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Abstract. Many real matching markets are subject to distributional constraints. These

constraints often take the form of restrictions on the numbers of agents on one side of the

market matched to certain subsets of the other side. Real-life examples include restric-

tions imposed on regions in medical residency matching, academic master’s programs

in graduate school admission, and state-financed seats for college admission. Motivated

by these markets, we study the design of matching mechanism under distributional con-

straints. We show that the existing matching mechanisms around the world may result in

avoidable inefficiency and instability, and propose a better mechanism that has desirable

properties in terms of efficiency, stability, and incentives while respecting the distribu-

tional constraints.

JEL Classification Numbers: C70, D61, D63.

Keywords: medical residency matching, college and graduate school admission, distribu-

tional constraints, efficiency, stability, strategy-proofness, matching with contracts, the

rural hospital theorem

1. Introduction

Many real matching markets are subject to distributional constraints. In health care,

there is often a concern that certain medical specialties attract too many doctors while

others suffer from shortage, and regulations on the number of doctors in certain specialties

are imposed or proposed.1 In some public school districts, multiple school programs often

share one school building, so there is a bound on the total number of students in these

programs in addition to each program’s capacity because of the building’s physical size.2

Achieving demographic balance of the incoming class is often one of the most important

goals in school and college admission, which may lead to distributional constraints on the

matching outcome.

An interesting example of a concrete matching market with such distributional con-

straints is the one for Japanese medical residency in which around 8,000 doctors (mostly

consisting of graduating medical students) are matched to about 1,500 residency programs

each year. In 2008, the Japanese government introduced a “regional cap” which, for each

of the 47 prefectures that partition the country, restricts the total number of residents

1In the United States, the plaintiff of Jung v. Association of American Medical Colleges alleged that

the association called Accreditation Council for Graduate Medical Education regulates the number of

medical residents in each specialty, although the allegation was dismissed. Nicholson (2003) finds some

suggesting evidence that Residency Review Committees, which works closely with ACGME, essentially

has complete control over the number of residents who train in each specialty.
2See Abdulkadiroğlu and Sönmez (2003) for the introduction to school choice problems.
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matched within the prefecture. This measure was taken to regulate the geographical dis-

tribution of doctors, which would otherwise be concentrated too much in urban areas at

the expense of rural areas.3 Since the introduction of the regional caps, they have used

a mechanism that respects the caps, which is a modification of the standard deferred ac-

ceptance mechanism that they used before 2008. Specifically, in the modified mechanism,

which we call the Japan Residency Matching Program (JRMP) mechanism, if the sum

of the hospital capacities in a region exceeds its regional cap, then the capacity of each

hospital is reduced to equalize the total capacity with the regional cap. Then the deferred

acceptance algorithm is implemented under the reduced capacities.4

A similar policy is taken in the context of graduate school admission in China, which

has placed more than 400,000 students every year since 2009, where master’s programs

are categorized as either academic or professional. To enlarge the labor force with profes-

sional master’s degrees, in 2010 the Chinese government started restricting the number

of admissions to academic master’s programs. More specifically, the government decided

to reduce the number of available seats of each academic master’s program by about 25

percent by 2015, just as in Japan where a rigid restriction is imposed on each hospital. A

clearinghouse mechanism is run given the reduced capacities.

In the context of college admission, the Ukrainian government provides a limited num-

ber of “state-financed” seats in public universities, for which tuition is free for the students.

The number of state-financed seats and that of privately financed seats in each college

are determined first, and then a matching procedure assigns students to these college-

specific state-financed or privately financed seats. The situation resembles the market for

3Regional imbalance of doctors is a serious concern in many other parts of the world as well. For

instance, a Washington Post article entitled “Shortage of Doctors Affects Rural U.S.” describes a dire

situation in the United States (Talbott, 2007) as follows: “The government estimates that more than

35 million Americans live in underserved areas, and it would take 16,000 doctors to immediately fill

that need, according to the American Medical Association.” Similar problems are present around the

world. For example, one can easily find reports of doctor shortages in rural areas in the United Kingdom,

India, Australia, and Thailand (see Shallcross (2005), Alcoba (2009), Nambiar and Bavas (2010), and

Wongruang (2010)).
4 The capacity of a hospital is reduced proportionately to its original capacity in principle (subject to

integrality constraints) although there are a number of fine adjustments and exceptions. This rule might

suggest that hospitals have incentives to misreport their true capacities, but in Japan, the government

regulates how many positions each hospital can offer so that the capacity can be considered exogenous.

More specifically, the government decides the physical capacity of a hospital based on verifiable informa-

tion such as the number of beds in it.
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Japanese medical residents if the total number of state-financed seats is interpreted as a

regional cap.

A different type of mechanism is used in the U.K. medical match in which about 7,000

new doctors participate. Their matching procedure has two rounds, in which a doctor

is assigned to one of the country’s 25 regions first, and then to a program within their

assigned region. A similar two-round procedure is employed in the matching of new

teachers in Scotland as well.

An interesting observation is that distributional constraints appear in many different

contexts (we discuss more examples in the Appendix), and many different policies have

been tried to accommodate these constraints, but it has been unclear which mechanism

in practice, if any, achieves appealing properties such as efficiency, stability, and incentive

compatibility under such constraints.

Motivated by these real-life policies, we study the design of matching markets under

constraints on the doctor distribution. This paper shows that each of those existing

mechanisms may result in avoidable instability and inefficiency. We further find that

a mechanism that appears to be intuitively appealing (and is similar to a mechanism

that policy makers often informally suggest to us) suffers from incentive problems. We

propose an alternative mechanism that overcomes these shortcomings while respecting

the distributional goals. More specifically, we first introduce concepts of stability and

(constrained) efficiency that take distributional constraints into account. We point out

that none of the aforementioned existing mechanisms always produces a stable or efficient

matching, and present a new mechanism that we call the flexible deferred acceptance

mechanism. We show that, unlike other mechanisms, this mechanism finds a stable and

efficient matching and is (group) strategy-proof for doctors.5 In addition, the flexible

deferred acceptance mechanism matches weakly more doctors to hospitals (in the sense

of set inclusion) and makes every doctor weakly better off than the JRMP mechanism.

These results suggest that replacing the current mechanisms with the flexible deferred

acceptance mechanism will improve the performance of the matching market.

We also find that the structural properties of the stable matchings with distributional

constraints are strikingly different from those in the standard matching models. First,

there does not necessarily exist a doctor-optimal stable matching (a stable matching

unanimously preferred to every stable matching by all doctors). Neither do there exist

hospital-optimal nor doctor-pessimal nor hospital-pessimal stable matchings. Second,

5A mechanism being (group) strategy-proof for doctors means that telling the truth is a dominant

strategy for each doctor (and even a coalition of doctors cannot jointly misreport preferences and benefit).
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different stable matchings can leave different hospitals with unfilled positions, implying

that the conclusion of the rural hospital theorem fails in our context. Based on these

observations, we investigate whether the government can design a reasonable mechanism

that selects a particular stable matching based on its policy goals such as minimizing the

number of unmatched doctors.

Let us emphasize that analyzing abstract technical issues associated with distributional

constraints is not the primary purpose of this paper. On the contrary, we study a model

motivated by various real markets and offer practical solutions for these markets. Improv-

ing the existing markets is important by itself, such as the Japanese residency markets

which produces around 8,000 medical doctors, the Chinese graduate admission which ad-

mits more than 400,000 new master students, and the UK medical match which involves

around 7,000 doctors. Moreover, this paper tries to provide a general framework in which

one can tackle problems arising in practical markets which have yet to be recognized or

addressed. In these senses, our paper contributes to the general research agenda of mar-

ket design, advocated by Roth (2002) for instance, that emphasizes the importance of

addressing issues arising in practical allocation problems.

The rest of this paper proceeds as follows. In Section 2, we present the model of

matching with regional caps. In Section 3 where we define the JRMP mechanism, we

show that it does not necessarily produce an efficient matching and there is a sense in

which the produced matching is not stable. Section 4 introduces and analyzes stability

concepts under distributional constraints. In Section 5 we propose a new mechanism, the

flexible deferred acceptance mechanism, and show that it produces a stable and efficient

matching and is group strategy-proof. Section 6 discusses a number of further topics,

Section 7 discusses the related literature, and Section 8 concludes. Proofs are in the

Appendix unless stated otherwise.

2. Model

This section presents the model of matching with distributional constraints. Motivated

by Japanese residency matching, we describe the model in terms of matching between

doctors and hospitals, where there is a “regional cap,” that is, an upper bound on the

number of doctors that can be matched to hospitals in each region.6 Later we discuss other

matching problems in practice such as Chinese graduate school admission, U.K. medical

6In practice, there may be mulitple residency programs within a hospital. However, in such a case we

use the word “a hospital” to mean a residency program for simplicity.
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matching, Scottish teacher matching, and college admissions in Ukraine and Hungary.

The model is also applicable to diverse contexts discussed in the Introduction, such as

doctor-hospital matching with specialty constraints, school choice with building size con-

straints, and matching with affirmative action constraints.

Let there be a finite set of doctors D and a finite set of hospitals H. Each doctor d

has a strict preference relation �d over the set of hospitals and being unmatched (being

unmatched is denoted by ∅). For any h, h′ ∈ H ∪ {∅}, we write h �d h′ if and only if

h �d h′ or h = h′. Each hospital h has a strict preference relation �h over the set of

subsets of doctors. For any D′, D′′ ⊆ D, we write D′ �h D′′ if and only if D′ �h D′′ or

D′ = D′′. We denote by �= (�i)i∈D∪H the preference profile of all doctors and hospitals.

Doctor d is said to be acceptable to h if d �h ∅.7 Similarly, h is acceptable to d if

h �d ∅. It will turn out that only rankings of acceptable partners matter for our analysis,

so we often write only acceptable partners to denote preferences. For example,

�d: h, h′

means that hospital h is the most preferred, h′ is the second most preferred, and h and

h′ are the only acceptable hospitals under preferences �d of doctor d.

Each hospital h ∈ H is endowed with a (physical) capacity qh, which is a nonnegative

integer. We say that preference relation �h is responsive with capacity qh (Roth,

1985) if

(1) For any D′ ⊆ D with |D′| ≤ qh, d ∈ D \D′ and d′ ∈ D′, (D′ ∪ d) \ d′ �h D′ if and

only if d �h d′,
(2) For any D′ ⊆ D with |D′| ≤ qh and d′ ∈ D′, D′ �h D′ \ d′ if and only if d′ �h ∅,

and

(3) ∅ �h D′ for any D′ ⊆ D with |D′| > qh.

In words, preference relation �h is responsive with a capacity if the ranking of a doctor

(or keeping a position vacant) is independent of her colleagues, and any set of doctors

exceeding its capacity is unacceptable. We assume that preferences of each hospital h are

responsive with capacity qh throughout the paper.

There is a finite set R which we call the set of regions. The set of hospitals H is

partitioned into hospitals in different regions, that is, Hr ∩ Hr′ = ∅ if r 6= r′ and H =

∪r∈RHr , where Hr denotes the set of hospitals in region r ∈ R. For each h ∈ H, let r(h)

7We denote singleton set {x} by x when there is no confusion.
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denote the region r such that h ∈ Hr. For each region r ∈ R, there is a regional cap qr,

which is a nonnegative integer.

A matching µ is a mapping that satisfies (i) µd ∈ H ∪ {∅} for all d ∈ D, (ii) µh ⊆ D

for all h ∈ H, and (iii) for any d ∈ D and h ∈ H, µd = h if and only if d ∈ µh. That is, a

matching simply specifies which doctor is assigned to which hospital (if any). A matching

is feasible if |µr| ≤ qr for all r ∈ R, where µr = ∪h∈Hrµh. In other words, feasibility

requires that the regional cap for every region is satisfied. This requirement distinguishes

the current environment from the standard model without regional caps: We allow for

(though do not require) qr <
∑

h∈Hr
qh, that is, the regional cap can be smaller than the

sum of hospital capacities in the region.

Since regional caps are a primitive of the environment, we consider a constrained effi-

ciency concept. A feasible matching µ is (constrained) efficient if there is no feasible

matching µ′ such that µ′i �i µi for all i ∈ D ∪H and µ′i �i µi for some i ∈ D ∪H.

To accommodate the regional caps, we introduce new stability concepts that generalize

the standard notion. For that purpose, we first define two basic concepts. A matching µ

is individually rational if (i) for each d ∈ D, µd �d ∅, and (ii) for each h ∈ H, d �h ∅
for all d ∈ µh, and |µh| ≤ qh. That is, no agent is matched with an unacceptable partner

and each hospital’s capacity is respected.

Given matching µ, a pair (d, h) of a doctor and a hospital is called a blocking pair if

h �d µd and either (i) |µh| < qh and d �h ∅, or (ii) d �h d′ for some d′ ∈ µh. In words,

a blocking pair is a pair of a doctor and a hospital who want to be matched with each

other (possibly rejecting their partners in the prescribed matching) rather than following

the proposed matching.

When there are no binding regional caps (in the sense that qr ≥
∑

h∈Hr
qh for every

r ∈ R), a matching is said to be stable if it is individually rational and there is no blocking

pair. Gale and Shapley (1962) show that there exists a stable matching in that setting.

In the presence of binding regional caps, however, there may be no such matching that

is feasible (in the sense that all regional caps are respected). Thus in some cases every

feasible and individually rational matching may admit a blocking pair.

A mechanism ϕ is a function that maps preference profiles to matchings. The match-

ing under ϕ at preference profile � is denoted ϕ(�) and agent i’s match is denoted by

ϕi(�) for each i ∈ D ∪H.

A mechanism ϕ is said to be strategy-proof if there does not exist a preference profile

�, an agent i ∈ D ∪H, and preferences �′i of agent i such that

ϕi(�′i,�−i) �i ϕi(�).
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That is, no agent has an incentive to misreport her preferences under the mechanism.

Strategy-proofness is regarded as a very important property for a mechanism to be suc-

cessful.8

Unfortunately, however, there is no mechanism that produces a stable matching for all

possible preference profiles and is strategy-proof even in a market without regional caps,

that is, qr > |D| for all r ∈ R (Roth, 1982).9 Given this limitation, we consider the

following weakening of the concept requiring incentive compatibility only for doctors. A

mechanism ϕ is said to be strategy-proof for doctors if there does not exist a preference

profile �, a doctor d ∈ D, and preferences �′d of doctor d such that

ϕd(�′d,�−d) �d ϕd(�).

A mechanism ϕ is said to be group strategy-proof for doctors if there is no prefer-

ence profile �, a subset of doctors D′ ⊆ D, and a preference profile (�′d′)d′∈D′ of doctors

in D′ such that

ϕd((�′d′)d′∈D′ , (�i)i∈D∪H\D′) �d ϕd(�) for all d ∈ D′.

That is, no subset of doctors can jointly misreport their preferences to receive a strictly

preferred outcome for every member of the coalition under the mechanism.

We do not necessarily regard (group) strategy-proofness for doctors as a minimum de-

sirable property that our mechanism should satisfy (our criticism of the JRMP mechanism

in Section 3 does not hinge on (group) strategy-proofness), but it will turn out that the

flexible deferred acceptance mechanism we propose in Section 5 does have this property.

As this paper analyzes the effect of regional caps in matching markets, it is useful to

compare it with the standard matching model without regional caps. Gale and Shapley

(1962) consider a matching model without any binding regional cap, which corresponds

8One good aspect of having strategy-proofness is that the matching authority can actually state it as

the property of the algorithm to encourage doctors to reveal their true preferences. For example, the

current webpage of the JRMP (last accessed on May 25, 2010, http://www.jrmp.jp/01-ryui.htm) states,

as advice for doctors, that “If you list as your first choice a program which is not actually your first choice,

the probability that you end up being matched with some hospital does not increase [...] the probability

that you are matched with your actual first choice decreases.” In the context of student placement in

Boston, strategy-proofness was regarded as a desirable fairness property, in the sense that it provides

equal access for children and parents with different degrees of sophistication to strategize (Pathak and

Sonmez, 2008).
9Remember that a special case of our model in which qr > |D| for all r ∈ R is the standard matching

model with no binding regional caps.
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to a special case of our model in which qr > |D| for every r ∈ R. In that model, they

propose the following (doctor-proposing) deferred acceptance algorithm:

• Step 1: Each doctor applies to her first choice hospital. Each hospital rejects

the lowest-ranking doctors in excess of its capacity and all unacceptable doctors

among those who applied to it, keeping the rest of the doctors temporarily (so

doctors not rejected at this step may be rejected in later steps).

In general,

• Step t: Each doctor who was rejected in Step (t − 1) applies to her next high-

est choice (if any). Each hospital considers these doctors and doctors who are

temporarily held from the previous step together, and rejects the lowest-ranking

doctors in excess of its capacity and all unacceptable doctors, keeping the rest of

the doctors temporarily (so doctors not rejected at this step may be rejected in

later steps).

The algorithm terminates at a step in which no rejection occurs. The algorithm always

terminates in a finite number of steps. Gale and Shapley (1962) show that the resulting

matching is stable in the standard matching model without any binding regional cap.

Even though there exists no strategy-proof mechanism that produces a stable matching

for all possible inputs, the deferred acceptance mechanism is (group) strategy-proof for

doctors (Dubins and Freedman, 1981; Roth, 1982).10 This result has been extended by

many subsequent studies, suggesting that the incentive compatibility of the mechanism

is quite robust and general.11

3. A Motivating Example of an Inefficient Mechanism

In this section we formulate the Japan Residency Matching Program (JRMP) mecha-

nism, one of the mechanisms with distributional constraints used in practice, and point

out its deficiencies. As we have mentioned in the Introduction, there are a number of

practical markets besides the Japanese one in which distributional constraints are im-

posed, such as the UK medical match, the admission problem for the Chinese master’s

programs, and so forth. Here we chose the Japanese case because the JRMP mechanism

10Ergin (2002) defines a stronger version of group strategy-proofness. It requires that no group of

doctors can misreport preferences jointly and make some of its members strictly better off without

making any of its members strictly worse off. He identifies a necessary and sufficient condition for the

deferred acceptance mechanism to satisfy this version of group strategy-proofness.
11Researches generalizing (group) strategy-proofness of the mechanism include Abdulkadiroğlu (2005),

Hatfield and Milgrom (2005), Martinez, Masso, Neme, and Oviedo (2004), Hatfield and Kojima (2009,

2010), and Hatfield and Kominers (2009, 2010).
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is easy to formulate so its problem can be transparently seen and a clear-cut comparison

with our mechanism can be made. Other mechanisms are analyzed in subsequent sections.

In the JRMP mechanism, there is an exogenously given (government-imposed) non-

negative integer q̄h ≤ qh, which we call target capacity, for each hospital h such that∑
h∈Hr

q̄h ≤ qr for each region r ∈ R.12,13 The JRMP mechanism is a rule that pro-

duces the matching resulting from the deferred acceptance algorithm except that, for each

hospital h, it uses q̄h instead of qh as the hospital’s capacity.

The JRMP mechanism is based on a simple idea: In order to satisfy regional caps,

simply force hospitals to be matched to a smaller number of doctors than their real

capacities, but otherwise use the standard deferred acceptance algorithm. Note, however,

that target capacities are not feasibility constraints by themselves: the goal of Japanese

policy makers is to satisfy regional caps and target capacities were introduced to achieve

that goal.

Although the mechanism is a variant of the deferred acceptance algorithm, it suffers

from at least one problem. Despite the government’s intention, the result of the JRMP

mechanism is not necessarily efficient, as seen in the following example.

Example 1 (JRMP mechanism does not necessarily produce an efficient matching).

There is one region r with regional cap qr = 10, in which two hospitals, h1 and h2, reside.

Each hospital h has a capacity of qh = 10. Suppose that there are 10 doctors, d1, . . . , d10.

Preference profile � is as follows:

�hi : d1, d2, . . . , d10 for i = 1, 2,

�dj : h1 if j ≤ 3 and �dj : h2 if j ≥ 4.

12Note that we allow the sum of target capacities to be strictly smaller than the regional cap. This is

necessary if the sum of hospital capacities is strictly smaller than the regional cap; we allow this possibility

even otherwise. All results, including (counter)examples, hold when we assume that the sum of target

capacities is equal to the regional cap.
13In our model, q̄h is exogenously given for each hospital h. In the current Japanese system, if the

sum of the hospitals’ capacities exceeds the regional cap, then the target q̄h of each hospital h is set at

an integer close to qr∑
h′∈Hr qh′

· qh. That is, each hospital’s target is (roughly) proportional to its capacity.

This might suggest that hospitals have incentives to misreport their capacities. As explained in footnote

4, however, the capacity can be considered exogenous in the Japanese context.
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Thus, three doctors prefer hospital h1 to being unmatched (the option ∅) to hospital h2,

while the other seven doctors prefer hospital h2 to being unmatched to hospital h1. Let

the target capacities be q̄h1 = q̄h2 = 5.14

At the first round of the JRMP algorithm, doctors d1, d2 and d3 apply to hospital h1,

and the rest of the doctors apply to hospital h2. Hospital h1 does not reject anyone at

this round, as the number of applicants is less than its target capacity, and all applicants

are acceptable. Hospital h2 rejects d9 and d10 and accepts other applicants, because the

number of applicants exceeds the target capacity (not the hospital’s capacity itself!), and

it prefers doctors with smaller indices (and all doctors are acceptable). Since d9 and d10

find h1 unacceptable, they do not make further applications, so the algorithm terminates

at this point. Hence the resulting matching µ is such that

µ =

(
h1 h2 ∅

d1, d2, d3 d4, d5, d6, d7, d8 d9, d10

)
.

Consider a matching µ′ defined by,

µ′ =

(
h1 h2

d1, d2, d3 d4, d5, d6, d7, d8, d9, d10

)
.

Since the regional cap is still respected, µ′ is feasible. Moreover, every agent is weakly

better off with d9, d10, and h2 being strictly better off than at µ. Hence we conclude that

the JRMP mechanism results in an inefficient matching in this example.15 �

Remark 1. We note that there is a sense in which the matching µ is not stable. For

example, hospital h2 and doctor d9 constitute a blocking pair while the regional cap for r

is not binding. That is, even after d9 is matched with h2, the total number of doctors in

the region is 9, which is less than the regional cap of 10.16 Although this argument may

14The specification of target capacities follows the formula used in Japan that we mentioned earlier.
15In this example, not all hospitals are acceptable to all doctors. One may wonder whether this is

an unrealistic assumption because doctors may be so willing to work that any hospital is acceptable.

However, the example can be easily modified so that all hospitals are acceptable to all doctors while some

doctors are unacceptable to some hospitals (which may be a natural assumption because, for instance,

typically a hospital only lists doctors who they interviewed). Also, in many markets doctors apply to

only a small subset of hospitals. In 2009, for instance, a doctor applied to only 3.3 hospitals on average

(Japan Residency Matching Program, 2009a).
16One may wonder whether the “failure of stability” depends on the assumption that some agents

find some of the potential partners unacceptable. However, a similar example can be constructed even

if we require every agent finds every potential partner acceptable. For instance, modify the market in

the example by introducing another hospital h3 in another region with regional cap two; let h3 find

every doctor acceptable and have two positions; d1, d2 and d3 prefer h1 to h3 to h2 to being unmatched,
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appear straightforward, defining stability in the presence of regional caps is not a trivial

task. In Section 4, we define the notion of stability and show that the matching µ is not

stable.17 �

The above example suggests that a problem of the JRMP mechanism is its lack of

flexibility: The JRMP mechanism runs as if the target capacity is the actual capacity

of hospitals, thus rejecting an application of a doctor to a hospital unnecessarily. The

mechanism that we propose in Section 5 overcomes problems of inefficiency (and stability)

by, intuitively speaking, making the target capacities flexible. Before formally introducing

this mechanism, we define and discuss the goals that we try to achieve with the mechanism.

4. Goal Setting: Stability Concepts and Strategy-Proofness

As we discussed earlier, there may be no stable matching in the traditional sense that

satisfies feasibility. Given this observation, this section defines two weaker stability con-

cepts, in which certain types of blocking pairs are tolerated. The first notion, strong

stability, is what we think is the most natural. Unfortunately this notion has several

drawbacks related to non-existence. The second notion, stability, overcomes these draw-

backs, and we use this notion from the next section onwards. The objective in this section

is not to discuss technical details of these stability concepts per se, but to set an explicit

goal for constructing a new algorithm, which we introduce in Section 5.

The first notion presented below is meant to capture the idea that any blocking pair

that will not violate the regional cap should be considered legitimate, so the appropriate

stability concept should require that no agents have incentives to form any such blocking

pair. Recall that r(h) is the region that hospital h belongs to.

Definition 1. A matching µ is strongly stable if it is feasible, individually rational,

and if (d, h) is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors d′ ∈ µh,
and (iii) µd /∈ Hr(h).

As stated in the definition, only certain blocking pairs are tolerated under strong stabil-

ity. Any blocking pair that may remain would violate the regional cap since condition (i)

while all other doctors prefer h2 to h3 to h1 to being unmatched (thus every doctor finds all hospitals

acceptable).
17Moreover, in Appendix C, we define a weaker stability concept than the stability concept defined in

Section 4, and show that µ does not satisfy this weaker notion of stability either.
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implies that the cap for the blocking hospital’s region is currently binding, condition (ii)

implies that the only blocking involves filling a vacant position, and condition (iii) implies

that the blocking doctor is not currently assigned in the hospital’s region. In this sense,

strong stability requires that any blocking pair is “caused” by regional caps. Indeed, this

concept reduces to the standard stability concept of Gale and Shapley (1962) if there are

no binding regional caps.

The implicit idea behind the definition is that the government or some authority can

interfere and prohibit a blocking pair to be formed if regional caps are an issue. Indeed,

in Japan, participants seem to be effectively forced to accept the matching announced by

the clearinghouse because a severe punishment is imposed on deviators.18 One might then

wonder “If the government has the power to prohibit a blocking pair in certain cases, why

doesn’t it have the power to do so in all cases, so why do we care about stability in the

first place?”

Our view is that even if the clearinghouse has power to enforce a matching (which

may be the case in the Japanese residency match), an assignment that completely ignores

participants’ preferences would be undesirable. Indeed, as we discussed in Section 2, the

introduction of a stable matching mechanism in this market was motivated by the criticism

that the previous assignment system was “unfair” and “inefficient,” rather than by a desire

to prevent participants from circumventing the assignment by forming “blocking pairs.”19

In other words, we view minimizing blocking pairs as a normative criterion.20 Given

this observation, our strong stability captures the idea that it is desirable to minimize

blocking pairs so that the only blocking pairs are “caused” by regional caps, which may

be a legitimate reason to deny a blocking pair.21

Nonetheless, we will not pursue strong stability when we construct an algorithm in

Section 5. There are at least two reasons for this. The first reason is that a strongly

stable matching does not necessarily exist. The following example demonstrates this

point.

18For example, violating hospitals can be excluded from participating in the matching mechanism in

subsequent years (Japan Residency Matching Program, 2010).
19Another example of a labor market using a stable mechanism despite being heavily regulated is the

labor market for junior academic positions in France (Haeringer and Iehle, 2010).
20“No justified envy” in the school choice literature corresponds to “no blocking pair” in our context,

and it is viewed as a normative criterion.
21Another obvious normative criterion is (constrained) efficiency. Indeed, it will turn out that strong

stability (as well as its weakenings that we will discuss in this paper) implies efficiency (Theorem 5).

Thus strong stability (as well as its weakenings) has an additional normative appeal.
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Example 2 (A strongly stable matching does not necessarily exist). There is one region

r with regional cap qr = 1, in which two hospitals, h1 and h2, reside. Each hospital h

has a capacity of qh = 1. Suppose that there are two doctors, d1 and d2. We assume the

following preferences:

�h1 : d1, d2, �h2 : d2, d1,

�d1 : h2, h1, �d2 : h1, h2.

First, in any strongly stable matching, there is exactly one doctor matched to some

hospital. This is because matching two doctors violate the regional cap, while (d1, h1)

would constitute a blocking pair that is not tolerated in the definition of strong stability

if no doctors is matched to any hospital. By symmetry, it suffices to consider the case in

which d1 is matched (and hence d2 is unmatched). If d1 is matched with h1, then (d1, h2)

is a non-tolerated blocking pair. On the other hand, if d1 is matched with h2, (d2, h2) is a

non-tolerated blocking pair. Therefore, a strongly stable matching does not exist in this

market. �

Even if a strongly stable matching does not always exist, can we try to achieve a weaker

desideratum? More specifically, does there exist a mechanism that selects a strongly stable

matching whenever there exists one? We show that such a mechanism does not exist if we

also require certain incentive compatibility: There is no mechanism that selects a strongly

stable matching whenever there exists one and is strategy-proof for doctors. This is the

second reason that we do not attempt to achieve strong stability as a natural desideratum.

