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Abstract

We study the problem of implementing equilibria of complete information games in settings of in-
complete information, and address this problem using “recommender mechanisms.” A recommender
mechanism is one that does not have the power to enforce outcomes or to force participation, rather it
only has the power to suggestion outcomes on the basis of voluntary participation. We show that despite
these restrictions, recommender mechanisms can implement equilibria of complete information games
in settings of incomplete information under the condition that the game is large—i.e. that there are a
large number of players, and any player’s action affects any other’s payoff by at most a small amount.

Our result follows from a novel application of differential privacy. We show that any algorithm
that computes a correlated equilibrium of a complete information game while satisfying a variant of
differential privacy—which we call joint differential privacy—can be used as a recommender mechanism
while satisfying our desired incentive properties. Our main technical result is an algorithm for computing
a correlated equilibrium of a large game while satisfying joint differential privacy.

Although our recommender mechanisms are designed to satisfy game-theoretic properties, our solu-
tion ends up satisfying a strong privacy property as well. No group of players can learn “much” about
the type of any player outside the group from the recommendations of the mechanism, even if these
players collude in an arbitrary way. As such, our algorithm is able to implement equilibria of complete
information games, without revealing information about the realized types.
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1 Introduction

A useful simplification common in game theory is the model of games of complete (or full) information.
Informally, in a game of complete information, each player knows with certainty the utility function of every
other player. In games of complete information, there are a number of solution concepts at our disposal, such
as Nash equilibrium and correlated equilibrium. Common to these is the idea that each player is playing a
best response against his opponents—because of randomness, players might be uncertain about what actions
their opponents are taking, but they understand their opponents’ incentives exactly.

In many situations, it is unreasonable to assume that players have exact knowledge of each other’s
utilities. For example, players may have few means of communication outside of the game, or may regard
their type as valuable private information. These are games of incomplete (or partial) information, which
are commonly modeled as Bayesian games in which the players’ utilities functions, or types, are drawn from
a commonly known prior distribution. The most common solution concept in such games is Bayes-Nash
Equilibrium. This stipulates that every player i, as a function of his type, plays an action that maximizes
his expected payoff, in expectation both over the random draw of the types of his opponents from the prior
distribution and over the possible randomization of the other players.

Unsurprisingly, equilibrium welfare can suffer in games of incomplete information, because coordina-
tion becomes more difficult amongst players who do not know each other’s types. One way to measure
the quality of equilibria is via the “price of anarchy”—how much worse the social welfare can be in an
equilibrium outcome, as opposed to the welfare-maximizing outcome. The price of anarchy can depend
significantly on the notion of equilibrium. For example, Roughgarden [Rou12] notes that even smooth
games1 that have a constant price of anarchy under full information solution concepts (e.g. Nash or cor-
related equilibrium) can have an unboundedly large price of anarchy under partial information solution
concepts (e.g. Bayes-Nash Equilibrium). Therefore, given a game of partial information, where all that we
can predict is that players will choose some Bayes-Nash Equilibrium (if even that), it may be preferable
to implement an equilibrium of the complete information game defined by the actual realized types of the
players. Doing so would guarantee welfare bounded by the price of anarchy of the full information game,
rather than suffering from the large price of anarchy of the partial information setting. In a smooth game,
we would be just as happy implementing a correlated equilibrium as a Nash equilibrium, since the price of
anarchy is no worse over correlated equilibria.

In this paper we ask whether it is possible to help coordinate on an equilibrium of the realized full
information game using a certain type of proxy that we call a “recommender mechanism.” That is, we
augment the game with an additional option for each player to use a proxy. If players opt in to using the
proxy, and reveal their type to the proxy, then it will suggest some action for them to take. However, players
may also simply opt out of using the proxy and play the original game using any strategy they choose. We
make the assumption that if players use the proxy, then they must report their type truthfully (or, alternatively,
that the proxy has the ability to verify a player’s type and punish those who report dishonestly). However,
the proxy has very limited power in other respects, because it does not have the ability to modify payoffs of
the game (i.e. make payments) or to enforce that its recommendations be followed.

