard deviation of the predictions under a circle 

network is significantly higher than the standard deviation under a complete network (1.533 vs. 

1.234, F test, p < 0.10; Brown–Forsythe test: p < 0.10). The denser the network is, the lower the 

standard deviation of the predictions (the density of the network: complete > circle > star > 

non-networked). To address the problem that the underlying observation may not be independent, 

we also compute the average prediction in each four-person group (essentially removing the 
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within group correlation) and then test the standard deviation under different network structures. 

The result is robust. The intuition is that participants communicate with each other more 

effectively in a denser network. Thus, information exchange reduces the variance of the 

predictions.  

4.3 Experimental Results: Testing of H1 

Do participants play an equilibrium strategy of information acquisition in social networks? 

To test this hypothesis, we first compute the mean of information acquisition (if Participant ݅ 

acquires information, ݉௜ ൌ 1; otherwise ݉௜ ൌ 0) when participants’ degree varies. Figure 5 

shows that the equilibrium strategy of information acquisition is decreasing in the number of 

connections. 

We then run a logistic regression of participants’ information acquisition decision on 

their degree and the cost of information acquisition: 

logit ܧሺܽܿ݊݋݅ݐ݅ݏ݅ݑݍ௜|݀݁݃݁݁ݎ௜, ,௜ݐݏ݋ܿ ௜ሻݕ݉݉ݑ݀ݏ ൌ ଴ߚ ൅ ௜݁݁ݎଵ݀݁݃ߚ ൅ ௜ݐݏ݋ଶܿߚ ൅         ௜,  (6)ݕ݉݉ݑ݀ݏଷߚ

where, sdummy, a dummy variable included for a robustness check, indicates whether the 

participant having three connections is in a star network (because such participants can also be in 

a complete network). We find that participants’ information acquisition behavior is indeed 

consistent with the equilibrium strategy predicted by the analytical model: A larger number of 

connections leads to a lower probability of information acquisition. The result is shown in 

Column 1 of Table 3. We find that the probability of participants’ acquiring information 

decreases with the degree and the cost of information acquisition. Roughly speaking, the logit 

estimates should be divided by four to compare them with the linear probability model estimates 

[36]. For example, Column 1 of Table 2 shows that adding a degree can reduce the probability of 

information acquisition by 7.6%.  
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Figure 5. Information Acquisition and Participants’ Degrees 

Column 2 suggests that the result is also robust to the inclusion of sdummy (Note that the 

P value for the coefficient of degree is 0.064, which is very close to a 5% significance level). 

Small sample size is a common problem for the experimental method. The validity of z-statistics 

depends on the asymptotic distribution of large samples. When the sample size is insufficient for 

straightforward statistical inference, bootstrapping is useful for estimating the distribution of a 

statistic without using asymptotic theory. In Column 3, we use bootstrapping to compute the 

standard errors and find that the result is robust (we draw a sample of 160 observations with 

replacement, and repeat this process 10,000 times to compute the bootstrapped standard errors). 

To account for the possible unobserved heterogeneity of participants, we control for the subjects’ 

latent characteristics using a random effects model in Column 4, and the result is robust.  

Table 3. Logistic Regression Analysis of Information Acquisition Using Model (6) 

(1) (2) (3) (4) (5) (6) (7) 

VARIABLES Logit Logit Bootstrapping Random 
effects 

Cluster 
effects 

Cluster 
Bootstrap 

Robust 
Std. Err.

     
degree -0.304** -0.293* -0.304** -0.296** -0.293*** -0.293*** -0.293**

[-2.010] [-1.855] [-2.017] [-2.201] [-6.692] [-3.361] [-2.092]
cost -1.302*** -1.302*** -1.302*** -1.317*** -1.302** -1.302*** -1.302**

[-3.706] [-3.706] [-3.567] [-3.352] [-2.492] [-4.162] [-3.712]
sdummy -0.154 -0.156 -0.154 -0.154 -0.154 

[-0.213] [-0.211] [-0.313] [-0.890] [-0.213]
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Constant 1.693*** 1.686*** 1.693*** 1.704*** 1.686*** 1.686*** 1.686***
[4.403] [4.374] [4.393] [3.882] [4.191] [6.333] [4.560] 

     
Observations 160 160 160 160 160 160 160 

R-squared 0.186 0.187 0.186 0.111 0.187 0.187 0.187 
z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1 
    

As shown in Table 2, the standard deviations are not the same under different network 

structures. Potential problems arise with statistical inference in the presence of clustering effects. 

Default standard errors that ignore clustering can greatly understate true standard errors [8]. 

Wooldridge [37] provided an econometric approach to analyzing cluster sample. Following his 

approach, we compute the variance matrices that are robust to arbitrary cluster correlation and 

unknown heteroskedasticity.3 In our context, the observations are clustered into different 

network topologies. Standard errors are adjusted for clusters in Column 5, and the result is 

similar. A practical limitation of inference with cluster-robust standard errors is the assumption 

that the number of clusters is large. Cameron, Gelbach, and Miller [8] show that cluster 

bootstraps can lead to considerable improved inference when there are few clusters. Column 6 

shows that the results of the cluster bootstrap are robust. Because of the strong suspicion 

of heteroskedasticity, we also compute the heteroskedasticity-robust t statistics using the 

Huber-White sandwich estimators in Column 6 to check the robustness of our results. The robust 

t statistics can deal with the concerns about the failure to meet standard regression assumptions, 

such as heteroskedasticity [36]. Our results are robust to the case when the modeling errors 

depend on the explanatory variables, such as degree and sdummy. Note that different network 

topologies can be linearly predicted from the variables degree and sdummy (dummy variables 

indicating network structures are redundant when we have the two explanatory variables, degree 

and sdummy, so adding additional dummy variables indicating network structures causes the 

                                                       
3  Wooldridge’s example [36] is to estimate the salary-benefits tradeoff for elementary school teachers in Michigan. Clusters are 
school districts. Units are schools within a district.  
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problem of multicollinearity). Thus, the results in Column 7 are also robust to the case when the 

modeling errors depend on different network topologies.  