To see this point consider the following example.

Example 3 (No mechanism that is strategy-proof for doctors selects a strongly stable

matching whenever there exists one). There is one region r with regional cap qr = 1, in

which two hospitals, h1 and h2, reside. Each hospital h has a capacity of qh = 1. Suppose

that there are two doctors, d1 and d2. We assume the following preferences:

�h1 : d1, d2, �h2 : d2, d1,

�d1 : h2, �d2 : h1.

In this market, there are two strongly stable matchings,

µ =

(
h1 h2 ∅
d2 ∅ d1

)
,

µ′ =

(
h1 h2 ∅
∅ d1 d2

)
.
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Now, suppose that a mechanism chooses µ under the above preference profile �. Then d1

is unmatched. Consider reported preferences �′d1 of d1,

�′d1 : h2, h1.

Then µ′ is a unique strongly stable matching, so the mechanism chooses µ′ at (�′d1 ,�−d1
). Doctor d1 is better off at µ′ than at µ since she is matched to h2 at µ′ while she

is unmatched at µ. Hence, d1 can profitably misreport her preferences when her true

preferences are �d1 .
If a mechanism chooses µ′ under the above preference profile �, then by a symmetric

argument, doctor d2 can profitably misreport her preferences when her true preferences

are �d2 . Therefore there does not exist a mechanism that is strategy-proof for doctors

and selects a strongly stable matching whenever there exists one. �

The above examples show that a strongly stable matching need not exist, and there

exists no mechanism that is strategy-proof for doctors and selects a strongly stable match-

ing whenever there exists one. These results suggest that the concept of strong stability

is not appropriate as our desideratum.

Given that strong stability is “too strong” in the senses discussed above, a weaker

stability notion that still takes regional caps into account is hoped for. Strong stability

is too strong because any blocking pair is regarded as a legitimate deviation as long as

it does not violate a regional cap. To define an appropriate stability concept, we need

to further restrict blocking pairs that are regarded as legitimate. We do so by using

the notion of target capacity. More specifically, we now regard target capacities (q̄h)h∈H

as reflecting certain distributional goals (though not feasibility constraints) and define a

stability concept that respects target capacities as much as possible.22

Definition 2. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors d′ ∈ µh, and

(iii’) either µd /∈ Hr(h) or |µ′h| − q̄h > |µ′µd | − q̄µd ,

where µ′ is the matching such that µ′d = h and µ′d′ = µd′ for all d′ 6= d.

This concept is weaker than strong stability. Conditions (i) and (ii) in the definition of

strong stability are also required in stability. Meanwhile stability is different from strong

stability in that condition (iii) in strong stability is replaced by a condition (iii’) and,

22Depending on the distributional goals, target capacities can be set differently from those specified

in the description of the JRMP mechanism. Appendix B.4 discusses alternative ways to allocate target

capacities.
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since there are more possible cases in (iii’) than in (iii), stability is weaker than strong

stability.

The first part of condition (iii’), µd 6∈ Hr(h), is identical to condition (iii) and addresses

the case in which the deviating doctor is currently assigned outside the region of the

deviating hospital. The second part declares that certain types of blocking pairs within a

region (note that µd ∈ Hr(h) holds in the remaining case) are not regarded as legitimate

deviations (recall that our interpretation of stability concepts is normative). To see this

point, consider the inequality in condition (iii’),

|µ′h| − q̄h > |µ′µd| − q̄µd .(4.1)

The left-hand side is the number of doctors matched to h in excess of its target q̄h if d

actually moves to h, realizing a new matching µ′. The right hand side is the number of

doctors matched to the original hospital µd in excess of its target q̄µd if d moves out of µd.

This property says that such a movement will not decrease the imbalance of over-target

numbers of matching across hospitals. Intuitively, if the movement of the doctor in the

blocking pair “equalizes” the excesses over the target capacities compared to the current

matching (that is, |µh|− q̄h < |µ′h|− q̄h ≤ |µ′µd |− q̄µd < |µµd |− q̄µd), then such a movement

should be regarded as a legitimate deviation. Thus, the only blocking pair within a region

that can remain under this definition should satisfy condition (4.1).

We note that there may be other natural definitions of stability. For example, it may be

desirable to entitle a hospital with capacity 20 to twice as many doctors over the target as

a hospital with capacity 10. There may also be other criteria that are deemed desirable,

including even cases in which target capacities are not defined. To address this issue, in

Section 6.5 and Appendix B we consider a class of stability concepts that includes the

stability in Definition 2 as a special case and accommodates the above ideas.23 For each

stability notion in this class, we present a mechanism that generates a stable matching.

In the main part of this paper, we assume that the policy goal is expressed as in condition

(4.1). This particular policy goal is chosen here because it is expositionally simple and

appears to be a reasonable starting point. However, it is not a necessary requirement for

our analysis to work, as we will observe in Section 6.5 and Appendix B. The choice of a

particular variant of stability should be in part the product of society’s preferences. We

restrict ourselves to proposing solutions that are flexible enough to meet as wide a range

23In Appendix I we consider a stability concept stronger than the stability concepts in this class (while

weaker than strong stability) and show that this concept suffers from the same types of drawbacks (as in

Examples 2 and 3) as those for strong stability.



EFFICIENT MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 17

of policy goals as possible. See Appendix B.3 for a partial list of other possible social

preferences that we can accommodate.

Stability implies the following desirable property:

Theorem 1. Any stable matching is (constrained) efficient.

When there is no regional cap (in which case stability reduces to the standard concept

of stability), a matching is stable if and only if it is in the core, and any core outcome

is efficient. Without regional caps, Theorem 1 follows straightforwardly from these facts.

With regional caps, however, there is no obvious way to define an appropriate cooperative

game or a core concept. Theorem 1 states that efficiency of stable matchings still holds

in our model.24

Remark 2. Since the outcome of the JRMP mechanism in Example 1 is not efficient,

Theorem 1 implies that it is not stable either. This is easy to check by inspection as well.

As hinted in Remark 1, (d9, h2) is a blocking pair that does not satisfy condition (i) in

the definition of stability (Definition 2). That is, matching d9 to h2 does not violate the

regional cap. �

A natural question is whether a stable matching exists in every market. This question

will be answered in the affirmative in the next section, where we propose an algorithm

that always generates a stable matching.

5. A New Mechanism: Flexible Deferred Acceptance

We present a new mechanism that, for any given input, results in a stable matching.

To do so, we first define the flexible deferred acceptance algorithm:

For each r ∈ R, specify an order of hospitals in region r: Denote Hr = {h1, h2, . . . , h|Hr|}
and order hi earlier than hj if i < j. Given this order, consider the following algorithm.

(1) Begin with an empty matching, that is, a matching µ such that µd = ∅ for all

d ∈ D.

(2) Choose a doctor d who is currently not tentatively matched to any hospital and

who has not applied to all acceptable hospitals yet. If such a doctor does not exist,

then terminate the algorithm.

24To overcome the above difficulty, the proof presented in Appendix C shows this result directly rather

than associating stability to the core in a cooperative game. The proof is general in the sense that it

shows the (constrained) efficiency of “weak stability,” the notion introduced in that section, which is

weaker than stability.
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(3) Let d apply to the most preferred hospital h̄ at �d among the hospitals that have

not rejected d so far. Let r be the region such that h̄ ∈ Hr.

(4) (a) For each h ∈ Hr, let D′h be the entire set of doctors who have applied to but

have not been rejected by h so far and are acceptable to h. For each hospital

h ∈ Hr, choose the q̄h best doctors according to �h from D′h if they exist,

and otherwise choose all doctors in D′h. Formally, for each h ∈ Hr choose D′′h

such that D′′h ⊂ D′h, |D′′h| = min{q̄h, |D′h|}, and d �h d′ for any d ∈ D′′h and

d′ ∈ D′h \D′′h.
(b) Start with a tentative match D′′h for each hospital h ∈ Hr. Hospitals take

turns to choose (one doctor at a time) the best remaining doctor in their

current applicant pool. Repeat the procedure (starting with h1, proceeding

to h2, h3, . . . and going back to h1 after the last hospital) until the regional

quota qr is filled or the capacity of the hospital is filled or no doctor remains

to be matched. All other applicants are rejected.25

We define the flexible deferred acceptance mechanism to be a mechanism that

produces, for each input, the matching at the termination of the above algorithm.26

The flexible deferred acceptance mechanism is analogous to the deferred acceptance

mechanism and the JRMP mechanism. What distinguishes the flexible deferred accep-

tance mechanism from the JRMP mechanism is that the former lets hospitals fill their

capacities “more flexibly” than the latter. To see this point, first observe that the way

that hospitals choose doctors who applied in Step 4a is essentially identical to the one in

the JRMP algorithm. As seen before, the JRMP may result in an inefficient and unstable

matching because this step does not let hospitals tentatively keep doctors beyond target

capacities even if regional caps are not binding. This is addressed in Step 4b. In this

step, hospitals in a region are allowed to keep more doctors than their target capacities

25Formally, let ιi = 0 for all i ∈ {1, 2, . . . , |Hr|}. Let i = 1.

(i) If either the number of doctors already chosen by the region r as a whole equals qr, or ιi = 1, then

reject the doctors who were not chosen throughout this step and go back to Step 2.

(ii) Otherwise, let hi choose the most preferred (acceptable) doctor in D′hi at �hi among the doctors

that have not been chosen by hi so far, if such a doctor exists and the number of doctors chosen

by hi so far is strictly smaller than qhi .

(iii) If no new doctor was chosen at Step 4(b)ii, then set ιi = 1. If a new doctor was chosen at Step

4(b)ii, then set ιj = 0 for all j ∈ {1, 2, . . . , |Hr|}. If i < |Hr| then increment i by one and if

i = |Hr| then set i to be 1 and go back to Step 4(b)i.

26We show in Theorem 2 that the algorithm stops in a finite number of steps.
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if doing so keeps the regional caps respected. Thus there is a sense in which this algo-

rithm corrects the deficiency of the JRMP mechanism while following closely the deferred

acceptance algorithm.

In the flexible deferred acceptance algorithm, one needs to specify an ordering of hos-

pitals. There are at least two reasons that this requirement may not cause problems such

as conflicts among hospitals to get a “desirable position” in the order. The first is that,

as we will discuss in Subsection 6.6, the effect of different ways of setting orders on the

welfare of hospitals is ambiguous. More specifically, it may be the case that a hospital

is better off being ordered later under some specification of preference profiles, while the

opposite may be true under other specifications. Second, the flexible deferred acceptance

algorithm can be modified without losing its desirable properties, by adding “Step 0” in

which a particular ordering is chosen according to some probabilistic rule. The afore-

mentioned problems can be resolved by, for example, choosing an order according to the

uniform probability distribution.

The following example illustrates how the flexible deferred acceptance algorithm works.

Example 4 (The flexible deferred acceptance algorithm). Consider the same example as

in Example 1. Recall that the JRMP mechanism can produce an inefficient and unstable

matching. By contrast, the flexible deferred acceptance algorithm selects a matching that

is efficient and stable. Precisely, let doctors apply to hospitals in the specified order. For

doctors d1 to d8, the algorithm does not proceed to Step 4b, as the number of doctors

in each hospital is no larger than its target. When d9 applies, doctors d1, . . . , d8 are still

matched to hospitals in Step 4a, and d9 is matched to h2 in Step 4b. In the same way, when

d10 applies, doctors d1, . . . , d8 are still matched to hospitals in Step 4a, and d9 and d10

are matched to h2 in Step 4b. Hence an efficient and stable matching results. Intuitively,

the algorithm treats doctors’ applications in a more flexible manner than in the JRMP

algorithm. This is the idea behind the name “flexible deferred acceptance.” �

The following is the main result of this section.

Theorem 2. The flexible deferred acceptance algorithm stops in finite steps. The mech-

anism produces a stable matching for any input and is group strategy-proof for doctors.

To see an intuition for the stability of the flexible deferred acceptance mechanism, recall

that there is a sense in which hospitals fill their capacities “flexibly.” More specifically,

at each step of the algorithm hospitals can tentatively accept doctors beyond their target

capacities as long as the regional cap is not violated. Then the kind of rejection that causes
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instability in Example 1 does not occur in the flexible deferred acceptance algorithm.27

Thus an acceptable doctor is rejected from a preferred hospital either because there are

enough better doctors in that hospital, or the regional quota is filled by other doctors.

So such a doctor cannot form a blocking pair, suggesting that the resulting matching is

stable.28

The intuition for strategy-proofness for doctors is similar to the one for the deferred

acceptance mechanism. A doctor does not need to give up trying for her first choice

because, even if she is rejected, she will be able to apply to her second choice, and so

forth. In other words, the “deferred” acceptance guarantees that she will be treated

equally if she applies to a position later than others.

Although the above are rough intuitions of the results, the formal proof presented in

Appendix B takes a different approach. It relates our model to the model of “(many-

to-many) matching with contracts” (Hatfield and Milgrom, 2005). The basic idea of the

proof is to regard each region as a consortium of hospitals that acts as one agent, and to

define its choice function that selects a subset from any given collection of pairs (contracts)

of a doctor and a hospital in the region. Once we successfully connect our model to the

matching model with contracts, properties of the latter model can be invoked to show the

theorem. In fact, the proof shows that a more general result (Theorem 4) holds which

can be applicable to the class of stability concepts mentioned in Section 6.5 and that

the current model is indeed a special case of the general model (Propositions 8 and 9).

Theorem 2 then follows as a corollary of these results.

Theorems 1 and 2 imply the following appealing welfare property of the flexible deferred

acceptance mechanism.

Corollary 1. The flexible deferred acceptance mechanism produces an efficient matching

for any input.

Recall that the JRMP mechanism does not necessarily produce an efficient matching.

In light of this observation, Corollary 1 implies that the flexible deferred acceptance

mechanism has a better efficiency property than the JRMP mechanism.

The next two propositions formalize the idea that the flexible deferred acceptance mech-

anism respects target capacities and regional caps as much as possible.

27Indeed, in the market of Example 1, the result of the flexible deferred acceptance mechanism matches

10 doctors as in matching µ′. Thus in this example the flexible deferred acceptance mechanism strictly

improves upon the JRMP mechanism.
28Since hospitals take turns one by one when they tentatively accept doctors, no blocking pair involving

a doctor’s movement within a region can “equalize” the distribution of doctors in the region.
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Proposition 1. If the number of doctors matched with h ∈ H in the flexible deferred

acceptance mechanism is strictly less than its target capacity, then for any d ∈ D who are

not matched with h, either d is unacceptable to h or d prefers its current match to h.

In other words, the flexible deferred acceptance mechanism does not prevent a doctor

from being matched to an underserved hospital, relative to the target capacity, in the

name of respecting the regional caps.29 This result suggests, as we argued informally

when defining stability, that the choice of target capacities can be utilized as a means to

achieve distributional goals.

Proposition 2. (1) If the number of doctors matched with h ∈ H in the flexible de-

ferred acceptance mechanism is strictly less than its target capacity, then the set of

doctors matched with h under the (unconstrained) deferred acceptance mechanism

is a subset of the one under the flexible deferred acceptance mechanism.

(2) If the number of doctors matched in r ∈ R in the flexible deferred acceptance mech-

anism is strictly less than its regional cap, then each hospital h in r weakly prefers

a matching produced by the flexible deferred acceptance mechanism to the one un-

der the (unconstrained) deferred acceptance mechanism. Moreover, the number of

doctors matched to any such h in the former matching is weakly larger than that

in the latter.

This result implies that, whenever a hospital or a region is underserved under the flex-

ible deferred acceptance mechanism, the (unconstrained) deferred acceptance mechanism

cannot improve the match at such a hospital or a region. This result offers a sense in

which the flexible deferred acceptance mechanism avoids inflicting costs on underserved

hospitals or regions.

6. Discussion

This section provides several discussions. Subsection 6.1 studies mechanisms in other

contexts and countries, and shows that those existing mechanisms suffer from problems

similar to those we pointed out for Japanese medical residency match. Subsection 6.2

considers an alternative mechanism that is often suggested to us, and shows that it is not

strategy-proof for doctors. In Subsection 6.3, we consider the rural hospital theorem of

Roth (1986) and a related concept of the “match rate,” the ratio of the number of all

matched doctors to the total number of doctors (matched plus unmatched). Subsection

29The conclusion of the theorem applies even if the regional cap is already binding, thus this property

is not implied by the fact that the outcome of the flexible deferred acceptance algorithm is stable.
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6.4 studies the existence issue of a side-optimal stable matching, that is, a matching that

is preferred by all doctors or by all hospitals. Subsection 6.5 generalizes stability and

the flexible deferred acceptance mechanism. Subsection 6.6 examines the welfare effect

of different choices of picking orders over hospitals, target capacities, and regional caps,

and Subsection 6.7 considers “floor constraints” instead of “ceiling constraints” (regional

caps).

6.1. Mechanisms in China and the United Kingdom. In the main sections we

showed that the flexible deferred acceptance mechanism has desirable properties such as

efficiency, stability, and strategy-proofness for doctors, and we observed that it outper-

forms the JRMP mechanism. In this section we analyze several other mechanisms used in

practice, by formulating them and pointing out their respective deficiencies. The analyses

confirm the applicability of our mechanism in various markets around the world.

Specifically, in what follows we analyze the Chinese Graduate school admission and the

medical matching problem in the United Kingdom. More comprehensive descriptions of

the problems and the analyses can be found in Appendix A. Appendix A also discusses

more examples mentioned in the Introduction such as college admission in Ukraine and

matching of new teachers in Scotland.

6.1.1. Chinese Graduate School Admission. The first problem we study is the Chinese

graduate school admission. As described briefly in the Introduction, master’s programs

are categorized as either academic or professional, and the Chinese government is currently

trying to reduce the number of academic master students. To achieve this goal, the

government decided to reduce the available seats of each academic master’s program by

about 25 percent by 2015.30 In our framework, the policy goal of the Chinese government

can be translated into imposing the “regional cap” on the set of all academic master’s

programs, where the regional cap is about 75 percent of the sum of the true capacities

across all the academic programs. Then the government sets the target capacity of each

academic master’s program at about 75 percent of the true capacity.

Given the target capacities above, the main round of Chinese graduate admission runs

as follows. Using an application website, each student applies to one graduate program.

Given the set of applicants, each graduate school accepts its most preferred acceptable

students up to its target capacity and rejects everyone else. All matches are final.31

30To achieve this goal gradually, the government plans to reduce the number of seats by about 5

percent every year until 2015.
31Here we are describing the main round of the admission process. There is a “guaranteed assignment”

in which especially high-achieving students are admitted before the main round begins, and there is also
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This mechanism suffers from several drawbacks. First, it is easy to see that this mech-

anism is not strategy-proof for students. Moreover, the mechanism may produce an

unstable and inefficient matching. Here we focus on a particular source of inefficiency

and instability that shares a certain feature with the JRMP mechanism: In the Chinese

admission mechanism, the target capacities are used as rigid constraints, so the seats

of a certain academic program beyond its target capacity must remain unfilled, even if

some students prefer to be matched to these seats. This property holds true whatever

mechanism the Chinese government uses as long as the target capacities are treated as

rigid constraints, so the problem is orthogonal to the inefficiency coming from the fact

that each student can list only one program. In fact, we show in Appendix A.2 that even

a (complete information) pure-strategy subgame-perfect equilibrium outcome (of a game

in which students submit their preference list first and then colleges admit students) can

be unstable and inefficient, while we also show that the outcome is always stable and

efficient if there is no binding regional cap (so that the target capacity of a program is

equal to its physical capacity).

6.1.2. United Kingdom. As mentioned briefly in the Introduction, the mechanism used for

medical match in the United Kingdom is based on a different idea from the mechanisms

we have discussed so far. The process has two rounds, in which doctors are matched to a

region first, and then to a program within their matched region. For a policy maker who

desires to control the distribution of doctors across different regions, assigning doctors

using such a two-round scheme may appear to be an appealing alternative to the JRMP

mechanism or the Chinese mechanism. As we will see in Appendix A.4, however, this

mechanism may also result in inefficiency and instability, and it entails incentive problems

as well.

There have been several changes of the mechanism in recent years, and the matching

mechanism in the second round varies across regions. To be specific, however, assume that

both rounds use the serial dictatorship. Serial dictatorship is in use in the first round since

2012, and it is in use in the second round in Scotland since 2010. For simplicity we focus

on this mechanism although the same points can be made in other mechanisms as well.32

a supplementary round called an “adjustment process” which is largely decentralized. We do not discuss

these processes in the main text because they are not directly relevant to the topic of distributional

constraints. See instead Appendix A.2.1 for detail of these rounds.
32This point will be shown more formally in Appendix A.4.2, in which another two-round mechanism

is analyzed.
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Suppose that a doctor whose first choice is a hospital h1 in a region r1, the second

choice is h2 in another region r2, and her third choice is h3 in region r1. Assume that, in

the first round, the doctor lists r1 as her first choice and is matched to it. However, it is

possible that she is matched to h3 in the second round, while h2 in region r2 prefers her

to one of the doctors matched to it. Then this doctor and h2 form a blocking pair that is

not tolerated under our stability concept (or even the weak stability concept as defined

in Appendix C), implying that the resulting matching is not (weakly) stable.

Intuitively, instability can happen for the following reason: In the first round a student

may apply to and is matched to a region where her preferred hospitals are located. But

then in the second round she may end up being matched to a hospital that she prefers less

to a hospital in another region which prefers her to one of its matched doctors. In other

words, since the matching between doctors and regions are finalized before the ultimate

matching to a hospital is decided, the resulting matching could result in instability. A

similar example shows that the matching can be inefficient. Moreover, under this mech-

anism there does not generally exist a dominant strategy for doctors because a doctor’s

best report in the first round depends on which hospital in the region she will end up

with. Concrete examples making these points are found in Appendix A.4.

Scotland’s matching between new teachers and schools uses a similar two-round match-

ing mechanism. As in the U.K. medical match, the matching clearinghouse first matches

teachers to a local authority, which then assigns teachers matched to it to schools under

its control. As such, this mechanism also suffers from similar instability, inefficiency, and

strategic problems. See Appendix A.4 for detail.

6.2. The Iterated Deferred Acceptance Mechanism. As a solution to the efficiency

and stability problems in the JRMP mechanism, we often encounter suggestions by gov-

ernment officials and matching theorists, saying that the iterated deferred acceptance

(iterated DA) mechanism that uses the following algorithm may be useful: This algo-

rithm consists of finite steps of rounds. In round 1, the deferred acceptance algorithm is

run regarding the target capacities as the real capacities. If the resulting matching fills

all the target capacities, then the algorithm stops. Otherwise, the algorithm proceeds to

round 2 after the target capacities are modified as follows: hospitals set their new target

capacities equal to their matched numbers of doctors if they have vacant seats relative to

their target capacities; these vacant seats are reallocated to other hospitals in the same

region according to a certain pre-specified rule. In round 2, the deferred acceptance algo-

rithm is run with these modified target capacities. If the resulting matching fills all the

new target capacities then the algorithm stops and otherwise it continues. We do the same
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in all other rounds, with a restriction that once a hospital has reduced its target capacity

then it never increases (and require that the algorithm stop if no further reallocation is

possible).

As one might expect, this mechanism produces a (strongly) stable matching in Example

1 . However it turns out that this mechanism is not strategy-proof for doctors.

Example 5. Consider a market with two doctors, d1 and d2, and two hospitals h1 and h2

in a single region with regional cap 2. Each doctor prefers h1 to h2 to being unmatched.

Each hospital is associated with a capacity of 2 and a target capacity of 1, and prefers d1

to d2 to being unmatched. In this market, the iterated DA ends in one round, resulting

in the matching

µ =

(
h1 h2

d1 d2

)
.

Doctor d2 has an incentive to misreport her preferences. For, if she reports that she prefers

h1 to being unmatched to h2, then the iterated DA proceeds to the second round with

one seat moving from h2 to h1, and in the second round the matching

µ′ =

(
h1 h2

d1, d2 ∅

)
,

is realized and the algorithm stops. Since d2 prefers µ′d2 to µd2 , the iterated DA mechanism

is not strategy-proof for doctors. �

6.3. The Rural Hospital Theorem and The Match Rate. In this subsection, we

show that the conclusion of the rural hospital theorem does not hold in our environment.

Motivated by this finding, we study how the flexible deferred acceptance mechanism works

in terms of the match rate, that is, the proportion of the number of all matched doctors

to the total number of doctors (matched plus unmatched).

6.3.1. The Rural Hospital Theorem. The rural hospital theorem (Roth, 1986) states that,

in a matching model without regional caps, any hospital that fails to fill all its positions

in one stable matching is matched to an identical set of doctors in all stable matchings.

It also states that the set of unmatched doctors is identical across all stable matchings.

The theorem is of particular interest when we consider allocating a sufficient number of

doctors to rural areas. Although the rural hospital theorem might suggest that increasing

the number of doctors in a particular set of hospitals is impossible, the conclusion of the

theorem does not necessarily hold in our context with regional caps, even with the most

stringent concept of strong stability. The following example makes this point clear.
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Example 6 (The conclusion of the rural hospital theorem does not hold). There is one

region r with regional cap qr = 1, in which two hospitals, h1 and h2, reside. Each hospital

h has a capacity of qh = 1. Suppose that there are two doctors, d1 and d2. We assume

the following preferences:

�h1 : d1, �h2 : d2,

�d1 : h1, �d2 : h2.

It is straightforward to check that there are two strongly stable matchings,

µ =

(
h1 h2 ∅
d1 ∅ d2

)
,

µ′ =

(
h1 h2 ∅
∅ d2 d1

)
.

Notice that hospital h1 fills its capacity in matching µ while it does not do so in matching

µ′. Also, d1 is matched to a hospital in matching µ while unmatched in matching µ′. Hence

both conclusions of the rural hospital theorem fail, even with the notion of strong stability.

Since strong stability implies stability, this example also shows that the conclusions of the

rural hospital theorem fail with stability (analogously, all negative conclusions of this

subsection and the next hold under both stability and strong stability). �

One might suspect that, although the rural hospital theorem does not apply, it might

be the case that each region attracts the same number of doctors in any strongly stable

matchings. The following example shows that this is not true.

Example 7 (The number of doctors matched to hospitals in a rural region may be

different in different strongly stable matchings). We modify Example 6 by adding one

more region r′, which we interpret here as a “rural region” for the sake of discussion.

Region r′ has the regional cap of qr′ = 1, and one hospital, h3, resides in it. Suppose that

h3 has a capacity of qh3 = 1. The preferences are modified as follows:

�h1 : d1, �h2 : d2, �h3 : d1,

�d1 : h1, h3, �d2 : h2.

It is straightforward to check that there are two strongly stable matchings,

µ =

(
h1 h2 h3 ∅
d1 ∅ ∅ d2

)
,

µ′ =

(
h1 h2 h3

∅ d2 d1

)
.
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Thus the hospital in rural region r′ does not attract any doctors in matching µ, while it

attracts one doctor in matching µ′. �

Hence, when the number of doctors matched to hospitals in rural regions matters, the

choice of a mechanism is an important issue, in the presence of regional caps.

6.3.2. The Match Rate. Related to the rural hospital theorem is the notion of “match

rate,” which is the ratio of the number of all matched doctors to the total number of

doctors (matched plus unmatched). The match rate seems to be a measure that many

people care about. For example, match rates are listed on the annual reports published by

the NRMP and the JRMP.33 This is perhaps because the match rate is an easy measure

for participants to understand.34

Although it would be desirable to select a matching that has the maximum match

rate among the stable matchings, the following example shows that the flexible deferred

acceptance mechanism fails to do so.

Example 8 (The flexible deferred acceptance mechanism does not necessarily select a

matching with the highest match rate among stable matchings). Take the same example

as in Example 7. Also, let the target profile be (q̄h1 , q̄h2 , q̄h3) = (1, 0, 1). Then, the flexible

deferred acceptance mechanism always selects a matching µ defined in Example 7. But

this has a match rate of 1/2, while the other matching, namely µ′ defined in Example 7,

has a match rate of 1. �

It is unfortunate that the flexible deferred acceptance mechanism does not necessarily

maximize the match rate within stable matchings, but the following example shows that

this is a necessary consequence of requiring stratregy-proofness for doctors.

Example 9 (No mechanism that is strategy-proof for doctors can always select a match-

ing with the highest match rate among stable matchings). Modify the environment in

Example 7 as follows:

�h1 : d1, �h2 : d2, �h3 : d1, d2,

�d1 : h1, h3, �d2 : h2, h3,

33For instance, see National Resident Matching Market (2010) and Japan Residency Matching Program

(2009b).
34The ease of understanding may not be a persuasive reason for economic theorists to care about the

match rates, but it seems to be a crucial issue for market designers. For a mechanism to work well in

practice, it is essential that people are willing to participate in the mechanism. To this end, providing

information in an accessible manner, as in the form of the match rates, seems to be of great importance.
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with everything else unchanged (thus hospitals h1 and h2 are in one region and h3 is in

the other, each region has a regional cap of one, and each hospital has capacity of one).

