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Abstract

Timing of irreversible decisions depends on decision makers’will-

ingness to wait. This paper studies the distinctive effects of risk and

ambiguity on this willingness. We analyze a simple optimal stopping

problem in which a decision maker observes an uncertain environment

and chooses the timing of an irreversible action. We replicate the model

in a laboratory experiment that elicits subjects’ willingness to wait.

Higher risk increases willingness to wait confirming the model’s pre-

dictions. Higher ambiguity also increases willingness to wait. Because

the model predicts that ambiguity decreases willingness to wait if deci-

sion makers are ambiguity averse, this finding is inconsistent ambiguity

aversion in timing decisions.
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1 Introduction

Optimal stopping problems are pervasive in economics and finance. Examples

are abundant and include a firm’s capital investment, job search, industry en-

try and exit, mergers and acquisitions, and default. In all these situations,

agents have a possibility to choose the timing of an irreversible (or partially

irreversible) action. Among the factors that characterize agents’waiting and

stopping decisions, uncertainty and learning play a prominent role. Uncer-

tainty, by changing the probability of extreme events, affects the attractiveness

of waiting. Learning is a natural consequence of the opportunity to wait and

to observe the economic environment. This paper studies, both theoretically

and experimentally, the effect of uncertainty and learning on willingness to

wait.

The literature on timing decisions has mainly interpreted uncertainty as

risk. However, it is well known that uncertainty can occur in two different

forms, with known probabilities, or risk, and with unknown probabilities, or

ambiguity. The distinction between risk and ambiguity not only has a behav-

ioral significance, as documented by an extensive experimental literature, but

can also provide a more appropriate description of reality. In many economic

problems, information may be so imprecise that decision makers cannot at-

tach probabilities to uncertain events. When decision makers choose between

acting immediately and waiting, this fact leads to two separate questions.

(1) Does higher risk increase or decrease willingness to wait?

(2) Does higher ambiguity increase or decrease willingness to wait?

The first question has been largely investigated, in particular in the con-

text of investment models, while recent works by Nishimura and Ozaki (2004,

2007) and Miao and Wang (2010) attempted to answer the second question.

However, the extant literature has neglected the role of learning. In our view,

learning is a realistic feature of timing problems, in particular under ambi-

guity. Ambiguity most clearly arises at some relatively infrequent events of

regime change (be it economic, political, market or technological) when fu-

ture outcomes cannot be any more attached to known probabilities. Waiting
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after such events allows decision makers to observe the new environment and

learn about the nature of uncertainty.1 The other deficiency of the literature

is that the empirical evidence for even the most basic predictions of the the-

ory is scant.2 Particularly in our context, it is diffi cult for an econometrician

to distinguish between risk and ambiguity using field data as this distiction

depends on agents’information sets which are not readily observable. Labo-

ratory experiments that control for the level of risk and ambiguty provide an

opportunity to circumvent this problem. Our work contributes to the litera-

ture in two respects. First, we develop a model with learning to study timing

decisions under risk and ambiguity. Second, we test the model in a laboratory

experiment and provide empirical evidence for the distinct roles of risk and

ambiguity on willingness to wait.

The structure of the model is as follows. A decision maker has an oppor-

tunity to invest in a project by paying a fixed cost. The value of the project

grows deterministically over time but, at each instant, the option to invest can

disappear at an exogenously-specified expiration rate. If the decision maker

invests before expiry, he obtains a payoff equal to the current value of the

project minus the investment cost and he obtains nothing otherwise. Thus,

there is a value in delaying the investment but waiting involves an opportunity

cost because the future payoff is uncertain. There are two possible states of

the world. In the good state, the expiration rate is low, λL, whereas in the bad

state, it is high, λH . The true value of the expiration rate is unknown at the

initial date but the decision maker can learn about the state of the world. As

time progresses and the investment opportunity does not expire, the decision

maker can infer that the state of the world is more likely to be good, and he

updates his belief accordingly.

By featuring irreversibility, uncertainty, and timing flexibility, our model

1The importance of combining ambiguity and learning is also stressed in Epstein and
Schneider (2008), Leippold, Trojani, and Vanini (2008), Campanale (2011), and Ju and
Miao (2012).

2Notable exceptions are Guiso and Parigi (1996), Moel and Tufano (2002), Bloom et al.
(2007), Kellog (2010), and the experimental works of Oprea et al. (2009), Anderson et al.
(2010) and List and Haigh (2010).
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includes all the essential elements of real options theory. The original appli-

cation of real options theory is capital investment, but it has been employed

to describe a variety of economic and non-economic problems, like the tim-

ing of mergers and acquisitions (Lambrecht, 2004), innovation investments in

competitive markets (Weeds, 2002; Huisman and Kort, 2004), debt default

(Leland, 1994), labor market fluctuations (Bentolila and Bertola, 1991), and

political decisions (Polborn, 2006; Keppo, Smith, and Davydov, 2009). Fur-

thermore, our learning structure, in which the decision maker learns about

alternative states of the world, relates our model to bandit problems, a class

of problems which found a widespread application in economics. Bandit prob-

lems have been used, for example, to study capital investment (Décamps and

Mariotti, 2004), R&D financing (Robert and Weitzman, 1981), monopoly pric-

ing (Keller and Rady, 1999), and incentive schemes (Manso, 2011).

We distinguish between a risky and an ambiguous scenario. In a scenario

that features risk, the decision maker knows the exact probabilities of the

high and low expiration rates. A mean-preserving increase in risk in this

environment is given by an increased spread between the high and low rates.

In the problem under ambiguity, the decision maker has imprecise information

on the relative probability of the expiration rate being low or high. He knows

only that this probability lies within a certain interval. A symmetric increase

of this interval increases ambiguity.

We show that higher risk increases willingness to wait, a result consistent

with the standard real options theory. This happens because, when the spread

between high and low expiration rates is larger, the fact that the option does

not expire during a given time interval is a more informative signal. Then,

the decision maker is more willing to wait to make a more informed decision.

We also show that ambiguity decreases willingness to wait of an ambiguity-

averse decision maker. Intuitively, the decision maker dislikes the uncertainty

associated with the waiting region and is willing to exercise the investment

option sooner when ambiguity increases.

With the support of Figure 1, it is useful to interpret our model in compar-

ison with the standard Ellsberg (1961) experiment. In a typical Ellsberg-style
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setting, subjects decide how much to pay to participate in two lotteries, one

risky and one ambiguous, represented by a draw from an urn with balls of

different colors, G and B in the figure (see, for example, Fox and Tversky

(1995) and Halevy (2007)). In the risky lottery, the composition of the urn,

that is, the probability of extracting a B ball, is known and risk is increased

by a mean-preserving spread of payoffs from the two types of balls. In the

ambiguous lottery, the urn composition is (at least partially) unknown; there-

fore, the probability of extracting a B ball does not have a unique value, but

is defined by a range. Ambiguity is increased by widening the range of prob-

ability. In this setting, decision makers disclose their preferences by revealing

their willingness to pay to participate in the lottery, and a lower willingness

to pay for the ambiguous lottery reveals ambiguity aversion.