4.4 Experimental Results: Testing of H2 

We also examine the effect of social connections on individuals’ earnings. Figure 6 

shows that the mean of earnings for each round is increasing in the number of connections. 

Next, we run an ordinary least squares (OLS) regression of earnings on the degree and 

the cost of information acquisition: 

௜ݏ݃݊݅݊ݎܽ݁ ൌ ଴ߚ ൅ ௜݁݁ݎଵ݀݁݃ߚ ൅ ௜ݐݏ݋ଶܿߚ ൅ ௜݊݋݅ݐ݅ݏ݅ݑݍସܽܿߚ௜൅ݕ݉݉ݑ݀ݏଷߚ ൅  ௜.   (7)ߝ

Table 4 shows that the participants’ earnings increase with the degree and decrease with 

the cost of information acquisition. Being excluded from these connections is thus a handicap for 

a participant. The basic result remains unchanged when we add a star network dummy variable, 

sdummy, or a dummy variable, acquisition, indicating whether a participant acquires information. 

Column 4 shows that the result is robust when we use the method of bootstrapping. The result of 

a random effects model is similar and reported in Column 5. In Column 6, we account for 

clustering in data. Column 7 reports the results of the cluster bootstrap. We also run a robust 

regression and compute the robust t statistics in Column 8. Our estimators are shown to be robust 

to various kinds of misspecification. The experimental results in Tables 3 and 4 thus support 

Hypotheses 1 and 2. Because of the randomization of the network position assignments, our 

experimental results do not suffer from the identification problem related to the endogenous 

network structure and reveal causality rather than mere correlation.  
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Figure 6. Earnings and Participants’ Degrees 

Table 4. OLS Regression Analysis of the Participants’ Earnings Using Model (7) 

(1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES OLS OLS OLS Bootstrapping Random 
effects 

Cluster 
effects 

Cluster 
Bootstrap

Robust 
Std. Err. 

       
degree 0.214** 0.228** 0.179** 0.214** 0.228** 0.228** 0.228** 0.228** 
 [2.119] [2.142] [2.060] [2.131] [2.012] [2.691] [2.101] [2.230] 
cost -0.774*** -0.774*** -1.001*** -0.774*** -0.786*** -0.774** -0.774*** -0.774***
 [-3.286] [-3.277] [-4.161] [-3.303] [-3.482] [-2.232] [-4.460] [-3.282] 
sdummy -0.217 -0.246 -0.217 -0.217 -0.217 -0.217 
 [-0.424] [-0.494] [-0.404] [-1.224] [-0.792] [-0.353] 
acquisition  -0.789***     
  [-3.142]     
Constant 3.560*** 3.552*** 4.234*** 3.560*** 3.558*** 3.552*** 3.552*** 3.552***
 [15.22] [15.09] [13.42] [16.31] [14.52] [47.10] [19.44] [16.14] 
       
Observations 160 160 160 160 160 160 160 160 
R-squared 0.287 0.287 0.343 0.287 0.187 0.287 0.287 0.287 
z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1   

 

4.5 Experimental Results: Testing of H3  

Hypothesis 3 predicts that when the cost of information acquisition is low, an SEPM 

outperforms an NNPM. In our experiment, each group is a prediction market, so we have 20 

prediction markets in total. The performance of a prediction market g is measured by forecast 

accuracy: 
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௚ݕܿܽݎݑܿܿܣܯ  ൌ  1  െ ௚ݎ݋ݎݎܧ ݁݃ܽݐ݊݁ܿݎ݁ܲ ݁ݐݑ݈݋ݏܾܣ ൌ 1 െ
หܨ௚ െ ௚ܸห

௚ܸ
, 

where ܨ௚ is the forecast of prediction market g, calculated as the average of all four participants’ 

predictions (the principal’s prediction) in that market, and ௚ܸ is the realization of the random 

variable in market g. To test Hypothesis 3, we perform t-tests and Monte Carlo permutation tests 

with 10,000 permutations. A t-test relies heavily on the asymptotic distributional assumption and 

may not perform well when the sample size is small. A Monte Carlo permutation test gives a 

non-parametric way to compute the sampling distribution because no assumption on the 

sampling distribution is required (for another example, see Jian and Sami [27] who also 

compared the performance of different prediction markets using a permutation test). 

We find that when the cost of information acquisition is low ($0.50), a complete 

networked prediction market significantly outperforms an NNPM (t statistics: p = 0.04; 

permutation test: p = 0.02). When the cost of information acquisition is high ($1), the 

performance difference is not significant (t statistics: p = 0.42; permutation test: p = 0.47). 

Therefore, the superior forecasting performance of a networked prediction market decreases with 

the cost of information acquisition. The relative performance of a networked prediction market to 

a non-networked prediction market depends on the cost of information acquisition. 

4.6 Experimental Results: Testing of H4 and H5 

Hypothesis 4 states that participants’ prediction accuracy can be affected by the accuracy 

of other participants in their network. There are several challenges in identifying the peer effects 

[29]. First, network formation could be endogenous: Individuals self-select their friends. For 

example, many social networks exhibit homophily: People are more prone to make friends with 

those who are similar to themselves. This makes it difficult to disentangle the selection effect and 

the real peer effects. This challenge is similar to the identification problem in estimating the 
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effects of network structure. In our experiment, the “friends” of a participant were randomly 

assigned. Random assignment implies that a participant’s background characteristics, such as 

predictive ability, are uncorrelated with their friends’ background characteristics. This approach 

allows us to take care of the first challenge. 

