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Abstract 
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1. Introduction 
In recent years, strategic alliances between airlines have become increasingly 

popular.  The format of a strategic alliance between airlines can vary from a limited 

marketing arrangement, for example an arrangement between partner carriers that only 

makes their frequent-flyer programs reciprocal, 1

Researchers have written extensively on the impact that strategic alliances have 

on airfare [Brueckner and Whalen (2000); Brueckner (2001 and 2003); Bamberger, 

Carlton and Neumann (2004); Ito and Lee (2007); Gayle (2008 and 2013); Gayle and 

Brown (2012) among others]. 

 to more extensive arrangements that 

include reciprocal frequent-flyer programs as well as codesharing.  Reciprocal frequent-

flyer programs effectively allow passengers that hold frequent-flyer membership with one 

carrier in the alliance to earn and redeem frequent-flyer points across any partner carrier 

in the alliance.  A codeshare arrangement effectively allows each carrier in the alliance to 

sell tickets for seats on its partners’ airplane, i.e., partners essentially share certain 

facilities, in this case airplanes, that are solely owned by one of the partners. 

2

                                                             
1 Membership in an airline’s frequent-flyer program allows the passenger to accumulate points each time 
the passenger flies on the airline.  The frequent-flyer program allows the passenger to be eligible for 
various rewards once the passenger accumulates points beyond certain pre-determine thresholds.  As such, 
frequent-flyer programs are designed to build customer loyalty to the carrier that offers the program. 

  However, there is a paucity of work that examines the 

impact that strategic alliances may have on deterring potential competitors from entering 

a relevant market.  This is a particularly interesting aspect of strategic alliances to study 

since a substantial amount of these alliances are formed between traditional major/legacy 

carriers, who may face increasingly stiff competition from the growing prominence of 

low-cost-carriers (LCCs).  Some researchers argue that hub-and-spoke network carriers 

form and use strategic codeshare alliances to better compete with low-cost-carriers, 

Mantovani and Tarola (2007).  So the following series of relevant questions need careful 

study.  First, does the evidence support the argument that strategic alliances between 

major airlines, among achieving other goals, serve to deter entry of potential entrants to a 

relevant market?  Second, if an entry-deterrence effect is evident, is there a particular 

type of practice among alliance partners that is most effective at deterring entry?  Third, 

 
2 Earlier contributions to this literature include: Oum and Park (1997); Park (1997); Park and Zhang (1998); 
and Park and Zhang (2000). 
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is there a particular type of airline that seems to be more deterred via such practice by 

alliance partners? 3

Chen and Ross (2000) theoretically explore the anticompetitive effect of a 

particular type of strategic alliance, by which the partner airlines share important 

facilities such as airplanes, terminals etc.  They argue that this type of alliance can 

forestall a complete and competitive entry by another firm, that is, such alliances can 

have an entry-deterrent effect.  The mechanism through which Chen and Ross envisioned 

that a strategic alliance may deter a complete and competitive entry is as follows.  An 

incumbent offers to form a strategic alliance with a potential entrant, which takes the 

form of the incumbent willing to share its facility with the potential entrant in order to 

discourage the potential entrant from building its own facility and entering on a larger, 

more competitive scale.  In the context of a codeshare alliance, this would translate into 

the incumbent offering to let a potential entrant sell tickets for seats on the incumbent’s 

plane in order to discourage the potential entrant from putting its own plane on the route.  

So based on Chen and Ross’s argument, entry-deterrent codesharing should primarily 

take place between a market incumbent and the potential entrant the incumbent is 

intending to deter.  As we subsequently show in the data description section of the paper, 

in the case of U.S. domestic air travel markets, which is the focus of our study, the vast 

majority of codesharing is done by legacy carriers and between legacy carriers.  

  

Lin (2005) uses a theoretical model to show that incumbents can use codeshare 

alliances as a credible threat to deter the entry of potential entrants who do not have 

significant cost advantage.  The author uses the model to show that, owing to joint profit 

maximizing behavior between allied airlines, there exists an equilibrium in which the 

joint profit of two allied airlines is higher than the sum of their individual profits if they 

were not allied.  In addition, this higher joint profit of the allied airlines comes at the 

expense of lower profit for a new non-allied entrant.  This equilibrium implies that if 

market entry cost is sufficiently high, such that entry in the presence of an alliance 

                                                             
3 In a separate, but related airline entry-deterrence literature, Oum, Zhang and Zhang (1995); Hendricks, 
Piccione and Tan (1997); Berechman, Poddar and Shy (1998); Aguirregabiria and Ho (2010) among others 
have argued that hub-and-spoke route networks adopted by many legacy carriers do give these carriers an 
incentive and the ability to deter entry of other carriers that do not use hub-and-spoke route network, which 
include many low-cost-carriers.  But this literature focuses on the entry deterrence effect of hub-and-spoke 
networks rather than more specifically on the entry deterrence effect of codeshare alliances. 
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between market incumbents is unprofitable for the new non-allied entrant, but profitable 

if incumbents were not allied, then formation of the alliance can be done to strategically 

deter entry. 4

In addition to Chen and Ross (2000) and Lin (2005) arguments why codeshare 

alliances may deter entry, we posit yet another mechanism through which a codeshare 

alliance may deter potential entrants from entering a market.  The idea is that codeshare 

partner carriers typically make their frequent-flyer programs reciprocal.  This has the 

effect of making frequent-flyer membership of each partner carrier more valuable to 

customers due to the increased opportunities for customers to accumulate and redeem 

frequent-flyer miles across partner carriers.  In other words, the alliance partners’ loyal-

customer base in a market is likely to expand with a codeshare alliance.  Consistent with 

this argument, Lederman (2007) provides econometric evidence suggesting that 

enhancements to frequent-flyer partnerships are associated with increased demand for 

partners’ air travel services.  An increase in alliance partners’ loyal-customer base makes 

it increasingly difficult for potential entrants to enter the market and amass a sufficiently 

large customer base to make entry profitable.  This increased difficulty that potential 

entrants face to steal customers upon entry, is likely to be reflected as relatively higher 

entry cost to these codeshare markets. 

 

Via reduced-form econometric regressions, Goetz and Shapiro (2011) empirically 

test for the presence of entry-deterrence motives behind codesharing alliances, and find 

that an incumbent is approximately 20% more likely than average to codeshare when 

facing the threat of entry by low-cost carriers.  However, Goetz and Shapiro (2011) did 

not investigate whether the entry-deterrence effect they found depends on the type of 

codesharing (Traditional versus Virtual) 5

Previous studies have argued that Southwest Airlines, if not the most formidable 

 employed by incumbent partner airlines.  In 

addition, they did not fully investigate whether the entry-deterrence effect of codesharing 

depends on the identity of the carrier that is threatening to enter the relevant market.  

                                                             
4 Lin (2008) extends this model to consider situations in which an incumbent has a relatively large hub-and-
spoke network and entry has positive spillover network effects for the incumbent.   
 
5  In the Definition and Data section of the paper we define and distinguish Traditional and Virtual 
codesharing. 
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LCC in U.S domestic air travel markets, is certainly among the most formidable LCCs in 

these markets.  As such, many studies have treated Southwest separately than other 

LCCs, or focused on Southwest as the sole LCC [for example see Morrison (2001), 

Goolsbee and Syverson (2008), Brueckner, Lee and Singer (2012) among others]. 

Brueckner, Lee and Singer (2012) find that the presence of potential competition from 

Southwest reduces fares by 8 percent, while potential competition from other LCCs has 

no fare effect.  Mason and Morrison (2008) find significant differences between low-cost 

carriers in their business models.  Therefore, we are encouraged to investigate whether 

any possible entry-deterrent effect of codesharing depends on whether the potential 

entrant is Southwest versus other low-cost carriers. 

While Goetz and Shapiro (2011) use a reduced-form regression analysis to 

empirically test whether domestic codesharing alliances are motivated by an entry-

deterrence purpose, to the best of our knowledge, there is no other empirical analysis of 

this issue.  We believe a structural econometric analysis of this issue is needed to take us 

a step further in examining the evidence on this type of strategic behavior by airlines. 

One advantage of using a structural econometric model is that we are able to quantify, in 

monetary terms, possible market entry barriers associated with codesharing.   

Therefore, the main objective of our paper is to use a structural econometric 

model to investigate: (1) whether codesharing between airlines in domestic air travel 

markets, a form of strategic alliance, has a deterrent effect on the entry of potential 

competitors; (2) whether there is a particular type of codesharing among alliance partners 

that is most effective at deterring entry; and (3) whether there is a particular type of 

airline that seems to be more deterred via such type of codesharing between alliance 

partners.  

To assess the deterrent effect of codesharing on market entry of potential 

competitors, we proceed as follows.  First, we specify and estimate a static differentiated 

products Bertrand-Nash game, which incorporates both demand and supply sides of the 

static model.  In particular, we first estimate a discrete choice model of air travel demand.  

Second, for the supply side, we assume that prices are set according to a static Bertrand-

Nash equilibrium with multiproduct firms.  The static Bertrand-Nash assumption allows 

us to derive product-specific markups and use them to compute firm-level variable 
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profits, which are subsequently used in a dynamic market entry/exit game.  Third, we 

specify a dynamic market entry/exit game played between airlines in which each airline 

chooses markets in which to be active in during specific time periods in order to 

maximize its expected discounted stream of profit.  Per-period profit comprises variable 

profit less per-period fixed cost and a one-time entry cost if the airline will serve the 

relevant market in the next period but not in the current period.  The dynamic entry/exit 

game allows us to estimate fixed and entry costs by exploiting observed data on airlines’ 

decisions to enter and exit certain markets.  It is the estimated effect that codesharing 

between incumbents have on the entry cost of potential entrants that allows us to evaluate 

whether codeshairng has an entry deterrent effect.  

We specify entry cost functions such that we can identify whether or not the 

extent of codesharing by incumbent airlines in a market influences the market entry cost 

of potential entrants, and whether this influence differs by type of potential entrant.  A 

potential entrant can fall into one of three categories: (1) legacy carriers; (2) Southwest 

Airlines; or (3) other LCC.  Since the majority of codesharing in U.S. domestic air travel 

markets occurs between legacy carriers, this implies that our entry cost function 

specification effectively allows us to explore whether codehsaring between legacy 

carriers deferentially deter market entry of: (1) other legacy carriers; (2) Southwest 

Airlines; (3) other LCC; or some subset of the three carrier types. 

An important aspect of our analysis is that we follow Ito and Lee (2007) and 

Gayle (2008) and decompose codesharing into two main types: (1) Traditional 

Codesharing; and (2) Virtual Codesharing.  As such, we are able to investigate whether 

possible entry deterrent effects of codesharing depend on the type of codesharing. 

Our econometric estimates from the entry cost function suggest that more 

traditional codesharing between incumbent carriers in a market puts Southwest at a 

relative disadvantage to enter the market compared to all other potential entrants (legacy 

carriers and other low-cost carriers).  Specifically, each percentage point increase in 

traditional codeshare products offered by incumbents in a market raises market entry cost 

for Southwest by 0.3%, but reduces market entry cost by 0.6% and 0.7% for legacy and 

“other” low-cost carriers respectively.  Therefore, traditional codesharing by market 

incumbent carriers has a relative market entry deterrent effect on Southwest.  
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Furthermore, there is no evidence that virtual codesharing has a market entry deterrent 

effect. 

We link the market entry deterrent effects inferred from our entry cost estimates to 

findings from our demand estimates.  Estimates from our demand model suggest that 

incumbents’ traditional codesharing has a larger demand-increasing effect for their 

products compared to virtual codesharing.  Since the demand-side evidence is consistent 

with the argument that traditional codesharing better serves to expand the loyal customer 

base of market incumbents, then with more traditional codesharing by incumbents, a 

potential entrant will find it more costly (higher market entry cost) to build its own 

customer base upon entry, making entry less profitable in these high traditional codeshare 

markets.  We argue that this entry deterrent effect is binding for Southwest but not for 

others due to evidence that the vast majority of codesharing is done between legacy 

carriers, and competition between Southwest and legacy carriers is stronger than 

competition between other low-cost carriers and legacy carriers.  For example, as pointed 

out above, Brueckner, Lee and Singer (2012) provide evidence that incumbent legacy 

carriers do not cut fares in response to potential competition from other low-cost carriers, 

but cut fares by 8% in response to potential competition from Southwest. 

The remainder of this paper is organized as follows.  Next we define and discuss 

relevant concepts and terms used throughout this paper, and describe how we construct 

the dataset of our working sample.  Our econometric model is presented in section 3. 