Our setup is designed to resemble Ellsberg’s two-urn environment. In the

model, the true expiration rate is determined at the initial date by a draw from

a distribution that is known in the risky case but unknown in the ambiguous

case. Risk is measured by the spread between λH and λL, while ambiguity is

measured by the probability interval for the good and bad state. Instead of

revealing their willingness to pay as in the standard Ellsberg setup, decision

makers disclose their preferences by revealing their willingness to wait. As

explained above, a higher risk implies a higher willingness to wait, while higher

ambiguity is reduces willingness to wait of an ambiguity-averse decision maker.

To test the predictions, we replicate the model in a laboratory experiment.

We first run three treatments, Benchmark, Risk, and Ambiguity. Relative

to Benchmark, the Risk and Ambiguity treatments have increased risk and

ambiguity, respectively. The purpose is to test whether individuals respond to

risk by delaying investment and to ambiguity by accelerating investment, as

predicted by the theoretical analysis.

The experimental data support the predictions about risk. In the Risk

treatment, investment is delayed compared with Benchmark. We further find

that investment in Ambiguity is also delayed compared with Benchmark. The

results are robust to a careful treatment of censoring in the experimental data,

inter-round learning, and alternative treatments with different levels of ambi-
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Figure 1: Risk and ambiguity in a static and a dynamic setup.

guity. According to the model, the observed behavior under ambiguity is

inconsistent with ambiguity aversion. A plausible interpretation of our find-

ings is that the assumption of ambiguity aversion, which largely derives from

evidence obtained in static lotteries, fails to describe behavior in more complex

problems. Furthermore, it is also possible that individuals respond differently

to new information under ambiguous and unambiguous priors. We propose

such a hypothesis as an alternative explanation of our results in Section 6.

Overall our stance is that experimental tests of more complex problems can

shed further light on theoretical modelling.

The remainder of the paper is organized as follows. The next section dis-

cusses how the paper relates to the existing literature. Section 3 develops a

model of investment under risk and ambiguity. Section 4 describes the ex-

perimental design and testable hypotheses. Section 5 presents the empirical

analysis. Section 6 provides a further discussion of the main results and Section

7 concludes.
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2 Related Literature

Some recent studies have tested optimal stopping problems in laboratory ex-

periments. Oprea, Friedman, Anderson (2009) take the standard real options

model based on a geometric Brownian motion and study whether subjects

can learn the optimal investment rule. They find supportive evidence that,

by experience, individual behavior converges towards optimality. Anderson,

Friedman, and Oprea (2010) study a preemption investment game and find

that, for the most part, the predictions of the theory are confirmed. List and

Haigh (2010) focus on another facet of the theory of investment under uncer-

tainty, the bad news principle, and conclude that experimental data support

it. In contrast to this paper, all these experiments focus exclusively on invest-

ment under risk and do not explicitly test the comparative statics prediction

with respect to risk.

Theoretical studies that introduce ambiguity into models of investment un-

der uncertainty are presented by Nishimura and Ozaki (2007), Riedel (2009),

and Miao and Wang (2011). Nishimura and Ozaki (2007) rely on the as-

sumption of ambiguity aversion and show that increased ambiguity delays

investment in projects that generate an infinite flow of ambiguous cash flows.

In contrast, our model considers the case in which investment yields a cer-

tain (unambiguous) payoff and is, therefore, closer to the job-search model

of Nishimura and Ozaki (2004). Consistent with our results, Nishimura and

Ozaki (2004) show that an increase in ambiguity decreases the reservation

wage and induces the ambiguity-averse worker to end the job search earlier.

Miao and Wang (2011) further clarify that the sign of the effect of ambiguity

depends on whether the uncertainty is resolved at the time of the investment.

When ambiguity affects only the waiting region and the payoff is certain, am-

biguity accelerates investment, if the decision maker is ambiguity averse. In

contrast, if the final payoff is also ambiguous, investment is delayed. Because

we consider the case in which the payoff from investment is certain, our model

is consistent with the predictions made by Miao and Wang (2011).3

3Riedel (2009) provides a more general treatment of stopping-time problems under am-

7



An important difference between our model and the investment models of

Nishimura and Ozaki (2007) and Miao and Wang (2011) is that they assume

that ambiguity is not reduced by the observational data. This paper takes a

different perspective and considers an environment in which information on

the nature of uncertainty is progressively revealed to the decision maker. In

this respect, our approach is closer to the work of Cagetti, Hansen, Sargent,

and Williams (2002), Epstein and Schneider (2007), Leippold, Trojani, and

Vanini (2008), Campanale (2011), and Ju and Miao (2012). These papers show

that the combined action of learning and ambiguity, under the assumption

of ambiguity aversion, can match a wider set of empirical regularities than

ambiguity or learning alone. We already explained in the introduction why we

believe that learning combined with ambiguity is a more accurate description

of reality. Furthermore, the models without learning like those Nishimura

and Ozaki (2007) and Miao and Wang (2011) can be more problematic to be

implemented in the laboratory. These models exclude learning but feature

independently and indistinguishably distributed ambiguity. In our setting, for

example, this would require that at each instant the investment opportunity is

assigned a new expiration rate from each time different, but equally ambiguous,

distributions. This may be diffi cult to comprehend especially in continuous

time, and the experimenter needs to make sure that subjects are indeed not

attempting to learn the underlying distribution. We avoid this concern by

studying a setting with only a single, initial source of ambiguity.

3 The Model

3.1 A Simple Stopping Problem

We first present a simple optimal stopping problem that will serve as a build-

ing block for our analysis. Time is continuous and labeled by t ∈ [0,∞). A

risk-neutral decision maker (DM) discounts the future at rate r and has an

opportunity (option) to invest in a project of value Vt by paying a fixed cost

biguity applicable also to investment settings.
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equal to C.4 The value of the project grows deterministically over time; there-

fore, the DM has an incentive to wait. However, the opportunity to invest

can expire and disappear at a random time denoted by T . This means that

if the DM invests at time τ before the opportunity expires, he obtains a pay-

off Vτ − C, but he receives nothing otherwise. The payoff can be written as
(Vτ − C)1τ<T . The DM must decide when to invest.

The value of the project Vt evolves according to

Vt = V0e
µt, (1)

where µ > 0 is the growth rate. At each moment, the investment opportunity

may vanish with a strictly positive probability. The expiration of the invest-

ment option is modeled as a Poisson shock with a mean arrival rate λ > 0.

This means that, over a period of time ∆t, the DM loses the opportunity to

invest with probability λ∆t. We assume that λ+ r > µ to guarantee that the

option to invest will be optimally exercised in finite time.

At time t ≥ 0 the DM’s problem is

max
τ≥t

Et
[
(Vτ − C)e−r(τ−t)1τ<T

]
. (2)

In general, τ is a stopping time adapted to the filtration of the model but no

new unanticipated information arrives before expiry so the relevant filtration

is just the calendar time. We can then use that T is exponentially distributed

with rate λ, so that Et [1τ<T ] = Pr [T > τ |T > t] = 1−Fexp(τ−t;λ) = e−λ(τ−t),

to rewrite the problem as

max
τ≥t

[
(Vte

µ(τ−t) − C)e−(r+λ)(τ−t)] .
The first-order condition for optimal τ ∗ is

(µ− r − λ)Vte
µ(τ∗−t) + (r + λ)C = 0.