Our main result is that it is indeed possible to implement approximate correlated equilibria of the realized
full information game using recommender mechanisms, assuming the original game is “large”. Informally,

1Of particular interest to us are smooth games, defined by Roughgarden [Rou09]. Almost all known price of anarchy bounds
(including those for the well studied model of traffic routing games) are bounds on smooth games, and many are quite good.
Although price of anarchy bounds are typically proven for exact Nash equilibria of the full information games, in smooth games,
the price of anarchy bounds extend without loss to (and even beyond) approximate correlated equilibria, again of the full information
game.
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a game is large if there are many players and that each player has individually only a small affect on the
utility of any other player. We show that in such games there exists a recommender mechanism such that
for any prior on agent types, it is an approximate Bayes-Nash equilibrium for every agent in the game to
opt in to the proxy, and then follow its recommended action. Moreover, when players do so, the resulting
play forms an approximate correlated equilibrium of the full information game. The approximation error
we require tends to 0 as the number of players grows.

1.1 Overview of Techniques and Results

A tempting approach is to use the following form of proxy: The proxy accepts a report of each agent’s type,
which defines an instance of a full information game. It then computes a correlated equilibrium of the full
information game, and suggests an action to each player which is a draw from this correlated equilibrium.
By definition of a correlated equilibrium, if all players opt into the proxy, then they can do no better than
subsequently following the recommended action. However, this proxy does not solve the problem, as it
may not be in a player’s best interest to opt in, even if the other n − 1 players do opt in! Intuitively,
by opting out, the player can cause the proxy to compute a correlated equilibrium of the wrong game, or to
compute a different correlated equilibrium of the same game!2 The problem is an instance of the well known
equilibrium-selection problem—even in a game of full information, different players may disagree on their
preferred equilibrium, and may have trouble coordinating. The problem is only more difficult in settings of
incomplete information. In our case, by opting out of the mechanism, a player can have a substantial affect
on the computed equilibrium, even if each player has only small affect on the utilities of other players.

Our solution is to devise a means of computing correlated equilibria such that any single player’s re-
ported type to the algorithm only has a small effect on the distribution of suggested actions to all other
players. The precise notion of “small effect” that we use is a variant of the well studied notion of differential
privacy. It is not hard to see that computing an equilibrium of even a large game is not possible under the
standard constraint of differential privacy, because although agent’s actions have only a small affect on the
utilities of other players in large games, they can have large affect on their own utility functions. Thus, it
is not possible to privately announce a best response for player i while protecting the privacy of i’s type.
Instead, we introduce a variant which we call joint differential privacy, which requires that simultaneously
for every player i, the joint distribution on the suggested actions to all players j 6= i be differentially private
in the type of agent i. We show that a proxy mechanism which calculates an α-approximate correlated equi-
librium of the game induced by players reported types, under the constraint of ε-joint differential privacy
makes it an (ε+ α)-approximate Bayes-Nash equilibrium for players to opt into the proxy, and then follow
their suggested action, as desired.

2As a simple example, consider a large number n of people who must each choose whether to go to the beach (B) or mountains
(M). People privately know their types— each person’s utility depends on his own type, his action, and the fraction of other people p
who go to the beach. A Beach type gets a payoff of 10p if he visits the beach, and 5(1−p) if he visits the mountain. A mountain type
gets a payoff 5p from visiting the beach, and 10(1− p) from visiting the mountain. Note that the game is ‘insensitive’ (an agent’s
visit decision has a small impact on others’ payoffs). Further, note that “everyone visits beach” and “everyone visits mountain” are
both equilibria of the game, regardless of the realization of types. Consider the mechanism that attempts to implement the following
social choice rule—“if the number of beach types is less than half the population, send everyone to the beach, and vice versa.” It
should be clear that if mountain types are just in the majority, then each mountain type has an incentive to opt out of the mechanism,
and vice versa. As a result, even though the game is “large” and agents’ actions do not affect others’ payoffs significantly, simply
computing equilibria from reported type profiles does not in general lead to even approximately truthful mechanisms. This is a
general phenomenon that is not specific to our example. Finding an exact correlated equilibrium subject to any objective is a linear
programming problem, and in general small changes in the objective (or constraints) of an LP can lead to wild changes in its
solution.
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Our main technical result is an instantiation of this plan: a pair of algorithms for computingα-approximate
correlated equilibria in large games, such that we can take the approximation parameter ε + α tending to
zero. The first algorithm is efficient, but has a suboptimal dependence on the number of actions k in the
game. The other algorithm is inefficient, but has a nearly optimal dependence on k. Both have an optimal
dependence on the number of players n in the game, which we show by exhibiting a matching lower bound.