Section 4 discusses the estimation procedure and summarizes estimation results.  

Concluding remarks are offered in section 5.  

 

2. Definitions and Data 
 2.1 Definitions 

A market is defined as a directional pair of origin and destination cities during a 

particular time period. For example, air travel from New York to Dallas is a different 

market than air travel from Dallas to New York.  An itinerary is a detailed plan of a 

journey from an origin to destination city, so it consists of one or more flight coupons 

depending on whether or not intermediate stops are required. Each coupon typically 

represents travel on a particular flight.  Each flight has a ticketing carrier and an operating 
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carrier.  The ticketing carrier, or sometimes referred to as the marketing carrier, is the 

airline selling the ticket for the seat, while the operating carrier is the airline whose plane 

actually transports the passenger.  A product is defined as the combination of ticketing 

carrier, operating carriers and itinerary.  
A pure online product has an itinerary whose operating carrier for each flight 

coupon and ticketing carrier are the same. For example, a two-segment ticket with both 

segments operated and marketed by United Airlines (UA), i.e. (UA/UA → UA /UA).  A 

flight is said to be codeshared when the operating and ticketing carriers for that flight 

differ. A traditional codeshared product is defined as an itinerary that has a single 

ticketing carrier for the trip, but multiple operating carriers, one of which is the same as 

the ticketing carrier. For example, a connecting itinerary between Continental Airlines 

(CO) and Delta Airlines (DL), marketed solely by Delta (CO/DL → DL/DL) is a 

traditional codeshared product. A virtual codeshared product is defined as an itinerary 

that has the same operating carrier for all trip segments, but this operating carrier differs 

from the ticketing carrier.  For example, a connecting itinerary operated entirely by 

United Airlines but marketed solely by US Airways (US) (UA/US→ UA/US), is a virtual 

code-shared product.6

 

 

2.2 Data 
We use data from the Airline Origin and Destination Survey (DB1B) collected by 

the Office of Airline Information of the Bureau of Transportation Statistics.  The DB1B 

survey is a 10% sample of airline tickets from certified carriers in the United States.  A 

record in this survey represents a ticket.  Each ticket contains information on ticketing 

and operating carriers, origin and destination airports, fare, number of passengers, 

intermediate airport stops, market miles flown on the trip itinerary, nonstop miles 

between the origin and destination airports, and number of market coupons.  

Unfortunately, there is no passenger-specific information in the data, nor is there any 

information on ticket restrictions such as advance-purchase and length-of-stay 

requirements. 
                                                             
6 Additional discussion and examples of pure online, traditional codeshare and virtual codeshare air travel 
products can be found in Ito and Lee (2007) and Gayle (2007, 2008 and 2013).  In addition, see Gayle and 
Brown (2012).   
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The data are quarterly, and our study uses data for the entire years of 2005, 2006 

and 2007.  Following Aguirregabiria and Ho (2012) among others, we select data on air 

travel between the 65 largest US cities. Some of the cities belong to the same 

metropolitan area and have multiple airports.  Table 1 reports a list of the cities and the 

relevant airport groupings we use based on common metropolitan areas. 

 

Table 1 
Cites, airports and population 

City, State Airports 
City pop. 

2005 2006 2007 
New York-Newark-Jersey LGA, JFK, EWR 8,726,847  8,764,876  8,826,288  
Los Angeles, CA LAX, BUR 3,794,640  3,777,502  3,778,658  
Chicago, IL ORD, MDW 2,824,584  2,806,391  2,811,035  
Dallas, TXa DAL, DFW 2,479,896  2,528,227  2,577,723  
Phoenix-Tempe-Mesa, AZ PHX 2,087,948  2,136,518  2,171,495  
Houston, TX HOU, IAH, EFD 2,076,189  2,169,248  2,206,573  
Philadelphia, PA PHL 1,517,628  1,520,251  1,530,031  
San Diego, CA SAN 1,284,347  1,294,071  1,297,624  
San Antonio, TX SAT 1,258,733  1,292,082  1,323,698  
San Jose, CA SJC 908,870  918,619  931,344  
Detroit, MI DTW 921,149  918,849  917,234  
Denver-Aurora, CO DEN 856,834  869,920  887,796  
Indianapolis, IN IND 789,250  792,619  796,611  
Jacksonville, FL JAX 786,938  798,494  805,325  
San Francisco, CA SFO 777,660  786,149  799,185  
Columbus, OH CMH 738,782  744,473  750,700  
Austin, TX AUS 708,293  730,729  749,120  
Memphis, TN MEM 680,515  682,024  679,404  
Minneapolis-St.Paul, MN MSP 652,481  652,003  656,659  
Baltimore, MD BWI 640,064  640,961  640,150  
Charlotte, NC CLT 631,160  652,202  669,690  
El Paso, TX ELP 587,400  595,980  600,402  
Milwaukee, WI MKE 601,983  602,782  602,656  
Seattle, WA SEA 575,036  582,877  592,647  
Boston, MA BOS 609,690  612,192  622,748  

                     a includes Dallas, Arlington, Fort Worth and Plano 
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Table 1 Continued 
Cites, airports and population 

City, State Airports 
City pop. 

2005 2006 2007 
Louisville, KY SDF 559,855  559,709  562,632  
Washington, DC DCA, IAD 582,049  583,978  586,409  
Nashville, TN BNA 579,748  586,327  592,503  
Las Vegas, NV LAS 544,806  552,855  559,892  
Portland, OR PDX 534,112  538,091  546,747  
Oklahoma City, OK OKC 532,006  539,001  545,910  
Tucson, AZ TUS 524,830  530,349  536,752  
Albuquerque, NM ABQ 497,543  508,486  517,162  
Long Beach, CA LGB 467,851  463,723  459,925  
New Orleans, LA MSY 455,188  208,548  288,113  
Cleveland, OH CLE 449,188  442,409  438,068  
Sacramento, CA SMF 448,842  449,658  455,760  
Kansas City, MO MCI 463,983  470,076  475,830  
Atlanta, GA ATL 483,108  498,208  519,569  
Omaha, NE OMA 432,148  437,523  442,452  
Oakland, CA OAK 392,112  392,076  397,441  
Tulsa, OK TUL 381,017  382,394  384,592  
Miami, FL MIA 390,768  412,460  424,662  
Colorado Spr, CO COS 393,804  398,778  399,751  
Wichita, KS ICT 354,524  356,592  360,897  
St Louis, MO STL 352,572  353,837  355,663  
Santa Ana, CA SNA 337,121  334,830  335,491  
Raleigh-Durham, NC RDU 553,294  574,065  596,049  
Pittsburgh, PA PIT 316,206  313,306  312,322  
Tampa, FL TPA 325,569  332,604  334,852  
Cincinnati, OH CVG 331,310  332,185  333,321  
Ontario, CA ONT 170,630  170,865  171,603  
Buffalo, NY BUF 277,998  274,740  272,492  
Lexington, KY LEX 278,313  283,324  287,263  
Norfolk, VA ORF 237,487  238,832  236,051  
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We eliminate tickets with nominal prices cheaper than $50 and more expensive 

than $2000, those with multiple ticketing carriers, and those containing more than 2 

intermediate stops. Within each quarter, a given itinerary-airline(s) combination is 

repeated many times, each time at a different price, making the data extremely large.  To 

make the data more manageable, we collapse the data based on our definition of product 

(unique itinerary-airline(s) combination) for each quarter.  Before collapsing the data, we 

aggregated the number of passengers and averaged market fare over each defined 

product. This is the process by which each defined product’s quantity and price are 

constructed.  Products with quantity less than 9 passengers are dropped from the data.7

Other variables that capture air travel product characteristics are created for 

estimation.  A measure of product Inconvenience is defined as market miles flown 

divided by nonstop miles between origin and destination. Thus, the minimum value for 

variable Inconvenience, which is equal to 1, implies the most convenient itinerary for a 

given market.  The dummy variable Nonstop is equal to 1 if the product uses a nonstop 

itinerary.  

  

Also, we eliminate the monopoly markets, i.e. markets in which only one carrier provides 

products. In the collapsed data set, we have 434,329 observations (products), each of 

them unique for each quarter, across 32,680 markets. 

We measure the size of an airline's presence at the endpoint airports of a market 

from different perspectives.  The variable Opres_out is a count of the number of different 

cities that the airline has nonstop flights to, leaving from the origin airport.  On the other 

hand, Opres_in counts the number of different cities that the airline provides nonstop 

flights from, going into the origin airport of the market.  We also construct a destination 

presence variable Dpres_out, which measures the number of distinct cities that the airline 

has nonstop flights to, leaving from the destination airport. 

Opres_out is intended to help explain consumers' choice between airlines at the 

consumer's origin airport.  The presumption here is that a consumer is more likely to 

choose the airline that offers nonstop service to more cities from the consumer's origin 

airport.  On the other hand, the Opres_in and Dpres_out may better explain an airline's 
                                                             
7 Berry (1992) Aguirregabiria and Ho (2012) among others use similar, and sometimes more stringent, 
quantity threshold to help eliminate idiosyncratic product offerings that are not part of the normal set of 
products offered in a market. 
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cost of transporting passengers in a market.  The argument is that due to possible 

economies of passenger-traffic density, an airline's marginal cost of transporting a 

passenger in a market is lower as the volume of passengers the airline channels through 

the market increases.  An airline with large measures of Opres_in and Dpres_out for a 

given market, is likely to channel a large volume of passengers through the market, and 

therefore is expected to have lower marginal cost of transporting a passenger in the 

market.  

From the collapsed dataset, observed product market shares (subsequently 

denoted by upper case 𝑆𝑗) are created by dividing quantity of product 𝑗 sold (subsequently 

denoted by 𝑞𝑗) by the geometric mean of the origin city and destination city populations 

(subsequently denoted by POP), i.e. 𝑆𝑗 = 𝑞𝑗
𝑃𝑂𝑃� .8

We only identify codeshare products between major carriers, i.e. following much 

of the literature on airline codesharing, we do not consider products between regional and 

major carriers as codeshare.  For example, a product that involves American Eagle (MQ) 

and American Airlines (AA), where one of them is the ticketing carrier and the other is 

an operating carrier, is still considered by us to be pure online since American Eagle is a 

regional airline that serves for American Airlines. Summary statistics of the variables 

used for estimation are presented in Table 2.  The variable Fare is measured in constant 

year 1999 dollars.  We use the consumer price index to deflate Fare.  

  Traditional Codeshare and Virtual 

Codeshare are dummy variables equal to 1 respectively when the itinerary is identified to 

be traditional codeshared and virtual codeshared.  The variables Percent Traditional for 

Airline and Percent Virtual for Airline measure the percentage of an airline's products in a 

market that are traditional codeshare and virtual codeshare respectively. 

 

 

                                                             
8  POP is measured by: 𝑃𝑂𝑃 = �𝑂𝑟𝑖𝑔𝑖𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.  Due to the fact that 
population magnitudes are significantly larger than quantity sold for any given air travel product, observed 
product shares, computed as described above,  are extremely small numbers.  We therefore scale up all 
product shares in the data by a common factor.  The common factor is the largest integer such that the 
outside good share (𝑆0 = 1 − ∑ 𝑆𝑗

𝐽
𝑗=1 ) in each market remains positive. The common factor that satisfies 

these conditions in the data set is 35.  
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Table 2 
Summary Statistics for the Dataset  

Variable Mean Std.Dev Min Max 
Farea 166.35 52.19 45.08 1,522.46 
Quantity 149.57 508.25 9 11,643 
Opres_out 29.05 28.35 0 177 
Opres_in 29.03 28.30 0 177 
Dpres_out 29.13 28.47 0 177 
Nonstop  0.154 0.36 0 1 
Market miles flown 1,542.34 695.27 67 4,156 
Nonstop miles 1,371.42 648.60 67 2,724 
Inconvenience 1.15 0.21 1 2.975 
Traditional Codeshare 0.02 0.14 0 1 
Virtual Codeshare 0.02 0.14 0 1 
Percent Traditional for Airline 2.04 10.42 0 100 
Percent Virtual for Airline 2.06 9.70 0 100 
Observed Product Shares (Sj) 0.0067 0.02 5.45E-05 0.97 
Number of Products 434,329 

   Number of Markets 32,680       
Notes:  a The variable Fare is measured in constant year 1999 dollars. We use the  
consumer price index to deflate Fare. 

 

Table 3 presents a list of ticketing carriers in the dataset according to type of 

products that each airline provides. The first two columns show that there are 21 airlines 

involved in pure online products.  All airlines in the dataset provide pure online products. 