4The assumption of risk neutrality does not affect the qualitative predictions of the
model, which are the object of our experimental analysis. In Appendix B, we show that our
results hold also when the decision maker is risk averse.
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This yields that the DM invests as soon as Vt reaches a threshold V ∗K = Vτ∗

given by

V ∗K =
βK

βK − 1
C,

where βK = (r+ λ)/µ > 1. The subscripts K stands for "known," to indicate

that the DM has a perfect knowledge of the expiration rate λ. βK is a ratio

of the per-period cost of waiting, r + λ (discounting plus the probability of

expiry), and the per-period benefit of waiting, µ (the growth rate).

The ratio βK/ (βK − 1) > 1 provides the proportion by which the value of

the project should increase above the cost to induce the DM to invest. A higher

λ decreases the investment trigger. Intuitively, if the probability of losing the

investment opportunity is higher, the DM will exercise the investment option

sooner. In contrast, when µ is higher, he will postpone the investment to

exploit the greater growth potential.

3.2 Unknown Expiration Rate

To introduce varying levels of risk and ambiguity, we now consider a slightly

modified setting. As in the previous section, the DM has the opportunity to

invest in a project of value Vt that grows according to (1). At each moment,

the option to invest expires with a strictly positive probability and the expi-

ration rate is determined by the intensity of a Poisson process. However, the

expiration rate is unknown. The DM knows that two states of the world are

possible. In the bad state, the expiration rate, λH , is high. In the good state

the expiration rate, λL, is low (λH > λL holds). The DM knows the values of

the two λs but does not know the realization of the state. To ensure that the

investment problem always has a finite solution and achieves a maximum, we

assume that

r + λL > µ. (3)

Suppose that the DM has a subjective belief about the relative probability

of the two states. Specifically, he believes that the intensity of the expiration

rate is λL with probability p ∈ (0, 1). At the moment, we do not specify
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how this belief is formed at the initial time t = 0. However, we do specify

how it evolves over time. If at t = 0 the DM finds it optimal not to invest

immediately, he waits for larger values of the project. By waiting, the DM

observes the investment payoffto rise according to (1) and the (non)occurrence

of expiry. If the DM waits and the option to invest does not expire, he updates

his belief in a Bayesian fashion. According to Bayes’rule, after an interval ∆t,

the DM’s posterior belief is

pt + ∆pt =
pt (1− λL∆t)

pt (1− λL∆t) + (1− pt) (1− λH∆t)
.

Taking the limit ∆t → 0 and rearranging yields an instantaneous change in

belief:

dpt = pt (1− pt) (λH − λL) dt. (4)

Equation (4) can be interpreted as the speed at which the DM learns about

the true state of the world. Two properties of dp are worth noting. First,

the speed of learning is proportional to the difference ∆λ = λH − λL. The

explanation is that, when the difference between λH and λL is large, it is very

informative that during a given time interval the option to invest does not

vanish. The DM then becomes rapidly confident that the true expiration rate

is low, and p increases quickly. Second, learning is fastest if the realization

of λ is still the most uncertain (when p is 0.5) and the slowest if one of λs is

nearly certain (when pt is close to 0 or 1).5

Equation (4) implies that p can be written as an explicit function of time

t:

pt =
p0e

λH t

(1− p0) eλLt + p0eλH t
, (5)

where p0 is the belief at time t = 0. The problem as formulated above has two

state variables, the value of the project V and the belief p. Finally, because

both V and p are functions of time only, one can rewrite p as a function of V ,

5These two characteristics of learning dynamics are useful for interpretation of our re-
sults. We note that they are identical in other learning problems with binary states and so
are not specific to the Poisson signals in our model (see, e.g., Moscarini and Smith (2001)
and Keppo, Moscarini and Smith (2008) for models with Gaussian signals).
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denoted p(V ):

pt = p (Vt) =
π0 (Vt/V0)θ

1 + π0 (Vt/V0)θ
. (6)

where π0 = p0/(1− p0) and θ = (λH − λL) /µ.

In the remainder of the paper, we distinguish two different scenarios. First,

we discuss a risk scenario, in which the DM knows the relative probability

of the two states of the world at the initial time. Second, we consider an

ambiguity scenario, in which the probability is unknown.

3.3 Risk

In the risk scenario, the DM has a single initial prior, denoted by p0, which de-

scribes the probability of the expiration rate being λL at time 0. The analysis

here is consistent with the assumption that the DM knows the true probability

with which the state of the world is selected, or that he can form a single sub-

jective prior that represents his beliefs. In either case, the standard expected

utility model can be applied. We measure risk as the spread between λH and

λL. Risk is increased at time 0 by widening the difference ∆λ = λH−λL while
keeping the expected expiration rate, p0λL + (1− p0)λH , constant. The goal

of this section is to study the effect of risk on the timing of investment.

The decision problem is analogous to the one described in Section 3.1. At

time t ≥ 0, the problem is again given by (2). The distribution of the expiry

time T is now such that

Et [1τ<T ] = Pr [T > τ |T > t] = pt(1− Fexp(τ − t;λL))

+(1− pt)(1− Fexp(τ − t;λH)) = pte
−λL(τ−t) + (1− pt)e−λH(τ−t)

Thus problem (2) can be rewritten as

max
τ≥t

[
(Vte

µ(τ−t) − C)e−r(τ−t)
(
pte
−λL(τ−t) + (1− pt)e−λH(τ−t))] . (7)
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The first-order condition for optimal τ ∗ is

pτ∗ [(µ− r − λL)Vτ∗ + (r + λL)C]+(1−pτ∗) [(µ− r − λH)Vτ∗ + (r + λH)C] = 0.

(8)

Rearranging this yields that the DM invests as soon as Vt reaches a threshold

V ∗R = Vτ∗ given by

V ∗R =
βR(V ∗R)

βR(V ∗R)− 1
C, (9)

where βR(V ) = [r + p(V )λL + (1− p(V ))λH ] /µ. βR is a cost-benefit ratio

similar to βK but the cost of waiting in the numerator now involves the

weighted probability of expiry, ptλL + (1− pt)λH .
Next, we study qualitative effects of a mean-preserving increase in risk.

Proposition 1 The investment threshold V ∗R is increasing in risk.

Proposition 1 states that an increase in risk increases willingness to wait.

The explanation is related to new information flows. With greater risk, the

spread between the positive and negative realizations (λH and λL) is larger

and learning proceeds more quickly, so it is more worthwhile to wait to make

a more informed decision.6

A delay of investment in response to a higher risk shown above depends

on the options effect (risk makes the option to wait more valuable) and it is

not dependent on the DM’s risk attitude. In Appendix B, we solve the model

for a risk-averse DM with CRRA utility and show that, although risk aversion

affects the option exercise strategy, the result of Proposition 1 still holds.

Specifically, risk aversion accelerates the exercise of the option. However, for

a given degree of risk aversion, a higher risk increases the upside potential of

the option and delays investment.