We introduce joint differential privacy, large games, and our game theoretic solution concepts in Section
2. In Section 3, we formally introduce our notion of a proxy. We then prove that privately computing
a correlated equilibrium is sufficient to implement a correlated equilibrium of the full information game
as a Bayes Nash equilibrium of the incomplete information game with a proxy where agents can opt out.
Then, starting in Section 4, we show how to privately compute correlated equilibria, which we do by using
no-regret algorithms together with carefully calibrated noise.

1.2 Related Work and Discussion

Market and Mechanism Design Our work is related to the large body of literature on mechanism/ mar-
ket design in “large games,” which uses the large number of agents to provide mechanisms which have
good incentive properties, even when the small market versions do not. It stretches back to [RP76] who
showed that market (Walrasian) equilibria are approximately strategy proof in large economies. More re-
cently [IM05], [KP09], [KPR10] have shown that various two-sided matching mechanisms are approxi-
mately strategy proof in large markets. There are similar results in the literature for one-sided matching
markets, market economies, and double auctions. The most general result is that of [AB11] who design
incentive compatible mechanisms for large economies that satisfy a smoothness assumption. While we only
allow agents to opt in/ opt out rather than mis-report, we do not assume any such smoothness condition.
Further, the literature on mechanism design normally gives the mechanism the power to “enforce” actions,
while here our mechanism can only “recommend” actions.

Our work is also related to mediators in games [MT03, MT09]. This line of work aims to modify
the equilibrium structure of full information games by introducing a mediator, which can coordinate agent
actions if they choose to opt in using the mediator. Mediators can be used to convert Nash equilibria into
dominant strategy equilibria [MT03], or implement equilibrium that are robust to collusion [MT09]. Our
notion of a recommender mechanism is related, but is even weaker than that of a mediator. For example, our
mechanisms do not need the power to make payments [MT03], or the power to enforce suggested actions
[MT09]. Our mediators are thus closer to the communication devices in the “communication equilibria” of
Forges [For86]—that work investigates the set of achievable payoffs via such mediators rather than how to
design one, which we do here. It also does not allow players to opt out of using the mediator.

Large Games Our results hold under a “largeness condition”, i.e. a player’s action affects the payoff of all
others by a small amount. These are closely related to the literature on large games, see e.g. [ANS00] or
[Kal04]. There has been recent work studying large games using tools from theoretical computer science
(but in this case, studying robustness of equilibrium concepts)—see [GR08, GR10].

Differential Privacy Differential privacy was first defined by [DMNS06], and is now the standard privacy
“solution concept” in the theoretical computer science literature. It quantifies the worst-case harm that can
befall an individual from allowing his data to be used in a computation, as compared to if he did not provide
his data. There is by now a very large literature on differential privacy, readers can consult [Dwo08] for
a more thorough introduction to the field. Here we mention work at the intersection of privacy and game
theory, and defer a longer discussion of related work in the privacy literature to Appendix A.
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[MT07] were the first to observe that a differentially private algorithm is also approximately truth-
ful. This line of work was extended by [NST12] to give mechanisms in several special cases which are
exactly truthful by combining private mechanisms with non-private mechanisms which explicitly punish
non-truthful reporting. [HK12] showed that the mechanism of [MT07] (the “exponential mechanism”) is
in fact maximal in distributional range, and so can be made exactly truthful with the addition of payments.
This immediate connection between privacy and truthfulness does not carry over to the notion of joint-
differential privacy that we study here, but as we show, it is regained if the object that we compute privately
is an equilibrium of the underlying game.

Another interesting line of work considers the problem of designing truthful mechanisms for agents who
explicitly experience a cost for privacy loss as part of their utility function [CCK+13, NOS12, Xia13]. The
main challenge in this line of work is to formulate a reasonable model for how agents experience cost as
a function of privacy. We remark that the approaches taken in the former two can also be adapted to work
in our setting, for agents who explicitly value privacy. [Gra12] studies the problem of implementation for
various assumptions about players’ preference for privacy and permissible game forms. A related line of
work which also takes into account agent values for privacy considers the problem of designing markets
by which analysts can procure private data from agents who explicitly experience costs for privacy loss
[FL12, GR11, LR12, RS12]. See [PR13] for a survey.