The next two columns in Table 3 show that, among all airlines in the dataset, only 10 

airlines are involved in codeshare products and 7 of these airlines are the ones we classify 

as legacy carriers.  The fifth column in Table 3 reports the percent of codeshare products 

in the sample that each carrier offers for sale to consumers. The data in this column 

reveal that the vast majority (approximately 83 percent) of codeshare products are 

provided by legacy carriers.  

The last column in Table 3 reports the percent of each carrier’s codeshare 

products that are codeshared with legacy carriers. Noticeably, almost all of each legacy 

carrier’s codeshare products are codeshared with other legacy carriers, and moreover, 

ATA and Southwest Airlines, which are low-cost carriers, do not codeshare with legacy 

carriers. An exception to this pattern is Frontier Airlines, a low-cost carrier that has 91 
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percent of its codeshare products codeshared with a legacy carrier (typically with Alaska 

Airlines). However, the previous column shows that codeshare products offered by 

Frontier Airlines only account for 0.07 percent of total codeshare products offered. In 

summary, the data reveal that a substantial amount of codeshare alliances are formed 

between legacy carriers.  

 
 Table 3 
 List of Airlines in the Dataset,  

by Product type they offer to Consumers 
Airlines Involved in  
Pure online Products 

 
  

Airlines that offer  
Codeshare Products to consumers 

Airlines Name Code 

 
 Airlines Name Code 

Percent of 
codeshare 
products in 
the sample 

Percent of each 
carrier’s codeshare 

products codeshared 
with legacy carriers   

 

  
American Airlines Inc. AA  

 
Legacy Carriers 

   Aloha Air Cargo AQ  
 

    American Airlines Inc. AA 13.47 98.87 
Alaska Airlines Inc. AS  

 
    Alaska Airlines Inc. AS 7.87 100 

JetBlue Airways B6  
 

    Continental Air Lines Inc. CO 5.76 100 
Continental Air Lines Inc. CO  

 
    Delta Air Lines Inc. DL 4.76 99.88 

Independence Air DH  
 

    Northwest Airlines Inc. NW 10.03 100 
Delta Air Lines Inc. DL  

 
    United Air Lines Inc. UA 28.75 100 

Frontier Airlines Inc. F9  
 

    US Airways Inc. US 12.56 99.82 
AirTran Airways  FL  

 
Sub-total 

 
83.20 

 Allegiant Air G4  
 

Low Cost Carriers 
   America West Airlines Inc. HP  

 
    Southwest Airlines Co. WN 9.28 0 

Spirit Air Lines NK  
 

    ATA Airlines  TZ 7.45 0 
Northwest Airlines Inc. NW  

 
    Frontier Airlines Inc. F9 0.07 91.67 

Skybus Airlines, Inc. SX  
 

Sub-total 
 

16.80 
 Sun Country Airlines SY  

 
Total 

 
100 

 ATA Airlines  TZ  
     United Air Lines Inc. UA  
     US Airways Inc. US  
     Southwest Airlines Co. WN  
     ExpressJet Airlines Inc. XE  
     Midwest Airlines YX  
     

  
           

Notes:  The carries we classify as Legacy carriers include: American Airline, Alaska Airlines, Continental 
Air, Delta Air Lines, Northwest Airlines, United Air Lines, and US Airways. 
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Table 4 summarizes our data according to the three types of products.  Of the 

434,329 observations/products in our sample, 4 percent are codeshared products.  As 

expected, the overwhelming majority of passengers (approximately 98 percent) in our 

sample travel on pure online itineraries.  A point worth noting from data in Table 4 is that 

among codeshared products, the number of traditional code-shared products is slightly 

less than the number of virtual codeshared products, but twice as many passengers travel 

on virtual codeshared products compared to traditional codeshare products.  

 

Table 4 
 Classification of Cooperative Agreement in Data Set  

Classification Example Observations   Passengers 
Frequency Percent   Frequency Percent 

Pure online AA/AA → AA/AA 416,537  95.90  
 

64,150,292  98.75  

Traditional 
UA/UA → 
UA/UA→US/UA 8,847  2.04  

 
254,065  0.39  

Virtual NW/CO → NW/CO 8,945  2.06  
 

558,095  0.86  
Total   434,329  100.00    64,962,452  100.00  

 

As we explain in subsequent sections of the paper, the short-run demand and 

supply sides of the static model are estimated using the data at the product-market-time 

period level, while the dynamic entry/exit model is estimated using the data aggregated 

up to the airline-market-time period level.  Since the data contain many more airlines 

than the dynamic entry/exit model can feasibly handle, at the stage of estimating the 

dynamic model, we impose additional restrictions to be able to estimate the dynamic 

model.  A restrictive assumption we make is that a set of the airlines in our data can 

reasonably be lumped into an “Other low cost carriers” category and treated as if the 

“Other low cost carriers” is a single carrier.  Similar to many studies in the literature [e.g. 

Brueckner, Lee and Singer (2012), Morrison (2001) among others], Southwest Airlines is 

the low cost carrier that we treat separately than other low cost carriers.  So the “Other 

low cost carriers” category includes all low cost carriers except Southwest Airlines.  

By using the number of passengers as a threshold to define whether or not an 

airline is active in a market, we are able to identify the number of markets that each 

airline has entered and exited. We define an airline to be active in a directional origin-

destination market during a quarter if the airline transports at least 130 passengers in this 
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market during the quarter.9

 

 Each airlines’ market entry and exit decisions contained in the 

data are crucial for us to be able to estimate fixed and entry costs, since the dynamic 

entry/exit model relies on the optimality assumption that potential entrants will only enter 

a market if the one-time entry cost is less than the expected discounted future stream of 

profits, and an incumbent will exit a market when per-period fixed cost become 

sufficiently high relative to per-period variable profits such that the expected discounted 

future stream of profits is non-positive.  Therefore, it is useful to get a sense of the extent 

to which the data contain information relevant for identifying fixed and entry costs from 

the dynamic model.  Table 5 reports the number of market entry and exit events by 

airline.  The table shows that each airline has several market entry and exit events, but 

most airlines have more market entry than market exit events, and overall there are 

substantially more entry than exit events.  This suggests that we might be better able to 

identify entry costs than fixed cost. 

  

Table 5 
Number of market entry and exit events by airline  

Airlines 
 

Number of market entry 
events 

Number of market exit 
events 

American Airlines Inc. 498 332 
Continental Air Lines Inc. 372 303 
Delta Air Lines Inc. 348 360 
Northwest Airlines Inc. 323 309 
United Air Lines Inc. 316 259 
US Airways Inc. 655 151 
Alaska Airlines Inc. 22 12 
Southwest Airlines Co. 262 105 
Other low cost carriers  368 625 
Overall 3,164 2,456 

 

 

 

 

                                                             
9 Our passenger threshold of 130 for a directional market is equivalent to the 260 for non-directional market 
used by Aguirregabiria and Ho (2012).  



16 

3. Model 
3.1 Demand  

The demand model is a simple nested logit demand model. There are POP 

potential consumers, who may either buy one of J air travel products, j = 1,…,J, or 

otherwise choose the outside good (good 0), e.g. driving, taking a train, or not traveling at 

all.  The nested logit model classifies products into G groups, and one additional group 

for the outside good.  Products within the same group are closer substitutes than products 

from different groups.  Groups are defined by ticketing carriers in this study, so products 

with the same ticketing carrier belong to the same group.  The indirect utility of consumer 

c from purchasing product j is given by: 

 𝑢𝑐𝑗 = 𝜇𝑗 + 𝛿𝜁𝑐𝑔 + (1 − 𝛿)𝜀𝑐𝑗𝑑  (1) 

The first term, 𝜇𝑗 , is the mean valuation for product j, common to all consumers. 

The mean valuation of product j depends on its price, 𝑝𝑗 , a vector 𝑥𝑗 of observed 

characteristics of product j, and error term 𝜉𝑗 reflecting unobserved (to researchers) 

product characteristics: 

 𝜇𝑗 = 𝑥𝑗𝜙𝑥 − 𝜙𝑝𝑝𝑗 + 𝜉𝑗  (2) 

where 𝜙𝑥 and 𝜙𝑝 are parameters to be estimated. 

The second term in equation (1), 𝜁𝑐𝑔, is a random component of utility that is 

common to all products belonging to group g.  The term 𝜀𝑐𝑗𝑑  is consumer c’s unobserved 

utility, specific to product j.  The parameter 𝛿 lies between 0 and 1 and measures the 

correlation of the consumers’ utility across products belonging to the same group. The 

correlation of preferences increases as 𝛿 approaches 1.  At the other extreme, if 𝛿 = 0, 

there is no correlation of preferences: consumers are equally likely to switch to products 

in a different group as to products in the same group in response to a price increase.  

The nested logit model assumes that the random terms 𝜁𝑐𝑔 and 𝜀𝑐𝑗𝑑   have 

distributions such that  𝛿𝜁𝑐𝑔 + (1 − 𝛿)𝜀𝑐𝑗𝑑  have the extreme value distribution. 

Normalizing the mean utility level for outside good to 0, i.e., 𝜇0 = 0, the probability that 

a consumer chooses product j is as follows: 
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 𝑠𝑗 =
exp (

𝜇𝑗
1− 𝛿)
𝐷𝑔

×
𝐷𝑔1−𝛿

1 + ∑ 𝐷𝑔1−𝛿𝐺
𝑔=1

 (3) 

where 𝐷𝑔 = ∑ exp [ 𝜇𝑘
1−𝛿

]𝑘∈𝐺𝑔 .  The total quantity sold of product j, 𝑞𝑗, is simply given by 

the probability that a potential consumer chooses product j times the total number of 

potential consumers, POP: 

 𝑞𝑗 = 𝑠𝑗(𝑝, 𝑥, 𝜉;Φd) × 𝑃𝑂𝑃 (4) 

where Φd = (𝜙𝑝,𝜙𝑥 , 𝛿) is the vector of demand parameters to be estimated. 

 

3.2 Supply  
We assume that prices are set according to a static Bertrand-Nash equilibrium 

with multiproduct airlines.  Let i=1,…, N index airlines and 𝐵𝑖 be a subset of the J 

products that are offered for sale by airline i.  The variable profit of airline i in market m 

during period t is:  

 𝑉𝑃𝑖𝑚𝑡 = � (𝑝𝑗𝑚𝑡 − 𝑚𝑐𝑗𝑚𝑡)𝑞𝑗𝑚𝑡
𝑗∈𝐵𝑖𝑚𝑡

 (5) 

where 𝑞𝑗𝑚𝑡 is the quantity of tickets for product j sold in market m, 𝑝𝑗𝑚𝑡 is the price of 

product j, and 𝑚𝑐𝑗𝑚𝑡 is the marginal cost incurred from offering product j.  

 The static Bertrand-Nash assumption implies the following set of J first-order 

conditions – one for each of the J products:  

 � (𝑝𝑘 − 𝑚𝑐𝑘)
𝜕𝑠𝑘
𝜕𝑝𝑗

+ 𝑠𝑗
𝑘∈𝐵𝑖

= 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1, … , 𝐽 (6) 

We have dropped the market and time subscripts in equation (6) only to avoid a clutter of 

notation.  The set of first-order conditions can be represented in matrix notation as 

follows:  

 (𝛺.∗ 𝛥) × (𝑝 −𝑚𝑐) + 𝑠 = 0 (7) 

where p, mc, and s are J×1 vectors of product prices, marginal costs, and predicted 

product shares respectively, Ω is a J×J matrix of appropriately positioned zeros and ones 

that capture airline ownership structure of the products, .∗ is the operator for element-by-

element matrix multiplication, and Δ is a J×J matrix of own and cross-price effects. 
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Equation (7) can be re-arranged to yield a vector of product markups: 

 𝑚𝑘𝑢𝑝�𝑥, 𝜉;Φd� = 𝑝 −𝑚𝑐 = −(𝛺.∗ 𝛥)−1 × 𝑠 (8) 

Based on equations (5) and (8), and with estimates of demand parameters in hand, Φd� , 

firm-level variable profit can be recovered by:  

 𝑉𝑃𝑖𝑚𝑡 = � 𝑚𝑘𝑢𝑝𝑗𝑚𝑡(𝑥, 𝜉;Φd� )𝑞𝑗𝑚𝑡
𝑗∈𝐵𝑖𝑚𝑡

 (9) 

 

3.3 Dynamic Entry/Exit Game 
In the dynamic entry/exit game, each airline chooses markets in which to be 

active during specific time periods.  Each airline optimally makes this decision in order to 

maximize its expected discounted stream of profit:  

 𝐸𝑡 ��𝛽𝑟𝛱𝑖𝑚,𝑡+𝑟

∞

𝑟=0

� (10) 

where 𝛽 ∈ (0,1) is the discount factor, and  𝛱𝑖𝑚,𝑡+𝑟 is the per-period profit of airline 𝑖 in 

origin-destination market m.  Airline i’s per-period profit is: 

 𝛱𝑖𝑚𝑡 = 𝑎𝑖𝑚,𝑡−1𝑉𝑃𝑖𝑚𝑡 − 𝑎𝑖𝑚𝑡𝐹𝑖𝑚𝑡 (11) 

where 𝑉𝑃𝑖𝑚𝑡 represents the variable profit of airline i in origin-destination market m  

during period t that is computed from previously discussed static differentiated products 

Bertrand Nash game; 𝑎𝑖𝑚,𝑡−1 is a zero-one indicator that equals 1 only if airline i made 

the decision in period t-1 to be active in market m during period t, therefore 𝑎𝑖𝑚𝑡 = 1 

only if airline i makes decision in period t to be active in market m during period t+1; and 

𝐹𝑖𝑚𝑡 is the sum of fixed and entry costs of airline i in market m during period t.  