Let (q̄h1 , q̄h2 , q̄h3) = (1, 0, 1). Notice that, given these preferences, there are two stable

matchings, namely µ with µd1 = h1 and µd2 = h3, and µ′ with µ′d1 = h3 and µ′d2 = h2.

Take a mechanism that always selects a matching with the highest match rate among

the stable matchings. We show that this mechanism cannot be strategy-proof. Since

both µ and µ′ have match rate of 1, both can potentially be chosen by the mechanism.

Suppose that the mechanism chooses µ. Then, doctor d2 has an incentive to misreport

her preferences: If she reports that hospital h2 is the only acceptable match, then given

the new profile of the preferences, the only stable matching that maximizes the match

rate among stable matchings is µ′. Since µ′d2 �d2 µd2 , doctor d2 indeed has an incentive

to misreport. A symmetric argument can be made for the case in which the mechanism

chooses µ′ given the true preference profile. Hence, there does not exist a mechanism that

is strategy-proof for doctors and always selects a matching with the highest match rate

among stable matchings. �

Despite the above negative results, there are bounds on the match rates in the matchings

produced by the flexible deferred acceptance mechanism. More specifically, the following

comparison can be made with the JRMP mechanism as well as with the (unconstrained)

deferred acceptance algorithm without regional caps:

Theorem 3. For any preference profile,

(1) Each doctor d ∈ D weakly prefers a matching produced by the deferred acceptance

mechanism to the one produced by the flexible deferred acceptance mechanism to

the one produced by the JRMP mechanism.

(2) If a doctor is unmatched in the deferred acceptance mechanism, she is unmatched in

the flexible deferred acceptance mechanism. If a doctor is unmatched in the flexible

deferred acceptance mechanism, she is unmatched in the JRMP mechanism.

Notice that part (2) of the above result, which is a direct corollary of part (1), implies

that the match rate is weakly higher in the deferred acceptance mechanism than in the

flexible deferred acceptance mechanism, which in turn has a weakly higher match rate

than the JRMP mechanism.35

35For an example in which the deferred acceptance mechanism and the flexible deferred acceptance

mechanism differ in terms of match rates, see Example 2 (with an arbitrary target capacity profile). For

the flexible deferred acceptance mechanism and the JRMP mechanism, see Example 1.
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In Appendix E, we present simulations results to compare the performances of the de-

ferred acceptance mechanism, the JRMP mechanism, and the flexible deferred acceptance

mechanism. The effects highlighted by the above theorem are quite substantial. For in-

stance, almost 600 additional doctors become unmatched under the JRMP mechanism

compared to the unconstrained deferred acceptance mechanism (1396 versus 805), but

this figure is reduced to almost 200 (1010 versus 805) if the flexible deferred acceptance

mechanism is used instead of the JRMP mechanism, while satisfying all the regional caps

just like the JRMP mechanism does. Moreover, almost 1000 doctors–about 12 percent

of the total number of doctors– prefer the outcomes of the flexible deferred acceptance

mechanism strictly to the JRMP outcomes, while every doctor prefers the former weakly

to the latter, as predicted by Theorem 3. See Appendix E for detail of these results, as

well as our simulation methods and other results.

Theorem 3 suggests that the flexible deferred acceptance mechanism matches reason-

ably many doctors. Characterizing stable mechanisms that achieve strategy-proofness for

doctors and match “as many doctors as possible,” as well as studying their relationship

with the flexible deferred acceptance mechanism, is an interesting open question.

6.4. Nonexistence of Side-Optimal Stable Matchings. There does not necessarily

exist a doctor-optimal stable matching (a stable matching unanimously preferred to every

stable matching by all doctors). Neither does there exist a hospital-optimal stable match-

ing. To see this point, consider the environment presented in Example 6, and suppose

that (q̄h1 , q̄h2) = (1, 0). There are two stable matchings, µ and µ′ specified in Example 6,

where only d1 and h1 are matched at µ while only d2 and h2 are matched at µ′. Clearly,

d1 and h1 strictly prefer µ to µ′ while d2 and h2 strictly prefer µ′ to µ. Thus there exists

neither a doctor-optimal stable matching nor a hospital-optimal stable matching. More-

over, this example shows that there exists neither a doctor-pessimal stable matching nor

a hospital-pessimal stable matching in general.

6.5. Generalizations. As mentioned in Section 4, the notion of stability is based on

the idea that if the result of a move of a doctor within a region does not equalize the

excesses over the target capacities compared to the current matching, it is not deemed as

a legitimate deviation. We argued that this is not the only reasonable definition as, for

example, it may be natural to suppose that a hospital with capacity 20 is entitled to twice

as many doctors (over the target) as a hospital with capacity 10. There may be other

criteria, and the Appendix B explores the extent to which our analysis goes through.

More specifically, we present a model in which each region is endowed with “regional

preferences” over the set of distributions of doctors within the region. One special case of
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the regional preferences is when the region prefers to have more equal number of doctors

in excess of targets. We define a stability concept that takes the regional preferences into

consideration. We provide a condition on regional preferences under which a generalized

version of the flexible deferred acceptance algorithm finds a stable matching as defined

more generally, and it is group strategy-proof. The criteria mentioned so far satisfy our

condition.

Appendix F provides a further generalization: we consider the situation where there

is a hierarchy of regional caps. We show that a generalization of the flexible deferred

acceptance mechanism induces a stable matching appropriately defined. This generaliza-

tion not only has a theoretical appeal but also is practically important. For instance,

one could consider a hierarchy of regional caps, say one cap for a prefecture and one for

each district within the prefecture. Or the policy maker may desire to regulate the total

number of doctors practicing in each specialty in each prefecture.

6.6. Welfare Effects of Picking Orders, Targets, and Regional Caps. The flexible

deferred acceptance algorithm follows a certain picking order of hospitals in each region

when there are some doctors remaining to be tentatively matched after hospitals have

kept doctors up to their target capacities. One issue is how to decide the picking order.

One natural conjecture may be that choosing earlier (that is, having an earlier order in

the flexible deferred acceptance algorithm) benefits a hospital. As we have mentioned

earlier, this would be a problematic property: If choosing earlier benefits a hospital, then

how to order hospitals will be a sensitive policy issue to cope with because each hospital

would have incentives to be granted an early picking order. Fortunately, the conjecture

is not true, as shown in the following example. The example also shows that the different

choices of orders result in different stable matchings, thus the choice of an order does

matter for the algorithm’s outcome.

Example 10 (Ordering a hospital earlier may make it worse off). Let there be hospitals

h1, h2 and h3 in region r1, and h4 in region r2. Suppose that (qh1 , qh2 , qh3 , qh4) = (2, 1, 1, 1)

and (q̄h1 , q̄h2 , q̄h3 , q̄h4) = (1, 0, 1, 1). The regional cap of r1 is 2 and that for r2 is 1.

Preferences are

�h1 : d1, d4, d2, �h2 : d3, �h3 : arbitrary, �h4 : d2, d1,

�d1 : h4, h1, �d2 : h1, h4, �d3 : h2, �d4 : h1.

(1) Assume that h1 is ordered earlier than h2. In that case, in the flexible deferred

acceptance mechanism, d1 applies to h4, d2 and d4 apply to h1, and d3 applies to

h2. d2 and d4 are accepted while d3 is rejected. The matching finalizes.
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(2) Assume that h1 is ordered after h2. In that case, in the flexible deferred acceptance

mechanism, d1 applies to h4, d2 and d4 apply to h1, and d3 applies to h2. But

now d2 is rejected while d3 is accepted. Then d2 applies to h4, displacing d1 from

h4. Then d1 applies to h1. d1 is accepted, displacing d4 from h1. The matching

finalizes.

First, notice that hospital h2 is better off in case (2). Thus being ordered earlier helps

h2 in this example. However, if h1 prefers {d1} to {d2, d4} (which is consistent with the

assumption that hospital preferences are responsive with capacities), then h1 is also made

better off in case (2). Thus being ordered later helps h1 if she prefers {d1} to {d2, d4}.
Therefore, the effect of a picking order on hospitals’ welfare is not monotone. �

A related concern is about what could be called “target monotonicity.” That is, keeping

everything else constant, does an increase of the target of a hospital make it better off

under the flexible deferred acceptance mechanism? If so, then hospitals would have strong

incentives to influence policy makers to give them large targets. The following example

shows that target monotonicity is not necessarily true.

Example 11 (Target monotonicity may fail). Consider a market that is identical to the

one in Example 10, except that the target of h1 is now decreased to 0, with the order

such that h1 chooses before h2.36 Then h1 is matched to {d1} under the flexible deferred

acceptance mechanism. Therefore, if h1 prefers {d1} to {d2, d4}, then h1 is made better

off when its target capacity is smaller. �

Note that both hospital and doctor preferences are heterogeneous in Examples 10 and

11. However, similar failures can occur even when hospitals or doctors have homogeneous

preferences. Moreover, splitting or merging regions also has ambiguous welfare effects.

These points are made by examples in Supplementary Appendix H.

By contrast, there exist natural comparative statics results regarding welfare effects of

the regional caps.

Proposition 3. Fix a picking order in the flexible deferred acceptance mechanism. Let

(qr)r∈R and (q′r)r∈R be regional caps such that q′r ≤ qr for each r ∈ R. Then the following

statements hold.

36When the target capacity of h1 is decreased, the sum of the target capacities becomes strictly smaller

than the regional cap (note that such a situation is allowed in our model). If one wishes to keep the sum

equal to the regional cap, the example can be modified by increasing the target capacity of h3 by 1, and

the conclusion of the example continues to hold.



32 YUICHIRO KAMADA AND FUHITO KOJIMA

(1) Each doctor d ∈ D weakly prefers a matching produced by the flexible deferred

acceptance mechanism under regional caps (qr)r∈R to the one under (q′r)r∈R.

(2) For each region r such that qr = q′r, the number of doctors matched in r at a

matching produced by the flexible deferred acceptance mechanism under regional

caps (q′r)r∈R is weakly larger than at the matching under (qr)r∈R.

Thus all doctors are made weakly worse off when the regional caps become more strin-

gent. Meanwhile, the number of doctors matched in a region whose regional cap is un-

changed weakly increases when the regional caps of other regions become more stringent.

This result highlights the tradeoff that a policy maker faces in using the flexible deferred

acceptance mechanism: If the regional caps of urban regions are reduced, then the num-

ber of doctors matched to other regions weakly increases. However this change weakly

decreases the welfare of doctors.

Remark 3. We obtain Proposition 3 as a corollary of a general comparative statics result

that we prove in the Appendix D (Lemma 1). This result can be useful in analyzing

matching with distributional constraints. For example, the following comparative statics

about the JRMP mechanism can be shown using this result.

Proposition 4. Let (q̄h)h∈H and (q̄′h)h∈H be target capacities such that q̄′h ≤ q̄h for each

h ∈ H. Then the following statements hold.37

(1) Each doctor d ∈ D weakly prefers a matching produced by the JRMP mechanism

under target capacities (q̄h)h∈H to the one under (q̄′h)h∈H .

(2) Each hospital h ∈ H such that q̄h = q̄′h weakly prefers a matching produced by

the JRMP mechanism under target capacities (q̄′h)h∈H to the one under (q̄h)h∈H .

Moreover, the number of doctors matched to any such h in the former matching

is weakly larger than that in the latter.

�

6.7. Floor Constraints. The present paper offers a practical solution for the Japanese

resident matching problem with regional caps. However, the regional cap may not be an

ultimate objective per se, but a means to allocate medical residents “evenly” to different

areas. Setting a cap –a ceiling constraint on the number of residents in a region– is an

obvious approach to this desideratum, but there may be other possible regulations. For ex-

ample, one might wonder if setting floor constraints, as opposed to cap constraints, would

37 Since the JRMP mechanism is equivalent to the deferred acceptance mechanism with respect to the

target capacities, this result can also be obtained by appealing to the “Capacity Lemma” by Konishi and

Ünver (2006), although we obtain these results as corollaries of a more general result, Lemma 1.
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be an easier and more direct solution. However, there are reasons that floor constraints

may be difficult to use. First, even the existence of an individually rational matching

that respects floor constraints is not guaranteed. For example, if no doctor finds any

hospital in a certain region to be acceptable, then satisfying a positive floor constraint for

the region results in an individually irrational matching (doctors matched with hospitals

in the region would just reject taking the job). Second, even if an individually rational

matching exists, it is not clear whether a stable matching exists. In fact, an appropriate

definition of stability in the presence of floor constraints is unclear.38

7. Related literature

In the one-to-one matching setting, McVitie and Wilson (1970) show that a doctor

or a hospital that is unmatched at one stable matching is unmatched in every stable

matching. This is the first statement of the rural hospital theorem to our knowledge, and

its variants and extensions have been established in increasingly general settings by Gale

and Sotomayor (1985a,b), Roth (1984, 1986), Martinez, Masso, Neme, and Oviedo (2000),

and Hatfield and Milgrom (2005), among others. As recent results are quite general, it

seems that placing more doctors in rural areas has been believed to be a difficult (if not

impossible) task, and thus there are few studies offering solutions to this problem. The

current paper explores possible ways to offer some positive results.

Roth (1991) points out that some hospitals in the United Kingdom prefer to hire no

more than one female doctor while offering multiple positions. Similarly, some schools (or

school districts) desire certain diversity characteristics of their incoming classes such as

ethnicity and academic performance (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu,

2005; Ergin and Sönmez, 2006). Westkamp (2010) considers a college admission problem

in which colleges have admission criteria based on trait-specific quotas. If one regards a

region (instead of a hospital) as a single agent in our model, these models and ours appear

similar in that an agent in both models has certain “preferences” over distributions more

complex than responsive ones. However, the above models are different from ours. For

instance, in our model, a distinction should be made between a matching of a doctor to

one hospital in a region and a matching of the same doctor to a different hospital in the

same region, but such a distinction cannot be even described in the former models. This

distinction is essential in the context of residency matching because a doctor may have

38Similar points are made in the context of school choice by Ehlers (2010), Ehlers, Hafalir, Yenmez,

and Yildirim (2011), and Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo (2012).
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incentives to deviate by moving between hospitals within a single region. Thus results

from these papers cannot be applied in this paper’s environment.

Despite the above-mentioned difficulty, there is a way to make an association between

our model and an existing model, namely the model of matching with contracts as de-

fined by Hatfield and Milgrom (2005).39 More specifically, given a matching market with

regional caps, one can define an associated matching model with contracts such that a

stable allocation in the latter model induces a stable matching in the former. This corre-

spondence allows us to show some of our results by using properties of the matching with

contracts model established by Hatfield and Milgrom (2005), Hatfield and Kojima (2009,

2010), and Hatfield and Kominers (2009, 2010).40 On the other hand, it is also worth

noting that these models are still different. The reason is that certain types of blocks

allowed in the matching model with contracts are considered infeasible in our context.

Thus stable allocations in a matching model with contracts can induce only a subset of

stable matchings in our model. For this reason, the structural properties of the set of

stable matchings in our model are strikingly different from those in the matching model

with contracts. For instance, a doctor-optimal stable allocation exists and the conclusion

of the rural hospital theorem holds in their model but not in ours.41

Abraham, Irving, and Manlove (2007) study allocation of students to projects where a

lecturer may offer multiple projects. Both projects and lecturers have capacity constraints.

Sönmez and Ünver (2006) analyze a related model in the context of school choice in which

there may be multiple school programs in a school building. Motivated by the matching

system for higher education in Hungary, Biró, Fleiner, Irving, and Manlove (2010) extend

these models to cases in which capacity constraints are imposed on a nested system of

sets. Their models are analogous to ours if we associate a lecturer and a project – and a

school building and a school, respectively– in their models to a region and a hospital in

39Fleiner (2003) considers a framework that generalizes various mathematical results. A special case

of his model corresponds to the model of Hatfield and Milgrom (2005), although not all results of the

latter (e.g., those concerning incentives) are obtained in the former. See also Crawford and Knoer (1981)

who observe that wages can represent general job descriptions in their model, given their assumption

that firm preferences satisfy separability.
40Note that residency matching and school choice with balance requirements mentioned in the last

paragraph (Roth, 1991; Abdulkadiroğlu and Sönmez, 2003) can be modeled as special cases of this paper’s

model. A related issue appears in the National Resident Matching Program where a hospital may have

multiple types of residency positions (Roth and Peranson, 1999; Niederle, 2007).
41More specifically, the former result holds under the property called the substitute condition, and the

latter under the substitute condition and another property called the law of aggregate demand or size

(or cardinal) monotonicity (Alkan, 2002; Alkan and Gale, 2003).
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our model, respectively. However, there are two notable differences. First, they assume

that preferences of all projects provided by the same lecturer (school programs in the same

building) are identical while such a restriction is not imposed in our model.42 Second, the

stability concepts employed in their models are different from ours, thus our results do

not reduce to theirs even in their more specialized settings.

Milgrom (2009) and Budish, Che, Kojima, and Milgrom (2010) consider object alloca-

tion mechanisms with restrictions similar to the regional caps in our model. While their

models are independent of ours (most notably, their analysis is primarily about object

allocation, and stability is not studied), they share motivations with ours in that they

consider flexible assignment in the face of complex constraints.

More broadly, this paper is part of a rapidly growing literature on matching market

design. As advocated by Roth (2002), much of recent market design theory advanced

by tackling problems arising in practical markets.43 For instance, practical considera-

tions in designing school choice mechanisms in Boston and New York City are discussed

by Abdulkadiroğlu, Pathak, and Roth (2005, 2009) and Abdulkadiroğlu, Pathak, Roth,

and Sönmez (2005, 2006). Abdulkadiroğlu, Che, and Yasuda (2008, 2009), Erdil and Er-

gin (2008), and Kesten (2009) analyze alternative mechanisms that may produce more

efficient student placements than those that are currently used in New York City and

Boston. Design issues motivated by an anti-trust lawsuit against the American medi-

cal resident matching clearinghouse are investigated by Bulow and Levin (2006), Kojima

(2007), Konishi and Sapozhnikov (2008), Niederle (2007), and Niederle and Roth (2003).

A classical resource allocation problem with multi-unit demand has attracted renewed

attention in the context of practical course allocation at business schools as studied by

Sönmez and Ünver (2010), Budish and Cantillon (2010), and Budish (2010). Initiated

by Roth, Sönmez, and Ünver (2004, 2005, 2007), even the organ transplantation problem

has become a subject of market design research in recent years. See Roth and Sotomayor

(1990) for a comprehensive survey of the matching literature in the first three decades,

and Roth (2007a) and Sönmez and Ünver (2008) for discussion of more recent studies.

8. Conclusion

We showed that the current matching mechanisms used in various contexts around the

world may result in avoidable inefficiency and instability even though some of them are

42In our context, it is important to allow different hospitals in the same region to have different

preferences because two hospitals rarely have identical preferences in practice.
43Literature on auction market design also emphasizes the importance of solving practical problems

(see Milgrom (2000, 2004) for instance).
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similar to the celebrated deferred acceptance mechanism. We proposed a new mechanism,

called the flexible deferred acceptance mechanism. This mechanism is (group) strategy-

proof and generates a stable and efficient matching.

With regional caps, defining stability is not a trivial task, and it seems that the right

notion depends on the welfare and distributional goals that the policy maker wants to

achieve. Hence there may not necessarily exist a unique choice of the mechanism, and

there is room for the policy maker to select a particular stable matching based on such

goals. We hope that this paper serves as a basis for achieving such goals and, more

broadly, that it contributes to the general agenda of matching/market design theory to

address specific issues arising in practical problems.

We intentionally refrained from judging the merits of imposing regional caps itself

(except for certain welfare results mentioned below). We took this approach because our

model does not explicitly include patients or ethical concerns of the general populace,

which may be underlying arguments for increasing doctors in rural areas. Similarly, we

did not analyze other policies such as subsidies to incentivize residents to work in rural

areas.44 Instead, we took an approach in the new tradition of market design research,

in which one regards constraints such as fairness and repugnance as requirements to be

respected and offers solutions consistent with them.45 That is, as regional caps seem to

be a strong political reality, we believe that it is important to take them as given and

provide a practical solution. To help the policy maker make informed judgements about

the tradeoffs involved in imposing regional caps, we provided a number of comparative

statics results.

The paper opens new avenues for further research topics. First, as mentioned before,

strategy-proofness for every agent including hospitals is impossible even without regional

caps if we also require stability. However, truthtelling is an approximately optimal strat-

egy even for hospitals under the deferred acceptance mechanism in large markets under

some assumptions (Roth and Peranson, 1999; Immorlica and Mahdian, 2005; Kojima

and Pathak, 2009). Although such an analysis requires a much more specialized model

44This is not because subsidies are not important. In fact, subsidies are used to attract residents to

rural areas in many countries such as the United States and Japan. However, there are political pressures

to restrict the use of subsidies in the Japanese medical market. Beginning in 2011, for instance, the

government will reduce subsidies to residency programs that pay annual salaries of more than 7,200,000

yen (about 85,000 U.S. dollars) to residents. In any case, our analysis is applicable given participants’

preferences which reflect subsidies, thus our method can be employed on top of subsidies.
45This approach is eloquently advocated by Roth (2007b).
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structure than what this paper has and is outside the scope of this paper, approximate

incentive compatibility similar to these papers may hold.

Second, studying more general constraint structures may be interesting. As mentioned

in Appendix F, we analyzed the case in which there is a hierarchy of regional caps, and

showed that a stable matching can be found by a generalization of our flexible deferred

acceptance mechanism. By contrast, we show by example that if the regions do not form

a hierarchy, a stable matching does not necessarily exist.46 A general recipe for defining

a stability concept and finding a stable matching by an algorithm is an open question.

Third, it would be desirable to quantify the effect of using the flexible deferred ac-

ceptance mechanism instead of the existing mechanisms. As briefly discussed in Section

6.3, we conducted simulations to compare the outcome of the flexible deferred acceptance

mechanism with that of the JRMP mechanism and the deferred acceptance mechanism.

Since the data of submitted preferences have been unavailable to us so far, we used ran-

domly generated preferences (while using publicly available data to mimic several aspects

of the real market). However, a better prediction would be possible if we could simulate

the performance of our mechanism based on actual data of preferences. In a new project

joint with Jun Wako, we have started talking with the matching organizers to discuss

such issues and put our mechanism in real use.

Finally, it would be nice to study markets that have similar structures to the ones

in this paper. We explored a wide range of applications both in terms of geography

(such as Japan, China, the United Kingdom, Hungary, and Ukraine) and in terms of

the context (such as medical match, teacher allocation, college admission, and graduate

school admission). We expect some general insights will carry over to other applications,

while market-specific details may need to be carefully taken into account when we consider

different markets in different political or cultural environments.

References
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Appendix A. Matching Markets in Practice

A.1. Residency Matching in Japan. In Japan, about 8,000 doctors and 1,500 resi-

dency programs participate in the matching process each year. This section describes how

this process has evolved and how it has affected the debate on the geographical distribu-

tion of residents. For further details of Japanese medical education written in English,

see Teo (2007) and Kozu (2006). Also, information about the matching program written

in Japanese is available at the websites of the government ministry and the matching

organizer.47

The Japanese residency matching started in 2003 as part of a comprehensive reform

of the medical residency program. Prior to the reform, clinical departments in university

hospitals, called ikyoku, had de facto authority to allocate doctors. The system was criti-

cized because it was seen to have given clinical departments too much power and resulted

in opaque, inefficient, and unfair allocations of doctors against their will.48 Describing the

situation, Onishi and Yoshida (2004) write “This clinical-department-centred system was

often compared to the feudal hierarchy.”

To cope with the above problem a new system, the Japan Residency Matching Pro-

gram (JRMP), introduced a centralized matching procedure using the (doctor-proposing)

deferred acceptance algorithm by Gale and Shapley (1962). Unlike its U.S. counterpart,

the National Resident Matching Program (NRMP), the system has no “match variation”

(Roth and Peranson, 1999) such as married couples, which would cause many of the good

properties of the deferred acceptance algorithm to fail.

Although the matching system was welcomed by many, it has also received a lot of

criticisms. This is because some hospitals, especially university hospitals in rural areas, felt

that they attracted fewer residents under the new matching mechanism. They argued that

the new system provided too much opportunity for doctors to work for urban hospitals

rather than rural hospitals, resulting in severe doctor shortages in rural areas. While

there is no conclusive evidence supporting their claim, an empirical study by Toyabe

(2009) finds that the geographical imbalance of doctors has increased in recent years

according to several measures (the Gini coefficient, Atkinson index, and Theil index of

the per-capita number of doctors across regions). By contrast, he also finds that the

47See the websites of the Ministry of Health, Labor and Welfare

(http://www.mhlw.go.jp/topics/bukyoku/isei/rinsyo/) and the Japan Residency Matching Program

(http://www.jrmp.jp/).
48The criticism appears to have some justification. For instance, Niederle and Roth (2003) offer

empirical evidence that a system without a centralized matching procedure reduces mobility and efficiency

of resident allocation in the context of the U.S. gastroenterologist match.
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imbalance is lower when residents are excluded from the calculation. Based on these

findings, he suggests that the matching system introduced in 2003 may have contributed

to the widening regional imbalance of doctors.

To put such criticisms into context, we note that the regional imbalance of doctors

has been a long-standing and serious problem in Japan. As of 2004, there were over

160,000 people living in the so-called mui-chiku, which means “districts with no doctors”

(Ministry of Health, Labour and Welfare, 2005b)49 and many more who were allegedly

underserved. One government official told one of the authors (personal communication)

that the regional imbalance is one of the most important problems in the government’s

health care policy, together with financing health care cost. Popular media regularly re-

port stories of doctor shortages, often in a very sensational tone.50 There is evidence that

the sufficient staffing of doctors in hospitals is positively correlated with the quality of

medical care such as lower mortality (see Pronovost, Angus, Dorman, Robinson, Dremsi-

zov, and Young (2002) for instance); thus the doctor shortage in rural areas may lead to

bad medical care.

In response to the criticisms against the matching mechanism, the Japanese government

introduced a new system with regional caps beginning with the matching conducted in

2009. More specifically, a regional cap was imposed on the number of residents in each

of the 47 prefectures that partition the country. If the sum of the hospital capacities in a

region exceeds its regional cap, then the capacity of each hospital is reduced to equalize

the total capacity with the regional cap.51 Then the deferred acceptance algorithm is

implemented under the reduced capacities. We call this mechanism the Japan Residency

Matching Program (JRMP) mechanism. The basic intuition behind this policy is that if

49A mui-chiku is defined by various criteria such as the ease of access to hospitals, the population, the

regularity of clinic openings, and so forth (Ministry of Health, Labour and Welfare, 2005a).
50For instance, the Yomiuri Shimbun newspaper, with circulation of over 10,000,000, recently provoked

a controversy by its article about the only doctor in Kamikoani-mura village, where 2,800 people live

(Yomiuri Shimbun newspaper, 03/19/2010). Although the doctor, aged 65, took only 18 days off a year,

she was persistently criticized by some “unreasonable demanding” patients. When she announced that

she wanted to quit (which means that the village will be left with no doctor) because she was “exhausted,”

600 signatures were collected in only 10 days, to change her mind.
51The capacity of a hospital is reduced proportionately to its original capacity in principle (subject to

integrality constraints) although there are a number of fine adjustments and exceptions. This rule might

suggest that hospitals have incentives to misreport their true capacities, but in Japan, the government

regulates how many positions each hospital can offer so that the capacity can be considered exogenous.

More specifically, the government decides the physical capacity of a hospital based on verifiable informa-

tion such as the number of beds in it.
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residents are denied from urban hospitals because of the reduced capacities, then some of

them will work for rural hospitals.
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Figure 1. For each prefecture, the total capacity is the sum of advertised

positions in hospitals located in the prefecture in 2008. The regional caps

are based on the government’s plan in 2008 (Ministry of Health, Labour

and Welfare, 2009a). Negative values of total capacities in some prefectures

indicate the excess amount of regional caps beyond the advertised positions.

The magnitude of the regional caps is illustrated in Figure 1. Relatively large reductions

are imposed on urban areas. For instance, hospitals in Tokyo and Osaka advertised 1,582

and 860 positions in 2008, respectively, but the government set the regional caps of 1,287

and 533, the largest reductions in the number of positions. The largest reduction in

proportion is imposed on Kyoto, which offered 353 positions in 2008 but the number is

dropped to 190, a reduction of about 46 percent. Indeed, the projected changes were so

large that the government provided a temporary measure that limits per-year reductions

within a certain bound in the first years of operation, though the plan is to reach the

planned regional cap eventually. In total, 34 out of 47 prefectures are given regional caps

smaller than the numbers of advertised positions in 2008.