2 Model & Preliminaries

We consider games G of up to n players {1, 2, . . . , n}, indexed by i. Player i can take actions in a set A,
|A| = k. To allow our games to be defined also for fewer than n players, we will imagine that the null action
⊥ ∈ A, which corresponds to “opting out” of the game. We index actions by j. A tuple of actions, one for
each player, will be denoted a = (a1, a2, . . . an) ∈ An.3

Let U be the set of player types.4 There is a utility function u : U ×An → < that determines the payoff
for a player given his type ti and a joint action profile a for all players. When it is clear from context, we
will refer to the utility function of player i, writing ui : An → < to denote u(ti, ·). We write a generic
profile of utilities u = (u1, u2, . . . un) ∈ Un. We will be interested in implementing equilibria of the
complete information game in settings of incomplete information. In the complete information setting, the
types ti of each player is fixed and commonly known to all players. In such settings, we can ignore the
abstraction of ‘types’ and consider each player i simply to have a fixed utility function ui. In models of
incomplete information, players know their own type, but do not know the types of others. In the Bayesian
model of incomplete information, there is a commonly known prior distribution τ from which each agent’s
type is jointly drawn: (t1, . . . , tn) ∼ τ . We now define the solution concepts we will use, both in the full
information setting and in the Bayesian setting.

Denote a distribution over An by π, the marginal distribution over the actions of player i by πi, and the
marginal distribution over the (joint tuple of) actions of every player but player i by π−i. We now present
two standard solution concepts— approximate correlated and coarse correlated equilibrium.

Definition 1 (Approximate Correlated Equilibrium). Let (u1, u2, . . . un) be a tuple of utility functions, one
for each player. Let π be a distribution over tuples of actions An. We say that π is an α-approximate
correlated equilibrium of the (complete information) game defined by (u1, u2, . . . un) if for every player

3In general, subscripts will refer indices i.e. players and periods, while superscripts will refer to components of vectors.
4It is trivial to extend our results when agents have different typesets, Ui. U will then be

⋃n
i=1 Ui.
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i ∈ [N ], and any function f : A→ A,

E
π

[ui(a)] ≥ E
π

[ui(f(ai), a−i)]− α

We now define a solution concept in the Bayesian model. Let τ be a commonly known joint distribution
over Un, and let τ|ti be the posterior distribution on types conditioned on the type of player i being ti. A
(pure) strategy for player i is a function si : U → A, and we write s = (s1, . . . , sn) to denote a vector of
strategy profiles.

Definition 2 (Approximate (Pure Strategy) Bayes Nash Equilibrium). Let τ be a distribution over Un, and
let s = (s1, . . . , sn) be a vector of strategies. We say that s is an α-approximate (pure strategy) Bayes Nash
Equilibrium under τ if for every player i, for every ti ∈ U , and for every alternative strategy s′i:

E
t−i∼τ|ti

[ui(ti, si(ti), s−i(t−i))] ≥ E
t−i∼τ|ti

[
ui(ti, s

′
i(ti), s−i(t−i))

]
− ε

We restrict attention to ‘insensitive’ games. Roughly speaking a game is γ-sensitive if a player’s choice
of action affects any other player’s payoff by at most γ. Note that we do not constrain the effect of a player’s
own actions on his payoff— a player’s action can have a large impact on his own payoff. Formally:

Definition 3 (γ-Sensitive). A game is said to be γ-sensitive if for any two distinct players i 6= i′, any two
actions ai, a′i and type ti for player i and any tuple of actions a−i for everyone else:

|ui′(ai, a−i)− ui′(a′i, a−i)| ≤ γ. (1)

A key tool in our paper is the design of differentially private “proxy” algorithms for suggesting actions
to play. Agents can able to opt out of participating in the proxy: so each agent can submit to the proxy either
their type ti, or else a null symbol⊥ which represents opting out. A proxy algorithm is then a function from
a profile of utility functions (and ⊥ symbols) to a probability distribution overRn, i.e.M : (U ∪ {⊥})n →
∆Rn. HereR is an appropriately defined range space.

First we recall the definition of differential privacy, both to provide a basis for our modified definition,
and since it will be a technical building block in our algorithms. Roughly speaking, a mechanism is differ-
entially private if for every u and every i, knowledge of the output M(u) as well as u−i does not reveal
‘much’ about ui.