Let 𝐹𝑖𝑚𝑡 be specified as: 

 

𝐹𝑖𝑚𝑡  = 𝐹𝐶𝑖𝑚𝑡 + 𝜖𝑖𝑚𝑡𝐹𝐶

+ �1 − 𝑎𝑖𝑚,𝑡−1��𝐸𝐶𝑖𝑚𝑡 + 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 + 𝜖𝑚𝑡𝑉𝑖𝑟𝑡

+ 𝜖𝑖𝑚𝑡𝐸𝐶 ] 

(12) 

where 𝐹𝐶𝑖𝑚𝑡 represents the deterministic part of per-period fixed cost of operating flights 

in origin-destination market m. The component 𝜖𝑖𝑚𝑡𝐹𝐶  represents a private firm-

idiosyncratic shock to airline i’s fixed cost.  The fixed cost 𝐹𝐶𝑖𝑚𝑡 + 𝜖𝑖𝑚𝑡𝐹𝐶  is paid now only 

if the airline decides to operate in market m next period, i.e., if 𝑎𝑖𝑚𝑡 = 1.   
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 The entry cost 𝐸𝐶𝑖𝑚𝑡 + 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 + 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 + 𝜖𝑖𝑚𝑡𝐸𝐶  has four components; 𝐸𝐶𝑖𝑚𝑡 is a 

deterministic component, while 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, and 𝜖𝑖𝑚𝑡𝐸𝐶  represent shocks to entry cost. 

Shocks 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 only vary by market and time and are observed by firms, but not 

by us the researchers, while 𝜖𝑖𝑚𝑡𝐸𝐶  represents a private firm-idiosyncratic shock to airline 

i’s entry cost.  The entry cost is paid only when the airline is not active in market m at 

period t but it decides to operate in the market next period, i.e., if 𝑎𝑖𝑚,𝑡−1 = 0 and 

𝑎𝑖𝑚𝑡 = 1. 

 Let the composite private firm-idiosyncratic shock to airline i’s fixed and entry 

costs be denoted by 𝜀𝑖𝑚𝑡.  Based on equation (12), 𝜀𝑖𝑚𝑡 = 𝜖𝑖𝑚𝑡𝐹𝐶 + �1 − 𝑎𝑖𝑚,𝑡−1�𝜖𝑖𝑚𝑡𝐸𝐶 .  We 

assume that the composite private information shock, 𝜀𝑖𝑚𝑡, is independently and 

identically distributed over firms, markets and time, and has a type 1 extreme value  

probability distribution function. 

The deterministic portions of fixed and entry costs are specified as: 

 𝐹𝐶𝑖𝑚𝑡 = 𝜃0𝐹𝐶 + 𝜃1𝐹𝐶𝑃𝑟𝑒𝑠𝑖𝑚𝑡 (13) 

 

  𝐸𝐶𝑖𝑚𝑡 = 𝜃0𝐸𝐶 + 𝜃1𝐸𝐶𝑃𝑟𝑒𝑠𝑖𝑚𝑡                
+ 𝜃2𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡   
+ 𝜃3𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡
+ 𝜃4𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡
+ 𝜃5𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡
+ 𝜃6𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐
+ 𝜃7𝐸𝐶𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐 

(14) 

where 𝑃𝑟𝑒𝑠𝑖𝑚𝑡 is the mean of size-of-presence variables Opres_in and Dpres_out for 

airline i at the endpoint cities of market m; 10

                                                             
10 As we previously defined in the section, Definitions and Data, Opres_in is a variable that counts the 
number of different cities that the airline provides nonstop flights from, going into the origin airport of the 
market, while variable Dpres_out  counts the number of distinct cities that the airline has nonstop flights to, 
leaving from the destination airport. 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 is the percent of products 

in market m during period t that are traditional codeshare; 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 is the 

percent of products in market m during period t that are virtual codeshare; Southwest is a 

zero-one dummy variable that equals to one only if the airline is Southwest; 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐 is 

a zero-one dummy variable that equals to one for low-cost carriers other than Southwest; 

and {𝜃0𝐹𝐶 ,𝜃1𝐹𝐶 ,𝜃0𝐸𝐶 , 𝜃1𝐸𝐶 ,𝜃2𝐸𝐶 ,𝜃3𝐸𝐶 ,𝜃4𝐸𝐶 ,𝜃5𝐸𝐶 , 𝜃6𝐸𝐶 ,𝜃7𝐸𝐶}  is the set of structural parameters 

to be estimated. 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 measure the extent of codesharing that 

takes place in a market.  While we do not explicitly model airlines' optimizing decision of 

whether or not to codeshare in a market, it is reasonable to conjecture that this optimizing 

decision is influenced by the effective cost an airline faces to begin providing its own 

service in the market (its market entry cost).  This further suggests that shocks to market 

entry cost that are unobserved to us, 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, are likely to influence 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 respectively.  As such, we formally specify 

the following equations: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 = 𝑍𝑚𝑡𝛾 + 𝜖𝑚𝑡𝑇𝑟𝑎𝑑                                        (15) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 = 𝑍𝑚𝑡𝜆 + 𝜖𝑚𝑡𝑉𝑖𝑟𝑡                                        (16) 

where 𝑍𝑚𝑡 is a matrix of variables that influence the extent of traditional and virtual 

codesharing that takes place in a market; 𝛾  and 𝜆 are vectors of parameters associated 

with these variables in equations (15) and (16) respectively; while 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 are 

assumed to be independently and identically distributed normal random variables with 

mean zero and standard deviations 𝜎𝑇𝑟𝑎𝑑 and 𝜎𝑉𝑖𝑟𝑡 respectively.  Therefore, the model 

accounts for the endogeneity of variables 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 in 

the entry cost function.   

The variables we include in 𝑍𝑚𝑡 are: (1) the geometric mean of the origin city and 

destination city populations (POP), which is a measure of market size; (2) nonstop flight 

distance between the origin and destination; (3) one-period lag of the Herfindahl-

Hirschman Index (HHI) computed based on the relative sizes of airlines' presence at the 

market endpoint airports, where an airline's size of airport presence is measured by the 

previously defined variables, Opres_in and Dpres_out; 11

The set of structural parameters in the dynamic model to be estimated is (𝜃, 𝛾, 𝜆) 

where: 

 (4) origin city fixed effects; (5) 

destination city fixed effects; and (6) quarter fixed effects. 

 𝜃 = {𝜃0𝐹𝐶 ,𝜃1𝐹𝐶 ,𝜃0𝐸𝐶 , 𝜃1𝐸𝐶 ,𝜃2𝐸𝐶 ,𝜃3𝐸𝐶 ,𝜃4𝐸𝐶 ,𝜃5𝐸𝐶 , 𝜃6𝐸𝐶 ,𝜃7𝐸𝐶}′ (17) 

where 𝜃0𝐹𝐶  measures mean (across airlines, markets and time) fixed cost; 𝜃1𝐹𝐶  measures 

                                                             
11 Opres_in is a variable that counts the number of different cities that the airline provides nonstop flights 
from, going into the origin airport of the market, while variable Dpres_out  counts the number of distinct 
cities that the airline has nonstop flights to, leaving from the destination airport. 
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the effect that size of an airline's airport presence has on fixed cost; 𝜃0𝐸𝐶  measures mean 

(across airlines, markets and time) entry cost – we also allow mean entry cost to differ by 

the three carrier-types we consider (Legacy, Southwest and Other low cost carriers), in 

which case 𝜃0𝐸𝐶  would be a vector containing three parameters; 𝜃1𝐸𝐶  measures the effect 

that size of an airline's airport presence has on entry cost; 𝜃2𝐸𝐶  and 𝜃3𝐸𝐶  respectively 

measure the impact that traditional and virtual codesharing between incumbent airlines 

have on market entry costs of legacy carriers that are potential entrants to the relevant 

market, that is 𝜕𝐸𝐶𝑙𝑒𝑔𝑎𝑐𝑦
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑

= 𝜃2𝐸𝐶   and 𝜕𝐸𝐶𝑙𝑒𝑔𝑎𝑐𝑦
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙

= 𝜃3𝐸𝐶; 𝜃4𝐸𝐶  and 𝜃5𝐸𝐶  measure the 

respective differential impacts that traditional and virtual codesharing between incumbent 

airlines have on market entry cost of Southwest when it is a potential entrant to the 

relevant market, relative to the entry cost impacts that these two types of codesharing 

have on potential entrants that are legacy carriers, that is 𝜕𝐸𝐶𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑

− 𝜕𝐸𝐶𝑙𝑒𝑔𝑎𝑐𝑦
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑

=

𝜃4𝐸𝐶   and 𝜕𝐸𝐶𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙

− 𝜕𝐸𝐶𝑙𝑒𝑔𝑎𝑐𝑦
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙

= 𝜃5𝐸𝐶; while 𝜃6𝐸𝐶  and 𝜃7𝐸𝐶  measure the 

respective differential impacts that traditional and virtual codesharing between incumbent 

airlines have on market entry cost of other low-cost carriers that are potential entrants to 

the relevant market, relative to the entry cost impacts that these two types of codesharing 

have on potential entrants that are legacy carriers, that is 𝜕𝐸𝐶𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑

− 𝜕𝐸𝐶𝑙𝑒𝑔𝑎𝑐𝑦
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑

=

𝜃6𝐸𝐶   and  𝜕𝐸𝐶𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙

− 𝜕𝐸𝐶𝑙𝑒𝑔𝑎𝑐𝑦
𝜕𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙

= 𝜃7𝐸𝐶 .  For example, if 𝜃4𝐸𝐶 > 0, then we can 

infer that traditional codesharing between incumbent carriers raises Southwest’s entry 

cost to the relevant market, relative to the change in entry cost of potential entrant legacy 

carriers.  Likewise, if 𝜃6𝐸𝐶 > 0, then we can infer that traditional codesharing between 

incumbent carriers raises other low-cost carriers’ entry cost to the relevant market, 

relative to the change in entry cost of potential entrant legacy carriers.   

Our specified equations do not include firm-specific component of fixed cost and 

entry cost for two reasons. First, estimation of the dynamic model is very 

computationally intensive, and convergence is difficult to achieve when the number of 

parameters being optimized over is large.  Even with the model restricted to 10 

parameters and four quarters of data, optimization took approximately seven days of 

continuously running the computer program.  Second, even without firm-specific 
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parameters, the fixed and entry cost functions do capture some heterogeneity across firms 

via the firm-specific variable 𝑃𝑟𝑒𝑠𝑖𝑚𝑡. 

 

Reducing the dimensionality of the dynamic game 

From the previously discussed Bertrand-Nash static model, firm-level variable 

profit is: 𝑉𝑃𝑖𝑚𝑡�𝑥, ξ;Φd� = ∑ 𝑚𝑘𝑢𝑝𝑗𝑚𝑡(𝑥,𝑗∈𝐵𝑖𝑚𝑡 ξ;Φd) ∗ 𝑞𝑗𝑚𝑡.  Let 

 𝑅𝑖𝑚𝑡∗ = 𝑎𝑖𝑚,𝑡−1𝑉𝑃𝑖𝑚𝑡 (18) 

Note that (x, ξ) are state variables that are needed in the dynamic entry/exit game.  As 

pointed out and discussed in Aguirregabiria and Ho (2012), 𝑅𝑖𝑚𝑡∗  aggregates these state 

variables in an economically meaningful way so that these state variables can enter the 

dynamic game through 𝑅𝑖𝑚𝑡∗ . Therefore, Aguirregabiria and Ho (2012) recommend 

treating 𝑅𝑖𝑚𝑡∗  as a firm-specific state variable, rather than treating x and ξ as separate state 

variables. This innovation substantially reduces the dimensionality of the state space.  