The new JRMP mechanism with regional caps was used in 2009 for the first time.

The government claims that the change alleviated the regional imbalance of residents:
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It reports that the proportion of residents matched to hospitals in rural areas has risen

to 52.3 percent, an increase of one percentage point from the previous year (Ministry of

Health, Labour and Welfare, 2009b).52 However, there is mounting criticism to the JRMP

mechanism as well. For instance, a number of governors of rural prefectures (see Tottori

Prefecture (2009) for instance) and a student group (Association of Medical Students,

2009) have demanded that the government modify or abolish the JRMP mechanism with

regional caps.53 Among other things, a commonly expressed concern is that the current

system with regional caps causes efficiency losses, for instance by preventing residents

from learning their desired skills for practicing medical treatments.

In the main text we formalized the JRMP mechanism (Section 3), explored its proper-

ties (Example 1, Remark 1, and Proposition 4), and compared it to the flexible deferred

acceptance mechanism (Theorem 3). Our analysis suggests that the current JRMP mech-

anism needs to be changed to the flexible deferred acceptance mechanism.

A.2. Chinese Graduate Admission. This section describes the Chinese graduate ad-

mission in detail, and formally shows that the mechanism may result in an unstable and

inefficient matching.54

A.2.1. Institutional Background. Chinese society is changing rapidly, and it is widely

believed that there is need for more workers with professional master’s degrees.55 However,

professional master’s degrees have traditionally been regarded as inferior to academic

master’s degrees by many.56 And there are not as many students in professional master’s

programs as the government aims.57

52Ministry of Health, Labour and Welfare (2009b) defines “rural areas” as all prefectures except for 6

prefectures, Tokyo, Kyoto, Osaka, Kanagawa, Aichi, and Fukuoka, which have large cities.
53Interestingly, even regional governments in rural areas such as Tokushima and Tottori were opposed

to the JRMP mechanism. They were worried that since the system reduces capacities of each hospital

in the region, some of which could hire more residents, it can reduce the number of residents allocated

in the regions even further. This feature - inflexibility of the way capacities are reduced - is one of the

problems of the current JRMP mechanism, which we try to remedy by our alternative mechanism.
54We greatly benefited from discussing Chinese graduate school admission with Jin Chen.
55Ministry of Education of China (2010) states that “[the education authority and graduate schools]

should put emphasis on the promotion of education for advanced professionals, especially full-time pro-

fessional master’s degree.”
56Chinese government has been emphasizing that the only differences between professional and aca-

demic master’s programs are in the types and goals of education, and not in standards, but the reputation

of a professional master’s degree is still not as good as an academic one (Zhai, 2011).
57China’s master-level education system traditionally emphasized academic training, rather than pro-

fessional training. However, most graduates from master’s programs pursue a professional career instead
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To address this issue, Chinese government started a new regulation to increase enroll-

ment in professional master’s programs in 2010 (People’s Republic of China, 2010). More

specifically, the government began to impose constraints on the total number of academic

master students, while increasing the number of professional master students. To achieve

this goal, the government decided to reduce the available seats of each academic mas-

ter’s program by about 25 percent by 2015, while increasing capacities for professional

programs.58

Although Chinese graduate school admission is different from Japanese residency match

in many ways, there is a clear isomorphism between the structures of the problems that

these markets are faced with. Just as there is demand for increasing resident allocation in

rural Japan, there is demand for increasing professional master students in Chinese gradu-

ate education. Moreover, both in Japanese and Chinese cases, the feasibility requirements

are placed on the total numbers of allocations for a subset of institutions (hospitals in

each prefecture in the Japanese case, and the academic master’s programs in the Chinese

case). Lastly, when implementing the requirement, both governments place rigid restric-

tions on the allowed seats of each institution (each hospital in Japan, and each graduate

school in China).

Remark 4. As mentioned in Section 6.1.1 of the main text, the matching mechanism for

Chinese graduate school admission has additional rounds. First, there is a recommendation-

based admission for high achievers before the main round. Second, there is a round called

an “adjustment process” for those who have not been matched by the end of the main

round. We do not formally analyze these rounds because they are not directly related to

the issue of distributional constraints, and processes similar to them and the associated

problems have been analyzed by other works.59 Nevertheless, we describe these rounds

for completeness.

of an academic one: in 2009, for instance, enrollment for master’s programs was around 415,000 while

that for PhD programs was around 60,000 (in China, the master’s degree is similar to M.Phil. in countries

like the U.K. in that a student seeking PhD first attend a master’s program). Between 2008 and 2011,

the proportion of professional masters’ enrollment has increased from just 7 percent to 30 percent of the

total enrollment. Ministry of Education aims at 50 percent by 2015 (Lin, 2011).
58To achieve this goal gradually, the government plans to reduce the number of seats by about 5

percent every year until 2015 (to our knowledge, the government has not disclosed whether it will continue

imposing the reduction beyond 2015).
59Abdulkadiroğlu, Pathak, and Roth (2005); Abdulkadiroğlu, Pathak, and Roth (2009) study New

York City’s high school match. In NYC, top 2 percent students are automatically admitted to certain

schools if they prefer, similarly to top performers who can be admitted to some schools in China’s

recommendation-based admission. Roth and Xing (1994, 1997) study labor markets that proceed in real
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In the recommendation-based admission, students are recommended to graduate schools

directly even before the graduate entrance examination that everyone else should take for

admission. This round works as a shortcut for excellent students to enter graduate schools.

Most recommended students are admitted to and attend the same university’s graduate

school where he or she attended college, and few of the recommended students transfer

to another graduate school. This round is decentralized, and how to evaluate and admit

students is largely up to each school, and thus the admission policy varies from school to

school.

Students who were unmatched in the recommendation-based admission and the main

round, as well as graduate schools which were not full in these rounds, enter the adjustment

process. This round proceeds in real time, and each student maintains an application

list which consists of at most two schools at any moment during this process. More

specifically, at the beginning of this round, each student enters at most two schools into

an online system.60 Each school sees students who listed it, decides whether to give each

applicant the chance for interview or not, and sends out interview invitations to them.

Upon receiving an interview invitation, a student chooses whether to accept it or not.

If a student fails to receive an interview invitation in 48 hours or is rejected after the

interview from a school, the student can remove the school and add another school into

her online application list. Once changed, a student must keep the new school in the list

for at least 48 hours unless it interviews her. On the interview day, a graduate school

admits or rejects students. If the capacity becomes full, the graduate school completes

the admission. Each student can confirm admission from at most one school. Once she

confirms, she exits the matching process.

The adjustment process happens in real time: In 2012, for instance, the process was in

session from April 1st to May 5th. Given this time constraint, it is widely believed that

students and schools contact each other ahead of the official adjustment process.61 �

A.2.2. Formal Analysis. Let us use the same notation as in the main text, although now

we call h a program instead of a hospital, and d a student instead of a doctor. Further

assume that the set of all programs is partitioned into the set of all academic programs r

time, and highlight the time constraint and associated strategic behavior and inefficiency of the resulting

matching.
60The application is maintained at http://yz.chsi.com.cn/.
61See “Experts: 2012 graduate school entrance examination, advice and strategies for adjustment” from

Kuakao Education, a counseling agency in China for students applying for graduate schools, available at

http://yz.chsi.com.cn/kyzx/fstj/201203/20120322/293594478.html.
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and the set of all professional programs r′. Throughout, assume qr′ >
∑

h∈Hr′
qh so that

the cap for professional programs is not binding.

We define the main round of the Chinese graduate admission formally.62 As described

in the main text, given the cap qr, the main round of Chinese graduate admission runs as

follows (we describe the mechanism for a general value of qr, although in China qr is an

integer close to 75 percent of the sum of academic program capacities). Set q̄h ≤ qh for

each h in such a way that
∑

h∈Hr
q̄h ≤ qr (in Chinese graduate admission, q̄h is an integer

that is at most 75 percent of qh for each h ∈ Hr). Each student applies to at most one

program. Given the set of applicants, each program h accepts its most preferred students

up to its target capacity q̄h and rejects everyone else. All matchings are final.

We model the behavior in this mechanism by considering the following two-stage

extensive-form game. In the first stage, students simultaneously apply to programs, one

for each student. Then in the second stage, each program admits students from those

who applied to it up to its target capacity. In this game, the following result holds:

Result 1. Suppose that qr >
∑

h∈Hr
qh and q̄h = qh for all h. Then the set of the

pure-straetegy subgame-perfect equilibrium outcomes in the game induced by the Chinese

graduate admission coincides with the set of stable matchings.

Proof. When qr >
∑

h∈Hr
qh and q̄h = qh for all h, the stability concept of this paper

is equivalent to the standard stability concept (as in Roth and Sotomayor (1990) for

example). By Sotomayor (2004) and Echenique and Oviedo (2006), the set of subgame

perfect equilibrium outcomes of this game is equivalent to the set of stable matchings in

the standard sense. These two observations complete the proof. �

Thus if there is no binding cap on academic programs, then the equilibrium outcomes

are stable and hence efficient. When the cap on academic programs is binding as in the

Chinese admission mechanism, however, neither of these good properties hold even for

equilibrium outcomes. The following example, which is an adaptation of Example 1, is

such a case.

Example 12 (Equilibrium Outocomes under the Chinese Mechanism Can Be Unstable

and Inefficient). The “regional cap” for academic programs r is qr = 10. There are two

academic programs h1 and h2 and no professional program. Each program h has a capacity

62The description is based on the website of the “National Graduate Admissions Information Network”

(http://yz.chsi.com.cn/), which provides information on graduate admission and host online applications

for graduate schools.
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of qh = 10. Let the target capacities be q̄h1 = q̄h2 = 5. There are 10 students, d1, . . . , d10.

Preference profile � is as follows:

�hi : d1, d2, . . . , d10 for i = 1, 2,

�dj : h1 if j ≤ 3 and �dj : h2 if j ≥ 4.

It is easy to see that the only pure-strategy subgame perfect equilibrium outcome is

µ =

(
h1 h2 ∅

d1, d2, d3 d4, d5, d6, d7, d8 d9, d10

)
.

Consider a matching µ′ defined by,

µ′ =

(
h1 h2

d1, d2, d3 d4, d5, d6, d7, d8, d9, d10

)
.

Since the cap for academic programs is still respected, µ′ is feasible. Moreover, every

student is weakly better off with students d9 and d10 being strictly better off than at

µ. Hence we conclude that the Chinese mechanism can result in an inefficient matching.

We also note that µ is not stable: For example, program h2 and student d9 constitute a

blocking pair while the cap for r is not binding. �

A.3. College Admission in Ukraine. A problem similar to Japanese residency match

and Chinese graduate school admission is found in college admission in Ukraine as well. In

Ukraine, some of the seats are financed by the state, while other “open-enrollment” seats

require that students pay tuition (Kiselgof, 2012).63 There is a cap on the number of state-

financed seats, apparently as there is a limit on the budget that can be used to finance

college study. The government implements the cap on the number of state-financed seats

by imposing a cap on each program as in Japanese residency match and the Chinese

graduate admission. Although the specific mechanism the Ukrainian college admission

system uses is different from JRMP and Chinese graduate school admissions (see Kiselgof

(2012) for detail), instability and inefficiency because of the constraints similarly result.

A.4. Medical Matching in the United Kingdom.

63A similar cap on the number of state-financed college seats exists in Hungarian college admission as

well. The situation is somewhat different here, however, as ranking by colleges are based on a common

exam and hence is common for different university programs on the same subject. Biró, Fleiner, Irving,

and Manlove (2010) propose an elegant matching mechanism in such an environment.
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A.4.1. Institutional Backgrounds. In recent years, how to organize medical training has

been a contentious topic in the U.K., and the system has undergone a number of drastic

changes. This section describes the current system, whose basic structure was set up in

2005.64

In order to practice medicine in the U.K., graduates from medical schools must under-

take two years of training. The organization is called the Foundation Programme, and

places about 7,000 medical school graduates to training programs every year.65 In the

first round of the matching scheme of the Foundation Programme, applicants are matched

to one of 25 “foundation schools” by a national matching process. A foundation school

is a consortium made of medical schools and other organizations, and each foundation

school largely corresponds to a region of the country. Upon being matched to a founda-

tion school, students are matched to individual training programs within that foundation

school in the second round of the matching process. In these processes, applicants are

assigned a numerical score, which may result in ties. Until 2011, the Boston mechanism

(also known as the “first-choice-first” mechanism in the U.K.) was in use, based on the

numerical score and a random tie-breaking.66 Beginning in 2012, a serial dictatorship al-

gorithm based on the score with random tie-breaking is used for allocation to foundation

schools.67 It is up to individual foundation schools as to how they match their assigned

applicants to programs in their region. In Scotland, for example, a stable mechanism was

in use to allocate students to programs within the region until serial dictatorship based

on applicant scores and random tie-breaking replaced it in 2010.68

For our purposes, an especially interesting point is that the mechanism used in U.K.

medical matching has two rounds, in which students are assigned to a region first, and

then to a program within their assigned region. Although the specific mechanisms used

in the second round vary from region to region, the United Kingdom as a whole uses a

two-round mechanism.

64We are grateful to Peter Biró, Rob Irving, and David Manlove for answering our questions about

medical match in the U.K.
65Some institutional details and the statistics reported here can be found in the Foundation

Programme’s webiste, especially in its annual reports: see for example its 2011 annual report at

http://www.foundationprogramme.nhs.uk/download.asp?file=Foundation Programme Annual Report Nov11 FINAL.pdf.
66See Abdulkadiroğlu and Sönmez (2003) who study the Boston mechanism in the school choice

context.
67The algorithm is described at http://www.foundationprogramme.nhs.uk/pages/medical-

students/faqs#answer39
68There are applicants who participate as couples, and the algorithms handle these couples in certain

manners. See Irving and Manlove (2009) for details.
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A.4.2. Formal Analysis. As indicated above, mechanisms used in U.K. medical match

(and Scottish teacher matching as mentioned in Appendix A.5) have many variations,

but their basic structure is common in the sense that applicants are matched by a two-

round procedure. Formally, we consider a mechanism in which applicants are matched

to a region (up to its regional cap) in the first round, and then they are matched to a

hospital within the assigned region in the second round. For concreteness we focus on the

mechanism in which serial dictatorship is used in both rounds, but the main conclusions

can be obtained for other mechanisms as well (we describe the details later in this section).

The first example shows that the outcome of this two-round mechanism may be unsta-

ble.

Example 13. There are two regions r1 and r2 with regional caps qr1 = qr2 = 2. There are

two hospitals h1 and h3 in r1 while there is one hospital h2 in r2. Hospital capacities are

qh1 = 1, qh2 = 2, and qh3 = 1. Suppose that there are 3 doctors, d1, d2, and d3. Preference

profile � is as follows:

�hi : d1, d2, d3 for all i,

�dj : h1, h2, h3 for all j.

And let us assume that, in both rounds, the serial dictatorship is used with respect to the

ordering d1, d2, and d3. That is, d1 is matched to her most preferred region (or hospital),

d2 is matched to the most preferred region (or hospital) that are still available, and so on.

Note that we assume that hospital preferences are common and coincide with the applicant

ordering in the serial dictatorship. This assumption is meant to make stability as easy

to obtain as possible, because if serial order and hospital preferences are different, it is

almost trivial to obtain unstable matchings (indeed, under the original serial dictatorship,

the resulting matching is stable under this assumption, but not otherwise). Assume that

each docotor prefers r1 most and r2 second.69 Let target capacities be arbitrary.

At the first round of this mechanism, d1 and d2 are matched to r1, while d3 is matched

to r2. In the second round, d1 is matched to her first choice h1, d2 is matched to h3, which

is the only remaining hospital in region r1, and d3 is matched to hospital h2, resulting in

µ =

(
h1 h2 h3

d1 d3 d2

)
.

This matching µ is unstable, because d2 and h2 form a legitimate blocking pair: d2 prefers

h2 to its match h3 and h2 prefers d2 to its match d3. �

69Such reported preferences may arise if, for instance, she believes that there is nonzero probability to

be matched with h1 and her cardinal utility from h1 is sufficiently high.
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Although we phrased the above example in the context of a mechanism both of whose

rounds employ the serial dictatorship, the same point can be made for other two-round

mechanisms. Consider, for instance, the case in which the first-round procedure is a

Boston mechanism (as was the case in the U.K. until 2011) based on the above ordering,

while the second round is a serial dictatorship.70 In the above market, under this procedure

d1 and d2 are still matched to region r1 in the first round, and then d2 is matched to h3

in the second round, leading to the same matching µ of Example 13, thus to instability.

This observation shows that the problem of instability is not restricted to the detail of the

current mechanism using serial dictatorship in both rounds, but rather a general feature

of two-round systems that have been the basic framework of the U.K. medical match.

The following example shows that the matching resulting from the U.K. medical match

can be inefficient.

Example 14. There are two regions r1 and r2 with regional caps qr1 = 2 and qr2 = 1.

There are two hospitals h1 and h3 in r1 while there is one hospital h2 in r2. Each hospital

h has a capacity of qh = 1. Suppose that there are 3 doctors, d1, d2, d3. Preference profile

� is as follows:

�hi : d1, d2, d3 for all i,

�d1 : h1, h2, h3,

�d2 : h1, h2,

�d3 : h1, h3, h2.

As before, let us assume that the serial dictatorship with ordering d1, d2, and d3 is used

in both rounds. Assume further that doctors’ preferences over the regions are induced in

the manner specified in Example 13.

At the first round of this mechanism, d1 and d2 are matched to r1, while d3 is matched

to r2. In the second round, d1 is matched to her first choice h1, d2 is unmatched, and d3

is matched to hospital h2, resulting in matching

µ =

(
h1 h2 h3 ∅
d1 d3 ∅ d2

)
.

70Recall that the first round algorithm was changed from the Boston mechanism to the serial dicta-

torship only beginning in 2012 in the U.K. medical match, while serial dictatorship was already in use in

Scotland in 2009.
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Consider a matching µ′ defined by,

µ′ =

(
h1 h2 h3

d1 d2 d3

)
.

The latter matching satisfies all regional caps and Pareto dominates the former matching

µ: d1 and h1 are indifferent between µ and µ′, while every other agent is made strictly

better off at µ′ than at µ. Therefore the matching µ is inefficient. �

The last drawback of the two-round mechanism we point out involves incentives. Serial

dictatorship is strategy-proof, and this property is often regarded as one of the main

advantages of this mechanism. In a two-round mechanism, however, there exists no

dominant strategy even if both rounds employ serial dictatorship.

Example 15. Consider the market defined in Example 13. Note that it is a weakly

dominant strategy to report true preferences in any subgame of the second round, i.e.,

once doctors are matched to regions, so assume that all doctors report true preferences in

the second round. Suppose that doctors report preferences over regions as in Example 13.

Then doctor d2 is assigned to her third choice hospital h3. However, if d2 reports region

r2 to be her most preferred region while no other doctor changes his reported preference,

then she is matched to h2, which is the optimal matching possible for any of her reported

preferences. In other words, reporting r2 as the most preferred region is a best response

while reporting r1 is not. Next, consider a report of d1 that reports r2 to be his most

preferred region. Then d2 is matched to h1 if she reports r1 to be her most preferred

region while she is matched to her less preferred hospital h2 if she reports r2 to be her

most preferred region. In other words, reporting r1 as the most preferred region is a best

response while reporting r2 is not. Therefore there is no dominant strategy.71 �

A.5. Probationary Teacher Matching in Scotland. Another problem of interest is

the matching of new teachers (called probationary teachers) to schools. Teachers in Scot-

land need to get a training as probationers for one year. The General Teaching Council

for Scotland (GTCS) runs a procedure called the Teacher Induction Scheme, which al-

locates probationary teachers to training posts in Scottish schools.72 Scotland has 32

local authorities, and probationary teachers and these local authorities are matched in

the first round of the mechanism. Information about the algorithm used is unavailable

to our knowledge, but some documents suggest that a slight variant of the random serial

71It is trivial, and hence omitted, to show that reporting no region to be acceptable is weakly domi-

nated, so the above argument is enough to establish the claim.
72See http://www.gtcs.org.uk/home/students/teacher-induction-scheme-faq.aspx.
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dictatorship is used.73 Then each local authority decides which probationers matched to

it are sent to which schools under its control, and that round occurs subsequently to the

first round. The mechanism that local authorities use in this round is up to each local

authority, and appears to vary widely from one local authority to another.

This scheme has a lot in common with the previous examples. As in the U.K. medical

match, the matching clearinghouse first assigns teachers to a local authority, who then

assigns them to schools under its control.

Appendix B. A General Model

Let regional preferences �r be a weak ordering over nonnegative-valued integer

vectors Wr := {w = (wh)h∈Hr |wh ∈ Z+}. That is, �r is a binary relation that is complete

and transitive (but not necessarily antisymmetric). We write w �r w′ if and only if

w �r w′ holds but w′ �r w does not. Vectors such as w and w′ are interpreted to be

supplies of acceptable doctors to the hospitals in region r, but they only specify how many

acceptable doctors apply to each hospital and no information is given as to who these

doctors are. Given �r, a function C̃hr : Wr → Wr is an associated quasi choice rule

if C̃hr(w) ∈ arg max�r
{w′|w′ ≤ w} for any non-negative integer vector w = (wh)h∈Hr .

74

We require that the quasi choice rule C̃hr be consistent, that is, C̃hr(w) ≤ w′ ≤ w ⇒
C̃hr(w

′) = C̃hr(w).75 This condition requires that, if C̃hr(w) is chosen at w and the supply

decreases to w′ ≤ w but C̃hr(w) is still available under w′, then the same choice C̃hr(w)

should be made under w′ as well. Note that there may be more than one quasi choice

rule associated with a given weak ordering �r because the set arg max�r
{w′|w′ ≤ w} may

73“Teacher Induction Scheme 2008/2009,” http://www.scotland.gov.uk/Resource/Doc/200891/0053701.pdf

states that “A computer system will match and allocate students to local authorities using each local

authority’s vacancy list and student’s preference list. You will be chosen at random and matched against

your five preferences, beginning with your first preference. Where an appropriate vacancy is unavailable,

you will be matched against your second preference, and so on until an appropriate match is found.” As

indicated above, a probationary teacher is asked to only rank 5 local authorities, unlike the exact random

serial dictatorship. Another complication is that a student can alternatively tick a preference waiver box

indicating that they are happy to work anywhere in Scotland. Those who choose the preference waiver

option are paid additional compensation.
74For any two vectors w = (wh)h∈Hr and w′ = (w′h)h∈Hr , we write w ≤ w′ if and only if wh ≤ w′h

for all h ∈ Hr. We write w � w′ if and only if w ≤ w′ and wh < w′h for at least one h ∈ Hr. For any

W ′r ⊆Wr, arg max�r W
′
r is the set of vectors w ∈W ′r such that w �r w′ for all w′ ∈W ′r.

75In Appendix G, we show that if a regional preference satisfies substitutability and its associated

quasi choice rule is acceptant, as defined later, then the quasi choice rule satisfies consistency. Aygün

and Sönmez (2012) independently prove analogous results although they do not work on substitutability

defined over the space of integer vectors.
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not be a singleton for some �r and w. Note also that there always exists a consistent

quasi choice rule.76 We assume that the regional preferences �r satisfy the following mild

regularity conditions:

(1) w′ �r w if wh > qh ≥ w′h for some h ∈ Hr and w′h′ = wh′ for all h′ 6= h.

This property says that the region desires no hospital to be forced to be assigned

more doctors than its real capacity. This condition implies that, for any w, the

component [C̃hr(w)]h of C̃hr(w) for h satisfies [C̃hr(w)]h ≤ qh for each h ∈ Hr,

that is, the capacity constraint for each hospital is respected by the (quasi) choice

of the region.

(2) w′ �r w if
∑

h∈Hr
wh > qr ≥

∑
h∈Hr

w′h.

This property simply says that region r prefers the total number of doctors in the

region to be at most its regional cap. This condition implies that
∑

h∈Hr
(C̃hr(w))h ≤

qr for any w, that is, the regional cap is respected by the (quasi) choice of the re-

gion.

(3) If w′ � w ≤ qHr := (qh)h∈Hr and
∑

h∈Hr
wh ≤ qr, then w �r w′.

This condition formalizes the idea that region r prefers to fill as many positions

of hospitals in the region as possible so long as doing so does not lead to a violation

of the hospitals’ real capacities or the regional cap. This requirement implies

that any associated quasi choice rule is acceptant (Kojima and Manea, 2009),

that is, for each w, if there exists h such that [C̃hr(w)]h < min{qh, wh}, then∑
h′∈Hr

[C̃hr(w)]h′ = qr. This captures the idea that the social planner should not

waste caps allocated to the region: If some doctor is rejected by a hospital even

though she is acceptable to the hospital and the hospital’s capacity is not binding,

then the regional cap should be binding.

Definition 3. The regional preferences �r are substitutable if there exists an associated

quasi choice rule C̃hr that satisfies w ≤ w′ ⇒ C̃hr(w) ≥ C̃hr(w
′) ∧ w.

Notice that the condition in this definition is equivalent to

w ≤ w′ ⇒ [C̃hr(w)]h ≥ min{[C̃hr(w
′)]h, wh} for every h ∈ Hr.(B.1)

This condition says that, when the supply of doctors is increased, the number of accepted

doctors at a hospital can increase only when the hospital has accepted all acceptable

76To see this point consider preferences �′r such that w �′r w′ if w �r w′ and w = w′ if w �′r w′ and

w′ �′r w. The quasi choice rule that chooses (the unique element of) arg max�′
r
{w′|w′ ≤ w} for each w

is clearly consistent with �r.
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doctors under the original supply profile. Formally, condition (B.1) is equivalent to

w ≤ w′ and [C̃hr(w)]h < [C̃hr(w
′)]h ⇒ [C̃hr(w)]h = wh.(B.2)

To see that condition (B.1) implies condition (B.2), suppose that w ≤ w′ and [C̃hr(w)]h <

[C̃hr(w
′)]h. These assumptions and condition (B.1) imply [C̃hr(w)]h ≥ wh. Since [C̃hr(w)]h ≤

wh holds by the definition of C̃hr, this implies [C̃hr(w)]h = wh. To see that condition

(B.2) implies condition (B.1), suppose that w ≤ w′. If [C̃hr(w)]h ≥ [C̃hr(w
′)]h, the conclu-

sion of (B.1) is trivially satisfied. If [C̃hr(w)]h < [C̃hr(w
′)]h, then condition (B.2) implies

[C̃hr(w)]h = wh, thus the conclusion of (B.1) is satisfied.

This definition of substitutability is analogous to persistence by Alkan and Gale (2003),

who define the condition on a choice function in a slightly different context. While our

definition is similar to substitutability as defined in standard matching models (see Chap-

ter 6 of Roth and Sotomayor (1990) for instance), there are two differences: (i) it is now

defined on a region as opposed to a hospital, and (ii) it is defined over vectors that only

specify how many doctors apply to hospitals in the region, and it does not distinguish

different doctors.

Given (�r)r∈R, stability is defined as follows.

Definition 4. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors d′ ∈ µh, and

(iii’) either µd /∈ Hr(h) or w �r(h) w
′,

where wh′ = |µh′| for all h′ ∈ Hr(h) and w′h = wh + 1, w′µd = wµd − 1 and w′h′ = wh′ for all

other h′ ∈ Hr(h).

Given the above properties, we can think of the following (generalized) flexible deferred

acceptance algorithm:

The (Generalized) Flexible Deferred Acceptance Algorithm For each region r,

fix an associated quasi choice rule C̃hr which satisfies condition (B.1). Note that the

assumption that �r is substitutable assures the existence of such a quasi choice rule.

(1) Begin with an empty matching, that is, a matching µ such that µd = ∅ for all

d ∈ D.

(2) Choose a doctor d arbitrarily who is currently not tentatively matched to any

hospital and who has not applied to all acceptable hospitals yet. If such a doctor

does not exist, then terminate the algorithm.

(3) Let d apply to the most preferred hospital h̄ at �d among the hospitals that have

not rejected d so far. If d is unacceptable to h̄, then reject this doctor and go
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back to Step 2. Otherwise, let r be the region such that h̄ ∈ Hr and define vector

w = (wh)h∈Hr by

(a) wh̄ is the number of doctors currently held at h̄ plus one, and

(b) wh is the number of doctors currently held at h if h 6= h̄.

(4) Each hospital h ∈ Hr considers the new applicant d (if h = h̄) and doctors who

are temporarily held from the previous step together. It holds its (C̃hr(w))h most

preferred applicants among them temporarily and rejects the rest (so doctors held

at this step may be rejected in later steps). Go back to Step 2.