6Many real options investment models do not feature learning, but the intuition that
waiting for new information is more valuable under higher risk is similar to ours. In a
popular class of such models, risk is measured by the volatility coeffi cient of a diffusion
process (typically a geometric Brownian motion describing the value of investment). Both
upside potential and downside risk increase with higher volatility. Optionality allows the
decision maker to benefit from high realizations and limit the impact of low realizations.
Therefore, the value of waiting to get new information about realizations increases with risk.
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3.4 Ambiguity

In the ambiguity scenario, the DM has only imprecise knowledge of the initial

probability of the two states of the world. For this reason, the DM cannot form

a single prior and can only identify a set of plausible beliefs. Let Pt be a closed
compact set of plausible beliefs. At the initial time t = 0, the initial probability

set is defined by P0= [p− ε, p+ ε]. Here, p simply denotes the middle point of

the set of plausible initial probabilities while ε ∈ (0,min [p, 1− p]] is a measure
of ambiguity.

As in the risky case described in Section 3.3, the DM learns about the

true state of the world. As time progresses and the investment option does

not vanish, the DM becomes more confident that the true expiration rate is

λL. However, under ambiguity, contrary to the risky case, the learning process

involves not a single prior but the entire set of plausible beliefs Pt. To capture
the learning process, we assume that the DM updates Pt prior-by-prior, which
means that each belief in Pt evolves according to the dynamics described in
(4) and, at any time t before expiration, satisfies (5).7

Because the beliefs remain in the same order, the posteriors originating

from p− ε and p+ ε represent the worst and best case beliefs, and define the

boundaries of Pt. We use p−t to denote the posterior belief under the worst
case and p+

t to denote the posterior belief under the best case scenario (the

expressions of p−t and p
+
t are analogous to the expression for pt in (5) with

using p− ε and p+ ε in place of p0). The plausible set of beliefs, which defines

the range of ambiguity, is given by Pt=
[
p−t , p

+
t

]
.

Theoretical models that embed ambiguity in applied dynamic settings typ-

ically assume that economic agents are ambiguity averse (e.g., Epstein and

Wang, 1994;, Nishimura and Ozaki 2004, 2007; Miao andWang, 2010). Follow-

ing this literature, our goal is to study how ambiguity and ambiguity aversion

affects the timing decision. To do so, we adopt the maxmin model of Gilboa

and Schmeidler (1989), in which a DM maximizes his utility in the worst

7Prior-by-prior Bayesian updating is a common rule to update ambiguous beliefs. It
was proposed, among others, by Wasserman and Kadane (1990) and Jaffray (1994), Pires
(2002), and Epstein and Schneider (2003).
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case scenario over the plausible set of priors. Although the maxmin model

describes an extreme form of ambiguity aversion, it allows us to capture the

effect of ambiguity in a simple fashion preserving, at the same time, analyt-

ical tractability. Furthermore, as we show below, our conclusions about the

effect of ambiguity are intuitive and line with the previous literature. Milder

forms of ambiguity aversion, as the one proposed by the smooth ambiguity

model (Klibanoff, Marinacci, and Mukerji, 2005) and the α−maxmin model
(Ghirardato, Maccheroni, and Marinacci, 2004), are unlikely to substantially

alter our qualitative conclusions.8

Under maxmin preferences, the DM’s problem is

max
τ≥t

min
p∈Pt

[
(Vte

µ(τ−t) − C)e−r(τ−t)
(
pte
−λL(τ−t) + (1− pt)e−λH(τ−t))] . (10)

Since the worst case scenario corresponds the the situation in which pt = p−t ,

the problem can be rewritten as

max
τ≥t

[
(Vte

µ(τ−t) − C)e−r(τ−t)
(
p−t e

−λL(τ−t) + (1− p−t )e−λH(τ−t))] . (11)

The first-order condition for optimal τ ∗ is

p−τ∗ [(µ− r − λL)Vτ∗ + (r + λL)C]+(1−p−τ∗) [(µ− r − λH)Vτ∗ + (r + λH)C] = 0.

(12)

Rearranging condition (12), one obtains that the DM invests as soon as Vt
reaches a threshold V ∗A = Vτ∗ given by

V ∗A =
βA(V ∗A)

βA(V ∗A)− 1
C, (13)

where

βA(V ) =
[
r + p−(V )λL +

(
1− p−(V )

)
λH
]
/µ,

8In fact, we also solve the model under α−maxmin preferences. The qualitative conclu-
sions about the effect of ambiguity are unchanged.
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and

p− (V ) = π−0 (V/V0)θ /
[
1 + π−0 (V/V0)θ

]
.

In the special case of maximum initial ambiguity, that is, if P0= [0, 1], the

expression for βA(V ) simplifies to βA = (r + λH)/µ.

The next proposition establishes the effect of ambiguity on the optimal

threshold.

Proposition 2 The investment threshold V ∗A is decreasing in ambiguity.

The intuition of Proposition 2 is straightforward. Willingness to wait de-

pends the expiration rate, which is uncertain. An ambiguity averse DM is

pessimistic about the state of the world. Therefore, when ambiguity increases,

he prefers to avoid the uncertainty associated with waiting and by investing

sooner. This result is intuitive and is line with the findings of the existing

stopping problems under ambiguity (Nishimura and Ozaki, 2004; Miao and

Wang, 2010). When uncertainty affects the continuation region but not the

final payoff, the waiting time decreases with ambiguity.

4 Experimental Design and Hypotheses

To test the model’s predictions on willingness to wait, we replicate its setting

in a laboratory. Although time is continuous in the theoretical model, in a

computerized laboratory implementation time must proceed in discrete steps.

We approximate continuous time by setting the time interval equal to 0.1

seconds. In each interval, the project value grows and expires according to

the chosen growth and expiration rates. To convey clear information to the

subjects, we communicate the growth and expiration rates per second.

We conduct three main treatments, Benchmark, Risk, andAmbiguity. Some

basic parameters are identical across all the treatments. The investment cost

C is set to equal 10 euros, the initial value V0 is set to equal 9.8 euros, and

the growth rate is equal to µ = 0.0036 every 0.1 seconds (corresponding to

16



High
expiration rate

Low
expiration rate

Probability of
high expiration rate

Benchmark 10% 5% 50%
Risk 11% 4% 50%

Ambiguity 10% 5% no information

Table 1: Parameterization for the Benchmark, Risk, and Ambiguity treatments.

a growth rate of 3% per second9). In the Benchmark treatment the initial

probability that the expiration rate is low is known and equal to 0.5. The high

expiration rate is set to equal λH = 0.0105, which means 10% per second, while

the low expiration rate is λL = 0.0051, or 5% per second. These rates imply

that the initial expected expiration rate is equal to 7.5% per second. In the

Risk treatment we test the effects of an increase in risk. We leave the initial

probability p and the growth rate µ unaffected. We then set λH = 0.0116, i.e.,

11% per second, and λL = 0.0041, i.e., 4% per second. Hence, risk, the spread

between the high and low expiration rates, increases by 40% from 5% to 7%,

while the initial expected expiration rate is still equal to 7.5% per second. In

the Ambiguity treatment, we conduct a first test on the effect of ambiguity. We

set λH and λL as in Benchmark but we provide no information about the level

of the initial probability that the expiration rate is low (in the notation of our

model, this means that ambiguity equals ε = 0.5, centered around p = 0.5).10

A summary of the parameterization for the three treatments is found in Table

1.