The payoff-relevant information of firm i in market m is: 

 
𝑦𝑖𝑚𝑡 ≡

           {𝑠𝑖𝑚𝑡,𝑅𝑖𝑚𝑡∗ ,𝑃𝑟𝑒𝑠𝑖𝑚𝑡,𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡,𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡, 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡}. 
(19) 

where 𝑠𝑖𝑚𝑡 = 𝑎𝑖𝑚,𝑡−1. 

Each airline has its own vector of state variables, 𝑦𝑖𝑚𝑡, and airlines take into 

account these variables when making decisions. So it might seem that each airline does 

not take into account the strategies that other airlines adopt.  However, an airline’s vector 

of state variables, 𝑦𝑖𝑚𝑡, depends on previous period entry and exit decisions of other 

airlines. For example, the variable profit state variable, 𝑅𝑖𝑚𝑡∗ , depends on competition 

from other incumbents currently in the market, which implies that this state variable 

depends on the previous period’s entry/exit decisions of other airlines. Accordingly, our 

entry/exit model incorporates dynamic strategic interactions among airlines. 

Let 𝜎 ≡ {𝜎𝑖𝑚(𝑦𝑖𝑚𝑡, 𝜀𝑖𝑚𝑡), 𝑖 = 1,2, . . ,𝑁;𝑚 = 1,2, … ,𝑀} be a set of strategy 

functions, one for each airline.  𝜎 is a Markov Perfect Equilibrium (MPE) if the profile of 

strategies in 𝜎 maximizes the expected value of airline i at every state (𝑦𝑖𝑚𝑡, 𝜀𝑖𝑚𝑡) given 

the opponent’s strategy.  
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Value Function and Bellman Equation 

For notational convenience, we drop the market subscript. Let 𝑉𝑖𝜎(𝑦𝑡, 𝜀𝑖𝑡) be the 

value function for airline i given that the other airlines behave according to their 

respective strategies in 𝜎. The value function is the unique solution to the Bellman 

equation: 

 

𝑉𝑖𝜎(𝑦𝑡, 𝜀𝑖𝑡)

= Max
𝑎𝑖𝑡∈{0,1}

{𝛱𝑖𝑡𝜎(𝑎𝑖𝑡, 𝑦𝑡) − 𝜀𝑖𝑡 ∗ 𝑎𝑖𝑡 

+ 𝛽�𝑉𝑖𝜎(𝑦𝑡+1, 𝜀𝑖𝑡+1)𝑑𝐺𝑖(𝜀𝑖𝑡+1)𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡)} 

(20) 

where 𝛱𝑖𝑡𝜎(𝑎𝑖𝑡,𝑦𝑡) and 𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡) are the expected one-period profit and expected 

transition of state variables, respectively, for airline i given the strategies of the other 

airlines. The profile of strategies in 𝜎 is a MPE if, for every airline i and every state 

(𝑦𝑡, 𝜀𝑖𝑡), we have: 

 

𝜎𝑖(𝑦𝑡, 𝜀𝑖𝑡)

= 𝑎𝑟𝑔max
𝑎𝑖𝑡

{𝛱𝑖𝑡𝜎�𝑎𝑖𝑡,𝑦𝑡� − 𝜀𝑖𝑡 ∗ 𝑎𝑖𝑡 

+ 𝛽�𝑉𝑖𝜎(𝑦𝑡+1, 𝜀𝑖𝑡+1)𝑑𝐺𝑖(𝜀𝑖𝑡+1)𝐹𝑖𝜎(𝑦𝑡+1|𝑎𝑖𝑡,𝑦𝑡)} 

(21) 

The transition rules we use for state variables are described in Appendix A.  In Appendix 

B we illustrate that the MPE can also be represented as a vector of conditional choice 

probabilities (CCPs) that solves the fixed point problem 𝑷 = 𝜓(𝑷,𝜃), where 𝐏 =

{𝑃𝑖(𝐲): for every �irm and state (𝑖,𝒚)}.  𝑷 = 𝜓(𝑷,𝜃) is a vector of best response 

probability mapping, where 𝜓(∙) is the CDF of the type 1 extreme value distribution. 

 

4. Estimation and Results 
4.1 Estimation of demand  

It is well-known in the empirical industrial organization literature that in case of 

the nested logit model, the demand equation to be estimated takes the following linear 

functional form [see Berry (1994)]:  

 ln�𝑆𝑗� − ln(𝑆0) = 𝑥𝑗𝜙𝑥 − 𝜙𝑝𝑝𝑗 + 𝛿 ln�𝑆𝑗|𝑔� + 𝜉𝑗 (22) 
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where 𝑆𝑗 is the observed share of product j,  𝑆0 is the share of the outside alternative for 

the market, and 𝑆𝑗|𝑔 is the observed product share within group g. 

Percent Traditional for Airline and Percent Virtual for Airline are two of the non-

price product characteristic variables in 𝑥𝑗.  Recall that variables Percent Traditional for 

Airline and Percent Virtual for Airline measure the percentage of an airline's products in a 

market that are traditional codeshare and virtual codeshare respectively.  Since airlines 

optimally choose the extent to which to codeshare with others in a market, it is possible 

that these codeshare variables are correlated with shocks to demand captured in 𝜉𝑗, 

making Percent Traditional for Airline and Percent Virtual for Airline endogenous in the 

demand equation.  In addition, it is well-known that 𝑝𝑗 and 𝑙𝑛�𝑆𝑗|𝑔� are correlated with 

𝜉𝑗.  Therefore, our estimation of the demand equation takes into account the endogeneity 

of 𝑝𝑗, 𝑙𝑛�𝑆𝑗|𝑔�, Percent Traditional for Airline and Percent Virtual for Airline.  

Specifically, we find instruments for these four variables and use two-stage-least squares 

(2SLS) to estimate the demand equation.  

 

Instruments for endogenous variables in demand equation 

The instruments we use for product price are: (1) number of competing products 

offered by other carriers with equivalent number of intermediate stops; (2) the squared 

deviation of a product’s itinerary distance from the average itinerary distance of 

competing products offered by other airlines; (3) the number of other products offered by 

an airline in a market; (4) itinerary distance; and (5) the interaction between jet fuel 

price12

The rationale for instruments (1) and (2) is that they are measures of the degree of 

competition that a product faces, which affects the size of a product’s markup.  Next, it is 

reasonable to assume that a multiproduct airline jointly sets the prices of its products in 

the market.  Standard oligopoly theory tells us that the more substitutable products are, 

they will be priced higher if they are jointly priced by a single firm compared to if they 

 and itinerary distance. The inclusion of these instruments is motivated by supply 

theory, which predicts that the price of a product will be influenced by changes in its 

markup and marginal cost.   

                                                             
12 The jet fuel price we use is U.S. Gulf Kerosene-Type Jet Fuel Spot Price FOB from U.S. Energy 
Information Administration. 
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are separately priced by different firms.  This rationale leads us to believe that instrument 

(3) is correlated with product markup, and by extension product price.  Instruments (4) 

and (5) should affect an airline's marginal cost of providing the product, which in turn 

influences the price of the product. 

To instrument the log of within group product share, 𝑙𝑛�𝑆𝑗|𝑔�, we use the mean 

number of intermediate stops across products offered by an airline in a market.  The 

rationale is that such an instrument is likely associated with passengers’ preference for 

products offered by one airline relative to the products offered by another.    

For the variables Percent Traditional for Airline and Percent Virtual for Airline, 

we adopt two instruments: (i) one-period lag of the squared deviation of an airline’s size 

presence at the market endpoint airports from the average size presence of other airlines 

at the market endpoints; and (ii) the interaction of (i) with nonstop flight distance.  The 

size of an airline's presence at the market endpoints is computed by averaging across 

variables Opres_in and Dpres_out, which are variables we defined in the Definitions and 

Data section.  An airline's measures of Opres_in and Dpres_out at the endpoints of a 

market are more determined by the airline's extended route network structure rather than 

features of the given origin-destination market.  Therefore, it is reasonable to assume that 

Opres_in and Dpres_out are uncorrelated with 𝜉𝑗.  In addition, lower presence for an 

airline at the endpoints of a market makes it more likely that the airline will codeshare 

with others that are already serving the market.  So Opres_in and Dpres_out are in 

principle good instruments for Percent Traditional for Airline and Percent Virtual for 

Airline.  Last, we allow the influence of an airline's size of presence at the market 

endpoints on its extent of market codesharing to depend on the nonstop flight distance of 

the market.  This explains the rationale for instrument (ii). 

 

4.2 Results from demand estimation  
We estimate the demand equation using both Ordinary Least Square (OLS) and 

Two-stage Least Squares (2SLS).  The demand regression results are presented in Table 

6.  First, focusing on the coefficient estimates for variables Fare and ln(Sj/g), we find that 

even though the signs of these coefficients in both OLS and 2SLS regressions are 

consistent with intuition, there are large differences in the size of the coefficient estimates 
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when compared across the OLS and 2SLS regressions. Even more contrasting, are the  

OLS versus the 2SLS coefficient estimates on variables Percent Traditional for Airline 

and Percent Virtual for Airline.  This preliminary evidence suggests that estimates in the 

OLS regression are biased and inconsistent and thus instruments are needed for these 

endogenous variables.   

To formally confirm that variables Fare, ln(Sj/g), Percent Traditional for Airline 

and Percent Virtual for Airline are endogenous, we perform a Hausman exogeneity test.  

The result of the Hausman test shown in Table 6 easily rejects the exogeneity of these 

four variables at conventional levels of statistical significance.  As a check on the validity 

of instruments used for the 2SLS regression, we estimate first-stage reduced-form 

regressions for each of the endogenous variables.  When Fare is the dependent variable 

in the reduced-form regression, R-squared is 0.32, but when ln(Sj/g) is the dependent 

variable R-squared is 0.56.  When Percent Traditional for Airline and Percent Virtual for 

Airline are dependent variables, the R-squared values are respectively 0.61 and 0.51.  

Hence, the following discussion of demand regression results in Table 6 is based on 

2SLS estimates. 

Since coefficient estimates are all statistically significant at conventional levels of 

statistical significance, the remainder of the discussion focuses on the signs of the 

coefficient estimates. As expected, the coefficient estimate on Fare is negative, implying 

that higher prices are associated with lower levels of utility.  In other words, all else 

equal, passengers prefer cheaper air travel products.  

The coefficient estimate on Opres_out is positive.  This result is consistent with 

our priors, and suggests that travelers prefer to fly with airlines, all else equal, that offer 

services to more destinations from the travelers’ origin airport.  This estimated effect is 

possibly in part due to the benefits of frequent-flyer programs.  Travelers are more likely 

to hold frequent-flyer membership with the airline they think they are most likely to use 

in the future, and it is reasonable for a passenger to conjecture that they will most often 

use the airline that offers service to a relatively large number of destinations from the 

passenger’s origin airport.  Once the passenger becomes invested in the airline’s 

frequent-flyer program, this helps reinforce the passenger’s loyalty to the airline. 
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Table 6 
Demand Estimation  

  OLS   2SLS 
Variables Estimates Std. Error   Estimates Std. Error 
Fare -0.0004*** 2.96E-05 

 
-0.0094*** 0.0002 

ln(Sj/g) 0.4925*** 0.0012 
 

0.0672*** 0.0047 
Opres_out 0.0114*** 0.0001 

 
0.0064*** 0.0002 

Nonstop 1.1147*** 0.0059 
 

1.4223*** 0.0119 
Inconvenience -0.9144*** 0.0067 

 
-0.8404*** 0.0123 

Traditional Codeshare -0.3232*** 0.0124 
 

-8.2078*** 0.3781 
Virtual Codeshare -0.5009*** 0.0132 

 
-7.4341*** 0.2327 

Percent Traditional for Airline -0.0023*** 0.0002  0.1487*** 0.0075 
Percent Virtual for Airline -0.0084*** 0.0002  0.1335*** 0.0047 
Spring  0.1421*** 0.0038 

 
0.1400*** 0.0076 

Summer 0.1065*** 0.0038 
 

0.1159*** 0.0075 
Fall 0.0857*** 0.0038 

 
0.0744*** 0.0074 

Constant -4.2022*** 0.0180  -3.4225*** 0.0424 
Ticketing carrier fixed effects YES 

 
YES 

Year fixed effects YES 
 

YES 
Market Origin fixed effects YES 

 
YES 

Market Destination fixed effects YES 
 

YES 
R-squared 0.6142 

 
· 

Durbin-Wu-Hausman chi-sq test: 
  
58663.8***     p = 0.0000 

Robust regression F test: 20168.2***     p = 0.0000 
  

  *** indicates statistical significance at 1% 
 

 

The coefficient estimate on Nonstop is positive, implying that consumers prefer 

nonstop flights between their origin and destination compared to travel itineraries that 

require intermediate stops.  This is reasonable since passengers should prefer the most 

convenient travel itinerary from origin to destination.  In addition, the coefficient estimate 

on Inconvenience is negative.  This intuitively makes sense as well since passengers 

prefer the most direct route to the destination. 