Second, Participants i and j can affect each other simultaneously. This reflection problem 

[29] causes a difficulty in identifying the actual causal effect if we adopt a linear-in-means 

specification: Participant i’s prediction performance is a linear function of the average 

performance level of his or her friends.  

 The reflection problem can be overcome by introducing nonlinearities into social 

interactions [26]. The prediction accuracy of Participant i is influenced by the maximal accuracy 

of her friends: 

௜ݕܿܽݎݑܿܿܣ ൌ ଴ߚ ൅ ௝ݕܿܽݎݑܿܿܣே೔א௝ݔଵ݉ܽߚ ൅ ଶΩ୧ߚ ൅  ௜.                  (8)ߝ

௜ܰሺ݃ሻ ൌ ൛݆ א ܰ: ݃௜௝ ൌ 1ൟ is the set of friends of Participant ݅, Ω୧ represents the control 

variables, and the prediction accuracy of Participant i is given by: 

௜ݕܿܽݎݑܿܿܣ ൌ 1  െ ௜ݎ݋ݎݎܧ ݁݃ܽݐ݊݁ܿݎ݁ܲ ݁ݐݑ݈݋ݏܾܣ ൌ 1 െ
௜ݔ| െ ܸ|

ܸ , 

where ݔ௜ is the prediction of Participant i, and ܸ is the realization of the random variable in the 

corresponding prediction market. In our experiment, this specification is reasonable because 

participants with high predictive ability share their “forecasting formula.” The performance of a 

participant directly depends on whether she has a clever friend. For example, as shown in Figure 

7, a clever participant proposed a useful average rule. As a result, a participant’s prediction is 

influenced by her friends with the best forecasting performance. 
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Figure 7. A Screenshot of Chats between Two Participants in the Experiment 

Table 5 presents the regression results. Again, we control for participants’ degree, the 

cost of information acquisition, and the dummy variable, acquisition. The variable, social 

influence, represents the maximal accuracy of Participant i’s friends. Our interest is the 

coefficient on social influence, ߚଵ, and we find that the coefficient is significantly positive in 

Column 1. This result is also robust to a different model specification in Column 2 and the use of 

bootstrapping. The coefficient implies that a 1% increase in the maximal accuracy of the friends 

of a focal player is associated with a roughly 0.5% increase in the focal player’s prediction 

accuracy. This coefficient is moderate in size and seems plausible. 

Table 5. Estimation of Peer Effects using the Regression Model in (8) 

  (1) (2) (3) 
VARIABLES OLS OLS Bootstrapping 
   
social influence 0.460*** 0.492*** 0.460*** 

[6.299] [6.391] [2.606] 
acquisition -0.0147 -0.0262 -0.0147 

[-0.362] [-0.632] [-0.374] 
cost -0.0387  

[-1.474]  
degree -0.2461  

[-0.601]  
Constant 0.483*** 0.483*** 0.483*** 

[6.874] [6.874] [2.853] 
 

Observations 120 120 120 
R-squared 0.255 0.271 0.255 
z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1  
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Hypothesis 5 states that peripheral nodes are influenced by the central participant in a star 

network, so the prediction market performance is positively associated with the prediction 

performance of the central participant. To test this hypothesis, we run an OLS regression of the 

prediction market accuracy of a star network in market g (ݕܿܽݎݑܿܿܣܯ௚) on the prediction 

accuracy of the central participant (ݕܿܽݎݑܿܿܣ௚), the cost of information acquisition, and the 

number of participants acquiring information in market g (signal): 

௚ݕܿܽݎݑܿܿܣܯ ൌ ଴ߚ ൅ ௚ݕܿܽݎݑܿܿܣଵߚ ൅ ݈ܽ݊݃݅ݏଷߚ ൅ ݐݏ݋ଶܿߚ ൅  ௜.             (9)ߝ

Table 6 shows the regression results. In Column 1, we find that a 1% decrease in the 

prediction accuracy of the central node is associated with a 0.534% decrease in the prediction 

market accuracy. When a hub has a relatively wrong estimate, it will cause a serious problem in 

a star networked prediction market. Column 2 shows that the result is robust after we control for 

the information acquisition in the market. To address the small sample concern, we do 

bootstrapping in Column 3, and the positive correlation is still significant.  

Table 6. Estimation of the Hub Effects using the Regression Model in (9) 

  (1) (2) (3) 
VARIABLES OLS OLS Bootstrapping 
   
Accuracy 0.534*** 0.520*** 0.534** 

[7.380] [6.721] [2.061] 
cost -0.0828 -0.0775 -0.0828 

[-1.621] [-1.450] [-1.282] 
signal -0.0316  

[-0.733]  
Constant 0.478*** 0.559*** 0.478* 

[6.882] [4.242] [1.893] 
 

Observations 10 10 10 
R-squared 0.896 0.904 0.896 
z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1  

 

5. Extension 
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5.1 What Happens with a Complex Social Network? 

One shortcoming of the controlled experiment approach is that the network structure is 

relatively simplistic. A natural question is whether our hypotheses are supported when the 

underlying social network is more complicated. In particular, from a manager’s perspective, 

seeing how well Hypothesis 3 is supported with a more complex social network is important. 

This is because if an SEPM always (weakly) dominates an NNPM, then the manager of a 

prediction market should always promote the use of social networks among the participants. In 

this section, we conduct numerical simulations based on the analytical model to further analyze 

the effects of social networks on the forecast accuracy of prediction markets when the social 

network is more complex. The simulation results complement our findings from the experiment 

by demonstrating that a social network is actually a double-edged sword in a prediction market: 

When the cost of information acquisition is low, a social network can promote forecast 

efficiency, as suggested by our experimental results, but if the cost of information acquisition is 

high, it could decrease the prediction performance. 