We define the (generalized) flexible deferred acceptance mechanism to be a mech-

anism that produces, for each input, the matching given at the termination of the above

algorithm.

B.1. Associated Matching Model with Contracts. It is useful to relate our model

to a (many-to-many) matching model with contracts (Hatfield and Milgrom, 2005).77 Let

there be two types of agents, doctors in D and regions in R. Note that we regard a region,

instead of a hospital, as an agent in this model. There is a set of contracts X = D ×H.

We assume that, for each doctor d, any set of contracts with cardinality two or more is

unacceptable, that is, a doctor wants to sign at most one contract. For each doctor d, her

preferences �d over ({d} × H) ∪ {∅} are given as follows.78 We assume (d, h) �d (d, h′)

in this model if and only if h �d h′ in the original model, and (d, h) �d ∅ in this model if

and only if h �d ∅ in the original model.

For each region r ∈ R, we assume that the region has preferences �r and its associated

choice rule Chr(·) over all subsets of D × Hr. For any X ′ ⊂ D × Hr, let w(X ′) :=

(wh(X
′))h∈Hr be the vector such that wh(X

′) = |{(d, h) ∈ X ′|d �h ∅}|. For each X ′, the

chosen set of contracts Chr(X
′) is defined by

Chr(X
′) =

⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ (C̃hr(w(X ′)))h

}
.

(B.3)

That is, each hospital h ∈ Hr chooses its (C̃hr(w(X ′)))h most preferred contracts available

in X ′.

We extend the domain of the choice rule to the collection of all subsets of X by setting

Chr(X
′) = Chr({(d, h) ∈ X ′|h ∈ Hr}) for any X ′ ⊆ X.

77See Fleiner (2003) for a related analysis.
78We abuse notation and use the same notation �d for preferences of doctor d both in the original

model and in the associated model with contracts.
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Definition 5 (Hatfield and Milgrom (2005)). Choice rule Chr(·) satisfies the substitutes

condition if there does not exist contracts x, x′ ∈ X and a set of contracts X ′ ⊆ X such

that x′ /∈ Chr(X
′ ∪ {x′}) and x′ ∈ Chr(X

′ ∪ {x, x′}).

In other words, contracts are substitutes if adding a contract to the choice set never

induces a region to choose a contract it previously rejected. Hatfield and Milgrom (2005)

show that there exists a stable allocation (defined in Definition 7) when contracts are

substitutes for every region.

Definition 6 (Hatfield and Milgrom (2005)). Choice rule Chr(·) satisfies the law of

aggregate demand if for all X ′ ⊆ X ′′ ⊆ X, |Chr(X
′)| ≤ |Chr(X

′′)|.

Proposition 5. Suppose that �r is substitutable. Then choice rule Chr(·) defined above

satisfies the substitutes condition and the law of aggregate demand.

Proof. Fix a region r ∈ R. Let X ′ ⊆ X be a subset of contracts and x = (d, h) ∈ X \X ′

where h ∈ Hr. Let w = w(X ′) and w′ = w(X ′ ∪ x). To show that Chr satisfies the

substitutes condition, we consider a number of cases as follows.

(1) Suppose that ∅ �h d. Then w′ = w and, for each h′ ∈ Hr, the set of acceptable

doctors available at X ′ ∪ x is identical to the one at X ′. Therefore, by inspection

of the definition of Chr, we have Chr(X
′∪x) = Chr(X

′), satisfying the conclusion

of the substitutes condition in this case.

(2) Suppose that d �h ∅.
(a) Consider a hospital h′ ∈ Hr \ h. Note that we have w′h′ = wh′ . This and

the inequality [C̃hr(w
′)]h′ ≤ w′h′ (which always holds by the definition of

C̃hr) imply that [C̃hr(w
′)]h′ ≤ wh′ . Thus we obtain min{[C̃hr(w

′)]h′ , wh′} =

[C̃hr(w
′)]h′ . Since w′ ≥ w and condition (B.1) holds, this implies that

[C̃hr(w)]h′ ≥ [C̃hr(w
′)]h′ .(B.4)

Also observe that the set {d′ ∈ D|(d′, h′) ∈ X ′} is identical to {d′ ∈ D|(d′, h′) ∈
X ′ ∪ x}, that is, the sets of doctors that are available to hospital h′ are iden-

tical under X ′ and X ′ ∪ x. This fact, inequality (B.4), and the definition of

Chr imply that if x′ = (d′, h′) /∈ Chr(X
′), then x′ /∈ Chr(X

′ ∪ x), obtaining

the conclusion for the substitute condition in this case.

(b) Consider hospital h.

(i) Suppose that [C̃hr(w)]h ≥ [C̃hr(w
′)]h. In this case we follow an argu-

ment similar to (but slightly different from) Case (2a): Note that the

set {d′ ∈ D|(d′, h) ∈ X ′} is a subset of {d′ ∈ D|(d′, h) ∈ X ′ ∪ x}, that
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is, the set of doctors that are available to hospital h under X ′ is smaller

than under X ′ ∪ x. These properties and the definition of Chr imply

that if x′ = (d′, h) ∈ X ′ \Chr(X
′), then x′ ∈ X ′ \Chr(X

′∪x), obtaining

the conclusion for the substitute condition in this case.

(ii) Suppose that [C̃hr(w)]h < [C̃hr(w
′)]h. This assumption and (B.2) imply

[C̃hr(w)]h = wh. Thus, by the definition of Chr, any contract (d′, h) ∈
X ′ such that d′ �h ∅ is in Chr(X

′). Equivalently, if x′ = (d′, h) ∈
X ′ \ Chr(X

′), then ∅ �h d′. Then, again by the definition of Chr, it

follows that x′ /∈ Chr(X
′∪x) for any contract x′ = (d′, h) ∈ X ′\Chr(X

′).

Thus we obtain the conclusion of the substitute condition in this case.

To show that Chr satisfies the law of aggregate demand, simply note that C̃hr is acceptant

by assumption. This leads to the desired conclusion. �

A subset X ′ of X = D ×H is said to be individually rational if (1) for any d ∈ D,

|{(d, h) ∈ X ′|h ∈ H}| ≤ 1, and if (d, h) ∈ X ′ then h �d ∅, and (2) for any r ∈ R,

Chr(X
′) = X ′ ∩ (D ×Hr).

Definition 7. A set of contracts X ′ ⊆ X is a stable allocation if

(1) it is individually rational, and

(2) there exists no region r ∈ R, hospital h ∈ Hr, and a doctor d ∈ D such that

(d, h) �d x and (d, h) ∈ Chr(X
′∪{(d, h)}), where x is the contract that d receives

at X ′ if any and ∅ otherwise.

When condition (2) is violated by some (d, h), we say that (d, h) is a block of X ′.

Given any individually rational set of contracts X ′, define a corresponding matching

µ(X ′) in the original model by setting µd(X
′) = h if and only if (d, h) ∈ X ′ and µd(X

′) = ∅
if and only if no contract associated with d is in X ′. Since each doctor regards any set of

contracts with cardinality of at least two as unacceptable, each doctor receives at most

one contract at X ′ and hence µ(X ′) is well defined for any individually rational X ′.

Proposition 6. If X ′ is a stable allocation in the associated model with contracts, then

the corresponding matching µ(X ′) is a stable matching in the original model.

Proof. Suppose that X ′ is a stable allocation in the associated model with contracts and

denote µ := µ(X ′). Individual rationality of µ is obvious from the construction of µ.

Suppose that (d, h) is a blocking pair of µ. Denoting r := r(h), by the definition of

stability, it suffices to show that the following conditions (B.5) and (B.6) hold if µd 6∈ Hr,
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and (B.5), (B.6) and (B.7) hold if µd ∈ Hr:

|µHr | = qr,(B.5)

d′ �h d for all d′ ∈ µh,(B.6)

w �r w′,(B.7)

where w = (wh)h∈Hr is defined by wh′ = |µh′| for all h′ ∈ Hr while w′ = (w′h)h∈Hr is

defined by w′h = wh + 1, w′µd = wµd − 1 (if µd ∈ Hr) and w′h′ = wh′ for all other h′ ∈ Hr.

Claim 1. Conditions (B.5) and (B.6) hold (irrespectively of whether µd ∈ Hr or not).

Proof. First note that the assumption that h �d µd implies that (d, h) �d x where x

denotes the (possibly empty) contract that d signs under X ′. Let w′′ = (w′′h)h∈Hr be

defined by w′′h = wh + 1 and w′′h′ = wh′ for all other h′ ∈ Hr.

(1) Assume by contradiction that condition (B.6) is violated, that is, d �h d′ for some

d′ ∈ µh. First, by consistency of C̃hr, we have [C̃hr(w
′′)]h ≥ [C̃hr(w)]h.

79 That

is, weakly more contracts involving h are signed at X ′ ∪ (d, h) than at X ′. This

property, together with the assumptions that d �h d′ and that (d′, h) ∈ X ′ imply

that (d, h) ∈ Chr(X
′∪(d, h)).80 Thus, together with the above-mentioned property

that (d, h) �d x, (d, h) is a block of X ′ in the associated model of matching with

contracts, contradicting the assumption that X ′ is a stable allocation.

(2) Assume by contradiction that condition (B.5) is violated, so that |µHr | 6= qr.

Then, since |µHr | ≤ qr by the construction of µ and the assumption that X ′ is

individually rational, it follows that |µHr | < qr. Then (d, h) ∈ Chr(X
′ ∪ (d, h))

because,

(a) d �h ∅ by assumption,

(b) since
∑

h∈Hr
wh =

∑
h∈Hr

|µh| = |µHr | < qr, it follows that
∑

h∈Hr
w′′h =∑

h∈Hr
wh + 1 ≤ qr. Moreover, |µh| < qh because (d, h) is a blocking pair by

79To show this claim, assume for contradiction that [C̃hr(w
′′)]h < [C̃hr(w)]h. Then, [C̃hr(w

′′)]h <

[C̃hr(w)]h ≤ wh. Moreover, since w′′h′ = wh′ for every h′ 6= h by construction of w′′, it follows that

[C̃hr(w
′′)]h′ ≤ w′′h′ = wh′ . Combining these inequalities, we have that C̃hr(w

′′) ≤ w. Also we have

w ≤ w′′ by the definition of w′′, so it follows that C̃hr(w
′′) ≤ w ≤ w′′. Thus, by consistency of C̃hr, we

obtain C̃hr(w
′′) = C̃hr(w), a contradiction to the assumption [C̃hr(w

′′)]h < [C̃hr(w)]h.
80The proof of this claim is as follows. Chr(X

′) induces hospital h to select its [C̃hr(w)]h most

preferred contracts while Chr(X
′ ∪ (d, h)) induces h to select a weakly larger number [Chr(w

′′)]h of its

most preferred contracts. Since (d′, h) is selected as one of the [C̃hr(w)]h most preferred contracts for h

at X ′ and d �h d′, we conclude that (d, h) should be one of the [Chr(w
′′)]h ≥ [C̃hr(w)]h most preferred

contracts at X ′ ∪ (d, h), thus selected at X ′ ∪ (d, h).
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assumption and (B.6) holds, so w′′h = |µh|+ 1 ≤ qh. These properties and the

assumption that C̃hr is acceptant imply that C̃hr(w
′′) = w′′. In particular,

this implies that all contracts (d′, h) ∈ X ′ ∪ (d, h) such that d′ �h ∅ is chosen

at Chr(X
′ ∪ (d, h)).

Thus, together with the above-mentioned property that (d, h) �d x, (d, h) is a

block of X ′ in the associated model of matching with contract, contradicting the

assumption that X ′ is a stable allocation.

�

To finish the proof of the proposition suppose that µd ∈ Hr and by contradiction that

(B.7) fails, that is, w′ �r w. Then it should be the case that [C̃hr(w
′′)]h = w′′h = wh + 1 =

|µh|+ 1.81 Also we have |µh| < qh and hence |µh|+ 1 ≤ qh and d �h ∅, so

(d, h) ∈ Chr(X
′ ∪ (d, h)).

This relationship, together with the assumption that h �d µd, and hence (d, h) �d x, is a

contradiction to the assumption that X ′ is stable in the associated model with contracts.

�

A doctor-optimal stable allocation in the matching model with contracts is a sta-

ble allocation that every doctor weakly prefers to every other stable allocation (Hatfield

and Milgrom, 2005). We will show that the flexible deferred acceptance mechanism is

“isomorphic” to the doctor-optimal stable mechanism in the associated matching model

with contracts.

Proposition 7. Suppose that �r is substitutable for every r ∈ R. Then the doctor-

optimal stable allocation in the associated matching model with contracts, X ′, exists. In

the original model, the flexible deferred acceptance mechanism produces matching µ(X ′)

in a finite number of steps.

Proof. First observe that the doctor-optimal stable allocation in matching with contracts

can be found by the cumulative offer process in a finite number of steps (Hatfield and

Milgrom, 2005; Hatfield and Kojima, 2010). Then, we observe that each step of the flexible

deferred acceptance algorithm corresponds to a step of the cumulative offer process, that

81To show this claim, assume by contradiction that [C̃hr(w
′′)]h ≤ wh. Then, since w′′h′ = wh′ for any

h′ 6= h by the definition of w′′, it follows that C̃hr(w
′′) ≤ w ≤ w′′. Thus by consistency of C̃hr, we

obtain C̃hr(w
′′) = C̃hr(w). But C̃hr(w) = w because X ′ is a stable allocation in the associated model of

matching with contracts, so C̃hr(w
′′) = w. This is a contradiction because w′ ≤ w′′ and w′ �r w while

C̃hr(w
′′) ∈ arg max�r{w

′′′|w′′′ ≤ w′′}.
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is, at each step, if d proposes to h in the flexible deferred acceptance algorithm, then at

the same step of the cumulative offer process, contract (d, h) is proposed. Moreover, for

each region, the set of doctors accepted for hospitals in the region at a step of the flexible

deferred acceptance algorithm corresponds to the set of contracts held by the region at

the corresponding step of the cumulative offer process. �

Theorem 4. Suppose that �r is substitutable for every r ∈ R. Then the flexible deferred

acceptance algorithm stops in finite steps. The mechanism produces a stable matching for

any input and is group strategy-proof for doctors.

Proof. Propositions 6 and 7 imply that the flexible deferred acceptance algorithm finds

a stable matching in a finite number of steps. Also, Propositions 5 and 7 imply that

the flexible deferred acceptance mechanism is (group) strategy-proof for doctors, as the

substitutes condition and the law of aggregate demand imply that any mechanism that se-

lects the doctor-optimal stable allocation is (group) strategy-proof (Hatfield and Milgrom,

2005; Hatfield and Kojima, 2009; Hatfield and Kominers, 2010).82 �

B.2. Stability in The Main Text. In this section we are going to establish Theorem 2

in the main text by showing that the stability concept in the main text can be rewritten

by using a substitutable regional preferences.

Fix a region r. Given the target capacity profile (q̄h)h∈Hr and the vector w ∈ Wr, define

the ordered excess weight vector η(w) = (η1(w), ..., η|Hr|(w)) by setting ηi(w) to be

the i’th lowest value (allowing repetition) of {wh − q̄h|h ∈ Hr} (we suppress dependence

of η on target capacities). For example, if w = (wh1 , wh2 , wh3 , wh4) = (2, 4, 7, 2) and

(q̄h1 , q̄h2 , q̄h3 , q̄h4) = (3, 2, 3, 0), then η1(w) = −1, η2(w) = η3(w) = 2, η4(w) = 4.

Consider the regional preferences �r that compare the excess weights lexicographically.

More specifically, let �r be such that w �r w′ if and only if there exists an index i ∈
{1, 2, . . . , |Hr|} such that ηj(w) = ηj(w

′) for all j < i and ηi(w) > ηi(w
′). The associated

weak regional preferences�r are defined by w �r w′ if and only if w �r w′ or η(w) = η(w′).

We call such regional preferences Rawlsian.

82Aygün and Sönmez (2012) point out that a condition called path-independence (Fleiner, 2003) or

irrelevance of rejected contracts (Aygün and Sönmez, 2012) is needed for these conclusions. Aygün and

Sönmez (2012) show that the substitutes condition and the law of aggregate demand imply this condition.

Since the choice rules in our context satisfy the substitutes condition and the law of aggregate demand,

the conclusions go through.
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Proposition 8. Stability defined in the main text (Definition 2) is a special case of the

general concept of stability in the Appendix (Definition 4) such that the regional preferences

of each region are Rawlsian.

Proof. Let µ be a matching and w be defined by wh′ = |µh′| for each h′ ∈ Hr and w′ by

w′h = wh + 1, w′µd = wµd − 1, and w′h′ = wh′ for all h′ ∈ Hr \ {h, µd}. It suffices to show

that w �r w′ if and only if |µh|+ 1− q̄h > |µµd | − 1− q̄µd .

Suppose that |µh|+1− q̄h > |µµd |−1− q̄µd . This means that wh+1− q̄h > wµd−1− q̄µd ,

which is equivalent to either wh− q̄h = wµd−1− q̄µd or wh− q̄h ≥ wµd− q̄µd . In the former

case, obviously η(w) = η(w′), so w �r w′. In the latter case, {h′|w′h′− q̄h′ < |µµd |− q̄µd} =

{h′|wh′ − q̄h′ < |µµd| − q̄µd} ∪ {µd}, and wh′ = w′h′ for all h′ ∈ {h′|wh′ − q̄h′ < |µµd| − q̄µd}.
Thus we obtain w �r w′.

If |µh|+ 1− q̄h ≤ |µµd|−1− q̄µd , then obviously w′ �r w. This completes the proof. �

Consider the (generalized) flexible deferred acceptance algorithm in a previous subsec-

tion. With the following quasi choice rule, this algorithm is equivalent to the flexible

deferred acceptance algorithm in the main text: For each w′ ∈ Wr,

C̃hr(w
′) = max

w=wk for some k∑
h∈Hr

wh≤qr

w,(B.8)

where w0 = (min{w′h, q̄h})h∈Hr and wk ∈ Wr (k = 1, 2, . . . ) is defined by

wkhj = min{w′hj , qhj , w
k−1
hj

+ Ij≡k (mod |Hr|)} for each j = 1, 2, . . . , |Hr|.

Proposition 9. Rawlsian preferences are substitutable with the associated quasi choice

rule (B.8) that corresponds to the flexible deferred acceptance algorithm in the main text.

Proof. It is clear that the quasi choice rule C̃hr defined in (B.8) satisfies the condition

(B.1) for substitutability (as well as consistency and acceptance). Thus in the following,

we will show that C̃hr indeed satisfies C̃hr(w) ∈ arg max�r
{x|x ≤ w} for each w. Let

w′ = C̃hr(w). Assume by contradiction that w′ /∈ arg max�r
{x|x ≤ w} and consider an

arbitrary w′′ ∈ arg max�r
{x|x ≤ w}. Then we have w′′ �r w′, so there exists i such that

ηj(w
′′) = ηj(w

′) for every j < i and ηi(w
′′) > ηi(w

′). Consider the following cases.

(1) Suppose
∑

j ηj(w
′′) >

∑
j ηj(w

′). First note that
∑

j ηj(w
′′) +

∑
h q̄h =

∑
hw
′′
h ≤

qr because w′′ ∈ arg max�r
{x|x ≤ w}. Thus

∑
hw
′
h =

∑
j ηj(w

′) +
∑

h q̄h <∑
j ηj(w

′′) +
∑

h q̄h ≤ qr. Moreover, the assumption implies that there exists a

hospital h such that w′h < w′′h ≤ min{qh, wh}. These properties contradict the

construction of C̃hr.
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(2) Suppose
∑

j ηj(w
′′) <

∑
j ηj(w

′). First note that
∑

j ηj(w
′)+

∑
h q̄h =

∑
hw
′
h ≤ qr

by construction of C̃hr. Thus
∑

hw
′′
h =

∑
j ηj(w

′′)+
∑

h q̄h <
∑

j ηj(w
′)+

∑
h q̄h ≤

qr. Moreover, the assumption implies that there exists a hospital h such that

w′′h < w′h ≤ min{qh, wh}. Then, w′′′ defined by w′′′h = w′′h + 1 and w′′′h′ = w′′h′ for

all h′ 6= h satisfies w′′′ ≤ w and w′′′ �r w′′, contradicting the assumption that

w′′ ∈ arg max�r
{x|x ≤ w}.

(3) Suppose that
∑

j ηj(w
′′) =

∑
j ηj(w

′). Then there exists some k such that ηk(w
′′) <

ηk(w
′). Let l = min{k|ηk(w′′) < ηk(w

′)} be the smallest of such indices. Then

since l > i, we have ηi(w
′) < ηi(w

′′) ≤ ηl(w
′′) < ηl(w

′). Thus it should be the

case that ηi(w
′) + 2 ≤ ηl(w

′). By the construction of C̃hr, this inequality holds

only if w′h = min{qh, wh}, where h is an arbitrarily chosen hospital such that

w′h − q̄h = ηi(w
′). Now it should be the case that w′′h = min{qh, wh} as well,

because otherwise w′′ /∈ arg max�r
{x|x ≤ w}.83 Thus w′h = w′′h. Now consider the

modified vectors of both w′ and w′′ that delete the entries corresponding to h. All

the properties described above hold for these new vectors. Proceeding inductively,

we obtain w′h = w′′h for all h, that is, w′ = w′′. This is a contradiction to the

assumption that w′ /∈ arg max�r
{x|x ≤ w} and w′′ ∈ arg max�r

{x|x ≤ w}.

The above cases complete the proof. �

Theorem 4 and Propositions 8 and 9 imply Theorem 2 in the main text.

B.3. Alternative Criteria. Although the main text focuses on a particular stability

concept and corresponding regional preferences, called Rawlsian preferences, it is quite

plausible that some societies may prefer to impose different criteria from the Rawlsian

preferences. This section proposes other criteria that seem to be appealing. The following

are examples of regional preferences that satisfy substitutability defined in Definition 3.

In the following, we assume that 0 �r w for any weight vector w such that
∑

h∈Hr
wh > qr

or wh > qh for some h ∈ Hr. Thus in (1) - (4) below, we assume that any weight vector

w satisfies
∑

h∈Hr
wh ≤ qr and wh ≤ qh for all h ∈ Hr.

(1) “Equal gains”: Let the region prefer a distribution that equalizes the weights across

hospitals in the region as much as possible. Formally, such a preference, which we

call the equal gains preferences, can be expressed as the Rawlsian preferences

83The proof that w′′ /∈ arg max�r{x|x ≤ w} if w′′h < min{qh, wh} is as follows. Suppose that w′′h <

min{qh, wh}. Consider w′′′ defined by w′′′h = w′′h+1, w′′′h′ = w′′h′−1 for some h′ such that w′′h′−q̄h′ = ηi(w
′′),

and w′′′h′′ = w′′h′′ for all h′′ ∈ Hr \ {h, h′}. Then we have w′′′h − q̄h = w′′h − q̄h + 1 ≤ w′h − q̄h < w′′h′ − q̄h′ ,

where the weak inequality follows because w′′h < min{qh, wh} = w′h. The strict inequality implies that

w′h − q̄h ≤ w′′h′ − 1− q̄h′ = w′′′h′ − q̄h′ . Hence w′′′h − q̄h ≤ w′′′h′ − q̄h′ , which implies w′′′ �r w′′.
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for the special case in which the target capacity for every hospital is set at zero.

Since Proposition 9 shows that the Rawlsian preferences are substitutable for any

target capacity profile, the equal gains preferences satisfy substitutability.

(2) “Equal Losses”: Let the region prefer to equalize the “losses,” that is, the dif-

ferences between the (physical) capacities and the weights across hospitals in the

region. More generally, one could consider the preferences for equal losses above

target capacities, that is, the regional preferences first prefer to fill as many po-

sitions as possible to meet target capacities and then (lexicographically less impor-

tantly) prefer to equalize the losses. To formally define such preferences �r, recall

that η(w) denotes the ordered excess weight vector as defined in Appendix B.2,

and define η̂(w) as a |Hr|-dimensional vector whose i’th component η̂i(w) is the

i’th highest value (allowing repetition) of {qh − wh|h ∈ Hr}. We let w �r w′ if

and only if

(a) there exists an index i ∈ {1, 2, . . . , |Hr|} such that min{ηj(w), 0} = min{ηj(w′), 0}
for all j < i and min{ηi(w), 0} > min{ηi(w′), 0}, or

(b) min{ηi(w), 0} = min{ηi(w′), 0} for every index i ∈ {1, 2, . . . , |Hr|}, and there

exists an index i ∈ {1, 2, . . . , |Hr|} such that η̂j(w),= η̂j(w
′) for all j < i and

η̂i(w) < η̂i(w
′).

(3) “Proportional”: The proportional regional preferences prefer to allocate posi-

tions to hospitals in a proportional manner subject to integer constraints. More

precisely, define η̃(w) as a |Hr|-dimensional vector whose i’th component η̃i(w) is

the i’th lowest value (allowing repetition) of {wh/qh|h ∈ Hr}. We let w �r w′ if

there exists an index i ∈ {1, 2, . . . , |Hr|} such that η̃j(w),= η̃j(w
′) for all j < i

and η̃i(w) > η̃i(w
′). As above, one could consider preferences for proportional

losses as well. Also, these preferences can be generalized so that these concerns

enter only above target capacities (this generalization is somewhat tedious but

straightforward, and can be done as in Item 2). Finally, when constructing η̃i, we

can use a denominator different from qh.
84

(4) “Hospital-lexicographic”: Let there be a pre-specified order over hospitals, and

the region lexicographically prefers filling a slot in a higher-ranked hospital to

filling that of a lower-ranked hospital. For instance, the region may desire to fill

positions of hospitals that are underserved within the region (say, a prefecture

may desire to fill positions of a hospital in a remote island within the prefecture

84Moreover, the generalizations mentioned above can be combined. For example, the region may desire

to fill capacities above targets proportionally to qh − q̄h.
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before other hospitals). Formally, hospital-lexicographic regional preferences

�r are defined as follows. Fix an order over hospitals in r, denoted by h1, h2, . . . ,

and h|Hr|. Let w �r w′ if and only if there exists an index i ∈ {1, 2, . . . , |Hr|}
such that whj = w′hj for all j < i and whi > w′hi . We note that one can also

consider hospital-lexicographic preferences above targets by using the criterion for

hospital-lexicographic preferences for weights above targets.

All the above regional preferences have associated quasi choice rules that satisfy the

property that we call “order-respecting.” To define this property, let there be a finite

sequence of hospitals in region r such that each hospital h appears, potentially repeatedly,

qh times in the sequence, and the total size of the sequence is
∑

h∈Hr
qh. Consider a quasi

choice rule that increases the weights of hospitals one by one following the specified

order.85 Formally, fix a vector (h1, h2, . . . , h∑h∈Hr
qh) ∈ (Hr)

∑
h∈Hr

qh such that #{i ∈
{1, 2, . . . ,

∑
h∈Hr

qh}|hi = h} = qh for each h ∈ Hr, and define C̃hr(w) through the

following algorithm:

(1) Let w0 be the |Hr|-dimensional zero vector, indexed by hospitals in Hr.

(2) For any t ≥ 0, if
∑

h∈Hr
wth = qr or wth = min{qh, wh} for all h ∈ Hr, then stop

the algorithm and define C̃hr(w) = wt . If not, define wt+1 by:

(a) If wtht+1
< min{qht+1 , wht+1}, then let wt+1

ht+1
= wtht+1

+1; otherwise, let wt+1
ht+1

=

wtht+1
.

(b) For every h 6= ht+1, let wt+1
h = wth.

It is easy to see that any order-respecting quasi choice rule satisfies the condition in the

definition of substitutability. Also it is easy to see that, for each of the above regional

preferences (1) - (4), there exists an associated quasi choice rule that is order-respecting.

By these observations, all of the above regional preferences are substitutable.

Remark 5. In addition, it may be of interest to consider regional preferences involving

“subregions”: The region prefers to assign no more doctors than a certain number to a

subset of the hospitals in the region. Such preferences may arise if the society desires to

impose a hierarchy of regional caps, say one cap for a prefecture and one for each district

within the prefecture. Or the policy maker may desire to regulate the total number of

doctors practicing in each specialty in each prefecture. In general, this type of preferences

is outside of the current framework because if a cap of a district in a prefecture is filled

while there are remaining seats in the prefecture as a whole, then no more doctor can be

accepted to hospitals in the district and this violates the assumption that the associated

85Order-respecting quasi choice rules are similar to choice functions based on the precedence order of

Kominers and Sönmez (2012), although we find no logical relationship between these two concepts.



EFFICIENT MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 71

quasi choice rule of the prefecture is acceptant. For this reason, a further generalization of

our model is called for. Such a generalization is done in Online Supplementary Appendix

F.

B.4. Allocating Target Capacities. A problem related to, but distinct from, our dis-

cussion in Appendix B.3 is how to allocate target capacities among hospitals in a region.