The Traditional Codeshare dummy variable has a negative coefficient estimate, 

implying that a traditional codeshare product makes passengers’ utility lower relative to a 

pure online product.  A likely reason is that the flight itinerary for a pure online product is 
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typically very streamlined because an airline can better organize its own flights and 

schedules to minimize layover time, as well as efficiently organize its own gates at 

airports.  Even though codeshare partners try to streamline flights across carriers to 

minimize layover times and facilitate smoother connections, the negative coefficient 

estimate on the Traditional Codeshare variable suggests that this process has not 

achieved parity with pure online products.  

The Virtual Codeshare dummy variable has a negative coefficient estimate as 

well.  This result suggests that passengers perceive virtual codeshare products as inferior 

substitutes to pure online products.  For the itineraries that include virtual segments, first-

class upgrades using accumulated frequent-flyer miles are not usually available [Ito and 

Lee (2007)]. This could explain why passengers perceive virtual codeshare products as 

inferior to pure online products.  

Note that the coefficient estimates on both Percent Traditional for Airline and 

Percent Virtual for Airline are positive, suggesting that consumers tend to choose the 

airlines that have a higher percentage of their products being codeshared.  This result is 

consistent with the argument that airline codesharing has a demand-increasing effect 

[Gayle and Brown (2012)].  The rationale for a demand-increasing effect is due to the 

fact that codeshare partners typically make their frequent-flyer programs reciprocal, thus 

allowing travelers holding frequent-flyer membership with one partner carrier to 

accumulate frequent-flyer points when flying with any partner carrier in the alliance.  

Thus the new opportunities for travelers to accumulate frequent-flyer points across 

partner carriers can increase demand for the codeshare partners' products.   

It is worth noting that the coefficient estimate on Percent Traditional for Airline is 

larger than the coefficient estimate on Percent Virtual for Airline, suggesting that 

traditional codesharing may have a larger impact on increasing demand relative to virtual 

codesharing.  This result makes sense since traditional codesharing requires that partner 

carriers route networks are complementary, while virtual codesharing does not.  In the 

situations where partner carriers’ route networks are complementary, and therefore 

require passengers to fly on separate partner carriers’ planes to complete a trip, there are 

greater opportunities for passengers to accumulate frequent-flyer miles from the partner's 

reciprocal frequent-flyer programs.  In other words, frequent-flyer membership with a 
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partner carrier is likely more valuable to customers when partner carriers’ route networks 

are complementary.  To the best of our knowledge, this formal evidence suggesting that 

traditional codesharing may have a larger impact on increasing demand relative to virtual 

codesharing has not been previously investigated in the literature.  So this is a new result, 

which may also help explain some key results from the dynamic model.     

The coefficient on ln(Sj/g) is 𝛿, measuring the correlation of consumers’ 

preferences for products offered for sale by the same airline.  Our estimate of 𝛿 is 0.067.  

Given that we nest products by airlines and 𝛿 is statistically significant, this suggests that 

passengers’ choice behavior shows some amount of brand-loyalty to airlines.  However, 

since the estimate of 𝛿 is closer to zero than it is to one, then this brand-loyal behavior 

seems not very strong.  

The demand model yields a mean own-price elasticity estimate of -1.62.  As 

pointed out by Oum, Gillen and Noble (1986) and Brander and Zhang (1990), a 

reasonable range for own-price elasticity in the airline industry is from -1.2 to -2.0.  

Peters (2006) study of the airline industry yields own-price elasticity estimates ranging 

from -3.2 to -3.6.  Berry and Jia (2010) find own-price elasticity estimates ranging from -

1.89 to -2.10 in their year 2006 sample, while Gayle and Wu (2012b) find own-price 

elasticity estimates ranging from -1.65 to -2.39 in their year 2010 sample.  Therefore, we 

are satisfied that the elasticity estimates generated from our model are reasonable and 

consistent with evidence in the existing literature.  

 As revealed by equation (8), the demand parameter estimates in Table 6 can be 

combined with the static Bertrand-Nash assumption to compute product markups. 

Overall, mean price is $166.35, while computed mean product markup is $109.03.  We 

also use the demand estimates along with equations (8) and (9) to compute quarterly 

market-level variable profits by airline.  As we stated previously in the data section of the 

paper, the original database, before any cleaning, is only a 10% sample of air travel 

tickets sold.  This implies that the magnitudes of our variable profit estimates are at most 

roughly 10% of actual variable profits.  Variable profits are measured in constant year 

1999 dollars.  Overall, an airline's mean quarterly market-level variable profit is 

$82,775.43, while the median is $31,492.71.   
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4.3 Estimation of Dynamic Model 
The likelihood function for the dynamic model is given by, 

𝐿(𝜃, 𝛾, 𝜆) =

∏ ∏ ∏ 𝑃�𝒂𝑚𝑡|𝑍�𝑖𝑚𝑡𝑃 , �̃�𝑖𝑚𝑡𝑃 , 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡,𝜃�𝑓�𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾�𝑓�𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆�𝑇
𝑡=1

𝑁
𝑖=1

𝑀
𝑚=1    (23) 

 

where 𝒂𝑚𝑡 = (𝑎1𝑚𝑡,𝑎2𝑚𝑡, … ,𝑎𝑁𝑚𝑡) is the vector of market participation actions taken by 

airlines in period t.  Note that the likelihood function is comprised of three parts.  The 

first part, 𝑃�𝒂𝑚𝑡|𝑍�𝑖𝑚𝑡𝑃 , �̃�𝑖𝑚𝑡𝑃 , 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡,𝜃� computes the conditional likelihood of 

observing the logit choice probabilities of airlines being active in markets across the 

sample during the time span of the data.  To obtain the full unconditional likelihood, we 

multiply the conditional likelihood by the probabilities of observing specific values of  

𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡, where 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 − 𝑍𝑚𝑡𝛾 and  

𝜖𝑚𝑡𝑉𝑖𝑟𝑡 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 − 𝑍𝑚𝑡𝜆  based on equations (15) and (16).  Since we 

assume that 𝜖𝑚𝑡𝑇𝑟𝑎𝑑 and 𝜖𝑚𝑡𝑉𝑖𝑟𝑡 are normally distributed random variables with zero means 

and standard deviations 𝜎𝑇𝑟𝑎𝑑 and 𝜎𝑉𝑖𝑟𝑡 respectively, then 𝑓(∙) is the normal probability 

density function. 

 While joint estimation of the full set of parameters (𝜃, 𝛾, 𝜆) is desirable due to 

potential efficiency gains, such joint estimation is extremely computationally demanding 

in this dynamic model.  Fortunately, a convenient feature of the likelihood function above 

is that each of the three vectors of parameters in (𝜃, 𝛾, 𝜆) is identified by separate parts of 

the likelihood function.  Specifically, 𝑃�𝒂𝑚𝑡|𝑍�𝑖𝑚𝑡𝑃 , �̃�𝑖𝑚𝑡𝑃 , 𝜖𝑚𝑡𝑇𝑟𝑎𝑑, 𝜖𝑚𝑡𝑉𝑖𝑟𝑡,𝜃� is the part that 

identifies parameters in vector 𝜃, while  𝑓�𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾� and 𝑓�𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆� are the 

parts that identify parameter vectors 𝛾 and 𝜆 respectively.  This implies that parameter 

vectors 𝛾 and 𝜆 can be separately estimated in a first step using likelihood functions 

∏ ∏ 𝑓�𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡, 𝛾�𝑇
𝑡=1

𝑀
𝑚=1  and ∏ ∏ 𝑓�𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, 𝜆�𝑇

𝑡=1
𝑀
𝑚=1  respectively.  Given 

estimates 𝛾� and �̂� we can compute 𝑓�𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾�� and 𝑓�𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, �̂�� and used them to 

construct the relevant parts of 𝐿�𝜃, 𝛾�, �̂�� in order to estimate 𝜃� in a second step.  

Based on the discussion above, we use the following pseudo log likelihood 

function to estimate parameters in vector 𝜃: 
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𝑄�𝜃,𝑷, 𝛾�, �̂�� = ����𝑎𝑖𝑚𝑡𝑙𝑛�𝜓�𝑍�𝑖𝑚𝑡𝑃 × 𝜃 + �̃�𝑖𝑚𝑡𝑃 ��
𝑇

𝑡=1

𝑁

𝑖=1

𝑀

𝑚=1

+ (1 − 𝑎𝑖𝑚𝑡)𝑙𝑛�𝜓�−𝑍�𝑖𝑚𝑡𝑃 × 𝜃 − �̃�𝑖𝑚𝑡𝑃 ��

+ 𝑙𝑛�𝑓�𝜖𝑚𝑡𝑇𝑟𝑎𝑑|𝑍𝑚𝑡 , 𝛾��� + 𝑙𝑛�𝑓�𝜖𝑚𝑡𝑉𝑖𝑟𝑡|𝑍𝑚𝑡, �̂���� 

(24) 

where 𝑄�𝜃,𝑷, 𝛾�, �̂�� is called a “pseudo” log likelihood function because airlines’ 

conditional choice probabilities (CCPs) in 𝜓(∙) are arbitrary and do not represent the 

equilibrium probabilities associated with 𝜃, where 𝜃 is the vector of parameters in the 

fixed and entry cost functions previously specified in equations (13) and (14).  Since the 

focus now is describing how 𝜃 is estimated, in what follows we drop 𝛾� and �̂� when 

discussing “pseudo” log likelihood function 𝑄(∙) only for notational convenience.       

 We begin by implementing the Pseudo Maximum Likelihood (PML) estimation 

procedure [Aguirregabiria and Ho (2012)].  The PML requires two steps.  In step 1, we 

estimate relevant state transition equations.  Appendix A describes transition rules used 

for state variables.  In addition, nonparametric estimates of the choice probabilities 𝑃0� are 

computed in step1.  These nonparametric probability estimates, along with state variables 

and estimated state transition probabilities, are used to compute 𝑍�𝑖𝑚𝑡
𝑃0�  and �̃�𝑖𝑚𝑡

𝑃0�  as 

described in Appendix B.  Using 𝑍�𝑖𝑚𝑡
𝑃0�  and �̃�𝑖𝑚𝑡

𝑃0� , we are able to construct the pseudo log 

likelihood function, 𝑄�𝜃,𝑃0��.  In step 2 of the PML estimation algorithm, the vector of 

parameters 𝜃�𝑃𝑀𝐿 is estimated by: 

 𝜃�𝑃𝑀𝐿 = 𝑎𝑟𝑔 max
𝜃

𝑄�𝜃,𝑃0�� (25) 

This PML algorithm is simple and does not require solving for an equilibrium in 

the dynamic game, and thus substantially reduces computational burden.  However, the 

two-step pseudo maximum likelihood estimator 𝜃�𝑃𝑀𝐿 can have a large finite sample bias 

[Aguirregabiria and Mira (2007)].  To ensure consistency of the parameter estimates, we 

follow Aguirregabiria and Mira (2002, 2007) and use as a starting point the PML 

parameter estimates along with the non-parametric estimates of the choice probabilities to 

implement the Nested Pseudo Likelihood (NPL) estimation algorithm.  We describe the 

NPL estimation algorithm in Appendix C.13

                                                             
13 While the demand model is estimated using all three years in the data set (2005, 2006 and 2007), due to 
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Results from first-stage estimation of parameter vectors 𝜸 and 𝝀 

Table 7 reports the estimation results for first-stage estimation of parameter 

vectors 𝛾 and 𝜆.  The results suggest that more concentrated airline presence at the market 

endpoints (measured by variable Lag HHI of Presence), and longer distance between 

market endpoints (measured by variable Nonstop Flight Distance) seem to incentivize 

relatively higher levels of traditional codesharing, but lower levels of virtual codesharing.  

At a minimum we can infer from these results that airlines' choice of what type of 

codesharing to employ in a market depends in part on certain market characteristics.   