Using our analytical model, we conduct a variety of agent-based simulations in the 

social-network-embedded prediction markets. In every simulation round, a random social 

network that includes 100 participants is generated, using a 100 ൈ 100 dimensional matrix. 

Following the Erdős–Rényi random graph model, we assume that the link between two 

participants is formed with independent probability ݌ in our simulation. We set the parameter 

values for the common prior ܸ~Nሺ ଴ܸ, ௏ሻߩ/1 ൌ Nሺ10, 2ሻ, and the noise of the signal ߝ௜~Nሺ0,1/

ఌሻߩ ൌ Nሺ0, 1ሻ. The results are robust for other parameter values. On the basis of Proposition 1, 

we can compute the fixed point, the threshold degree ݇כ, and then further compute the 

prediction by each participant, which enables us to compute the forecasting accuracy of the 
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prediction market. 

In the simulation, we use two measures of prediction market performance: the forecast 

accuracy and the mean squared errors (MSE) of the prediction market. Recall that the forecast of 

prediction market g, ܨ௚, is the simple average of all 100 participants’ predictions (the principal’s 

prediction) in that market. 

For each cost level of information acquisition, we run 1,000 simulations for both the 

SEPM and the NNPM, and then we compute the estimated forecast accuracy and the MSE. 

Figure 6 illustrates the effect of the cost of information acquisition on prediction market 

performances of the SEPM and the NNPM. The figure is drawn for parameter values n = 100, p 

= 0.3, V₀ = 10, ߩ௏ = 0.5, ߩఢ = 1, and b = 1. Accuracy0  represents the forecast accuracy 

computed in the NNPM, and Accuracy1 represents the forecast accuracy in the SEPM. The 

forecast accuracy is defined as: 

௚ݕܿܽݎݑܿܿܣ  ൌ ௚ݎ݋ݎݎܧ ݁݃ܽݐ݊݁ܿݎ݁ܲ ݁ݐݑ݈݋ݏܾܣ ݊ܽ݁ܯ– 1  ൌ 1 െ
1

1000 ෍
หܨ௚௝ െ ܸห

ܸ

ଵ଴଴଴

௝ୀଵ

, ݃ ൌ 0,1. 

Figure 8(a) shows that when the cost of information acquisition is low, the SEPM outperforms 

the NNPM in terms of forecast accuracy, and when the cost is high, the NNPM outperforms the 

SEPM. In Figure 8(b), this result is robust to a different measure of prediction market 

performance: MSE. MSE0 represents the MSE computed in the NNPM, and MSE1 represents 

the MSE in the SEPM. When c is small, MSE0 െ MSE1 ൐ 0, which means that the SEPM 

outperforms the NNPM. As c increases, MSE0 െ MSE1 decreases, and when c is large 

enough, the NNPM performs better than the SEPM. 
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(a) Forecast Accuracy (b) MSE 

 

Figure 8. A Comparison between the Performances of the SEPM and the NNPM 

(Erdős–Rényi random graph) 

The Erdős–Rényi random graph may be inappropriate for modeling some real-life 

phenomena. Typical real-world social networks possess additional structure that is absent in the 

Erdős–Rényi random graph. For example, the Erdős–Rényi random graph does not exhibit power 

laws. Using the similar simulation approach, we can also study the prediction performance under 

more realistic social networks, such as the Preferential Attachment graph [26]. In the Preferential 

Attachment graph, two participants are more likely to be socially connected if they have a 

common acquaintance. Note that the Preferential Attachment graph has two parameters: the 

number of participants n and the total number of edges in the graph e. To compare the 

Preferential Attachment graph with the Erdős–Rényi random graph we already discussed, we 

calculate the expected number of edges in the Erdős–Rényi random graph (n = 100, p = 0.3): 

[n(n-1)p]/2 = 1485 (corresponding to the mean degree 29.7). Thus, we do a robustness check on 

the Preferential Attachment graph for parameter values n = 100, e = 1485, V₀ = 10, ߩ௏ = 0.5, 

  .ఢ = 1, and b = 1. Figure 9 shows that the results are robustߩ
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(a) Forecast Accuracy 

 

(b) MSE 

 

Figure 9. A Comparison between the Performances of the SEPM and the NNPM 

(Preferential Attachment graph) 

This simulation analysis suggests the following results.   

Simulation Result: The performance of an SEPM increases compared to an NNPM with 

decreasing information acquisition costs. 

There are two implications of this result: First, when the cost of information acquisition is 

low, a social network can enhance forecast accuracy in prediction markets. Second, a social 

network also has a negative effect on the forecast accuracy of a prediction market when the cost 

of information acquisition is high. The second implication is driven by the fact that in our 

analytical model, social networks could reduce people's incentive to acquire information and 

could then be detrimental to the forecast accuracy of the prediction market as a whole. Our result 

depends crucially on the cost of information acquisition. Coval and Moskowitz [13] show that 

investors prefer to hold local firms rather than distant ones, because the cost of acquiring 

information about companies located near investor is lower.4 Similarly, if a prediction market is 

                                                       
4  The “Home bias puzzle” has been widely studied in the finance literature [13]. Investment managers exhibit a strong preference 
for domestic equities. 
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created for forecasting the performance of a firm, participants have easier access to private 

information and have the lower travel, time, and research costs associated with obtaining private 

information.5 If participants in the United States are trying to predict the performance of a 

Chinese company, the cost of acquiring private information is extremely high.6 

These implications are critical to understanding how to use social networks to improve 

the performance of prediction markets. Our present results suggest the following guidance for the 

business practice of prediction markets: When the predicted event is simple, which is interpreted 

as a low information acquisition cost, we recommend a social-network-based prediction market. 