The choice of parameter values is driven by several considerations. We

set the relative probability of the two states of the world equal to 50% in the

risky treatments Benchmark and Risk, whereas we provide no information in

the ambiguous treatment Ambiguity. This choice is made to conform to a

standard version of the Ellsberg experiment, in which good and bad outcomes

in the risky urn have equal probabilities, but the subjects are told nothing

9If an event occurs with probability x every 0.1 seconds, it occurs with probability
y = 1− (1− x)10 every second.

10In practice the probability that the true expiration was low in each period was 50% as
in Benchmark. But this information was not communicated to the subjects.
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about the distribution in the ambiguous urn. Although the task is relatively

simple (the subjects must wait and simply click a button when they decide to

invest), the time interval and expiration rates should set an environment that

is simultaneously challenging and "comfortable". Expiration rates cannot be

set too high because subjects should have suffi cient time to wait. To avoid

trivializing the task of distinguishing between states of the world, the spread

between high and low expiration rates should be appreciable but not too large.

Furthermore, under the chosen parameterization, the three treatments should

provide suffi ciently distinguishable theoretical predictions of the investment

trigger. For our parameter values, the predicted investment trigger for a risk

neutral decision maker is 19.32 in Benchmark, and 30.53 in Risk (calculated

using Equation (9) with µ = 0.03, r = 0, p0 = 0.5 and λL = 0.05, λH = 0.1

under Benchmark or λL = 0.04, λH = 0.11 under Risk). For a risk averse de-

cision maker with a risk aversion coeffi cient γ equal to, e.g., 0.4, the distance

between the predicted triggers is smaller but still suffi ciently large (13.94 in

Benchmark and 15.68 in Risk, calculated using (15) in Appendix B). In Am-

biguity, the predicted investment trigger is 14.29 for a risk neutral decision

maker and 12.19 for a risk averse decision maker with γ = 0.4 (calculated

using Equations (13) and (16), respectively). The distance with the predicted

triggers in Benchmark is appreciable.

The theoretical analysis suggest the following experimental hypotheses:

Hypothesis 1 Willingness to wait is higher in Risk than in Benchmark.

Hypothesis 2 Willingness to wait is lower in Ambiguity than in Benchmark.

Hypothesis 1 is derived from Proposition 1. Intuitively, a higher risk should

increase DMs ability to distinguish the good (low expiration) from the bad

(high expiration) projects and induce them to delay investment. Hypothesis

2 comes from the observation that, as shown in Proposition 2, the presence

of ambiguity should lead to early investment if DMs are ambiguity averse.

Intuitively, without knowing the relative probabilities of the two states of the
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world, DMs may be pessimistic about the initial draw of the expiration rate

and they will try to avoid the threat of losing the investment opportunity by

investing earlier.

4.1 Procedures

Subjects played the same investment game for 30 rounds. At the beginning of

each round the computer screen displays the parameter values. In the treat-

ments Benchmark and Risk, the screen displays the values of λH , λL and the

probability that the expiration rate is high. In the Ambiguity treatment, the

screen displays only the values for λH and λL, without any information about

the probability of the two states of the world. By clicking the "OK" button

located at the bottom-right of the screen, the subject begins the experiment

and a new screen with the values for Vt and the cost C appears. The sub-

jects observe the project value Vt growing according to (1) and decide when

to exercise the investment option by clicking the "INVEST" button. Upon

investing, they obtain a payoff Vt − C. The experiment was programmed and
conducted with the z-Tree software (Fischbacher, 2007). The full instructions

and screenshots of computer displays are provided in Online Appendix.

The experiment was conducted at CentERLab at Tilburg University and

the experimental subjects were students of Tilburg University (bachelor and

master students in economics, business, social sciences, and law) recruited us-

ing on-line recruitment software. Participation was voluntary and no subject

participated in more that one treatment. In total, 76 subjects participated in

the experiment. Groups of 18 subjects participated in the treatments Bench-

mark and Risk and 19 subjects participated in the treatment Ambiguity (21

subjects participated in a fourth treatment discussed in Section 5.2). We

aimed at having 20 subjects per treatment (similar to, e.g., Oprea et al., 2009)

and differences are due to some no-show-ups. Since the subjects played the

investment game for 30 rounds resulting in a total of 1650 observations in the

three treatments. Each treatment was organized in two separate sessions. All

subjects were paid 5 euros as a show-up fee.
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At the beginning of each treatment, instructions were read aloud. After

reading the instructions, the subject played practice rounds. In the practice

rounds, as in the game described in Section 3.1, subjects know the true expi-

ration rate. In the treatments Benchmark and Ambiguity, the subjects played

10 rounds with an expected expiration rate of 10% and 10 rounds with an

expected expiration rate of 5%. In the treatment Risk, the subjects played 10

rounds with an expected expiration rate of 11% and 10 rounds with an ex-

pected expiration rate of 4%. Each subject played 20 practice rounds. In these

rounds, the subjects are not compensated and thus have incentives to wait for

the natural expiration of the investment opportunity to understand what the

specified parametrization for the expiration rates means in practice. By rais-

ing their hands, the subjects could call the experimenter and ask for more

practice rounds (there were 2 subjects that asked for more practice rounds in

Benchmark, 0 in Risk, 1 in Ambiguity).

The subjects were seated at isolated computer terminals and played a game

independently from the others. Draws of the initial expiration rate at each

round and the exogenous expiration time were different for each subject and

randomly chosen by the computer program according to the pre-specified pa-

rameters. Earnings were paid at the end of the experimental sessions. To

avoid wealth effects, the subjects were paid for only one of the 30 rounds.

The payment round was chosen at random at the end of the experiment. The

average earning was 9.10 euros, including the show-up fee. A typical round

took less than 30 seconds and the sessions lasted approximately fifty minutes,

including the reading of the instructions and payment.

5 Results

5.1 Waiting and Investment Timing

As mentioned in Section 4, we set the initial project value below the cost of

investment (C = 10 and V0 = 9.8). In some cases, the investment opportunity

expired when Vt < C. There were three of these "early" expirations in Bench-
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Figure 2: Empirical CDFs of the observed investment trigger (Panel A) and
product-limit estimates of CDFs (Panel B) for the Benchmark, Risk, and Am-
biguity treatments.

mark, one in Ambiguity, and none in Risk. Because it is clearly sub-optimal to

invest when Vt < C (and the computer program forbids it), early expirations

convey no information about the subjects’willingness to wait. For this reason,

these early expirations are dropped from our dataset.

The remaining data are right censored. A number of investment decisions

are not observed because the option expired before the subjects invested. In

the Benchmark treatment there were 244 cases out of 537 (45% of the total)

in which the option expired before the subjects decided to invest. Similar

expirations accounted for 278 of 540 cases (51% of the total) in Risk and 307

of 569 cases (54% of the total) in Ambiguity.