We will not try to provide a final answer to the normative question of how to do so for

several reasons. First, there may be different ways to specify the quasi choice rule even

given the same target capacity profile, as we have seen in this section, and in fact there

may be reasonable quasi choice rules that do not even presuppose the existence of target

capacities. Second, even if we fix a quasi choice rule, the relation between target capacities

and the desirability of the resulting outcome is ambiguous. For instance, Example 11 in

the main text shows that the effect on hospital welfare is ambiguous. In fact, Example 20

in Appendix H shows that the same conclusion holds even if hospitals or doctors have ho-

mogeneous preferences, which are strong restrictions that often lead to strong conclusions

in matching.

Despite these reservations, hospitals may still find having higher targets intuitively

appealing in practice, so the problem seems to be practically important. Motivated by

this observation, we present several methods to allocate target capacities that seem to be

reasonable.

To do so, our starting point is to point out that the problem of allocating target capac-

ities is similar to the celebrated “bankruptcy problem” (see Thomson (2003)). This is a

useful association in the sense that, in the bankruptcy problem, there are known analyses

(e.g., axiomatic characterizations) of various allocation rules, which can be utilized to

judge which rule is appropriate for a given application.

To make this association, recall that in the standard bankruptcy problem, there is a

divisible asset and agents whose claims sum up to (weakly) more than the amount of

the available asset. Our problem is a discrete analogue of the bankruptcy problem. The

regional cap qr is an asset, hospitals in region r are agents, and physical capacity qh is the

claim of hospital h. Just as in the bankruptcy problem, the sum of the physical capacities

may exceed the available regional cap, so the target capacity profile (q̄h)h∈Hr needs to be

decided subject to the constraint
∑

h∈Hr
q̄h ≤ qr.

This association suggests adaptations of well-known solutions in the bankruptcy prob-

lem to our problem, with the modification due to the fact that both the asset and the

claims are discrete in our problem. The following are a few examples (in the following,

we assume
∑

h∈Hr
qh ≥ qr; otherwise set q̄h = qh for all h).
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(1) “Constrained Equal Awards Rule”: This solution allocates the targets as equally

as possible except that, for any hospital, it does not allocate a target larger than

the capacity. This rule is called the constrained equal awards rule in the

literature on the bankruptcy problem. In our context, this solution should be

modified because all the targets need to be integers. Formally, a constrained equal

awards rule in our context can be defined as follows:

(a) Find λ that satisfies
∑

h∈Hr
min{λ, qh} = qr.

(b) For each h ∈ Hr, if λ > qh, then set q̄h = qh. Otherwise, set q̄h to be either

bλc (the largest integer no larger than λ) or bλc+ 1, subject to the constraint

that
∑

h∈Hr
q̄h = qr.

The rule to decide which hospital receives bλc or bλc + 1 is arbitrary: For any

decision rule, the resulting target profiles satisfy conditions assumed in the main

text. The decision can also use randomization, which may help achieve ex ante

fairness.

(2) “Constrained Equal Losses Rule”: This solution allocates the targets in such a way

that it equates losses (that is, differences between the capacities and the targets)

as much as possible, except that none of the allocated targets can be strictly

smaller than zero. This rule is called the constrained equal losses rule in the

literature on the bankruptcy problem. As in the case of the constrained equal

awards rule, this solution should be modified because all the targets need to be

integers. Formally, a constrained equal losses rule in our context can be defined

as follows:

(a) Find λ that satisfies
∑

h∈Hr
max{qh − λ, 0} = qr.

(b) For each h ∈ Hr, if qh−λ < 0, then set q̄h = 0. Otherwise, set q̄h to be either

qh − bλc or qh − bλc − 1, subject to the constraint that
∑

h∈Hr
q̄h = qr.

As in the constrained equal awards rule, the rule to decide which hospital receives

qh − bλc or qh − bλc − 1 is arbitrary: For any decision rule, the resulting target

profiles satisfy conditions assumed in the main text. The decision can also use

randomization, which may help achieve ex ante fairness.

(3) “Proportional Rule”: This solution allocates the targets in a manner that is as

proportional as possible to the hospitals’ capacities. This rule is called the pro-

portional rule in the literature on the bankruptcy problem. As in the case of the

previous rules, this solution should be modified because all the targets need to be

integers. Formally, a proportional rule in our context can be defined as follows:

(a) Find λ that satisfies
∑

h∈Hr
λqh = qr.
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(b) For each h ∈ Hr, set q̄h be either bλqhc or bλqhc+ 1, subject to the constraint

that
∑

h∈Hr
q̄h = qr.

As in the previous cases, the rule to decide which a hospital receives bλqhc or

bλqhc + 1 is arbitrary: For any decision rule, the resulting target profiles satisfy

conditions assumed in the main text. The decision can also use randomization,

which may help achieve ex ante fairness.

The proportional rule seems to be fairly appealing in practice. This rule is used

in Japanese residency match and Chinese graduate school admission, for example.

Appendix C. Weak Stability

In this section, we define a weaker stability concept than strong stability and stability.

Our objective here is to generalize the efficiency theorem (Theorem 1), and also to make

statements of impossibility results that do not depend on the particular way of our defining

stability (such as the introduction of target capacities or even regional preferences in the

definition; see Remark 2, Example 6 and Section 6.1.2).

Recall that r(h) is the region that h belongs to.

Definition 8. A matching µ is weakly stable if it is feasible, individually rational, and

if (d, h) is a blocking pair then (i) |µr(h)| = qr(h) and (ii) d′ �h d for all doctors d′ ∈ µh.

The difference of weak stability from strong stability defined in Definition 1 is the

deletion of condition (iii), “µd 6∈ Hr(h).” Thus, a blocking pair such that the doctor in the

pair moves between two hospitals in the same region is tolerated. Moreover, since (iii’)

must be satisfied to be deemed as a tolerated blocking pair under stability while it need

not be in weak stability, weak stability is weaker than stability.86

Since weak stability tolerates too many blocking pairs that do not violate regional caps,

we do not necessarily claim that weak stability is the most natural stability concept. The

main point that we want to make here is that, although this is a weak notion and it does

not even involve the concept of target capacities (or regional preferences in general), the

JRMP mechanism does not even guarantee weak stability. This point can be seen by

Remark 2 in the main text.

We demonstrate that this weak notion of stability does imply a desirable property,

namely efficiency:

86For an example in which the three stability concepts – weak stability, stability, and strong stability

– lead to different choices of matchings, consider Example 2 with the additional specification of a target

capacity profile (q̄h1 , q̄h2) = (1, 0).
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Theorem 5. Any weakly stable matching is (constrained) efficient.

Proof. Let µ be a weakly stable matching and assume, for contradiction, that µ is not

efficient. Then there exists a feasible matching µ′ that Pareto dominates µ, that is, there

is a feasible matching µ′ such that µ′i �i µi for all i ∈ D ∪ H, with at least one being

strict. Noting that matching is bilateral, this implies that there exists a doctor d ∈ D

with µ′d �d µd. Since µ is a weakly stable matching, µd �d ∅ and hence µ′d 6= ∅, so µ′d ∈ H.

Denote h = µ′d. Since µ is a weakly stable matching, h �d µd implies one of the following

(cases (1) and (2) correspond to a situation in which (d, h) is not a blocking pair of µ.

Case (3) covers, by the definition of weak stability, the case in which (d, h) blocks µ):

(1) ∅ �h d.

(2) |µh| = qh and d′ �h d for all d′ ∈ µh.
(3) |µHr | = qr for r such that h ∈ Hr and d′ �h d for all d′ ∈ µh.

Suppose ∅ �h d. Then, if |µh| = qh, then there is a doctor d′′ ∈ µ′h \ µh such that

d′′ �h d′ for some d′ ∈ µh (otherwise, by responsiveness of the preference of h, it follows

that µh �h µ′h). Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting the

assumption that µ′ Pareto dominates µ. If |µh| < qh, then there should be a doctor

d′′ ∈ µ′h \ µh such that d′′ �h ∅ (otherwise, by responsiveness of the preference of h, it

follows that µh �h µ′h). Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting

the assumption that µ′ Pareto dominates µ.

Suppose |µh| = qh and d′ �h d for all d′ ∈ µh. Then there should be a doctor d′′ ∈ µ′h\µh
such that d′′ �h d′ for some d′ ∈ µh (otherwise, by responsiveness of the preference of h,

it follows that µh �h µ′h). Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting

the assumption that µ′ Pareto dominates µ.

Suppose |µHr | = qr for r such that h ∈ Hr and d′ �h d for all d′ ∈ µh. Then, if

|µ′h| ≤ |µh|, then there should be a doctor d′′ ∈ µ′h \ µh such that d′′ �h d′ for some

d′ ∈ µh (otherwise, by responsiveness of the preference of h, it follows that µh �h µ′h).
Then, since µ is weakly stable, µd′′ �d′′ h = µ′d′′ , contradicting the assumption that µ′

Pareto dominates µ. If |µ′h| > |µh|, then since |µHr | = qr, there exists a hospital h′ ∈ Hr

with |µ′h′| < |µh′ |. This, since µ′h′ �h′ µh′ as µ′ Pareto dominates µ, implies that there

should be a doctor d′′ ∈ µ′h′ \ µh′ such that d′′ �h′ d′ for some d′ ∈ µh′ (otherwise, by

responsiveness of the preference of h′, it follows that µh′ �h′ µ′h′). Then, since µ is weakly

stable, µd′′ �d′′ h′ = µ′d′′ , contradicting the assumption that µ′ Pareto dominates µ. �

Since stability implies weak stability, Theorem 5 implies that any stable matching is

efficient, as stated in Theorem 1 in the main text.



EFFICIENT MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 75

Appendix D. Remaining Proofs for the Main Text

Proof of Proposition 1. Assume that d prefers h to her outcome under the flexible deferred

acceptance mechanism. Then d has applied to h and was rejected under the flexible

deferred acceptance algorithm. If the number of doctors matched with h in the flexible

deferred acceptance mechanism is strictly less than its target capacity, then the number

of doctors who have ever applied to h and are acceptable to h is strictly smaller than

the target capacity of h. This implies that any doctor who applied to h and was rejected

in the flexible deferred acceptance algorithm is unacceptable to h. In particular d is

unacceptable, completing the proof. �

The following result, which applies not only to matching with contract models defined

over the set of contracts D×H but also to those defined over general environments, proves

useful.

Lemma 1. Consider a model of matching with contracts. Fix the set of doctors and

regions as well as doctor preferences. Assume that choice rules Ch := (Chr)r∈R and

Ch′ := (Ch′r)r∈R satisfy Ch′r(X
′) ⊆ Chr(X

′) for every subset of contracts X ′ and region

r. Then the following two statements hold:

(1) Each doctor weakly prefers the outcome of the cumulative offer process with respect

to Ch to the result with respect to Ch′. Hence each doctor weakly prefers the doctor-

optimal stable allocation under Ch to the doctor-optimal stable allocation under

Ch′.

(2) The set of contracts that have been offered up to and including the terminal step of

the cumulative offer process under Ch is a subset of the corresponding set under

Ch′.

Proof. Let Yd and Y ′d be the contracts allocated to d by the cumulative offer processes

under Ch and Ch′, respectively. Also, let C(t) be the set of contracts that have been

offered up to and including step t of the cumulative offer process under Ch, and C ′(t) be

the corresponding set for the cumulative offer process under Ch′. Let T and T ′ be the

terminal steps for the cumulative offer processes under Ch and Ch′, respectively. We first

prove Part 2 of the lemma, and then show Part 1.

Part 2: Suppose the contrary, i.e., that C(T ) 6⊆ C ′(T ′). Then there exists a step t′ such

that C(t) ⊆ C ′(T ′) for all t < t′ and C(t′) 6⊆ C ′(T ′) holds. That is, t′ is the first step such

that an application not made in the cumulative offer process under Ch′ is made in the

cumulative offer process under Ch. Let x be the contract that d offers in this step under

Ch. Notice that Y ′d �d x. This implies that Y ′d 6= ∅ and that Y ′d is rejected by r′ in some
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steps of the cumulative offer process under Ch, where r′ is the region associated with

Y ′d . Let the first of such steps be t′′. Since in the cumulative offer process doctors make

offers in order of their preferences, Y ′d �d x implies that t′′ < t′, which in turn implies

C(t′′) ⊆ C ′(T ′) by the definition of t′.

Now, we show that the set of contracts accepted by r′ at step t′′ of the cumulative offer

process under Ch is a superset of the set of contracts accepted by r′ from the application

pool C(t′′) (which is a subset of C ′(T ′)) at step T ′ of the cumulative offer process under

Ch′. To see this, note that if the same application pool C ′(T ′) is given, the set of contracts

accepted by r′ in the cumulative offer process under Ch is weakly larger than that under

Ch′ by the assumption that Ch′r(X
′) ⊆ Chr(X

′) for all X ′ ⊆ X and r ∈ R. Since

Ch is substitutable, subtracting applications in C ′(T ′) \ C(t′′) does not shrink the set of

contracts accepted by r′ within C(t′′) at step t′′ of the cumulative offer process under Ch,

which establishes our claim.

However, this contradicts our earlier conclusion that Y ′d is rejected by r′ at step t′′ of

the cumulative offer process under Ch while she is allocated Y ′d in the cumulative offer

process under Ch′. Hence we conclude that C(T ) ⊆ C ′(T ′).

Part 1: Now, since in the cumulative offer process each doctor d make offers of contracts

in order of her preferences, Yd is ∅ or the worst contract for d in the set of contracts

associated with d in C(T ). Similarly, for each doctor d, Y ′d is ∅ or the worst contract for

d in the set of contracts associated with d in C ′(T ′). If Yd 6= ∅, this and C(T ) ⊆ C ′(T ′)

imply that Yd �d Y ′d . If Yd = ∅, d has applied to all acceptable contracts in the cumulative

offer process under Ch. Thus C(T ) ⊆ C ′(T ′) implies that she has applied to all acceptable

contracts in the algorithm under Ch′, too. Let x′ be the worst acceptable contract in X

for d, and r be a region associated with x′. At this point we already know that Y ′d is either

x′ or ∅, and we will show that Y ′d = ∅ in what follows. Again, C(T ) ⊆ C ′(T ′) implies that

all applications associated with r in C(T ) is in C ′(T ′). In particular, d’s application to x′

is in C ′(T ′). Since Ch is substitutable, subtracting applications in C ′(T ′)\C(T ) does not

shrink the set of doctors accepted by r within C(T ) at step T of the deferred acceptance,

so d not being accepted by r from C(T ) at step T of the cumulative offer process under

Ch implies that she is not accepted by r from C ′(T ′) in step T ′ of the process under Ch′

either. But since we have shown that d’s offer of contract x′ to r is in C ′(T ′), this implies

that in the cumulative offer process under Ch′, x′ is rejected by r. Because x′ is the worst

acceptable contract for d and d’s applications are made in order of her preferences, we

conclude that Y ′d = ∅, thus in particular Yd �d Y ′d .
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This shows that each doctor d ∈ D weakly prefers a contract allocated by the cumulative

offer process under Ch to the one under Ch′.

Since the outcome of the cumulative offer process is the doctor-optimal stable allocation,

the preceding proof has also shown that the doctor-optimal stable allocation under Ch is

weakly more preferred to the doctor-optimal stable allocation under Ch′. �

Lemma 1 is a generalization of a number of existing results. Gale and Sotomayor

(1985a,b) establish comparative statics results in one-to-one and many-to-one matching

with respect to the extension of an agent’s list of her acceptable partners or an addition

of an agent to the market, and Crawford (1991) generalizes the results to many-to-many

matching. Konishi and Ünver (2006) consider many-to-one matching and obtain a com-

parative statics result with respect to the changes of hospital capacities.87 All these

changes are special cases of changes in the choice rules, so these results are corollaries of

Lemma 1.

Lemma 1 may be of independent interest as the most general comparative statics result

known to date. In addition, the lemma implies various results that are directly relevant

to the current study of regional caps, such as Theorem 3 and Propositions 2, 3, and 4 in

the main text.

Proof of Theorem 3. Part 1: Let ChF = (ChFr )r∈R be the choice rule associated with the

flexible deferred acceptance as defined earlier, that is, for each region r ∈ R and subset

of contracts X ′ ⊆ X = D ×H, the chosen set of contracts ChFr (X ′) is defined by

ChFr (X ′) =
⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ (C̃hr(w(X ′)))h

}
,

where C̃hr corresponds to a Rawlsian regional preference of region r and w(X ′) = (wh(X
′))h∈Hr

is the vector such that wh(X
′) = |{(d, h) ∈ X ′|d �h ∅}| (this is a special case of the choice

rule (B.3)).

Moreover, consider choice rules ChD = (ChDr )r∈R and ChJ = (ChJr )r∈R such that, for

each X ′ and r,

ChDr (X ′) =
⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ qh

}
,

ChJr (X ′) =
⋃
h∈Hr

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ q̄h

}
.

87See also Kelso and Crawford (1982), who derive comparative statics results in a matching model

with wages.
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Clearly, both ChD and ChJ satisfy the substitute condition and the law of aggregate de-

mand. Moreover, the matchings corresponding to the results of the cumulative offer pro-

cesses under ChD and ChJ are identical to the results of the deferred acceptance algorithm

and the JRMP mechanism, respectively. Because min{q̄h, wh} ≤ (C̃hr(w(X ′)))h ≤ qh for

all h ∈ Hr and X ′, by inspection of the above definitions of the choice rules we obtain

ChJr (X ′) ⊆ ChFr (X ′) ⊆ ChDr (X ′) for all X ′ and r. Thus the desired conclusion follows by

Part 1 of Lemma 1.

Part 2: This is a direct corollary of Part 1 and the fact that none of the algorithms

considered here matches a doctor to an unacceptable hospital. �

Proof of Proposition 2. Part 1: First, by Part 2 of Lemma 1 and the proof of Theorem 3,

the set of contracts that have been offered up to and including the terminal step under

the deferred acceptance mechanism is a subset of the one under the flexible deferred

acceptance mechanism. Second, by the construction of the flexible deferred acceptance

algorithm, and the assumption that hospital h’s target capacity is not filled, under the

flexible deferred acceptance mechanism h is matched to every doctor who is acceptable

to h and who applied to h in some step of the algorithm. These two facts imply the

conclusion.

Part 2: First, by Part 2 of Lemma 1 and the proof of Theorem 3, the set of contracts that

have been offered up to and including the terminal step under the deferred acceptance

mechanism is a subset of the one under the flexible deferred acceptance mechanism. Sec-

ond, by the construction of the flexible deferred acceptance algorithm, and the assumption

that region r’s regional cap is not filled, under the flexible deferred acceptance mechanism

any hospital h in region r is matched to every doctor who is acceptable and who is among

the most preferred qh doctors who applied to h in some step of the algorithm. These two

facts imply the conclusion. �

Proof of Proposition 3. Let Ch = (Chr)r∈R and Ch
′
= (Ch

′

r)r∈R be the choice rules associ-

ated with the flexible deferred acceptance mechanisms (as defined in the proof of Theorem

3) with respect to (qr)r∈R and (q′r)r∈R, respectively.

Part 1: Because q′r ≤ qr for each r ∈ R, the definition of these choice rules implies

Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r. Hence the desired conclusion follows by Part 1 of

Lemma 1.

Part 2: Since Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r as mentioned in the proof of Part 1,

Part 2 of Lemma 1 implies that C(T ) ⊆ C ′(T ′), where C, T , C ′, and T ′ are as defined

in Part 2 of the lemma. Note that the sets of contracts allocated to hospitals in r at the

conclusions of the cumulative offer processes under Ch and Ch′ are given as r’s choice
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from contracts associated with r in C(T ) and C ′(T ′), respectively. Because the choice

rules satisfy the law of aggregate demand and the set-inclusion relationship C(T ) ⊆ C ′(T ′)

holds, for any r such that qr = q′r, the number of doctors matched in r under a matching

produced by the flexible deferred acceptance mechanism under regional caps (q′r)r∈R is

weakly larger than in the matching under (qr)r∈R, completing the proof. �

Proof of Proposition 4. Let Ch = (Chr)r∈R and Ch
′

= (Ch
′

r)r∈R be the choice rules asso-

ciated with the JRMP mechanisms (as defined in the proof of Theorem 3) with respect

to (q̄h)h∈H and (q̄′h)h∈H , respectively.

Part 1: Because q̄′h ≤ q̄h for each h ∈ H, the definition of these choice rules implies

Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r. Hence the desired conclusion follows by Part 1 of

Lemma 1.

Part 2: Since Ch′r(X
′) ⊆ Chr(X

′) for all X ′ and r as mentioned in the proof of Part 1,

Part 2 of Lemma 1 implies that C(T ) ⊆ C ′(T ′), where C, T , C ′, and T ′ are as defined in

Part 2 of Lemma 1. Note that the matchings for h at the conclusions of the cumulative

offer processes under Ch and Ch′ are given as h’s most preferred acceptable doctors up

to q̄h = q̄′h from contracts associated with h in C(T ) and C ′(T ′), respectively. Thus the

set-inclusion relationship C(T ) ⊆ C ′(T ′) implies both of the statements of Part 2.

�



80 YUICHIRO KAMADA AND FUHITO KOJIMA

ONLINE SUPPLEMENTARY APPENDIX

Appendix E. Simulation Methods and Results for the case of the

Japanese Residency Matching Program

In this appendix we provide results of simulations using the data on Japanese med-

ical residency match. As we have discussed in the main text of the paper (and in the

appendix), there are a number of instances around the world where distributional con-

straints are imposed. We chose the Japanese case as our principal target for simulation

for various reasons: First, all the real data we used in our simulation are available online

for free, so one can replicate our simulation results easily. Second, the Japanese medi-

cal match is highly centralized, so the conclusions from the simulation results are more

meaningful than in some other applications where a (sometimes nontrivial) part of the

matching procedure is not explicitly specified. Third, compared to the current practice

(the JRMP mechanism), our proposal (the flexible deferred acceptance (FDA) mecha-

nism) has an advantage in terms of efficiency and stability, while its effect on the regional

balance of doctors is ambiguous from the theoretical perspective. Thus simulations are

useful. Finally, we have been talking to the Japanese government officials about the FDA

mechanism, and by quantifying the trade-off that we have just mentioned, we have a bet-

ter chance of persuading them to use the FDA mechanism. Since the practicality of the

theory is one of our main goals, we view simulations as a useful analysis to implement.

As we have reviewed in the paper, the JRMP mechanism was introduced in 2009,

and after that, hospitals are asked to gradually decrease their respective capacities, to

eventually match the total capacities to the planned regional cap. Since the government

publicizes only the reduced capacities, we use the hospital capacities in the data just before

2009. More specifically, we use the data from 2007, because the government specified

the regional cap based on that years data. For consistency, we also use other parts of

information from the data of the same year. All the data used here can be obtained at

the webpage of Japanese Medical Residency Program (http://www.jrmp.jp). The data

are in Japanese.

E.1. Simulation Method. We obtain the real data of regional caps of all 47 prefectures,

the capacity and the region (prefecture) of each hospital.

Using these data, we set the target capacity for each hospital following the description

in footnote 13 of the paper. That is, if the sum of the advertised positions in the hospitals

region is no more than the regional cap, then the hospitals target capacity is equal to

the number of its advertised positions; Otherwise, the target is given by the advertised
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number times the fraction of the regional cap over the total number of the advertised

positions in the region.88

The market size. In the simulation, the numbers of doctors and hospitals are 8,291 and

1,357, respectively, which are the number of doctors and hospitals that actually submitted

preference lists in the Japanese residency match in 2007.

Preference lists. We do not have the actual data on submitted or real preferences of the

doctors and hospitals, so given the above information we generated preferences and ran

the simulation. Fortunately, various public data enabled us to set parameters that mimic

the Japanese case, as we explain below.

(1) Doctors. We obtain the actual data on the distribution of the length of preference

lists of doctors (i.e., the number of hospitals listed in the submitted preference list

of each doctor) up to length 8. In the data, the number of doctors who listed k

hospitals is not available for k ≥ 9, while the total number of doctors who listed 9

or more hospitals is available. We also obtain from the data the average number

of hospitals listed, which is 3.48.

For the doctors who list 9 or more hospitals in their preference list, we used the

truncated exponential distribution such that (i) the number of doctors who list k

hospitals is 0.6 times the number of doctors who list k− 1 doctors, for k = 10, 11,

(modulo integer constraints ) (ii) the number of doctors at length 9 is adjusted so

that the average number of listed hospitals is 3.48, the average from the real data,

and (iii) the maximum length is 15. With this specification the number of doctors

at length 9 is smaller than the number for length 8.

The actual data describe, for each hospital, the number of doctors who listed

that hospital in their preference lists. Using these data, for each hospital h, we

define ph to be the number of doctors who listed it in their preference list divided

by the sum of all those numbers across all hospitals (so that it becomes probability,

i.e., the numbers sum up to one). Then each doctor with preference list length

k independently draws hospitals based on this distribution (ph)h∈H , repeatedly k

times without replacement, listing her first pick as the first choice, her second pick

as the second choice, and so on.89

88If the resulting number is not an integer, then we round the numbers to one of the adjacent integers

in such a way that the sum of the target capacities in the region is equal to the regional cap.
89This manner of preference generation is used in a number of matching papers, such as Kojima and

Pathak (2009).
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(2) Hospitals. Each hospital ranks doctors uniform randomly, viewing every doctor

acceptable.90

Remark 6. There could be alternatives for this method. For example we could

have each hospital always rank a doctor with a shorter preference list length than

the one with a longer length and those who have the same length are ranked

uniformly randomly: this might as well be closer to the real data, because those

doctors who rank only a small number of hospitals may be doing so because they

are confident that hospitals rank them high. However, without better data on the

doctor preference, we did not have better foundation for conducting such biased

data generations, hence stuck to the uniformly-random data generation. We hope

that the Japanese government disclose anonymous data of preference lists.

E.2. Simulation Results. Medical matching has two sides, namely doctors and hos-

pitals. In the context of the Japanese medical match, another important issue is the

distributional balance of doctors in different regions. Therefore, in the following we dis-

cuss the simulation results pertinent to welfare of doctors and hospitals, and then discuss

the distributional consequences of the mechanisms across regions.

E.2.1. Doctors and Hospitals.

(1) The number of matched doctors. Figure 2 shows that the cost of using the

JRMP mechanism is quite significant: almost 600 doctors who are matched in

the unconstrained deferred acceptance (DA) mechanism become unmatched in

JRMP (1396 versus 805). However, much of the negative effects can be alleviated

if we switch to FDA: the number of additional doctors who become unmatched

compared to the DA is about 205 (1010 versus 805), which is only about one third

of 600, the corresponding number for the JRMP mechanism. Importantly, FDA

achieves this improvement while satisfying all the regional caps just like the JRMP

does, while DA does not respect regional caps.

90In our simulation code, each hospital actually orders only doctors who find the hospital acceptable.

This is without any consequence because none of the algorithms we consider in this paper is affected by

whether a doctor who finds a hospital unacceptable is acceptable to the hospital.
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Figure 2. The numbers of matched doctors under different mechanisms

(2) The number of doctors who are made strictly better off from JRMP to

FDA, from FDA to DA, and from JRMP to DA.

From/To DA FDA JRMP

DA 0 0 0

FDA 606 (7.3 %) 0 0

JRMP 1547 (18.7 %) 996 (12.0 %) 0

Table 1. The number of doctors who are made strictly better off from

JRMP to FDA, from FDA to DA, and from JRMP to DA.

Table 1 demonstrates the numbers of doctors who become strictly better off by

changing the mechanism from the one in the row to the one in the column. For

example, 996 doctors become strictly better off by changing the mechanism from

the JRMP mechanism to the FDA mechanism. As Theorem 3(1) predicts, there

are no doctors who become strictly better off from FDA to JRMP, or from DA to

the other two mechanisms, and this prediction is confirmed by the zeros in Table

1.

The theorem predicts that doctors are weakly better off by the change from

JRMP to the other two mechanisms and from FDA to DA, but it does not pin
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down how many doctors become strictly better off, and in general it is hard to

obtain an analytical result on strict improvement without making additional as-

sumptions on the preference distributions. This is one of the main motivations

for our simulations. Since DA is unconstrained with respect to the number of

doctors that can be matched to each region, large magnitudes of improvement

from the other two mechanisms to DA is expected. Even so, the simulation result

shows that the improvement from FDA to DA is moderate (7.3%). The result

also shows that the effect of the change from JRMP to FDA–both of which are

constrained by the regional cap– is large (12.0%). In view of the fact that the

DA gives a (loose) upper bound of what FDA can possibly achieve, the simulation

result demonstrates FDAs surprisingly large improvements in doctor welfare upon

the current JRMP mechanism.