When the predicted event involves complicated issues, which can be interpreted as a high cost of 

information acquisition, the traditional non-networked prediction market is preferred. For 

example, it is rather difficult for people to know some information about the event, "Hugo 

Chavez to no longer be the President of Venezuela before midnight ET 31 Dec 2012" (Intrade 

Prediction Market). However, it is relatively easy to have some ideas about the Twilight movie 

box office (Iowa Electronic Markets). Whether to use social networks in prediction markets 

depends on the cost of information acquisition. 

5.2 What Happens When the Signals Are Misleading? 

In the previous analysis, we assume that the private signals in the market are informative. 

However, under some circumstances, the signals may be misleading or systematically biased. 

For example, stocks plunged sharply on April 23, 2013, after a hacker accessed a newswire's 

account and tweeted about a false White House emergency.7 The erroneous tweet, which was 

posted around 1:07 p.m. ET, said "BREAKING: Two Explosions in the White House and Barack 
                                                       
5  Local participants can visit the firm’s operations, talk to employees, managers, and suppliers of the firm, and assess the local 
market conditions in which the firm operates. They may have close personal ties with local executives (e.g., run in the same 
circles, belong to the same country club). 
6  That is why Muddy Waters Research Group is especially known for its keen eye in spotting fraudulent accounting practices at 
Chinese companies. See http://blogs.wsj.com/deals/2012/11/28/examining-muddy-waters-track-record/. 
7  See http://buzz.money.cnn.com/2013/04/23/ap-tweet-fake-white-house/?iid=EL. 
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Obama is injured." This tweet sent shock waves through the stock market and caused the market 

to tumble.  

(a) Small-Bias Signal  (b) Large-Bias Signal 

Figure 10. A Comparison between the Performances of the SEPM and the NNPM 

When the Signals are Systematically Biased 

What would happen when the signals in the markets are systematically biased? More 

formally, we modify equation (2) and assume that the signal is misleading in the sense that  

௜ܵ ൌ ܸ ൅ ݀ ൅  ௜, where d > 0 or d < 0. The absolute value of d measures the systematic bias ofߝ

the signal. The underlying social network is the Erdős–Rényi random graph. In Figure 10, we 

redo the simulation analysis when the signal is misleading. Accuracy0  represents the forecast 

accuracy computed in the NNPM, and Accuracy1 represents the forecast accuracy in the SEPM. 

In Figure 10(a), we find that when the systematic bias is small ( i.e., the absolute value of d is 1), 

the result is similar: The performance of an SEPM increases compared to an NNPM with 

decreasing information acquisition costs. However, when the systematic bias is sufficiently large 

(the absolute value of d is 3, 5, or 10), the result is the opposite (Figure 10(b)). Note that because 

our problem is symmetric, the simulation results when d = y are the same as the results when d = 
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- y, y = 1, 3, 5, 10. The intuition is that when the bias is large, receiving more signals is 

misleading rather than beneficial (the role of signals is just the opposite). When the cost of 

information acquisition is small, a social network between participants exacerbates the spread of 

misleading signals. Instead of improving the market performance, the dissemination of 

information is detrimental in this case. When the cost is high, the existence of a social network 

impedes the acquisition of biased information because of possible free-riding opportunities. Thus, 

an SEPM outperforms an NNPM. 

5.3 What Happens When Participants Can Observe Their Friends’ degrees? 

In our theoretical model, we assume that each participant observes her own degree, but 

does not observe the degrees of her friends. In many situations, a participant has a good forecast 

of her own degree, but has incomplete information about the degrees of others [17]. However, 

this is a strong assumption when we talk about social media, such as Facebook and LinkedIn. In 

this section, we extend our analytical model and relax this assumption by allowing each 

participant to observe her friends’ degrees in the four networks shown in Figure 1. The model 

setup in this section is similar to the setup in the previous theoretical analysis, except that the 

social networks are topologies in Figure 1 instead of random graphs. It is a complete information 

game in the sense that each participant has perfect knowledge about her friends’ degrees, so the 

equilibrium concept is a Nash equilibrium rather than a Bayes-Nash equilibrium. In this section, 

we show that a non-increasing strategy in information acquisition is also a Nash equilibrium 

strategy (it might not be the unique equilibrium strategy). In other words, the basic result in 

Proposition 1 is also valid when each participant can observe the degrees of her friends.  

For simplicity, let’s consider sixteen participants in total, and each network structure 

consists of four participants. Participant i’s net benefit of acquiring information when ݇௔ (݇௔= 0, 
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1, 2, or 3) of her friends acquire information is: 

௞ೌܤܰ ൌ ൫݉௜ݑ
ᇱ ൌ 1,݉ே೔ሺ௚ሻ൯ െ ൫݉௜ݑ ൌ 0,݉ே೔ሺ௚ሻ൯ ൌ ܾ ቀ ଵ

௞ೌఘഄାఘೇ
െ ଵ

ሺ௞ೌାଵሻఘഄାఘೇ
ቁ െ ܿ, 

and for vector ݉ே೔ሺ௚ሻ, there are ݇௔ elements of 1 and ݇௜ െ ݇௔ elements of 0. Note that ܰܤ௞ೌ 

is decreasing in ݇௔, so we have five possible cases: 

ଷܤܰ (1) ൏ ଶܤܰ ൏ ଵܤܰ ൏ ଴ܤܰ ൑ 0. 

 In this case, the cost of information acquisition is too high, and ݉௜ ൌ 0 is a Nash 

equilibrium strategy for all sixteen participants in the four networks. It is trivial to show that the 

equilibrium strategy is non-increasing in degree.  