As a preliminary step, we drop the censored observations, i.e., the cases

in which the option expired before subjects decided to invest, and we observe

at the investment pattern for the subsample of observed investment decisions.

Figure 2.A plots the cumulative distribution functions (CDFs) of the empiri-
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cally observed exercise trigger. For each value of the project, the figure presents

the proportion of subjects who exercised the investment option. A shift of the

curve to the right means that, for a given value of Vt, fewer people exercised

the option and implies a higher willingness to wait. A visual inspection of the

figure immediately reveals a clear pattern. The CDF for the Risk treatment

lies to the right of that of Benchmark, which is consistent with the prediction

of Hypothesis 1. Additionally, the figure shows that the CDF for the Ambigu-

ity treatment is shifted to the right of the one of Benchmark. Following the

theory behind Hypothesis 2, this result is sharply in contrast with ambiguity

aversion.

The analysis conducted on the restricted sample of empirically observed

investment decisions may potentially present a misleading picture. Censored

observations are also informative because the subjects have voluntarily decided

to wait for the project value to grow (at least) until the moment at which

the expiration occurred. This means that the restricted sample of uncensored

observations suffers from a downward bias. To address the problem of censored

data we use the product-limit estimator (Kaplan and Meier, 1958), which

provides a non-parametric method to estimate the CDFs while accounting for

random censoring.11

By including the right-censored observations, we first assume that observa-

tions are i.i.d. and estimate the CDFs using pooled data across the subjects.

11The Product-Limit estimator relies on the assumption of independent censoring, which
requires that, within the population under consideration, the survival time, that is the time
at which the event of interest occurs (investment in our model), and censoring time are two
statistically independent random variables. This means that the censoring of an observation
should not provide any information regarding the potential investment strategy of a subject
beyond the censoring time. In our setting, the independent censoring assumption would not
be satisfied if we were to estimate the probability distribution of the investment strategy
on "aggregate", that is by mixing together observations from different treatments. Since
the censoring scheme in Risk is different from the one in Benchmark and Ambiguity, and
it determines the investment strategy, we would have a correlation of censoring time and
investment time that would bias the results. However, this is not a concern when we employ
the Product-Limit estimator to estimate the survival distribution for a group of individuals
which are subject to the same censoring scheme. Within each subpopulation the censoring is
random (non-informative) as determined by an exogenous Poisson event and the independent
censoring assumption is satisfied. See Oprea et al. (2009) for another application of this
estimator in a similar context.
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Then, we formally compare the pooled product-limit estimates for the CDFs

using the log-rank test. Product-limit estimates of the CDFs for the three

treatments are reported in Figure 2.B. The figure confirms the intuition sug-

gested by the restricted sample of uncensored observations. Both risk and

ambiguity delay investment. We use the log-rank test to verify the null hy-

pothesis of equality between CDFs. A pair wise test rejects the null hypothesis

of equality between the Risk and Benchmark treatments, and the Ambiguity

and Benchmark treatments at a 1% level of significance (p = 0.001).

The analysis on the pooled data hinges upon the i.i.d. assumption, which

implies that investment decisions are uncorrelated across subjects. If this

is not the case, and different subjects behave in a different way, the i.i.d.

assumption is violated and standard errors are typically underestimated. To

account for within-subject dependence, we construct a product-limit estimate

for the average of the investment trigger for each individual. Figure 3 presents

histograms of the by-subject means for each of the three treatments. The figure

reveals that, on average, subjects in the Risk and Ambiguity treatments invest

later than in Benchmark. Table 2 reports the means and standard errors of

the investment trigger for the pooled and by-subject data. The means in Risk

and Ambiguity are larger than the estimated mean in Benchmark. We apply a

pair wise Mann—Whitney test to compare the sample means for the by-subject

estimates. The null hypothesis of equality between Benchmark and Risk and

between Benchmark and Ambiguity is rejected at a 1% level of significance

(p = 0.004 and p = 0.007 respectively). Thus, the results of the analysis with

pooled data are confirmed.

The effect of risk is consistent with the theory and supports the logic behind

the mechanism inducing DMs to wait to learn. When the spread between the

high and low expiration rates widens, subjects become more rapidly confident

that the true expiration rate is low and they consistently delay investment.

The delay of investment in Ambiguity compared with Benchmark strongly

rejects ambiguity aversion. From a quantitative perspective it is worth noting

that on average the subjects exercised the option rather close to the model’s

predictions. Using the CRRA utility model (Appendix B) with a realistic
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Figure 3: Product-limit by-subject mean estimate of the investment trigger
for the Benchmark, Risk and Ambiguity treatments.

Benchmark Risk Ambiguity
Mean ± Standard Error

Pooled Empirical 12.89± 0.10 14.63± 0.17 14.56± 0.14
By-subject Empirical 13.31± 0.37 14.89± 0.47 14.77± 0.38

Pooled PL 13.59± 0.15 15.68± 0.20 15.29± 0.15
By-subject PL 13.61± 0.42 15.48± 0.53 15.14± 0.39

Table 2: Empirical means and product-limit estimates of the means of the
investment triggers under the Benchmark, Risk, and Ambiguity treatments.
The Pooled PL row shows the estimate assuming i.i.d. observations. The
By-subject PL row shows the product-limit estimated mean across individual
subjects.
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estimate of the coeffi cient of constant relative risk aversion of γ = 0.4 aligns

well theoretical predictions to the sample means (this level of relative risk

aversion is in the range of commonly estimated values between 0.3 and 0.5,

see, e.g., Holt and Laury (2002) and references therein). Risk-averse theoretical

predictions for the thresholds in the Benchmark and Risk treatments are then

13.94 and 15.68, respectively, and are very close to the by-subject PL means.

As discussed next, there is no evidence in our data of an appreciable change

in the subjects’investment strategies over time. In the experimental implemen-

tation, for the purpose of data collection, the investment game was repeated

for 30 rounds. The repetition of the investment game raises the possibility

that subjects may adopt different strategies in different rounds, for example,

due to inter-round learning or experimentation. In our experiment, this con-

cern is mitigated by the initial practice period which should help the subjects

elaborate an optimal strategy before the actual experiment begins. Further-

more, because subjects are paid for only one of the 30 rounds, possible wealth

effects that could alter their behavior over time are reduced. Online Appendix

D contains a detailed analysis of the data divided in early and late rounds. It

shows that there are no significant differences between the rounds. Moreover,

the main results reported above for the full sample are also reconfirmed in the

subsamples of early and late rounds.

5.2 The Effect of Ambiguity: Robustness

The experimental data show that subjects are willing to wait longer with

increased ambiguity which rejects Hypothesis 2. The purpose of this section

is to provide further robustness to these findings. To do so, we conduct an

additional treatment, Mild Ambiguity, in which we depart from the common

practice of providing no information about the probability distribution in the

ambiguous scenario. We set the parameter values for the growth and expiration

rates like those in Benchmark and Ambiguity but we tell the experimental

subjects that the probability that the expiration rate is high lies somewhere

in between 20% and 80% (this means that ambiguity equals ε = 0.3, centered

25



High
expiration rate

Low
expiration rate

Probability of
high expiration rate

Benchmark 10% 5% 50%
Mild Ambiguity 10% 5% between 20% and 80%
Ambiguity 10% 5% no information

Table 3: Parameterization for the Benchmark, Mild Ambiguity, and Ambiguity
treatments.

around p = 0.5).12 The relevant information about the treatments of interest

in this section is summarized in Table 3.