Definition 4 ((Standard) Differential Privacy). A mechanism M satisfies (ε, δ)-differential privacy if for
any player i, any two types for player i, ti and t′i ∈ U ∪ {⊥}, and any tuple of types for every else
t−i ∈ (U ∪ {⊥})n−1 and any S ⊆ Rn,

P
M

[(M(ti; t−i)) ∈ S] ≤ eε P
M

[(
M(t′i; t−i)

)
∈ S

]
+ δ.

We would like something slightly different for our setting. We propose a relaxation of the above def-
inition, motivated by the fact that when computing a correlated equilibrium, the action recommended to a
player is only observed by her. Roughly speaking, a mechanism is jointly differentially private if, for each
player i, knowledge of the other n−1 recommendations (and submitted types) does not reveal ‘much’ about
player i’s report. Note that this relaxation is necessary in our setting if we are going to privately compute
correlated equilibria, since knowledge of player i’s recommended action can reveal a lot of information
about his type. It is still very strong- the privacy guarantee remains even if everyone else colludes against a
given player i, so long as i does not himself make the component reported to him public.

5



Definition 5 (Joint Differential Privacy). A mechanism M satisfies (ε, δ)-joint differential privacy if for
any player i, any two possible types for player i, ti and t′i ∈ U ∪{⊥}, any tuple of utilities for everyone else
t−i and S ⊆ Rn−1,

P
M

[
(M(ti; t−i))−i ∈ S

]
≤ eε P

M

[(
M(t′i; t−i)

)
−i ∈ S

]
+ δ.

3 Joint Differential Privacy and Truthfulness

The main result of this paper is a reduction that takes an arbitrary large game G of incomplete information
and modifies it to have equilibrium implementing equilibrium outcomes of the corresponding full informa-
tion game defined by the realized agent types. Specifically, we modify the game by introducing the option
for players to use a proxy that can recommend actions to the players. The modified game is called G′. For
any prior on agent types, it will be an approximate Bayes Nash equilibrium of G′ for every player to opt in
to using the proxy, and to subsequently follow its recommendation. Moreover, the resulting set of actions
will correspond to an approximate correlated equilibrium of the complete information game G defined by
the realized agent types. For concreteness, we consider Bayesian games, however our results are not specific
to this model of incomplete information.

More precisely, the modified game G′ will be identical to G with an added option. Each player i has the
opportunity to submit their type to a proxy, which will then suggest to them an action âi ∈ A to play. They
can use this advice however they like: that is, they can choose any function f : A → A and choose to play
the action ai = f(âi). Alternately, they can opt out of the proxy (and not submit their type), and choose
an action to play ai ∈ A directly. In the end, each player experiences utility u(ti, (a1, . . . , an)), just as in
the original game G. We assume that types are verifiable—agent i does not have the ability to opt in to the
proxy but report a false type t′i 6= ti. However, he does have the ability to opt out (and submit ⊥), and the
proxy has no power to do anything other than suggest which action he should play. In the end, each player
is free to play any action ai, regardless of what the proxy suggests, even if he opts in.

Formally, given a game G defined by an action setA, a type space U , and a utility function u, we define a
proxy game G′M , parameterized by an algorithm M : {U ∪{⊥}}n → An. In G′, each agent has two types of
actions: they can opt in to the proxy, which means they submit their type, receive an action recommendation
â, and choose a function f : A → A which determines how they use that recommendation. We denote
this set of choices A′1 = {(>, f)|f : A → A}. Alternately, they can opt out of the proxy, which means
that they do not submit their type, and directly choose an action to play. We denote this set of choices
A′2 = {(⊥, a)|a ∈ A}. Together, the action set in G′M is A′ = A′1 ∪ A′2. Given a set of choices by the
players, we define a vector x such that xi = ti for each player i who chose (>, fi) ∈ A′1 (each player who
opted in), and xi = ⊥ for each player i who chose (⊥, ai) ∈ A′2 (each player who opted out). The proxy
then computes M(x) = â. Finally, this results in a vector of actions a from the game G, one for each player.
For each player who opted in, they play the action ai = fi(âi). For each person who opted out, they play
the action ai = ai. Finally, each player receives utility u(ti,a) as in the original game G.

We now show that if the algorithm M satisfies certain properties, then for any prior on agent types, it is
always an approximate Bayes Nash equilibrium for every player to opt in and follow the recommendation
of the proxy.