ଷܤܰ (2) ൏ ଶܤܰ ൏ ଵܤܰ ൑ 0 ൏  .଴ܤܰ

 In Case 2, a Nash equilibrium strategy for all four participants in the non-networked 

environment is ݉௜ ൌ 1, because the net benefit of acquiring information when ݇௔= 0 is positive. 

A Nash equilibrium strategy for participants in the complete network is that one participant 

acquires information and the other three participants do not acquire information. For participants 

in the star network, a Nash equilibrium strategy is that the central participant does not acquire 

information and the other three participants acquire information. A Nash equilibrium strategy for 

participants in the circle network is that Participants 1 and 3 in Figure 1 acquire information and 

the other two participants do not acquire information. Summarizing all the equilibrium strategies, 

we find that 100% of participants with degree 0 acquire information, 100% of participants with 

degree 1 acquire information, 50% of participants with degree 2 acquire information, and 20% of 

participants with degree 3 acquire information. Thus, the equilibrium strategy is non-increasing 

in degree.  

ଷܤܰ (3) ൏ ଶܤܰ ൑ 0 ൏ ଵܤܰ ൏  .଴ܤܰ

 Similarly, in Case 3, Nash equilibrium strategies for participants in the non-networked 
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environment, the star network, and the circle network are the same as the strategies in Case 2. 

For participants in the complete network, a Nash equilibrium strategy is that two participants 

acquire information and the other two participants do not acquire information. We find that 100% 

of participants with degree 0 acquire information, 100% of participants with degree 1 acquire 

information, 50% of participants with degree 2 acquire information, and 40% of participants with 

degree 3 acquire information. Thus, the equilibrium strategy is non-increasing in degree.  

ଷܤܰ (4) ൑ 0 ൏ ଶܤܰ ൏ ଵܤܰ ൏  .଴ܤܰ

 In Case 4, Nash equilibrium strategies for participants in the non-networked environment 

and the star network are the same as the strategies in case (2). For participants in the complete 

network, a Nash equilibrium strategy is that three participants acquire information and the other 

one participant does not acquire information. A Nash equilibrium strategy for participants in the 

circle network is that all of them acquire information. We find that 100% of participants with 

degree 0 acquire information, 100% of participants with degree 1 acquire information, 100% of 

participants with degree 2 acquire information, and 60% of participants with degree 3 acquire 

information. Thus, the equilibrium strategy is non-increasing in degree.  

(5) 0 ൏ ଷܤܰ ൏ ଶܤܰ ൏ ଵܤܰ ൏  .଴ܤܰ

 In Case 5, the cost of information is low, and the net benefit of acquiring information 

when ݇௔= 3 is positive. All participants in the four networks acquire information. The 

equilibrium strategy is trivially non-increasing in degree. 

 

6. Conclusions 

In this paper, we designed and carried out a laboratory experiment to examine the effect 

of a social network on the performance of a prediction market, as well as on the behavior of its 
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participants. Through randomization in the controlled experiment, we were able to identify the 

causal relationship between the network degrees of players and their performance in the 

prediction market as well as their strategic decisions regarding whether to acquire costly 

information. More importantly, we tested the hypotheses that social-network-embedded 

prediction markets outperform prediction markets without social network in terms of prediction 

accuracy, and we found the difference to be significant when the cost of information acquisition 

is low but insignificant when the cost of information acquisition is high. Further numerical 

simulations suggest that the existence of a social network in a prediction market lowers the 

forecasting accuracy when the cost of information acquisition is high. This has a direct 

managerial implication for the business practice of prediction markets: When the predicted event 

is simple, promoting social networking among participants is beneficial, whereas if the predicted 

event involves complicated issues, a social network among participants should be discouraged. 

In the past few years, many large firms, such as Google, Microsoft, and HP, have 

experimented with internal prediction markets to improve business decisions [10]. The primary 

goal of these markets is to generate predictions that efficiently aggregate many employees’ 

information. It is easier for employees to gain access to private information about the company. 

Compared to outsiders, the cost of information acquisition is lower for internal employees. In 

this context of corporate prediction markets, the implication of our results is that an SEPM 

outperforms an NNPM when participants are internal employees.   

Our experiment results also suggest that network structure matters when it comes to the 

performance of social-network-embedded prediction markets. An important future research 

direction is to extend our static model to further investigate exactly how the network structure 

affects prediction market performance as well as the performance and behavior of each 
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participant over time. It would be interesting to create some social network measures that can 

help explain the variation of performances of prediction markets with different social network 

structures. Another interesting future research direction is to examine the incentives to share 

information in a social network through a laboratory experiment. Do participants exchange 

information according to reciprocity and norms of fairness? Studying the incentives for sharing 

information or the sale of information in social-network-embedded prediction markets remains 

an open question. 
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Appendix 

Appendix A: Proof of Proposition 1 

We say that a function ݑ exhibits strategic substitutes if an increase in others' actions 

lowers the marginal returns from one's own actions: For all ݉௜
ᇱ ൐ ݉௜ and ݉ே೔ሺ௚ሻ

ᇱ ൒ ݉ே೔ሺ௚ሻ, 

൫݉௜ݑ
ᇱ,݉ே೔ሺ௚ሻ

ᇱ ൯ െ ൫݉௜,݉ே೔ሺ௚ሻݑ
ᇱ ൯ ൑ ൫݉௜ݑ

ᇱ,݉ே೔ሺ௚ሻ൯ െ  .൫݉௜,݉ே೔ሺ௚ሻ൯ݑ

When ݑ exhibits strategic substitutes, a participant's incentive to take a given action decreases 

as more friends take that action. 