A group of 21 subjects participated in the Mild Ambiguity treatment (in

three separate sessions). The subjects played 20 practice rounds as in Bench-

mark, and the investment game was repeated for 30 rounds, resulting in 630

observations. There were no cases in which the option to invest expired when

Vt < C. In 256 cases (40% of the total) the option expired before the subjects

could invest. The analysis follows the same steps as above. First, we con-

sider observations to be i.i.d. and estimate the CDFs, including the censored

observations, using the product-limit estimator. The estimated CDF curves

are presented in Figure 4.B. The figure shows that the CDF in Mild Ambi-

guity lies slightly to the right of the one in Benchmark. A pairwise log-rank

test rejects the null hypothesis of equality between the two treatments (mar-

ginally significant with p = 0.061). We account for within-subject dependence

by constructing a product-limit estimate for the average investment trigger of

each subject. Figure 5 shows histograms of the by-subject means for each of

the three treatments, and Table 4 reports the means and standard errors of

the pooled and by-subject data. The mean in Mild Ambiguity is larger than

the mean in Benchmark but the difference is less evident. A pairwise Mann—

Whitney test cannot reject the null hypothesis of equality between means

(p = 0.355). Recalling that an ambiguity averse should accelerate investment

in response to ambiguity, the findings taken together confirm the inference

that there is no evidence of ambiguity aversion.

12In practice, the true probability was 50% as in Benchmark and Ambiguity.
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Figure 4: Empirical CDFs of the observed investment trigger (Panel A) and
product-limit estimates of CDFs (Panel B) for the Benchmark,Mild Ambiguity
and Ambiguity treatments.
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Figure 5: Product-limit by-subject mean estimate of the investment trigger
for the Benchmark, Mild Ambiguity and Ambiguity treatments.
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Benchmark Mild Ambiguity Ambiguity
Mean ± Standard Error

Pooled empirical 12.89± 0.10 13.27± 0.10 14.56± 0.14
By-subject empirical 13.31± 0.37 13.75± 0.29 14.77± 0.38

Pooled PL 13.59± 0.15 13.83± 0.12 15.29± 0.15
By-subject PL 13.61± 0.42 13.83± 0.29 15.14± 0.39

Table 4: Empirical means and product-limit estimates of the means of the
investment triggers under the Benchmark, Mild Ambiguity, and Ambiguity
treatments. The Pooled PL row shows the estimate assuming i.i.d. observa-
tions. The By-subject PL row shows the product-limit estimated mean across
individual subjects.

6 Discussion

The experimental data reveal that willingness to wait increases as ambiguity

increases, which indicates a clear rejection of the aversion to ambiguity often

assumed in economic and finance models. This finding deserves further atten-

tion and here we consider possible interpretations of the empirical evidence.

Although ambiguity aversion is a common assumption, prior experimental

research indicates that it is not a universal feature and other ambiguity at-

titudes may prevail in different situations. For example, ambiguity attitudes

in willingness-to-pay problems depend on experimental setups. Fox and Tver-

sky (1995) find that ambiguity aversion in willingness-to-pay decisions arises

only in comparative contexts, in which subjects are offered both ambiguous

and unambiguous lotteries. In non-comparative settings, subjects see only

one option and ambiguity aversion disappears. Possible explanations are that

in comparative settings, when offered also unambiguous choices, subjects feel

less competent with ambiguous choices or are afraid of deception in ambigu-

ous lotteries. In a recent study of willingness to pay in a non-comparative

setup, Charness, Karni, and Levin (2012) find that only a small minority

of subjects turned out to be ambiguity averse, and actually more subjects

displayed ambiguity-seeking behaviors. Our between-subjects experimental

design is non-comparative and should be rather interpreted along these anal-

ogous willingness-to-pay experiments. Furthermore, past literature has shown
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that ambiguity attitudes depend on the economic problem at hand. Heath

and Tversky (1991) show that people prefer bets on ambiguous events over

pure (unambiguous) chance in situations where they feel knowledgeable or

competent.

Camerer and Weber (1992) and Wakker (2010) also show that ambiguity

seeking is more prevalent than ambiguity aversion for unlikely events and for

payoffs expressed in losses. Chen et al. (2007) find that, in first price auctions,

bids are lower with the presence of ambiguity, a result consistent with ambi-

guity seeking attitudes. Ivanov (2011) studies ambiguity attitudes in strategic

setups and finds that the majority of subjects are not averse to ambiguity

and more are ambiguity seeking than ambiguity averse. Timing decisions in

the presence of ambiguity appear to be a separate category and is likely that

ambiguity aversion may not emerge as the prevailing behavioral feature.

Our ambiguity model is developed on two main assumptions. The first

is the extreme aversion to ambiguity based on the maxmin model of Gilboa

and Schmeidler (1989), while the second is the Bayesian updating. Both as-

sumptions are standard in the literature and play an important role in the

optimal investment strategy. Apart from the maxmin specification, there are

alternative ways to model ambiguity aversion but we have no reason to expect

that our qualitative predictions would change by using other transformations

on the set of priors. After all, the mechanism that we describe is intuitive.

Since investment yields a sure payoff, individuals that dislike ambiguity prefer

to resolve uncertainty sooner by investing earlier. Results of other theoreti-

cal models point in the same direction, and therefore it is unlikely that the

maxmin specification drives this prediction. On the contrary, the assumptions

regarding the learning mechanism may be more consequential.

We assume that individuals adopt the same learning mechanism, i.e. Bayes’

rule, both in the risky and ambiguous scenarios. Without an empirical guid-

ance on how individuals actually learn, this seems a natural choice. However,

it does not need to be a fully accurate description of reality. A learning mecha-

nism is nothing else than a rule which specifies the relative weight attached to

new and old information to form posterior beliefs. Departing from a Bayesian
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framework, which identifies the "optimal" weights, we may think that the way

new and old information are actually combined by the individuals may also

depend on nature of the uncertainty. One can conjecture, for example, that in

ambiguous scenarios individuals attach relatively less weight to prior (vague)

beliefs and rely more on new observational data. In other words, due to vague

priors, people could overreact (relative to the unambiguous case) to new in-

formation. In our setting, the relevant new information, i.e., the non-expiry of

the investment option, is good news as it unambiguously signals that the true

expiration rate is likely to be low. If, as hypothesized, individuals overreact

to new information due to the presence of ambiguity, this mechanism may

generate an increased willingness to wait under increased ambiguity even if

individuals are ambiguity averse.