Last, results of F-tests shown in the table suggest that all regressors as a group do explain 

variations in 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 and 𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡.  

 

Table 7 
Estimation of Linear Equations  
for Percent Codeshare Variables 

  
Dependent Variable: 
Percent_Traditional 

Dependent Variable: 
Percent_Virtual 

Variables 

Coefficient 
Estimates 

(𝛾) 

Standard 
Error 

 

Coefficient 
Estimates 

(𝜆) 

Standard 
Error 

 
POP -2.84E-08 2.32E-07 1.37E-07 2.35E-07 
Nonstop flight distance 0.0016*** 7.68E-05 -0.0012*** 7.79E-05 
Lag HHI of Presence 0.9831** 0.4001 -3.6714*** 0.4056 
Constant -1.5868*** 0.4384 2.6997*** 0.4444 
Origin fixed effects YES YES 
Destination fixed effects YES YES 
Quarter fixed effects YES YES 
R-squared 0.2421 0.2943 
F-test 29.60     Prob>F = 0.000 38.63   Prob>F = 0.000 

              *** indicates statistical significance at 1% 
              **   indicates statistical significance at 5% 

Equations are estimated using ordinary least squares. 
 

 

                                                                                                                                                                                     
significant computational burden, we find that the dynamic entry/exit model can only feasibly be estimated 
using, at most, four quarters of the data.  We only use data in year 2005 when estimating the dynamic 
entry/exit model.  Even with just four quarters of data, the computer code for the dynamic entry/exit model 
took more than seven days of continuous running before convergence is achieved. 
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4.4 Results from the dynamic model 
Table 8 reports estimates of parameters in the fixed and entry cost functions from 

the dynamic model.  The quarterly discount factor, β, is fixed at 0.99 (that implies an 

annual discount factor of 0.96).  All the estimated fixed and entry cost parameters are 

measured in ten thousands of annual 1999 dollars.  

First, point estimates of parameters in the fixed cost function are unreasonably 

small and imprecisely estimated.  As such, we cannot draw reliable inferences about the 

size of fixed cost.  Fortunately, based on the objectives of our study we are most 

interested in parameter estimates in the entry cost function, which is where we now focus 

the remainder of the discussion.  

Based on our static Bertrand-Nash model previously discussed, median quarterly 

variable profit for an airline in a directional origin-destination market is estimated to be 

$31,492.71.  Estimates from Table 8 show that average estimated entry cost is 

approximately $30,574, which is approximately 97 percent of variable profit.  The 

decision of market entry is forward-looking, and our estimates suggest that it will take an 

airline slightly less than one quarter of variable profit to recoup the one-time sunk entry 

cost investment.  Of course, an airline typically needs to use a portion of its variable 

profit to pay for recurrent fixed expenses that, in part, may be related to its airport 

operations – e.g. labor cost of ground crew at airport.  Therefore, it is likely to take more 

than one quarter of variable profits to recoup the one-time sunk entry cost investment.   

However, it is notable from the estimates that mean entry cost differs by the 

carrier categories considered.  Southwest has the highest mean market entry cost 

followed by legacy carriers and other low-cost-carriers, $33,498, $30,755 and $27,468 

respectively.  Furthermore, the pairwise difference between any two of these three mean 

market entry costs is statistically significant at conventional levels of statistical 

significance.  Even though Southwest has the highest mean market entry cost, estimates 

from our static model reveal that it also has a relatively high median quarterly market-

level variable profit of $61,490.78.  So based on Southwest relatively high variable profit, 

it will only take Southwest a minimum of 0.54 of a quarter (approximately 49 days) of 

variable profit to recoup it’s one-time sunk entry cost investment.  In contrast, other low-

cost-carriers have the lowest mean market entry cost, but they also have relatively low 
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variable profit, a median $35,976.57.  So on average it takes other low-cost-carriers more 

than a quarter (approximately 118 days), which is longer than what it takes Southwest, of 

variable profits to recoup their one-time sunk entry cost investment. 

“Size of Presence at market endpoints” in the entry cost function is variable 

𝑃𝑟𝑒𝑠𝑖𝑚𝑡 in equation (14).  The estimated entry cost coefficient on “Size of Presence at 

market endpoints” is negative and statistically significant at conventional levels of 

statistical significance, suggesting that an airline’s market entry cost decreases with the 

size of the airline’s presence at the endpoint airports of the market.  In other words, larger 

endpoint airport presence makes it easier for the airline to actually start servicing the 

route.  This result is consistent with how the literature believes airline markets work [see 

Berry (1992); Goolsbee and Syverson (2008); Gayle and Wu (2012a) among others]. 

 

Table 8 
Estimates of Parameters in Fixed and Entry Cost Functions 

Variables 
 

Parameter Estimates 
(θ)  

(In ten thousand $) 

Standard 
Error 

 
Fixed cost (quarterly): 

      Mean fixed cost 1.9067E-09 0.0058 
    Size of Presence at market endpoints -4.5820E-14 0.0001 

   Entry costs: 
     Mean entry cost for Legacy carriers 3.0755*** 0.0277 

   Mean entry cost for Southwest 3.3498*** 0.0815 
   Mean entry cost for Other LCCs 2.7468*** 0.0649 
   Size of Presence at market endpoints -0.0072*** 0.0004 
   Traditional Codesharing  -0.0197*** 0.0024 
   Virtual Codesharing  -0.0042** 0.0019 
   Traditional Codesharing × Southwest 0.0295*** 0.0099 
   Virtual Codesharing × Southwest 0.0069 0.0065 
   Traditional Codesharing × Other LCCs 0.0090 0.0073 
   Virtual Codesharing × Other LCCs -0.0058 0.0051 

*** indicates statistical significance at 1% 
**   indicates statistical significance at 5% 
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The coefficient estimates on traditional and virtual codesharing variables are 

negative and statistically significant.  Based on our previous discussion of the 

interpretation of parameters in the entry cost function (equation (14)), the coefficients on 

these two codeshare variables essentially capture the influence of codesharing on the 

market entry cost of potential entrants that are legacy carriers.  Therefore, these 

coefficient estimates suggest that codesharing by incumbent carriers in a market reduces 

the market entry cost of potential entrants that are legacy carriers.  

Recall that our descriptive statistics in Table 3 show that: (1) the vast majority of 

codeshare products are provided by legacy carriers; and (2) almost all of each legacy 

carrier’s codeshare products are codeshared with other legacy carriers.  Therefore, the 

econometric evidence in Table 8 suggesting that more codesharing in a market makes it 

less costly for potential entrant legacy carriers to enter the market may in part be driven 

by the Chen and Ross (2000) argument, which is that incumbents may offer to share their 

facility (in our context, predominantly airplane seats owned by legacy carriers) with some 

potential entrants (apparently other legacy carriers) in order to discourage the potential 

entrant from entering on a larger, and more competitive, scale by exclusively using its 

own plane on the full route.  In other words, entry may be encouraged, as reflected by the 

lower entry cost, in a way that limits the scale of entry.         

A key result is that the coefficient estimate on the interaction variable between 

traditional codesharing and Southwest is positive and statistically significant, while the 

coefficient estimate on the interaction variable between virtual codesharing and 

Southwest is not statistically significant.  These coefficient estimates suggest that 

traditional codesharing between incumbent carriers raises Southwest’s entry cost to the 

relevant market, relative to the fall in entry cost of potential entrant legacy carriers, but 

virtual codesharing does not differentially affect Southwest’ market entry cost relative to 

potential entrant legacy carriers.  In other words, more traditional codesharing between 

incumbent carriers in a market puts Southwest at a relative disadvantage to enter the 

market compared to potential entrant legacy carriers. 

The coefficient estimates on the interactions between Other low-cost-carriers and 

codeshare variables are not statistically significant at conventional levels of statistical 

significance.  In other words, in terms of dollar amount changes, neither type of 
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codesharing differentially affect Other low-cost-carriers market entry cost, relative to the 

fall in entry cost of potential entrant legacy carriers.  We argue above that a possible 

reason why potential entrant legacy carriers find it less costly to enter markets with more 

codesharing is due to the fact that the incumbents that codeshare are typically legacy 

carriers, and legacy carrier typically codeshare with other legacy carriers.  So what is the 

rationale for the econometric result that potential entrants that are other low-cost carriers 

do not find it any more difficult than potential entrant legacy carriers to enter a market 

with higher levels of codesharing?  Perhaps a reason for this result is that a large set of 

consumers served by other low-cost carriers does not have significant overlap with the set 

of consumers served by legacy carriers, and therefore the two carrier types only weakly 

compete with each other.  Brueckner, Lee and Singer (2012) provide evidence that 

supports this argument.  Specifically, they find that incumbent legacy carriers do not cut 

fares in response to potential competition from other low-cost carriers, but cut fares by 

8% in response to potential competition from Southwest. 

A useful feature of the structural econometric model is that the model allows us to 

monetize the extent to which codesharing by market incumbent carriers influences 

market entry barriers faced by potential entrants.  Parameter estimates in the entry cost 

function suggest that each percentage point increase in traditional codeshare products 

offered by incumbents in a market raises market entry cost for Southwest by 0.3% 

(= $295−$197
$33,498

× 100).  In contrast, each percentage point increase in traditional codeshare 

products offered by incumbents in a market reduces market entry cost by 0.6% (=
$197

$30,755
× 100) for potential entrant legacy carriers, and by 0.7% (= $197

$27,468
× 100) for 

potential entrants that are “other” low-cost carriers.  

 

Summary of key findings and discussion  

In summary, based on coefficient estimates in the entry cost function, we can 

conclude that more traditional codesharing between incumbent carriers in a market puts 

Southwest at a relative disadvantage to enter the market compared to all other potential 

entrants (legacy carriers and other low-cost carriers).  We interpret this result as 

suggesting that traditional codesharing has a relative market entry deterrent effect on 
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Southwest.  Furthermore, the results suggest that virtual codesharing does not have a 

market entry deterrent effect. 

Codeshare partner carriers typically make their frequent-flyer programs 

reciprocal.  In situations where partner carriers’ route networks are complementary, and 

therefore require passengers to fly on separate partner carriers’ planes to complete a trip, 

there are greater opportunities for passengers to accumulate frequent-flyer miles from the 

partner's reciprocal frequent-flyer programs.  In other words, frequent-flyer membership 

with a partner carrier is likely more valuable to customers when partner carriers’ 

networks are complementary.  This suggests that market incumbents can more effectively 

increase their loyal customer base with traditional codesharing than they can via virtual 

codesharing, since traditional codesharing requires travel across complementary partner 

carriers’ networks, while virtual codesharing requires air travel on a single carriers’ 

network.  The previously discussed demand results support this argument, since relevant 

demand coefficient estimates suggest that traditional codesharing is likely more demand-

increasing for an airline relative to virtual codesharing.  

An increase in incumbents’ loyal customer base makes it more difficult for a new 

entrant to amass a sufficiently large customer base to make entry profitable.  Therefore, 

the empirical result from our entry cost estimates suggesting that traditional codesharing 

between incumbents is entry deterring, but virtual codesharing is not, is quite reasonable 

and consistent with the arguments above and supported by our demand-side results on 

codesharing.  Note also that Southwest’s relatively higher market entry cost may simply 

be reflecting the increased difficulty it will face to amass a sufficiently larger customer 

base in these codeshare markets. 

 

5. Concluding Remarks 
The main objective of our paper is to use a structural econometric model to 

investigate: (1) whether codesharing between airlines in domestic air travel markets, a 

form of strategic alliance, has a deterrent effect on the entry of potential competitors; (2) 

whether there is a particular type of codesharing among alliance partners that is most 

effective at deterring entry; and (3) whether there is a particular type of airline that seems 

to be more deterred via such type of codesharing between alliance partners.  We use a 
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structural econometric model in order to investigate these issues.  One advantage of using 

a structural econometric model is that we are able to quantify, in monetary terms, possible 

market entry barriers associated with codesharing. 

We find that more traditional codesharing between incumbent carriers in a market 

puts Southwest at a relative disadvantage to enter the market compared to all other 

potential entrants (legacy carriers and other low-cost carriers).  Specifically, each 

percentage point increase in traditional codeshare products offered by incumbents in a 

market raises market entry cost for Southwest by 0.3%, but reduces market entry cost by 

0.6% and 0.7% for legacy and “other” low-cost carriers respectively.  Therefore, 

traditional codesharing by market incumbent carriers has a relative market entry deterrent 

effect on Southwest.  Furthermore, there is no evidence that virtual codesharing has a 

market entry deterrent effect. 