Lemma 1. If the payoff is a quadratic loss function, then ݑ൫݉௜,݉ே೔ሺ௚ሻ൯ exhibits strategic 

substitutes.  

Proof. A participant's utility maximization problem given ݉௜ and ݉ே೔ሺ௚ሻ is equivalent to a 

predictor error minimization problem. We can obtain the best mean square predictor of ܸ based 

on ௜ܵ:  

|ሾܸܧ ௜ܵሿ ൌ
௏ߩ

ఌߩ ൅ ௏ߩ ଴ܸ ൅
ఌߩ

ఌߩ ൅ ௏ߩ ௜ܵ. 

Similarly, we can obtain the best mean square predictor of ܸ based on other information sets. 

Assume that for ݉ே೔ሺ௚ሻ, there are ݇௔ of Participant ݅'s friends (among the total number ݇௜) 
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who acquire information. In other words, for vector ݉ே೔ሺ௚ሻ, there are ݇௔ elements of 1 and 

݇௜ െ ݇௔ elements of 0. Let ܣே೔ሺ௚ሻ be the set of friends who acquire information. If Participant 

݅ acquires information, the best mean square predictor is: 

௏ߩ
ሺ݇௔ ൅ 1ሻߩఌ ൅ ௏ߩ ଴ܸ ൅

ఌߩ
ሺ݇௔ ൅ 1ሻߩఌ ൅ ௏ߩ

ቌ ෍  
௜א஺ಿ೔ሺ೒ሻ

௜ܵቍ. 

For Participant ݅'s action, ݉௜ ൌ 0, and ݉௜
ᇱ ൌ 1: 

൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ ܽ െ ܾ ቈ
௏ଶߩ

ሺ݇௔ߩఌ ൅ ௏ሻଶߩ
1
௏ߩ

൅
ఌଶߩ

ሺ݇௔ߩఌ ൅ ௏ሻଶߩ
݇௔
ఌߩ
቉ ൌ ܽ െ ܾ ൬

1
݇௔ߩఌ ൅ ௏ߩ

൰, 

and 

൫݉௜ݑ
ᇱ,݉ே೔ሺ௚ሻ൯ െ ൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ െܾ ൬

1
ሺ݇௔ ൅ 1ሻߩఌ ൅ ௏ߩ

െ
1

݇௔ߩఌ ൅ ௏ߩ
൰ െ ܿ. 

From here, obtaining the following equation is straightforward:  

 డ
డ௞ೌ

൫݉௜ݑൣ
ᇱ,݉ே೔ሺ௚ሻ൯ െ ൫݉௜,݉ே೔ሺ௚ሻ൯൧ݑ ൌ െ ఘഄ

ሺ௞ೌఘഄାఘೇሻమ
൅ ఘഄ

ሾሺ௞ೌାଵሻఘഄାఘೇሿమ
൏ 0. 

Therefore, ݑ exhibits strategic substitutes. ז 

If the payoff function exhibits strategic substitutes, then for ݉௜
ᇱ ൐ ݉௜ and ݇௜ᇱ ൐ ݇௜, 

 ܷሺ݉௜
ᇱ, ;ߪ ݇௜ሻ െ ܷሺ݉௜, ;ߪ ݇௜ሻ 

 ൌ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜൯ൣݑ൫݉௜
ᇱ, ே೔ሺ௚ሻ൯ߪ െ ,൫݉௜ݑ ே೔ሺ௚ሻ൯൧௞ಿ೔ሺ೒ሻߪ

 

 ൌ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜൯ ቂݑ ቀ݉௜
ᇱ, ൫ߪே೔ሺ௚ሻ, 0൯ቁ െ ݑ ቀ݉௜, ൫ߪே೔ሺ௚ሻ, 0൯ቁቃ௞ಿ೔ሺ೒ሻ

 

 ൌ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜
ᇱ൯ ቂݑ ቀ݉௜

ᇱ, ൫ߪே೔ሺ௚ሻ, 0൯ቁ െ ݑ ቀ݉௜, ൫ߪே೔ሺ௚ሻ, 0൯ቁቃ௞ಿ೔ሺ೒ሻ
 

 ൐ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜
ᇱ൯ ቂݑ ቀ݉௜

ᇱ, ൫ߪே೔ሺ௚ሻ,݉௞ାଵ൯ቁ െ ݑ ቀ݉௜, ൫ߪே೔ሺ௚ሻ,݉௞ାଵ൯ቁቃ௞ಿ೔ሺ೒ሻ
 

 ൌ ܷሺ݉௜
ᇱ, ;ߪ ݇௜ᇱሻ െ ܷሺ݉௜, ;ߪ ݇௜ᇱሻ,                                      (10) 

where the third equality follows from the assumption that neighbors' degrees are all 
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stochastically independent, and the first inequality follows from strategic substitutes. Then, we 

show the existence of a decreasing symmetric equilibrium by using two steps: (1) There exists a 

symmetric equilibrium; and (2) every symmetric equilibrium is non-increasing in degree. First, 

we want to show a symmetric equilibrium exists (we allow mixed-strategy equilibrium). Our 

game is a standard symmetric incomplete information game because all participants have 

identical action sets of information acquisition Δሼ0,1ሽ; the quadratic payoff functions are also 

the same; and participant’s beliefs concerning networks are ex-ante symmetric. Given that the 

action set Δሼ0,1ሽ is compact, and the payoff function is continuous, then a symmetric mixed 

strategy Bayes-Nash equilibrium exists according to the fixed-point theorem (see [17]).  