(3) Cumulative number of doctors matched to their k-th or better choices
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Figure 3. Cumulative number of doctors matched to their k-th or better

choices.

In the above graph, the horizontal axis describes the ranking, and the vertical

axis describes the number of doctors. For each of the mechanisms, we plot the
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cumulative number of doctors who are matched to their k-th or better choices, for

each value k in the horizontal axis.91

The graph confirms our prediction in Theorem 3(1). That is, the doctors are

better off under DA than under FDA and under FDA than under JRMP. As we

discussed in (2), the theorem does not predict magnitudes of the improvement,

and this motivates simulations. Although regional caps certainly result in worse

outcomes for doctors, more than a half of the loss caused by JRMP compared to

the unconstrained DA can be avoided once FDA is used, even though regional caps

are satisfied in FDA just as in JRMP. The effect is large: for example, about 500

more doctors are matched to their first choices under FDA compared to JRMP.

(4) The number of hospitals that are matched to more doctors in DA, FDA,

and JRMP.

From\To DA FDA JRMP

DA 0 138 (10.2%) 222 (16.4%)

FDA 104 (7.7 %) 0 158 (11.6 %)

JRMP 366 (27.0 %) 376 (27.7 %) 0

Table 2. The number of hospitals that are matched to more doctors in

DA, FDA, and JRMP.

The above table describes the number of the hospitals that gained more doc-

tors in one mechanism than another. For example, 376 hospitals (27.7 % of the

total of 1,357 hospital programs) are matched with more doctors in FDA than in

JRMP. Unlike the corresponding table for the doctors, (2), some hospitals receives

additional doctors while others lose doctors in any transition between the 3 mech-

anisms. But overall, the number of hospitals that receive more doctors is larger

than the number of hospitals that lose doctors in transitions from JRMP to FDA

or DA, which is not surprising given that more doctors are matched in FDA and

DA than in JRMP (although this does not necessarily imply that more hospitals

are matched under FDA or DA than under JRMP).

E.2.2. Regions. It is not surprising that improvement happens for some prefectures from

JRMP or FDA to DA. Also, more than 3/4 of the prefectures are assigned more doctors

91In this figure, we plot only the doctors who are matched with some hospital. This is because it is

what JRMP reports in their reports (and that appears to be reasonable statistics which most people care

about).
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under FDA than under DA. This indicates that, due to the introduction of regional caps,

many prefectures became better off in terms of the number of doctors. The more relevant

question is the comparison of the improvements from JRMP to FDA and from FDA to

JRMP. The exact comparison of the numbers may not make too much sense, but the

numbers indicate that the introduction of FDA does not make most regions get worse off.

This is one finding that the theory did not tell us.

From\To DA FDA JRMP

DA 0 37 (78.7%) 30 (63.8%)

FDA 6 (12.8 %) 0 25 (53.2 %)

JRMP 16 (34.0 %) 20 (42.6 %) 0

Table 3. The number of regions that are assigned strictly more doctors

from JRMP to FDA, from FDA to DA, and from JRMP to DA.

An issue of interest that is suppressed in the above table is the magnitude of improve-

ments and decline in different regions.

-‐20	  

0	  

20	  

40	  

60	  

80	  

100	  

1	   3	   5	   7	   9	   11	   13	   15	   17	   19	   21	   23	   25	   27	   29	   31	   33	   35	   37	   39	   41	   43	   45	   47	  

Ch
an

ge
	  fr
om

	  JR
M
P	  
to
	  F
DA

	  

Prefecture	  

Figure 4. The magnitude of improvements and decline in different regions.

To better see such magnitude, in the above figure we plot the change in the number

of doctors in each region, in a descending order. The graph shows that the magnitude of

improvement from JRMP to FDA is large while that of decline is small. To take some
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numbers, the maximum improvement is 90 while the maximum decline is 11. The area

above the positive region is larger than the one in the negative region, which is consistent

with our overall finding that FDA assigns about 400 more doctors in hospitals than JRMP

does.

This graph is, however, silent about the distributional consequences across regions.

This issue appears to be one of the main concerns in Japan. To study this issue, the

figure below plots which regions become better off and which become worse off in the

transition from JRMP to FDA.
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Figure 5. Distributional consequence of the change from JRMP to FDA.

The horizontal axis measures the number of doctors (not limited to residents) per

100,000 population from 2006, which is the latest data before 2007 that is available to

us, and the vertical axis describes the proportional increase of doctor assignment in the

region caused by the change of the mechanism from JRMP to FDA. The motivation for

this figure is to use the number of doctors per capita as a proxy for how popular each

prefecture is among doctors, and study whether there is any redistribution of doctors

between popular and unpopular areas.
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This figure suggests that there is virtually no adverse distributional consequence against

rural areas. The linear regression suggests only a slight amount of positive relation be-

tween popularity of the prefectures and improvement/decline of doctor assignment, and

indeed the R2 value is as low as 0.00327, suggesting that there is virtually no statistical

correlation between the improvement/decline of doctor assignment and how popular the

area is.

Appendix F. A Generalization for Hierarchies of Regions

This section provides a generalization of the model in Appendix B: we consider the

situation where there is a hierarchy of regional caps. For instance, one could consider a

hierarchy of regional caps, say one cap for a prefecture and one for each district within

the prefecture. Or the policy maker may desire to regulate the total number of doctors

practicing in each specialty in each prefecture. We show that a generalization of the

flexible deferred acceptance mechanism induces a stable matching appropriately defined.

The set of regions R is a subset of 2H \{∅} such that {h} ∈ R for all h ∈ H and H ∈ R
(the region H is called the grand region). Further, we assume that the set of regions R is

nested (a hierarchy), that is, r, r′ ∈ R implies r ⊆ r′ or r′ ⊆ r or r ∩ r′ = ∅. Hr denotes

the set of hospitals in region r (thus we use Hr and r interchangeably for convenience).

For each region r, there is a fixed positive integer qr which we call the regional cap for

r. For singleton region {h} for each h ∈ H, we let q{h} = qh.

For any r, r′ ∈ R, region r′ is said to be an immediate subregion of r if r′ ( r and,

for any r′′ ∈ R, r′′ ( r implies either r′′ ∩ r′ = ∅ or r′′ ⊆ r′. It is straightforward to see

that any non-singleton region r ∈ R is partitioned into its immediate subregions. In the

remainder, we simply refer to an immediate subregion as a subregion. Denote by S(r)

the set of subregions of r.

We say that region r is of depth k if |{r′ ∈ R|r ⊆ r′}| = k. Note that the depth of a

“smaller” region is larger. The standard model without regional caps can be interpreted

as a model with regions of depths less than or equal to 2 (H and singleton sets), and the

model in the main text of this paper has regions of depths less than or equal to 3 (H,

“regions,” and singleton sets), both with qH sufficiently large.

Below is an example in which the set of regions forms a hierarchy.

Example 16. There are 6 hospitals, h1, h2, . . . , h6. The regions are

R = {H, r1, r2, r3, r4, {h1}, {h2}, {h3}, {h4}, {h5}, {h6}},
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where r1 = {h1, h2}, r2 = {h3, h4, h5, h6}, r3 = {h3, h4}, and r4 = {h5, h6}. See Figure 6

for a graphical representation. In this example, r1 and r2 are the (immediate) subregions

Figure 6. A hierarchy of regions in Example 16.

of H, r3 and r4 are the (immediate) subregions of r2, and each singleton region is an

(immediate) subregion of r1 or r3 or r4. The depths of regions are as depicted in the

figure. For example, the depth of H is 1, that of r1 is 2, that of {h1} is 3, and that of

{h5} is 4. �

Let �r be a weak ordering over nonnegative-valued integer vectors Wr := {w =

(wr′)r′∈S(r)|wr′ ∈ Z+}. That is, �r is a binary relation that is complete and transitive

(but not necessarily antisymmetric). We write w �r w′ if and only if w �r w′ holds but

w′ �r w does not. Vectors such as w and w′ will be interpreted to be supplies of accept-

able doctors to regions that partition r, but they will only specify how many acceptable

doctors apply to each subregion and no information is given as to who these doctors are.

Given �r, a function

C̃hr : Wr × {0, 1, 2, . . . , qr} → Wr

is an associated quasi choice rule if C̃hr(w; t) ∈ arg max�r
{w′|w′ ≤ w,

∑
r′∈S(r) w

′
r′ ≤

t} for any non-negative integer vector w = (wr′)r′∈S(r) and non-negative integer t ≤ qr.
92

Intuitively, C̃hr(w, t) is the best vector of numbers of doctors allocated to subregions of r

given a vector of numbers w under the constraint that the sum of the number of doctors

cannot exceed the quota t.

We assume that the regional preferences �r satisfy w �r w′ if w′ � w. This condition

formalizes the idea that region r prefers to fill as many positions in its subregions as

92For any two vectors w = (wr′)r′∈S(r) and w′ = (w′r′)r′∈S(r), we write w ≤ w′ if and only if wr′ ≤ w′r′
for all r′ ∈ S(r). We write w � w′ if and only if w ≤ w′ and wr′ < w′r′ for at least one r′ ∈ S(r). For

any W ′r ⊆Wr, arg max�r W
′
r is the set of vectors w ∈W ′r such that w �r w′ for all w′ ∈W ′r.
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possible. This requirement implies that any associated quasi choice rule is acceptant in

the sense that, for each w and t, if there exists r′ ∈ S(r) such that [C̃hr(w; t, )]r′ < wr′ ,

then
∑

r′∈S(r)[C̃hr′(w; t)]r′ = t. This captures the idea that the social planner should not

waste caps allocated to the region.93

We now define a restriction on preferences that we will maintain throughout our anal-

ysis.

Definition 9. The weak ordering �r is substitutable if there exists an associated quasi

choice rule C̃hr that satisfies

w ≤ w′ and t ≥ t′ ⇒ C̃hr(w; t) ≥ C̃hr(w
′; t′) ∧ w.

Remark 7. A number of remarks on the concept of substitutability are in order. First,

the condition in the definition of substitutability can be decomposed into two parts, as

follows:

w ≤ w′ ⇒ C̃hr(w; t) ≥ C̃hr(w
′; t) ∧ w, and(F.1)

t ≥ t′ ⇒ C̃hr(w; t) ≥ C̃hr(w; t′).(F.2)

Condition (F.1) imposes a condition on the quasi choice rule for different vectors w and w′

with a fixed parameter t while Condition (F.2) places restrictions for different parameters

t and t′ with a fixed vector w. The former condition is similar to the standard substi-

tutability condition except that it deals with multiunit supplies (that is, coefficients in w

can take integers different from 0 or 1).94 The latter condition may appear less familiar,

and it requires that the choice increase (in the standard vector sense) if the allocated

quota is increased. Conditions (F.1) and (F.2) are independent from each other. One

might suspect that these conditions are related to responsiveness of preferences, but these

conditions do no imply responsiveness. In Appendix G we provide examples to distinguish

these conditions.

Second, Condition (F.1) is equivalent to

w ≤ w′ ⇒ [C̃hr(w; t)]r′ ≥ min{[C̃hr(w
′; t)]r′ , wr′} for every r′ ∈ S(r).(F.3)

93This condition is a variant of the concept of acceptance due to Kojima and Manea (2009).
94Third, Condition (F.1) is analogous to persistence by Alkan and Gale (2003), who define the condition

on a choice function in a slightly different context. While our condition is similar to substitutability as

defined in standard matching models (see Chapter 6 of Roth and Sotomayor (1990) for instance), there

are two differences: (i) it is now defined on a region as opposed to a hospital, and (ii) it is defined over

vectors that only specify how many doctors apply to hospitals in the region, and it does not distinguish

different doctors.
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This condition says that, when the supply of doctors is increased, the number of accepted

doctors at a hospital can increase only when the hospital has accepted all acceptable

doctors under the original supply profile. Formally, condition (F.3) is equivalent to

w ≤ w′ and [C̃hr(w; t)]r′ < [C̃hr(w
′; t)]r′ ⇒ [C̃hr(w, t)]r′ = wr′ .(F.4)

To see that condition (F.3) implies condition (F.4), suppose that w ≤ w′ and [C̃hr(w; t)]r′ <

[C̃hr(w
′; t)]r′ . These assumptions and condition (F.3) imply [C̃hr(w; t)]r′ ≥ wr′ . Since

[C̃hr(w; t)]r′ ≤ wr′ holds by the definition of C̃hr, this implies [C̃hr(w; t)]r′ = wr′ . To

see that condition (F.4) implies condition (F.3), suppose that w ≤ w′. If [C̃hr(w; t)]r′ ≥
[C̃hr(w

′; t)]r′ , the conclusion of (F.3) is trivially satisfied. If [C̃hr(w; t)]r′ < [C̃hr(w
′; t)]r′ ,

then condition (F.4) implies [C̃hr(w; t, )]r′ = wr′ , thus the conclusion of (F.3) is satisfied.

Finally, substitutability implies the following natural property that we call “consis-

tency”: A quasi choice rule C̃hr is said to be consistent if for any t, C̃hr(w; t) ≤ w′ ≤
w ⇒ C̃hr(w

′; t) = C̃hr(w; t).95 Consistency requires that, if C̃hr(w; t) is chosen at w and

the supply decreases to w′ ≤ w but C̃hr(w; t) is still available under w′, then the same

choice C̃hr(w; t) should be made under w′ as well. Note that there may be more than

one consistent quasi choice rule associated with a given weak ordering �r because the set

arg max�r
{w′|w′ ≤ w,

∑
r′∈S(r) w

′
r′ ≤ t} may not be a singleton for some �r, w, and t.

Note also that there always exists a consistent quasi choice rule.96 We relegate the proof

for the fact that substitutability implies consistency to Appendix G. �

Now we define the notion of stability and the (generalized) flexible deferred ac-

ceptance algorithm in our context where R is a hierarchy. Let SC(h, h′) ∈ R be the

smallest common region of hospitals h and h′, that is, it is a region r ∈ R with the

property that h, h′ ∈ Hr, and there is no r′ ∈ R with r′ ( r such that h, h′ ∈ Hr′ . Given

(�r)r∈R, stability is defined as follows.

Definition 10. A matching µ is stable if it is feasible, individually rational, and if (d, h)

is a blocking pair then there exists r ∈ R with h ∈ Hr such that (i) |µr| = qr, (ii) d′ �h d
for all doctors d′ ∈ µh, and

(iii’) either µd /∈ Hr or (wr′)r′∈S(SC(h,µd)) �SC(h,µd) (w′r′)r′∈S(SC(h,µd)),

where wr′ =
∑

h′∈r′ |µh′ | for all r′ ∈ S(r) and w′rh = wrh + 1, w′rd = wrd − 1 and w′r′ = wr′

for all other r′ ∈ S(r) where rh and rd are subregions of r such that h ∈ r′h, and µd ∈ rd.
95More precisely, it is Condition (F.1) of substitutability that implies consistency.
96To see this point consider preferences �′r such that w �′r w′ if w �r w′ and w = w′ if w �′r w′ and

w′ �′r w. The quasi choice rule that chooses (the unique element of) arg max�′
r
{w′|w′ ≤ w,

∑
r′∈S(r) w

′
r′ ≤

t} for each w is clearly consistent.
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Remark 8. Condition (iii’) of this definition captures the idea behind stability in Defi-

nition 4 in that a region’s preferences are invoked when a doctor moves within a region

whose regional cap is binding (region r in the definition). However, when r is a strict

superset of SC(h, µd), we do not invoke region r’s regional preferences, but the prefer-

ences of SC(h, µd).
97 The use of preferences of SC(h, µd) reflects the following idea: if

the regional cap at r is binding then holding fixed the number of doctors matched in r

but not in SC(h, µd), there is essentially a binding cap for SC(h, µd). This motivates our

use of the regional preferences of SC(h, µd). The reason for not using preferences of r (or

any region between r and SC(h, µd)) is that the movement of a doctor within the region

SC(h, µd) does not affect the distribution of doctors on which preferences of r (or regions

of any smaller depth than SC(h, µd)) are defined. �

We proceed to define a quasi choice rule for the “hospital side,” denoted C̃h: Let

q̃H = qH . Given w = (wh)h∈H , we define vw{h} = min{wh, qh}, and inductively define

vwr = min{
∑

r′∈S(r) v
w
r′ , qr}. Thus, vwr is the maximum number that the input w can

allocate to its subregions given the feasibility constraints that w and regional caps of

subregions of r impose. Note that vwr is weakly increasing in w, that is, w ≥ w′ implies

vwr ≥ vw
′

r .

We inductively define C̃h(w) following a procedure starting from Step 1, where Step k

for general k is as follows:

Step k: If all the regions of depth k are singletons, then let C̃h(w) = (q̃w{h})h∈H

and stop the procedure. For each nonsingleton region r of depth k, set q̃wr′ =

[C̃hr((v
w
r′′)r′′∈S(r); q̃

w
r )]r′ for each subregion r′ of r. Go to Step k + 1.

Assume that �r is substitutable for every region r. Now we are ready to define a gener-

alized version of the flexible deferred acceptance algorithm:

For each region r, fix an associated quasi choice rule C̃hr for which conditions (F.1) and

(F.2) are satisfied (note that the assumption that �r is substitutable assures the existence

of such a quasi choice rule.)

(1) Begin with an empty matching, that is, a matching µ such that µd = ∅ for all

d ∈ D.

(2) Choose a doctor d arbitrarily who is currently not tentatively matched to any

hospital and who has not applied to all acceptable hospitals yet. If such a doctor

does not exist, then terminate the algorithm.

97 It is important that we allow r to be a strict superset of SC(h, µd). Example 22 in Appendix H

points out that, if we further require r ⊆ SC(h, µd) in Definition 10, then there does not need to exist a

matching that satisfies this stronger notion of stability.
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(3) Let d apply to the most preferred hospital h̄ at �d among the hospitals that have

not rejected d so far. If d is unacceptable to h̄, then reject this doctor and go back

to Step 2. Otherwise, define vector w = (wh)h∈H by

(a) wh̄ is the number of doctors currently held at h̄ plus one, and

(b) wh is the number of doctors currently held at h if h 6= h̄.

(4) Each hospital h ∈ H considers the new applicant d (if h = h̄) and doctors who

are temporarily held from the previous step together. It holds its [C̃h(w)]h most

preferred applicants among them temporarily and rejects the rest (so doctors held

at this step may be rejected in later steps). Go back to Step 2.

We define the (generalized) flexible deferred acceptance mechanism to be a

mechanism that produces, for each input, the matching given at the termination of the

above algorithm.98

F.1. Associated Matching Model with Contracts. It is useful to relate our model

to a (many-to-many) matching model with contracts (Hatfield and Milgrom, 2005). Let

there be two types of agents, doctors in D and the “hospital side” (thus there are |D|+ 1

agents in total). Note that we regard the hospital side, instead of each hospital, as an

agent in this model. There is a set of contracts X = D ×H.

We assume that, for each doctor d, any set of contracts with cardinality two or more

is unacceptable, that is, a doctor can sign at most one contract. For each doctor d, her

preferences �d over ({d} × H) ∪ {∅} are given as follows.99 We assume (d, h) �d (d, h′)

in this model if and only if h �d h′ in the original model, and (d, h) �d ∅ in this model if

and only if h �d ∅ in the original model.

For the hospital side, we assume that it has preferences � and its associated choice

rule Ch(·) over all subsets of D × H. For any X ′ ⊂ D × H, let w(X ′) := (wh(X
′))h∈H

be the vector such that wh(X
′) = |{(d, h) ∈ X ′|d �h ∅}|. For each X ′, the chosen set of

contracts Ch(X ′) is defined by

Ch(X ′) =
⋃
h∈H

{
(d, h) ∈ X ′

∣∣∣ |{d′ ∈ D|(d′, h) ∈ X ′, d′ �h d}| ≤ [C̃h(w(X ′))]h

}
.

That is, each hospital h ∈ H chooses its [C̃h(w(X ′))]h most preferred contracts from

acceptable contracts in X ′.

98Note that this algorithm terminates in a finite number of steps. Note also that, as will be verified

via Proposition 12, the outcome of the algorithm is independent of the order in which doctors make their

applications during the algorithm.
99We abuse notation and use the same notation �d for preferences of doctor d both in the original

model and in the associated model with contracts.
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Definition 11 (Hatfield and Milgrom (2005)). Choice rule Ch(·) satisfies the substitutes

condition if there do not exist contracts x, x′ ∈ X and a set of contracts X ′ ⊆ X such

that x′ /∈ Ch(X ′ ∪ {x′}) and x′ ∈ Ch(X ′ ∪ {x, x′}).

In other words, contracts are substitutes if adding a contract to the choice set never

induces a region to choose a contract it previously rejected. Hatfield and Milgrom (2005)

show that there exists a stable allocation (defined in Definition 13) when contracts are

substitutes for the hospital side.

Definition 12 (Hatfield and Milgrom (2005)). Choice rule Ch(·) satisfies the law of

aggregate demand if for all X ′ ⊆ X ′′ ⊆ X, |Ch(X ′)| ≤ |Ch(X ′′)|.

Proposition 10. Suppose that �r is substitutable for all r ∈ R.

(1) Choice rule Ch(·) defined above satisfies the substitutes condition

(2) Choice rule Ch(·) defined above satisfies the law of aggregate demand.

Proof. Part 1. Fix X ′ ⊂ X. Suppose to the contrary, i.e., that there exist X ′, (d, h) and

(d′, h′) such that (d′, h′) 6∈ Ch(X ′ ∪{(d′, h′)}) and (d′, h′) ∈ Ch(X ′ ∪{(d, h), (d′, h′)}). We

will lead to a contradiction.

Let w′ = w(X ′ ∪ {(d′, h′)}) and w′′ = w(X ′ ∪ {(d, h), (d′, h′)}). The proof consists of

three steps.

Step 1: In this step we observe that q̃w
′

{h′} < q̃w
′′

{h′}. To see this, note that other-

wise we would have q̃w
′

{h′} ≥ q̃w
′′

{h′}, hence by the definition of Ch we must have [Ch(X ′ ∪
{(d′, h′)})]h′ ⊇ [Ch(X ′ ∪ {(d, h), (d′, h′)})]h′ \ {(d, h)}. This contradicts (d′, h′) 6∈ Ch(X ′ ∪
{(d′, h′)}) and (d′, h′) ∈ Ch(X ′ ∪ {(d, h), (d′, h′)}).

Step 2: Consider any r such that h′ ∈ r. Let q̃w
′

r and q̃w
′′

r be as defined in the procedure

to compute C̃h(w′) and C̃h(w′′), respectively. Let r′ ∈ S(r) be the subregion such that

h′ ∈ r′. Suppose q̃w
′

r′ < q̃w
′′

r′ . We will show that q̃w
′

r < q̃w
′′

r . To see this, suppose the

contrary, i.e., that q̃w
′

r ≥ q̃w
′′

r . Let v′ := (vw
′

r′′ )r′′∈S(r) and v′′ := (vw
′′

r′′ )r′′∈S(r). Since w′ ≤ w′′

and vwr′′ is weakly increasing in w for any region r′′, it follows that v′ ≤ v′′. This and

substitutability of �r imply

[C̃hr(v
′; q̃w

′

r )]r′ ≥ min{[C̃hr(v
′′; q̃w

′′

r )]r′ , v
′
r′}.

Since we assume q̃w
′

r′ < q̃w
′′

r′ , or equivalently

[C̃hr(v
′; q̃w

′

r )]r′ < [C̃hr(v
′′; q̃w

′′

r )]r′ ,

this means [C̃hr(v
′; q̃w

′
r )]r′ ≥ v′r′ . But then by [C̃hr(v

′; q̃w
′

r )]r′ ≤ v′r′ (from the definition

of C̃h) we have [C̃hr(v
′; q̃w

′
r )]r′ = v′r′ . But this contradicts the assumption that (d′, h′) 6∈
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Ch(X ′∪{(d′, h′)}), while d′ is acceptable to h′ (because (d′, h′) ∈ Ch(X ′∪{(d, h), (d′, h′)})).
Thus we must have that q̃w

′
r < q̃w

′′
r .

Step 3: Step 1 and an iterative use of Step 2 imply that q̃w
′

H < q̃w
′′

H . But we specified

q̃wH for any w to be equal to qH , so this is a contradiction.

Part 2. To show that Ch satisfies the law of aggregate demand, let X ′ ⊆ X and (d, h)

be a contract such that d �h ∅. We shall show that |Ch(X ′)| ≤ |Ch(X ′ ∪ {(d, h)})|. To

show this, denote w = w(X ′) and w′ = w(X ′ ∪ {(d, h)}). By definition of w(·), we have

that w′h = wh + 1 and w′h′ = wh′ for all h′ 6= h. Consider the following cases.

(1) Suppose
∑

r′∈S(r) v
w
r′ ≥ qr for some r ∈ R such that h ∈ r. Then we have:

Claim 2. vw
′

r′ = vwr′ unless r′ ( r.

Proof. Let r′ be a region that does not satisfy r′ ( r. First, note that if r′∩ r = ∅,
then the conclusion holds by the definitions of vwr′ and vw

′

r′ because w′h′ = wh′ for

any h′ /∈ r. Second, consider r′ such that r ⊆ r′ (since R is hierarchical, these

cases exhaust all possibilities). Since vwr = min{
∑

r′∈S(r) v
w
r′ , qr}, the assumption∑

r′∈S(r) v
w
r′ ≥ qr implies vr(w) = qr. By the same argument, we also obtain

vr(w
′) = qr. Thus, for any r′ such that r ⊆ r′, we inductively obtain vw

′

r′ = vwr′ . �

The relation vw
′

r′ = vwr′ for all r′ ( r implies that, together with the construction

of C̃h,

[C̃h(w′)]h′ = [C̃h(w)]h′ for any h′ /∈ r.(F.5)

To consider hospitals in r, first observe that r satisfies
∑

r′∈S(r) v
w
r′ ≥ qr by

assumption, so vwr = min{
∑

r′∈S(r) v
w
r′ , qr} = qr, and similarly vw

′
r = qr, so vwr =

vw
′

r . Therefore, by construction of C̃h, we also have vwr′ = vw
′

r′ for any region r′ such

that r ⊆ r′. This implies q̃wr = q̃w
′

r , where q̃wr and q̃w
′

r are the assigned regional caps

on r under weight vectors w and w′, respectively, in the algorithm to construct

C̃h.

Now note the following: For any r′ ∈ R, since vwr′ is defined as min{
∑

r′′∈S(r′) v
w
r′′ , qr′}

and all regional preferences are acceptant, the entire assigned regional cap q̃wr′ is

allocated to some subregion of r′, that is, q̄wr′ =
∑

r′′∈S(r′) q̄
w
r′′ . Similarly we also

have q̄w
′

r′ =
∑

r′′∈S(r′) q̄
w′

r′′ . This is the case for not only for r′ = r but also for all

subregions of r, their further subregions, and so forth. Going forward until this
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reasoning reaches the singleton sets, we obtain relation∑
h′∈r

[C̃h(w′)]h′ =
∑
h′∈r

[C̃h(w)]h′ .(F.6)

By (F.5) and (F.6), we conclude that

|Ch(X ′)| =
∑
h′∈H

[C̃h(w)]h′ =
∑
h′∈H

[C̃h(w′)]h′ = |Ch(X ′ ∪ {(d, h)})|,

completing the proof for this case.

(2) Suppose
∑

r′∈S(r) v
w
r′ < qr for all r ∈ R such that h ∈ r. Then the regional cap for

r is not binding for any r such that h ∈ r, so we have

[C̃h(w′)]h = [C̃h(w)]h + 1.(F.7)

In addition, the following claim holds.

Claim 3. [C̃h(w′)]h′ = [C̃h(w)]h′ , for all h′ 6= h.

Proof. First, note that vw
′

r = vwr + 1 for all r such that h ∈ r because the regional

cap for r is not binding for any such r. Then, consider the largest region H. By

assumption, qH has not been reached under w, that is,
∑

r′∈S(H) v
w
r′ < qH . Thus,

since C̃hH is acceptant, the entire vector (vr′(w))r′∈S(H) is accepted by C̃hH , that

is, q̃wr′ = vwr′ . Hence, for any r′ ∈ S(H) such that h /∈ r′, both its assigned regional

cap and all v’s in their regions are identical under w and w′, that is, q̃wr′ = q̃w
′

r′ and

w′h′ = wh′ for all h′ ∈ r′. So, for any hospital h′ ∈ r′, the claim holds.