Theorem 6. Let M be an algorithm that satisfies (ε, δ)-joint differential privacy, and be such that for every
vector of types t ∈ Un, M(t) induces a distribution over actions that is an α-approximate correlated
equilibrium of the full information game G induced by the type vector t. Then for every prior distribution on
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types τ , it is an η-approximate Bayes Nash equilibrium of G′M for every player to play (>, f) for the identity
function f(a) = a. (i.e. for every player to opt into the proxy, and then follow its suggested action), where
η = ε+ δ + α.

Remark 7. Observe that when agents play according to the approximate Bayes Nash equilibrium of G′M
guaranteed by Theorem 6, then the resulting distribution over actions played, and the resulting utilities
of the players, correspond to an α-approximate correlated equilibrium of the full information game G′M ,
induced by the realized type vector t.

Proof of Theorem 6. Fix any prior distribution on player types τ , and let s1, . . . , sn be the strategies corre-
sponding to the action (>, f) for each player, where f is the identify function. (i.e. the strategy correspond-
ing to opting into the proxy and following the suggested action). There are two types of deviations that a
player i can consider: (>, f ′i) for some function f ′i : A→ A not the identity function, and (⊥, ai) for some
action ai. First, we consider deviations of the first kind. Let s′i(ti) be the strategy corresponding to playing
(>, f ′ŝ(ti)) for some function ŝ(ti). For every type ti:

E
t−i∼τ|ti

[ui(ti, si(ti), s−i(t−i))] =
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[ui(a)]

≥
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[
ui(f

′
ŝ(ti)

(ai),a−i)
]
− α

= E
t−i∼τ|ti

[
ui(ti, s

′
i(ti), s−i(t−i))

]
− α

where the inequality follows from the fact that M computes an α-approximate correlated equilibrium. Now,
consider a deviation of the second kind. Let s′i(ti) be the strategy corresponding to playing (⊥, aŝ(ti)) for
some function ŝ(ti). For every type ti:

E
t−i∼τ|ti

[ui(ti, si(ti), s−i(t−i))] =
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[ui(a)]

≥
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(t)

[
ui(aŝ(ti),a−i)

]
− α

≥
∑
t−i

Pr
τ|ti

[t−i] · exp(−ε) · E
a∼M(⊥,t−i)

[
ui(aŝ(ti),a−i)

]
− δ − α

≥
∑
t−i

Pr
τ|ti

[t−i] · E
a∼M(⊥,t−i)

[
ui(aŝ(ti),a−i)

]
− ε− δ − α

= E
t−i∼τ|ti

[
ui(ti, s

′
i(ti), s−i(t−i))

]
− ε− δ − α

where the first inequality follows from the α-approximate correlated equilibrium condition, the second fol-
lows from the (ε, δ)-joint differential privacy condition, and the third follows from the fact that for ε ≥ 0,
exp(−ε) ≥ 1− ε and that utilities are bounded in [0, 1].

The main technical contribution of the paper is an algorithm M which satisfies (ε, δ)-joint differential
privacy, and computes an α-approximate correlated equilibrium of games which are γ-large. We in fact
give two such algorithms: one that runs in time polynomial in n and |A| = k, and one that runs in time
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exponential in n and k. The efficient algorithm computes an α1-approximate correlated equilibrium, and
the inefficient algorithm computes an α2-approximate correlated equilibrium, where:

α1 = Õ

(
γk3/2

√
n log(1/δ)

ε

)
, α2 = Õ

(
γ log k log3/2(U)

√
n log(1/δ)

ε

)
.

In combination with Theorem 6, the existence of these algorithms together with optimal choices of ε
and δ give our main result:

Theorem 8. Let G be any γ-large game. Then there exists a proxy game G′ such that for any prior dis-
tribution on types τ , it is an η-approximate Bayes-Nash equilibrium to opt into the proxy and follow its
advice. Moreover, the resulting distribution on actions forms an η-approximate correlated equilibrium of
the full information game induced by the realized types. If we insist that the proxy be implemented using a
computationally efficient algorithm, then we can take:

η = Õ
(√

γn1/4k3/4
)

If we can take the proxy to be computationally inefficient, then we can take:

η = Õ
(√

γn1/4
√

log k log3/4 |U|
)

Remark 9. In large games, the parameter γ tends to zero as n grows large. For γ = 1/n, our approximation
error is η = Õ(k3/4/n1/4) and η = Õ(

√
log k log3/4 |U|/n1/4) respectively. Note that the approximation

error η in the equilibrium concepts tends to zero in any γ-large game such that γ = o( 1√
nk3/2

) or γ =

o( 1√
n log k log3/2 |U|

) respectively.