 Next, we show that every symmetric equilibrium is non-increasing. Let ߪ௞ be a 

symmetric equilibrium strategy for the participant with degree k. If ߪ௞ is a strategy with all 

degrees choosing action 1 with probability 1, the equilibrium is obviously non-increasing. Thus, 

we focus on the non-trivial case. If ߪ௞ is not a trivial strategy, then let ݉௞ ൌ min ሾ݌݌ݑݏሺߪ௞ሻሿ, 

where ݌݌ݑݏሺߪ௞ሻ is the support of the mixed strategy ߪ௞. In our context, the support can be {0}, 

{1}, or {0,1}. If ݉௞ ൌ 1, it is easy to show that ݉௞ᇱ ൑ ݉௞ for all ݉௞ᇱ  ௞ᇱሻ withߪሺ݌݌ݑݏ א

 ݇ᇱ ൐ ݇. If ݉௞ ൌ 0, then for any ݉ ൐ ݉௞, we have the following inequality by equation (10): 

ܷሺ݉, ;ߪ ݇ሻ െ ܷሺ݉௞, ;ߪ ݇ሻ ൐ ܷሺ݉, ;ߪ ݇ ൅ 1ሻ െ ܷሺ݉௞, ;ߪ ݇ ൅ 1ሻ. 

Note that ݉௞ א ,௞ሻ, so we have: ܷሺ݉ߪሺ݌݌ݑݏ ;ߪ ݇ሻ െ ܷሺ݉௞, ;ߪ ݇ሻ ൑ 0. Thus, ܷሺ݉, ;ߪ ݇ ൅

1ሻ െ ܷሺ݉௞, ;ߪ ݇ ൅ 1ሻ ൏ 0, for all ݉ ൐ ݉௞. This implies that if ݉௞ାଵ א  ௞ାଵሻ thenߪሺ݌݌ݑݏ

݉௞ାଵ ൑ ݉௞. Therefore, ߪ௞ FOSD ߪ௞ାଵ. The conclusion follows by iterating this process.  

 Now let’s show that the non-increasing strategy is actually a threshold strategy. Suppose 

that for degree ݇௜ participant, there is a positive probability of acquiring information, we can 

prove that ߪ൫݉௜ ൌ 1| ෠݇൯ ൌ 1, for all ෠݇ ൏ ݇௜, by the decreasing difference of ܷሺ݉௜, ;ߪ ݇௜ሻ. 
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Similarly, we can show that if for degree ݇௜ participant, there is positive probability of not 

acquiring information, then ߪ൫݉௜ ൌ 1| ෠݇൯ ൌ 0, for all ෠݇ ൏ ݇௜. Then the equilibrium strategy is a 

threshold strategy.    

We make a few more remarks here. Because all participants adopt a threshold strategy, 

Participant ݅ believes that the probability for a randomly chosen neighbor to acquire 

information is ߠ ൌ Pr൫ ௝݇ ൑ ݆ ,൯כ݇ א ௜ܰሺ݃ሻ. Participant ݅'s belief about the number of informed 

neighbors thus follows a binomial distribution given by:  

݂ሺ݇௔; ݇௜, ሻߠ ൌ ൬݇௜݇௔
൰ ௞ೌሺ1ߠ െ  ,ሻ௞೔ି௞ೌߠ

where ݇௔ is the number of participants who acquire information, and ݂ሺ݇௔; ݇௜,  ሻ is the densityߠ

function of the binomial distribution. Knowing the belief of Participant ݅, we can obtain the 

expected payoff ܷ൫݉௜, ;ே೔ሺ௚ሻߪ ݇௜൯. Because ݇כ is a threshold, it is determined by the following 

inequalities: 

ܷ൫݉௜ ൌ 1, ;ே೔ሺ௚ሻߪ ݇
൯כ ൑ ܷ൫݉௜ ൌ 0, ;ே೔ሺ௚ሻߪ ݇

 ,൯כ

ܷ൫݉௜ ൌ 1, ;ே೔ሺ௚ሻߪ ݇
כ ൅ 1൯ ൐ ܷ൫݉௜ ൌ 0, ;ே೔ሺ௚ሻߪ ݇

כ ൅ 1൯. 

These inequalities simply mean that the participant with degree ݇כ is better off to acquire 

information, and the participant with degree ݇כ ൅ 1 is better off not to acquire information. 

Appendix B: Experimental Instructions 

The following are the experimental instructions for an SEPM. The guidelines for an 

NNPM are similar except that the participants are not allowed to communicate with others. 

Experiment Guidelines 

General Guideline: This is an economic experiment so it is conducted with Real Money! Your 

profit is a direct result of your prediction performance during the experiment. The experiment 

has 2 rounds. The highest cash payoff for you to earn is $5*2=$10! In order to maximize your 
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profits, you need to read the instructions carefully and use your information wisely. The 

experiment has 2 rounds. Your total payoff is the sum of the payoff in each round. If your total 

payoff is less than $5, you will get $5. 

Experiment Description 

CREC (Central Real Estate Company) needs to predict the size of the rental market, V, in 

a large metropolitan area. The internal estimation predicted by employees within the company 

suggests that the market size, V, is probably around $10 millions. Below is the percent graph of 

the employees' predictions: Most of them think that the market size V = 10. 

 

As the head of the marketing department of CREC, you can also consider purchasing an 

evaluation of the market size from one of several outside experts. Your experience tells you that 

each expert's prediction is twice as accurate as the internal prediction. Obtaining the prediction of 

an outside expert will cost you money in this experiment. If you choose to purchase an expert's 

opinion, you can combine the internal estimation from employees with the expert prediction to 

get a more precise estimate. The actual market size, V, in million USD, will be announced right 

after the experiment (Note that the true value of V in round 1 is different from the value in round 

2). Suppose that your prediction is x million USD, if you do not purchase expert opinions, your 

payoff in this round is: $ 5 - ( x - V )² . 

If you choose to purchase an expert's opinion, you have to pay a cost c = $1 in this 
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