7 Conclusions

Risk and ambiguity play important roles in numerous economic situations. In

dynamic decision problems that allow for wait-and-see behavior, the acquisi-

tion of new information possibly interacts with these two different manifes-

tations of uncertainty. Our paper provides a testable model where risk and

ambiguity coexist with learning and an experimental test of the effects of un-

certainty on the waiting time to make an irreversible decision. The theoretical

predictions are line with the previous literature and are confirmed for what

concerns the effect of risk. The empirical results for the effect of ambiguity are

less straightforward to interpret but unambiguously reveal an important fact.

When ambiguity is embedded in a dynamic framework, individuals’behavior

is diffi cult to reconcile with the aversion towards ambiguity typically found

in simpler static settings. We believe that our results point out the impor-

tance to understand how the presence of ambiguity influences the acquisition

and processing of new information. A careful investigation of how individuals

learn under ambiguity appears to be a promising avenue of future experimental

research.

30



A Proofs

A.1 Proof of Proposition 1

We verify the effects of an increase in risk on the optimal investment trigger.

An increase in risk is represented by a mean-preserving spread between λH
and λL at the initial date, that is a rise in ∆λ = λH − λL that leaves p0λL

+ (1− p0)λH unaffected.

Define function h such that h = CβR (V ∗R) / (βR (V ∗R)− 1). At the invest-

ment trigger V ∗R it holds that V
∗
R − h = 0. The effect of an increase in risk on

the investment trigger is found as dV ∗R/d∆λ = ∂h/∂∆λ
1−∂h/∂V ∗R

, where the derivatives

with respect to ∆λ are for p0λL + (1− p0)λH held constant.

By the second-order condition for a maximum, it easily follows that 1 −
∂h/∂V ∗R ≥ 0. Thus the sign dV ∗R/d∆λ depends on the numerator, ∂h/∂∆λ.

Now, consider the sign of ∂h/∂∆λ. It is useful to rewrite the expression

for βR (V ∗R) as

βR (V ∗R) = βR (V0)− ∆λ

µ
(p (V ∗R)− p0) ,

where βR (V0) = [r + p0λL + (1− p0)λH ] /µ. Differentiating with respect to

∆λ yields
∂βR (V ∗R)

∂∆λ
=
∂βR (V0)

∂∆λ
− p (V ∗R)

µ
− ∆λ

µ

∂p (V ∗R)

∂∆λ
.

Because we are considering a mean preserving spread between λH and λL at

date 0 that holds p0λL+(1− p0)λH constant, it follows that ∂βR (V0) /∂∆λ =

0. Combined with the observation that

∂p (V ∗R)

∂∆λ
=
π0 (V ∗R/V0)θ ln(V ∗R/V0)

µ
(

1 + π0 (V ∗R/V0)θ
)2 > 0

and p (V ∗R) > 0, this implies that the sign of ∂βR (V ∗R) /∂∆λ is unambiguously

negative. Because ∂h/∂βR (V ∗R) < 0, it holds that ∂h/∂∆λ = (∂h/∂βR (V ∗R))

(∂βR (V ∗R) /∂∆λ) > 0. The claim in the proposition follows. �

31



A.2 Proof of Proposition 2

Consider function g such that g = CβA (V ∗A) / (βA (V ∗A)− 1). At the invest-

ment trigger V ∗A, it holds that V
∗
A − g = 0. The marginal effect of ambigu-

ity on the investment trigger is given by dV ∗A/dε = ∂g/∂ε
1−∂g/∂V ∗A

. A proof that

∂g/∂V ∗A ≤ 1 follows from the second-order condition for a maximum. Thus

the sign of dV ∗A/dε depends on the numerator ∂g/∂ε,

∂g

∂ε
=

∂g

∂βA (V ∗A)

∂βA (V ∗A)

∂pA(V ∗A)

∂pA(V ∗A)

∂ε
.

It is immediate to show that ∂g/∂βA (V ∗A) < 0, ∂βA (V ∗A) /∂p−A (V ∗A) < 0, and

∂pA(V ∗A)/∂ε < 0. Therefore, the total effect is such that dV ∗A/dε < 0. �

B Risk Aversion

In the main text, we analyzed the investment problem under the assumption

of risk neutrality. Here we generalize our arguments allowing the DM to be

risk averse. We first solve the stopping problem with known expiration rate

of Section 3.1. The reasoning is then easily extended to find the solutions to

the risky and ambiguous cases with the uncertain expiration rate of Sections

3.3 and 3.4. We show that the model’s fundamental predictions about the

effects of risk and ambiguity on the investment timing are not affected by risk

aversion under our specification.

Let us consider the setting with a known expiration rate described in Sec-

tion 2.1 and assume that DM’s preferences are described by a constant relative

risk aversion utility function (CRRA): U = w1−γ/1 − γ, where γ (γ > 0 and

γ 6= 113) is the coeffi cient of relative risk aversion, and w is DM’s "wealth"

or the payoff V − I after the investment is undertaken. The problem for the

decision maker is

max
τ≥t

Et

[
(Vτ − C)1−γ

1− γ e−r(τ−t)1τ<T

]
= max

τ>t

[
(Vτ − C)1−γ

1− γ e(r+λ)(τ−t)

]
.

13For γ = 1, the CRRA utility is U = ln(w).
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The first-order condition can be expressed as

µVτ∗ − (r + λ)
(Vτ∗ − C)

1− γ = 0.

The DM invests as soon as Vt reaches a threshold Ṽ ∗K = Vτ∗ given by

Ṽ ∗K =
ηK

ηK − 1
I, (14)

where ηK = (r + λ)/[µ (1− γ)]. From (14) and ηK , it is immediately clear

that risk aversion leads to an earlier exercise of the investment option, i.e.,

∂Ṽ ∗K/∂γ < 0. The explanation is that the option value to wait with investment

is decreasing in γ, while the final payoff is independent of risk aversion. This

implies that a more risk averse DM is less willing to withstand the uncertainty

associated with the continuation region and will exercise the investment option

sooner.14

Now, consider the risk scenario described in Section 3.3 generalized to risk-

averse DMs. Following the same steps as above, it is easy to show that the

solution for the investment trigger is

Ṽ ∗R =
ηR(Ṽ ∗R)

ηR(Ṽ ∗R)− 1
C, (15)

where ηR(V ) = [r + p(V )λL + (1− p(V ))λH ] /[(1− γ)µ].

Analogous steps lead to the following expression for the investment trigger

in the ambiguity scenario described in Section 3.4 under risk aversion:

Ṽ ∗A =
ηA(Ṽ ∗A)

ηA(Ṽ ∗A)− 1
C, (16)

where ηA (V ) = [r + p−(V )λL + (1− p−(V ))λH ] /[µ (1− γ)].

Note that ηR(V ) = βR(V )/ (1− γ) and ηA(V ) = βA(V )/ (1− γ) . Thus the

14This is the same result found in Miao and Wang (2007) when the final payoff is lump
sum. They also show that, when the final payoff is given by a flow of an uncertain income,
the result is reversed.

33



model with risk neutrality derived in the main text can be simply generalized to

constant relative risk aversion by using "risk-aversion-corrected" drift, µ(1−γ),

in place of physical drift, µ. It is then easy to check that expressions (15) and

(16) imply that the degree of risk aversion γ does not affect comparative static

conclusions about the effects of risk and ambiguity on the timing of investment.
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