Now, consider r ∈ S(H) such that h ∈ r. By the above argument, the assigned

regional cap has increased by one in w′ compared to w. But since r’s regional cap

qr has not been binding under w, all the v’s in the subregions of r are accepted in

both w and w′. This means that (1) for each subregion r′ of r such that h /∈ r′, it

gets the same assigned regional cap and v’s, so the conclusion of the claim holds

for these regions, and (2) for the subregion r′ of r such that h ∈ r′, its assigned

regional cap is increased by one in w′ compared to w, and its regional cap qr′

has not been binding. And (2) guarantees that we can follow the same argument

inductively, so the conclusion holds for all h 6= h′. �

By equation (F.7) and Claim 3, we obtain

|Ch(X ′ ∪ {(d, h)})| =
∑
h′∈H

[C̃h(w′)]h′ =
∑
h′∈H

[C̃h(w)]h′ + 1 = |Ch(X ′)|+ 1,

so we obtain |Ch(X ′ ∪ {(d, h)})| > |Ch(X ′)|, completing the proof.

�
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A subset X ′ of X = D ×H is said to be individually rational if (1) for any d ∈ D,

|{(d, h) ∈ X ′|h ∈ H}| ≤ 1, and if (d, h) ∈ X ′ then h �d ∅, and (2) Ch(X ′) = X ′.

Definition 13. A set of contracts X ′ ⊆ X is a stable allocation if

(1) it is individually rational, and

(2) there exists no hospital h ∈ H and a doctor d ∈ D such that (d, h) �d x and

(d, h) ∈ Ch(X ′∪{(d, h)}), where x is the contract that d receives at X ′ if any and

∅ otherwise.

When condition (2) is violated by some (d, h), we say that (d, h) is a block of X ′.

Given any individually rational set of contracts X ′, define a corresponding matching

µ(X ′) in the original model by setting µd(X
′) = h if and only if (d, h) ∈ X ′ and µd(X

′) = ∅
if and only if no contract associated with d is in X ′. For any individually rational X ′,

µ(X ′) is well-defined because each doctor receives at most one contract at such X ′.

Proposition 11. Suppose that �r is substitutable for all r ∈ R. If X ′ is a stable allocation

in the associated model with contracts, then the corresponding matching µ(X ′) is a stable

matching in the original model.

Proof. Suppose that X ′ is a stable allocation in the associated model with contracts and

denote µ := µ(X ′). Individual rationality of µ is obvious from the construction of µ.

Suppose that (d, h) is a blocking pair of µ. By the definition of stability, it suffices to

show that there exists a region r that includes h such that the following conditions (F.8),

(F.9), and µd 6∈ Hr hold, or (F.8), (F.9), (F.10), and h, µd ∈ r hold:

|µHr | = qr,(F.8)

d′ �h d for all d′ ∈ µh,(F.9)

(wr′′)r′′∈S(SC(h,µd)) �SC(h,µd) (w′r′′)r′′∈S(SC(h,µd)),(F.10)

where for any region r′ we write wr′′ =
∑

h′∈r′′ |µh′| for all r′′ ∈ S(r′) and w′rh = wrh + 1,

w′rd = wrd − 1 and w′r′′ = wr′′ for all other r′′ ∈ S(r′) where rh, rd ∈ S(r), h ∈ rh, and

µd ∈ rd. Let w = (wh)h∈H .

For each region r that includes h, let w′′r′ = wr′ +1 for r′ such that h ∈ r′ and w′′r′′ = wr′′

for all other r′′ ∈ S(r). Let w′′ = (w′′h)h∈H .

Claim 4. Condition (F.9) holds, and there exists r that includes h such that Condition

(F.8) holds.

Proof. First note that the assumption that h �d µd implies that (d, h) �d x where x

denotes the (possibly empty) contract that d signs under X ′.
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(1) Assume by contradiction that condition (F.9) is violated, that is, d �h d′ for some

d′ ∈ µh. First, note that [C̃h(w′′)]h ≥ [C̃h(w)]h. That is, weakly more contracts

involving h are signed at X ′ ∪ (d, h) than at X ′. This is because for any r and

r′ ∈ S(r) such that h ∈ r′,

(F.11) [C̃hr((v
w′′

r′′ )r′′∈S(r); q̃r)]r′ ≥ [C̃hr((v
w
r′′)r′′∈S(r); q̃

′
r)]r′ if q̃r ≥ q̃′r.

To see this, first note that [C̃hr((v
w
r′′)r′′∈S(r); q̃r)]r′ ≥ [C̃hr((v

w
r′′)r′′∈S(r); q̃

′
r)]r′ by

substitutability of �r. Also, by consistency of C̃hr and vw
′′

r′′ ≥ vwr′′ for every region

r′′, the inequality

[C̃hr((v
w′′

r′′ )r′′∈S(r); q̃r)]r′ ≥ [C̃hr((v
w
r′′)r′′∈S(r); q̃r)]r′

follows,100 showing condition (F.11). An iterative use of condition (F.11) gives us

the desired result that [C̃h(w′′)]h ≥ [C̃h(w)]h. This property, together with the as-

sumptions that d �h d′ and that (d′, h) ∈ X ′ imply that (d, h) ∈ Ch(X ′∪(d, h)).101

Thus, together with the above-mentioned property that (d, h) �d x, (d, h) is a

block of X ′ in the associated model of matching with contracts, contradicting the

assumption that X ′ is a stable allocation.

(2) Assume by contradiction that condition (F.8) is violated, so that |µHr | 6= qr for

every r that includes h. Then, for such r, since |µHr | ≤ qr by the construction of

µ and the assumption that X ′ is individually rational, it follows that |µHr | < qr.

Then (d, h) ∈ Ch(X ′ ∪ (d, h)) because,

(a) d �h ∅ by assumption,

(b) since
∑

r′∈S(r) wr′ =
∑

h∈Hr
|µh| = |µHr | < qr, it follows that

∑
r′∈S(r) w

′′
r′ =∑

r′∈S(r) wr′ + 1 ≤ qr. This property and the fact that C̃hr is acceptant and

the definition of the function vr′ for regions r′ imply that C̃h(w′′) = w′′. In

100To show this claim, let v = (vwr′′)r′′∈S(r) and v′′ = (vw
′′

r′′ )r′′∈S(r) for notational simplicity and

assume for contradiction that [C̃hr(v
′′; q̃r)]r′ < [C̃hr(v; q̃r)]r′ . Then, [C̃hr(v

′′; q̃r)]r′ < [C̃hr(v; q̃r)]r′ ≤ vr′ .
Moreover, since v′′r′′ = vr′′ for every r′′ 6= r′ by the construction of v′′, it follows that [C̃hr(v

′′)]r′′ ≤ v′′r′′ =

vr′′ . Combining these inequalities, we have that C̃hr(v
′′) ≤ v. Also we have v ≤ v′′ by the definition of

v′′, so it follows that C̃hr(v
′′) ≤ v ≤ v′′. Thus, by consistency of C̃hr, we obtain C̃hr(v

′′) = C̃hr(v), a

contradiction to the assumption [C̃hr(v
′′)]r′ < [C̃hr(v)]r′ .

101The proof of this claim is as follows. Ch(X ′) induces hospital h to select its [C̃h(w)]h most preferred

contracts while Ch(X ′∪(d, h)) induces h to select a weakly larger number [Ch(w′′)]h of its most preferred

contracts. Since (d′, h) is selected as one of the [C̃h(w)]h most preferred contracts for h at X ′ and d �h d′,
we conclude that (d, h) must be one of the [Ch(w′′)]h (≥ [C̃h(w)]h) most preferred contracts at X ′∪(d, h),

thus selected at X ′ ∪ (d, h).



EFFICIENT MATCHING UNDER DISTRIBUTIONAL CONSTRAINTS 99

particular, this implies that every contract (d′, h) ∈ X ′ ∪ (d, h) such that

d′ �h ∅ is chosen at Ch(X ′ ∪ (d, h)).

Thus, together with the above-mentioned property that (d, h) �d x, (d, h) is a

block of X ′ in the associated model of matching with contract, contradicting the

assumption that X ′ is a stable allocation.

�

To finish the proof of the proposition suppose for contradiction that there is no r that

includes h such that (F.8), (F.9), and µd 6∈ Hr hold, and that condition (F.10) fails.

That is, we suppose (w′r′′)r′′∈S(SC(h,µd)) �SC(h,µd) (wr′′)r′′∈S(SC(h,µd)). Then it must be the

case that [C̃hr((v
w′′

r′′ )r′′∈S(SC(h,µd)); q̃
w′′

SC(h,µd))]r′ = w′′r′ = wr′ + 1 = |µh| + 1, where h ∈ r′

and q̃w
′′

SC(h,µd) is as defined in the procedure to compute C̃h(w′′).102 Note that for all r′

such that h ∈ r′ and r′ ( SC(h, µd), it follows that µd /∈ Hr′ . Also note that (F.9) is

satisfied by Claim 4. Therefore we have |µr′ | < qr′ for all r′ ( SC(h, µd) that includes h

by assumption and hence |µr′|+ 1 ≤ qr′ for all such r′. Moreover we have d �h ∅, thus

(d, h) ∈ Ch(X ′ ∪ (d, h)).

This relationship, together with the assumption that h �d µd, and hence (d, h) �d x, is a

contradiction to the assumption that X ′ is stable in the associated model with contracts.

�

102To show this claim, assume for contradiction that [C̃hSC(h,µd)((v
w′′

r′′ )r′′∈S(SC(h,µd)); q̃
w′′

SC(h,µd)
)]r′ ≤

wr′ where h ∈ r′. Let v := (vwr′′)r′′∈S(SC(h,µd)) and v′′ := (vw
′′

r′′ )r′′∈S(SC(h,µd)). Since w′′r′′ = wr′′ for any

r′′ 6= r′ by the definition of w′′, it follows that

C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) ≤ (wr′′)r′′∈SC(h,µd) ≤ (w′′r′′)r′′∈SC(h,µd).

But C̃hSC(h,µd)(v; q̃wSC(h,µd)
) = (wr′′)r′′∈SC(h,µd) because X ′ is a stable allocation in the associated model

of matching with contracts, which in particular implies v = (wr′′)r′′∈SC(h,µd). Since v ≤ v′′, this means

that

C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) ≤ v ≤ v′′.

Thus by consistency of C̃hSC(h,µd), we obtain

C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) = C̃hSC(h,µd)(v; q̃w

′′

SC(h,µd)
).

But again by C̃hSC(h,µd)(v; q̃wSC(h,µd)
) = (wr′′)r′′∈SC(h,µd), by substitutability we ob-

tain C̃hSC(h,µd)(v; q̃w
′′

SC(h,µd)
) = (wr′′)r′′∈SC(h,µd), thus C̃hSC(h,µd)(v

′′; q̃w
′′

SC(h,µd)
) =

(wr′′)r′′∈SC(h,µd). This is a contradiction because (w′r′′)r′′∈SC(h,µd) ≤ (w′′r′′)r′′∈SC(h,µd) =

v′′ and (w′r′′)r′′∈SC(h,µd) �SC(h,µd) (wr′′)r′′∈SC(h,µd) while C̃hSC(h,µd)(v
′′; q̃w

′′

SC(h,µd)
) ∈

arg max�SC(h,µd)
{(w′′′r′′)r′′∈SC(h,µd)|(w′′′r′′)r′′∈SC(h,µd) ≤ v′′,

∑
r′′∈S(SC(h,µd))

w′′′r′′ ≤ q̃w
′′

SC(h,µd)
}.
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A doctor-optimal stable allocation in the matching model with contracts is a sta-

ble allocation that every doctor weakly prefers to every other stable allocation (Hatfield

and Milgrom, 2005). We will show that the flexible deferred acceptance mechanism is

“isomorphic” to the doctor-optimal stable mechanism in the associated matching model

with contracts.

Proposition 12. Suppose that �r is substitutable for every r ∈ R. Then the doctor-

optimal stable allocation in the associated matching model with contracts, X ′, exists. In

the original model, the flexible deferred acceptance mechanism produces matching µ(X ′)

in a finite number of steps.

Proof. First observe that the doctor-optimal stable allocation in matching with contracts

can be found by the cumulative offer process in a finite number of steps (Hatfield and

Milgrom, 2005; Hatfield and Kojima, 2010). Then, we observe that each step of the flexible

deferred acceptance algorithm corresponds to a step of the cumulative offer process, that

is, at each step, if d proposes to h in the flexible deferred acceptance algorithm, then at

the same step of the cumulative offer process, contract (d, h) is proposed. Moreover, the

set of doctors accepted for hospitals at a step of the flexible deferred acceptance algorithm

corresponds to the set of contracts held at the corresponding step of the cumulative offer

process. �

Theorem 6. Suppose that �r is substitutable for every r ∈ R. Then the flexible deferred

acceptance algorithm stops in a finite number of steps. The mechanism produces a stable

matching for any input and is group strategy-proof for doctors.

Proof. Propositions 11 and 12 imply that the flexible deferred acceptance algorithm finds

a stable matching in a finite number of steps. Also, Propositions 10 and 12 imply that

the flexible deferred acceptance mechanism is (group) strategy-proof for doctors, as the

substitutes condition and the law of aggregate demand imply that any mechanism that se-

lects the doctor-optimal stable allocation is (group) strategy-proof (Hatfield and Milgrom,

2005; Hatfield and Kojima, 2009; Hatfield and Kominers, 2010). �

Appendix G. Discussion on Substitutability

In this section we aim to deepen our understanding of substitutability conditions. First

we study the relationship between substitutability and consistency, and then we show

that conditions (F.1) and (F.2) are independent.
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Claim 5. Condition (F.1) implies consistency.103

Proof. Fix � and its associated quasi choice rule C̃hr, and suppose that for some t,

C̃hr(w
′; t) ≤ w ≤ w′. Suppose also that condition (F.1) holds. We will prove C̃hr(w; t) =

C̃hr(w
′; t). Condition (F.1) implies w ≤ w′ ⇒ C̃hr(w; t) ≥ C̃hr(w

′; t) ∧ w. Since

C̃hr(w
′; t) ≤ w implies C̃hr(w

′; t)∧w = C̃hr(w
′; t), this means that C̃hr(w

′; t) ≤ C̃hr(w; t) ≤
w′. If C̃hr(w; t) 6= C̃hr(w

′; t) then by the assumption that C̃hr is acceptant, we must have

C̃hr(w; t) �r C̃hr(w
′; t). But then C̃hr(w

′; t) cannot be an element of arg max�r
{w′′|w′′ ≤

w′,
∑

r′∈S(r) w
′′
r′ ≤ t} because C̃hr(w; t) ∈ {w′′|w′′ ≤ w′,

∑
r′∈S(r) w

′′
r′ ≤ t}. Hence we have

C̃hr(w
′; t) = C̃hr(w; t). �

Example 17 (Regional preferences that violate (F.1) while satisfying (F.2)). There is a

grand region r in which two hospitals reside. The capacity of each hospital is 2. Region

r’s preferences are as follows.

�r: (2, 2), (2, 1), (1, 2), (2, 0), (0, 2), (1, 1), (1, 0), (0, 1), (0, 0).

One can check by inspection that condition (F.2) and consistency are satisfied. To show

that (F.1) is not satisfied, observe first that there is a unique associated choice rule

(since preferences are strict), and denote it by C̃hr. The above preferences imply that

C̃hr((1, 2); 2) = (0, 2) and C̃hr((2, 2); 2) = (2, 0). But this is a contradiction to (F.1)

because (1, 2) ≤ (2, 2) but C̃hr((1, 2); 2) ≥ C̃hr((2, 2); 2) ∧ (1, 2) does not hold (the left

hand side is (0, 2) while the right hand side is (1, 0)). �

Example 18 (Regional preferences that violate (F.2) while satisfying (F.1)). There is a

grand region r in which three hospitals reside. The capacity of each hospital is 1. Region

r’s preferences are as follows.

�r: (1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0).

One can check by inspection that condition (F.1) (and hence consistency by Claim 5)

are satisfied. To show that (F.2) is not satisfied, observe first that there is a unique

associated choice rule (since preferences are strict), and denote it by C̃hr. The above

preferences imply that C̃hr((1, 1, 1); 1) = (0, 0, 1) and C̃hr((1, 1, 1); 2) = (1, 1, 0). But this

is a contradiction to (F.2) because 1 ≤ 2 but C̃hr((1, 1, 1); 1) ≤ C̃hr((1, 1, 1); 2) does not

hold (the left hand side is (0, 0, 1) while the right hand side is (1, 1, 0)). �

103Aygün and Sönmez (2012) independently prove analogous results although they do not work on

substitutability defined over the space of integer vectors.
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Appendix H. Additional Examples

In this section we present five additional examples. The first three examples present

various comparative statics, and the last two examples find the limits to which our theory

can be extended.

The first two examples strengthen the examples on comparative statics regarding re-

gional preferences in the main text by showing that they hold under stronger assumptions

on hospital preferences.

Example 19 (Ordering a hospital earlier may make it worse off even under homogenous

hospital preferences). Let there be hospitals h1 and h2 in region r1, and h3 and h4 in

region r2. Suppose that (qh1 , qh2 , qh3 , qh4) = (2, 2, 2, 2) and (q̄h1 , q̄h2 , q̄h3 , q̄h4) = (1, 0, 0, 0).

The regional cap of r1 is 2 and that for r2 is 1. Preferences are

�hi : d1, d2, d3, d4 for all i = 1, . . . , 4,

�d1 : h4, h1, �d2 : h1, �d3 : h2, �d4 : h1, h3.

We assume that h3 is ordered earlier than h4.

(1) Assume that h1 is ordered earlier than h2. In that case, in the flexible deferred

acceptance mechanism, d1 applies to h4, d2 and d4 apply to h1, and d3 applies to

h2. d1, d2, and d4 are accepted while d3 is rejected. The matching finalizes with:

µ =

(
h1 h2 h3 h4 ∅

d2, d4 ∅ ∅ d1 d3

)
.

(2) Assume that h1 is ordered after h2. In that case, in the flexible deferred acceptance

mechanism, d1 applies to h4, d2 and d4 apply to h1, and d3 applies to h2. d1, d2,

and d3 are accepted while d4 is rejected. d4 applies to h3 next, and d1 is rejected.

d1 then applies to h1, which now rejects d2. The matching finalizes with:

µ′ =

(
h1 h2 h3 h4 ∅
d1 d3 d4 ∅ d2

)
.

First, notice that hospital h2 is better off in case (2). Thus being ordered earlier helps

h2 in this example. However, if h1 prefers {d1} to {d2, d4} (which is consistent with the

assumption that hospital preferences are responsive with capacities), then h1 is also made

better off in case (2). Therefore, the effect of a picking order on hospitals’ welfare is not

monotone. �

Example 20 (Target monotonicity may fail even under homogenous hospital preferences).

Consider a market that is identical to the one in Example 10, except that the target of h1
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is now decreased to 0, with the order such that h1 chooses before h2. Then h1 is matched

to {d1} under the flexible deferred acceptance mechanism. Therefore, if h1 prefers {d1}
to {d2, d4}, then h1 is made better off when its target capacity is smaller. �

In these examples, it is hospitals that have homogeneous preferences. However, these

examples can be modified so that doctors have homogeneous preferences. To do so, modify

preferences to

�h1 : d1, d2, d4, �h2 : d3, �h3 : d4, �h4 : d1,

�di : h4, h1, h3, h2 for all i = 1, . . . , 4.

That is, hospital h finds doctor d acceptable if and only if d finds h acceptable in the

previous examples, while all doctors find all hospitals acceptable and the ranking between

two hospitals are consistent with the rankings between two acceptable hospitals in the

previous examples. By construction, the matchings produced by the flexible deferred

acceptance algorithm in this market are identical to those in the previous examples.

The next example studies comparative statics. Consider splitting a region into a number

of smaller regions that partition the original region, and dividing the original regional cap

among the new smaller regions. One might suspect that doing so makes doctors weakly

worse off because the new set of constraints based on smaller regions may appear more

stringent. The following example shows that this conjecture is incorrect. In fact, splitting

regions can make some doctors and hospitals strictly better off, while making other doctors

and hospitals strictly worse off.

Example 21 (Splitting regions has ambiguous welfare effects). Let there be three hospi-

tals, hi for i = 1, 2, 3 in the grand region r with regional cap of 1. The capacity of each

hospital is 1. There are three doctors in the market, di for i = 1, 2, 3. Suppose that the

regional preferences are such that (1, 0, 0) �r (0, 1, 0) �r (0, 0, 1).

We examine the effect of splitting region r into two smaller regions, r′ = {h1, h3} and

r′′ = {h2}. The splitting needs some rule of allocating the regional cap to the smaller

regions, which in this example corresponds to allocating the cap 1 of r either to r′ or to r′′

(while allocating the regional cap of zero to the other region).104 In what follows we show

that in either case, there exists a preference profile such that the welfare effect of splitting

is ambiguous (i.e., under such a preference profile it is not the case that every agent

104It is only for simplicity that we use an example in which the regional cap of the grand region is

one, and thus one of the smaller regions has a regional cap of zero. Our conclusion does not depend on

this (perhaps unrealistic) assumption: The same point can be made in examples in which a region with

regional cap larger than one is split.
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of one side of the market becomes weakly better/worse off) under the flexible deferred

acceptance mechanism.

Suppose first that the cap 1 of r is allocated to r′. Then, suppose

�di : hi, �hi : di

for i = 2, 3, and d1 and h1 regard no one as acceptable. The flexible deferred acceptance

mechanism produces a matching µ such that µd2 = h2 before splitting, while it produces

a matching µ′ such that µ′d3 = h3 after splitting (no other doctors are matched in either

matching). Thus, splitting the region r makes d2 and h2 strictly worse off, while making

d3 and h3 strictly better off.

Suppose second that the cap 1 of r is allocated to r′′. Then, suppose

�di : hi, �hi : di

for i = 1, 2, and d3 and h3 regard no one as acceptable. The flexible deferred acceptance

mechanism produces a matching µ such that µd1 = h1 before splitting, while it produces

a matching µ′ such that µ′d2 = h2 after splitting (no other doctors are matched in either

matching). Thus, splitting the region r makes d1 and h1 strictly worse off, while making

d2 and h2 strictly better off. �

Note that an analogous example can be easily constructed to show that the effect of

splitting on the welfare of the hospitals outside the split region is also ambiguous. Finally,

also note that the conclusion holds regardless of how we define regional preferences after

splitting the grand region r.

The next example shows that there exists no matching that satisfies a certain strength-

ening of the stability concept (see footnote 97).

Example 22 (Stable matchings do not necessarily exist under a stronger definition).

Suppose that in the definition of stability (Definition 10), we further require that r ⊆
SC(h, µd). We demonstrate that there does not necessarily exist a stable matching under

this notion.

There is a grand region r in which two subregions r′ and r′′ exist. Two hospitals h1

and h2 reside in r′, and one hospital h3 resides in r′′. The capacity of each hospital is 1.

The regional caps are 1 for r, 2 for r′, and 1 for r′′. Regional preferences are as follows.

�r : (1, 0), (0, 1), (0, 0),

�r′ : (0, 2), (1, 1), (2, 0), (0, 1), (1, 0), (0, 0).
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There are two doctors d1 and d2. Preferences are as follows:

�d1 : h1, h2, �d2 : h2, h1,

�h1 : d2, d1, �h2 : d1, d2,

and preferences of h3 are arbitrary.

To show that there exists no stable matching under the stronger definition, first note

that the matching in which all doctors are unmatched is clearly unstable because, for

example, pair (d1, h1) is a valid blocking pair. Also note that no matching under which

both of the two doctors are matched is stable because the regional cap for the grand

region r is one. Thus we are left with the cases in which only one doctor is matched to a

hospital.

(1) Consider a matching µ such that µd1 = h1. Pair (d2, h1) is a blocking pair and,

because d2 �h1 d1, this is a legitimate blocking pair, showing that µ is unstable.

(2) Consider a matching µ such that µd1 = h2. First, note that pair (d1, h1) is a

blocking pair. Moreover, since SC(h1, µd) = r′, we only need to check whether the

cap qr′ of region r′ and the cap q{h1} of the region {h1} are binding. Because |µr′ | =
1 < 2 = qr′ and |µh1 | = 0 < 1 = qh1 , the regional caps are not binding. Hence the

conditions in the stability concept are not satisfied, showing that showing that µ

is unstable.

(3) Consider a matching µ such that µd1 = h3. Since h3 is unacceptable to d1, µ is

unstable.

Any matching in which d2 is matched to a hospital can be shown to be unstable in a

symmetric manner. Hence, there does not exist any stable matching under the stronger

definition. �

The final example of this section shows that a stable matching does not necessarily

exist if the set of regions violates the assumption of a hierarchical structure.

Example 23 (Non-Hierarchical Regions). Suppose that there are three hospitals, h1, h2,

and h3. Suppose that regions are not hierarchical, and

R = {{h1}, {h2}, {h3}, {h1, h2}, {h2, h3}, {h3, h1}, {h1, h2, h3}}.

Each region’s regional cap is 1. There are two doctors, d1 and d2, and preferences are as

follows:

�d1 : h1, h2, h3, �d2 : h3, h1, h2,

�h1 : d2, d1, �h2 : d2, d1; �h3 : d1, d2.
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Regional preferences for binary regions are that {h1, h2} prefers a doctor to be in h1 rather

than h2, {h2, h3} prefers a doctor to be in h2 rather than h3, and {h3, h1} prefers a doctor

to be in h3 rather than h1.

Given the above specification, we show that there is no stable matching. First it is

straightforward to see that there is no stable matching in which zero or two doctors are

matched. So consider the case in which one doctor is matched. By the definition of

stability, no hospital is matched to its second-choice doctor in any stable matching. This

leaves us with only three possibilities: µd2 = h1, µd2 = h2, and µd1 = h3.

In the first case, (d2, h3) is a blocking pair, and from regional preferences of {h3, h1},
the existence of such a blocking pair violates stability. In the second case, (d2, h1) is a

blocking pair, and from regional preferences of {h1, h2}, the existence of such a blocking

pair violates stability. Finally, in the third case, (d1, h2) is a blocking pair, and from

regional preferences of {h2, h3}, the existence of such a blocking pair violates stability.

Hence there is no stable matching. �

Appendix I. Semi-Strong Stability

In the main text, we pointed out that a strongly stable matching may not exist. Then

we weakened the requirement and introduced the stability concept. A natural question is

whether a concept stronger than stability can be imposed. To investigate this issue, we

define the following notion.

Definition 14. A matching µ is semi-strongly stable if it is feasible, individually

rational, and if (d, h) is a blocking pair then (i) |µr(h)| = qr(h), (ii) d′ �h d for all doctors

d′ ∈ µh, and (iii”) either µd /∈ Hr(h) or |µh| − q̄h ≥ 0 ≥ |µµd | − q̄µd .

The second part of condition (iii”) says that a blocking pair (d, h) is not deemed as a

legitimate deviation if doctor d is currently assigned in the region r(h), the number of

doctors matched with hospital µd is no more than its target, and that of hospital h is

no less than its target. That is, a blocking pair that moves the distribution of doctors

unambiguously away from the target capacity is not deemed to be a legitimate deviation.

Note that some blocking pairs that are regarded as illegitimate deviations under stability

are considered legitimate under this concept. For example, if hospital h1 has the target

capacity of 1 and |µh1| = 10, hospital h2 has the target capacity of 5 and |µh2| = 7, and

these two hospitals are in the same region, then a movement of a doctor from h2 to a

vacant position of h1 is considered a legitimate deviation in semi-strong stability but not

in stability.
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Although semi-strong stability may seem to be an appropriate weakening of strong

stability, unfortunately it has the same deficiency as strong stability: a semi-strongly

stable matching does not necessary exist, and there exists no mechanism that is strategy-

proof for doctors and selects a semi-strongly stable matching whenever there exists one.

The following example shows that a semi-strongly stable matching may not exist.

Example 24 (Semi-strongly stable matching may not exist). There is one region r with

regional cap qr = 1, in which three hospitals, h1, h2 and h3, reside. Each hospital h has a

capacity of qh = 1. Suppose that there are two doctors, d1 and d2. The target capacities

of hospitals are (q̄h1 , q̄h2 , q̄h3) = (0, 0, 1). We assume the following preference:

�h1 : d1, d2, �h2 : d2, d1, �h3 : arbitrary,

�d1 : h2, h1, �d2 : h1, h2.

Matching µ such that µh1 = {d1} and µh2 = µh3 = ∅ is stable. Similarly µ′ such that

µ′h1 = µh3 = ∅ and µ′h2 = {d2} is also stable. It is easy to see that these are the only stable

matchings. However, neither µ nor µ′ is semi-strongly stable. To see that µ is not semi-

strongly stable, note that a pair (d1, h2) constitutes a blocking pair and µd1 = h1 ∈ Hr(h2),

and |µh1 | > q̄h1 . Similarly µ′ is not semi-strongly stable. Therefore, a semi-strongly stable

matching does not exist in this market. �

Note that Example 24 is similar to Example 2. In an analogous manner, we can

easily modify Example 3 to construct an example in which there is no mechanism that

is strategy-proof for doctors and finds a semi-strongly stable matching whenever there

exists one.