We link the market entry deterrent effects inferred from our entry cost estimates to 

findings from our demand estimates.  Estimates from our demand model suggest that 

incumbents’ traditional codesharing has a larger demand-increasing effect for their 

products compared to virtual codesharing.  Since the demand-side evidence is consistent 

with the argument that traditional codesharing better serves to expand the loyal customer 

base of market incumbents, then with more traditional codesharing by incumbents, a 

potential entrant will find it more costly (higher market entry cost) to build its own 

customer base upon entry, making entry less profitable in these high traditional codeshare 

markets.  We argue that this entry deterrent effect is binding for Southwest but not for 

others due to evidence that the vast majority of codesharing is done between legacy 

carriers, and competition between Southwest and legacy carriers is stronger than 

competition between other low-cost carriers and legacy carriers.  For example, 

Brueckner, Lee and Singer (2012) provide evidence that incumbent legacy carriers do not 

cut fares in response to potential competition from other low-cost carriers, but cut fares 

by 8% in response to potential competition from Southwest. 

We also find that an airline’s market entry cost decreases with the size of the 

airline’s presence at the endpoint airports of the market.  This finding is consistent with 

findings in Aguirregabiria and Ho (2012), and may be due to economies of scale and 

scope by concentrating most operations in a hub airport. 
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The focus of our study is on U.S. domestic air travel markets, however future 

work may investigate whether results similar to ours exist for codesharing in international 

air travel markets.   

 

Appendix A: Transition Rules for State Variables 
 

The state variables we observe are: 
{𝑠𝑖𝑚𝑡,𝑅𝑖𝑚𝑡∗ ,𝑃𝑟𝑒𝑠𝑖𝑚𝑡,𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡,𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡}.  Transition rules for state 
variables are as follows: 

 
   𝑠𝑖𝑚,𝑡+1 = 𝑎𝑖𝑡       (A1) 
 
  𝑅𝑖𝑚,𝑡+1

∗ = 𝑎𝑖𝑚𝑡(𝛼0𝑅 + 𝛼1𝑅𝑅𝑖𝑚𝑡∗ + 𝜁𝑖𝑚𝑡𝑅 )    (A2) 
 
 𝑃𝑟𝑒𝑠𝑖𝑚,𝑡+1 = 𝛼0𝑃𝑟𝑒𝑠 + 𝛼1𝑃𝑟𝑒𝑠𝑃𝑟𝑒𝑠𝑖𝑚𝑡 + 𝜁𝑖𝑚𝑡𝑃𝑟𝑒𝑠    (A3) 
  
𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚,𝑡+1 = 𝛼0

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑  +  
   𝛼1

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡  + 𝜁𝑚𝑡
𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑  (A4) 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚,𝑡+1 = 𝛼0

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙 +  
  𝛼1

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 + 𝜁𝑚𝑡
𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙        (A5) 

 
where 𝜁𝑖𝑚𝑡𝑅 , 𝜁𝑖𝑚𝑡𝑃𝑟𝑒𝑠,  𝜁𝑚𝑡

𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑, and 𝜁𝑚𝑡
𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙 are assumed to be normally 

distributed.  
The joint transition probabilities of the state variables are determined by: 
 

𝐹𝑖𝜎�𝑦𝑡+1�𝑎𝑖𝑡,𝑦𝑡� =

�
1�𝑠𝑖,𝑡+1 = 1� ∗ Pr𝑅 ∗ Pr𝑃𝑟𝑒𝑠 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑡𝑢𝑎𝑙 ∗ Pr𝑐𝑜𝑚𝑝 
1�𝑠𝑖,𝑡+1 = 0� ∗ Pr𝑅′ ∗ Pr𝑝𝑟𝑒𝑠 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 ∗ Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑡𝑢𝑎𝑙 ∗ Pr𝑐𝑜𝑚𝑝

�  (A6) 

 
where 
 
Pr𝑅 = 𝐹𝑅(𝑅𝑖𝑡+1|𝑅𝑖𝑡) ∗ ∏ 𝐹𝑅�𝑅𝑗𝑡+1�𝑅𝑗𝑡�𝑗≠𝑖       (A7) 
 
Pr𝑃𝑟𝑒𝑠 = 𝐹𝑃𝑟𝑒𝑠(𝑃𝑟𝑒𝑠𝑖𝑡+1|𝑃𝑟𝑒𝑠𝑖𝑡) ∗ ∏ 𝐹𝑃𝑟𝑒𝑠�𝑃𝑟𝑒𝑠𝑗𝑡+1�𝑃𝑟𝑒𝑠𝑗𝑡�𝑗≠𝑖    (A8) 
 
Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑 = 𝐹𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑(𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑡+1|𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑡)  (A9) 
 
Pr𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙 = 𝐹𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙(𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑡+1|𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑡) (A10) 
 
Pr𝑅′ = 1�𝑅𝑖,𝑡+1 = 0� ∗ ∏ 𝐹𝑅�𝑅𝑗𝑡+1�𝑅𝑗𝑡�𝑗≠𝑖       (A11) 
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Pr𝑐𝑜𝑚𝑝 = ∏ 𝑃𝑟�𝑠𝑗𝑡+1 = 𝜎𝑗�𝑦𝑗𝑡, 𝜀𝑗𝑡��𝑦𝑗𝑡�𝑗≠𝑖       (A12) 
 
 
Appendix B: Representation of Markov Perfect Equilibrium (MPE) 

using Conditional Choice Probabilities (CCPs) 
 
Recall that expected one-period profit function, 𝛱𝑖𝑚𝑡(𝑎𝑖𝑡,𝑦𝑡), is specified as: 
 

 𝛱𝑖𝑚𝑡(𝑎𝑖𝑡,𝑦𝑡) = 𝑅𝑖𝑚𝑡∗ − 𝑎𝑖𝑚𝑡(𝐹𝐶𝑖 + (1 − 𝑠𝑖𝑚𝑡)𝐸𝐶𝑖),  (B1) 

where parametric specifications for 𝐹𝐶𝑖 and 𝐸𝐶𝑖 were previously given in equations (13) 
and (14).  Based on equation (B1): 
 
 𝛱𝑖𝑚𝑡(0,𝑦𝑡) = 𝑅𝑖𝑚𝑡∗  (B2) 

and 
 𝛱𝑖𝑚𝑡(1,𝑦𝑡) = 𝑅𝑖𝑚𝑡∗ − 𝐹𝐶𝑖 − (1 − 𝑠𝑖𝑚𝑡)𝐸𝐶𝑖 (B3) 

Let 
 𝑧𝑖𝑚𝑡(0,𝑦𝑡) = {𝑅𝑖𝑚𝑡∗ , 0,0,0,0,0,0,0,0,0,0} (B4) 

and 

 

𝑧𝑖𝑚𝑡(1,𝑦𝑡)    
=   �𝑅𝑖𝑚𝑡∗ , −1, −𝑃𝑟𝑒𝑠𝑖𝑚𝑡,
−1,   − (1 − 𝑠𝑖𝑡)𝑃𝑟𝑒𝑠𝑖𝑚𝑡 ,             
− (1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡   ,    
−(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 ,
−(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡,
−(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡,   
− (1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑇𝑟𝑎𝑑𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐,    
−(1 − 𝑠𝑖𝑡)𝑃𝑒𝑟𝑐𝑒𝑛𝑡_𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑚𝑡 × 𝑂𝑡ℎ𝑒𝑟_𝑙𝑐𝑐 � 

(B5) 

and 
 𝜃 = {1,𝜃0𝐹𝐶 ,𝜃1𝐹𝐶 ,𝜃0𝐸𝐶 , 𝜃1𝐸𝐶 ,𝜃2𝐸𝐶 ,𝜃3𝐸𝐶 ,𝜃4𝐸𝐶 ,𝜃5𝐸𝐶 , 𝜃6𝐸𝐶 ,𝜃7𝐸𝐶} (B6) 

Therefore, we can re-write: 
 𝛱𝑖𝑚𝑡(0,𝑦𝑡) = 𝑧𝑖𝑚𝑡(0,𝑦𝑡) × 𝜃 (B7) 

and 
 𝛱𝑖𝑚𝑡(1,𝑦𝑡) = 𝑧𝑖𝑚𝑡(1,𝑦𝑡) × 𝜃 (B8) 

As discussed in Aguirregabiria and Ho (2012), the MPE can be represented as a 
vector of conditional choice probabilities (CCPs), P.  P = {Pi(y): for every firm and state 
(i, y)} that solves fixed point problem 𝑷 = 𝜓(𝑷,𝜃) is a vector of best response mapping: 

 {𝜓�𝑍�𝑖𝑃(𝑦)
𝜃
𝜎𝜀

+ �̃�𝑖𝑃(𝑦)� : 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑓𝑖𝑟𝑚 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 (𝑖,𝑦)} (B9) 
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where in our study 𝜓(∙) is the CDF of the type 1 extreme value distribution, and 
 

 
𝑍�𝑖𝑃(𝑦) = 𝑍𝑖(1,𝑦) − 𝑍𝑖(0,𝑦) + 𝛽[𝐹𝑖,𝑦𝑃 (1) − 𝐹𝑖,𝑦𝑃 (0)] × 𝑤𝑧,𝑖

𝑃 , (B10) 

 

 
�̃�𝑖𝑃(𝑦) = 𝛽[𝐹𝑖,𝑦𝑃 (1) − 𝐹𝑖,𝑦𝑃 (0)] × 𝑤𝑒,𝑖

𝑃 , (B11) 

 

 
𝑤𝑧,𝑖
𝑃 = (1 − 𝛽 ∗ 𝐹𝚤,𝑦𝑃����)−1 × {𝑃𝑖(𝑦) ∗ 𝑍𝑖(1,𝑦) + [1 − 𝑃𝑖(𝑦)] ∗ 𝑍𝑖(0,𝑦)}, (B12) 

 

 
𝑤𝑒,𝑖
𝑃 = (1 − 𝛽 ∗ 𝐹𝚤,𝑦𝑃����)−1 × [𝑃𝑖(𝑦) ∗ 𝑒𝑖𝑃] (B13) 

 

and 
 

 
𝐹𝚤,𝑦𝑃���� = [�𝑃𝑖(𝑦) × 1𝑀′ � ∗ 𝐹𝑖,𝑦𝑃 (1) + ��1 − 𝑃𝑖(𝑦)� × 1𝑀′ � ∗ 𝐹𝑖,𝑦𝑃 (0)]. (B14) 

 

where F𝑖𝑦P (0) and F𝑖𝑦P (1) are state transition probability matrices for 𝑎𝑖𝑡 = 0 and 𝑎𝑖𝑡 = 1 
respectively; 𝑤𝑧,𝑖

𝑃  and 𝑤𝑒,𝑖
𝑃  are vectors of valuations that depend on CCPs and transition 

probabilities, but not on the dynamic parameters being estimated. Since 𝜀𝑖𝑚𝑡 is assumed 
type 1 extreme value distributed, 𝑒𝑖𝑃 is a function vector equal to 𝑒𝑖𝑃 = 𝛾 − 𝑙𝑛�𝑃𝑖(𝑦)� 
where γ = 0.577215665 is Euler’s constant. 

 
Appendix C: Implementing the Nested Pseudo Likelihood (NPL) 

Estimator 
 Given the PML estimator, 𝜃�𝑃𝑀𝐿, and the initial nonparametric estimate of CCPs, 
𝑃0�, we construct a new estimator of CCPs, 𝑃1� ,using the best response CCPs equation 
𝑃1� = 𝜓�𝑦,𝑃0�, 𝜃�𝑃𝑀𝐿�.  Then we redo the maximization of the pseudo likelihood function 
to obtain a new estimate of 𝜃 using 𝑃1� , instead of  𝑃0�, in the pseudo log likelihood 
function, that is, we solve 𝜃�2 = 𝑎𝑟𝑔 max

𝜃
𝑄�𝜃,𝑃1� �.  The process is repeated K times, and 

the Kth estimates of 𝜃 and P are obtained by 𝜃�𝐾 = 𝑎𝑟𝑔 max
𝜃

𝑄�𝜃,𝑃𝐾−1�� and 𝑃𝐾� =
𝜓�𝑦,𝑃𝐾−1� ,𝜃�𝐾� respectively.  The algorithm is terminated on the Kth iteration only if the 
CCP vector 𝑃𝐾�  is “close” to 𝑃𝐾−1�  based on a stipulated tolerance level.  Based on this 
algorithm, an NPL fixed point is defined as a pair (𝜃�𝐾,𝑃𝐾−1�).  Aguirregabiria and Mira 
(2002, 2007) argue that this NPL estimation algorithm can reduce significantly the finite 
sample bias of the two-step PML estimator. 
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