4 No-Regret Algorithms

4.1 Definitions and Basic Properties

Here we recall some basic results on no-regret learning. See [Nis07] for a text-book exposition.
Let {1, 2, . . . , k} be a finite set of k actions. Let L = (l1, . . . , lT ) ∈ [0, 1]T×k be a loss matrix consisting

of T vectors of losses for each of the k actions. Let Π =
{
π ∈ [0, 1]k |

∑k
j=1 π

j = 1
}

be the set of
distributions over the k actions and let πU be the uniform distribution. An online learning algorithmA : Π×
[0, 1]k → Π takes a distribution over k actions and a vector of k losses, and produces a new distribution over
the k actions. We useAt(L) to denote the distribution produced by runningA sequentially t−1 times using
the loss vectors l1, . . . , lt−1, and then running A on the resulting distribution and the loss vector lt. That is:

A0(L) = πU ,

At(L) = A(At−1(L), lt).

We use A(L) = (A0(L),A1(L), . . . ,AT (L)) when T is clear from context.
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Let π0, . . . , πT ∈ Π be a sequence of T distributions and let L be a T -row loss matrix. We define the
quantities:

λ(π, l) =
k∑
j=1

πjlj ,

λ(π0, . . . , πT , L) =
1

T

T∑
t=1

λ(πt, lt),

λ(A(L′), L) = λ(A0(L
′),A1(L

′), . . . ,AT (L′), L).

Note that the notation retains the flexibility to run the algorithm A on one loss matrix, but measure the loss
A incurs on a different loss matrix. This flexibility will be useful later.

Let F be a family of functions f : {1, 2, . . . , k} → {1, 2, . . . , k}. For a function f and a distribution π,
we define the distribution f ◦π to be

(f ◦π)j =
∑

j′:f(j′)=j

πj
′
.

The distribution f◦π corresponds to the distribution on actions obtained by first choosing an action according
to π, then applying the function f .

Now we define the following quantities:

λ(π1, . . . , πT , L, f) = λ(f ◦π1, f ◦π2, . . . , f ◦πT , L),

ρ(A, L, f) = λ(A, L)− λ(A, L, f),

ρ(A, L,F) = max
f∈F

ρ(A, L, f).

As a mnemonic, we offer the following. λ refers to expected loss, ρ refers to regret. Next, we define the
families Ffixed,Fswap :

Ffixed =
{
fj(j

′) = j, for all j′ | j ∈ {1, 2, . . . , k}
}

Fswap = {f : {1, 2, . . . , k} → {1, 2, . . . , k}}

Looking ahead, we will need to be able to handle not just a priori fixed sequences of losses, but also
adapted. To see why, note that for a game setting, a player’s loss will depend on the distribution of actions
played by everyone in that period, which will depend, in turn, on the losses everyone experienced in the
previous period and how everyone’s algorithms reacted to that.

Definition 10 (Adapted Loss). A loss function L is said to be adapted to an algorithm A if in each period t,
the experienced losses lt ∈ [0, 1]k can be written as:

lt = L(l0,A(l0), l1,A(l1), . . . , lt−1,A(lt−1)).

The following well-known result shows the existence of algorithms that guarantee low regret even
against adapted losses (see e.g. [Nis07]).

Theorem 11. There exists an algorithm Afixed such that for any adapted loss L, ρ(Afixed,L,Ffixed) ≤√
2 log k
T . There also exists an algorithm Aswap such that ρ(Aswap,L,Fswap) ≤ k

√
2 log k
T .
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4.2 Noise Tolerance of No-Regret Algorithms

The next lemma states that when a no-regret algorithm is run on a noisy sequence of losses, it does not incur
too much additional regret with respect to the real losses.

Lemma 12 (Regret Bounds for Bounded Noise). Let L ∈ [13 ,
2
3 ]T×k be any loss matrix. Let Z = (zjt ) ∈

[−b, b]T×k be an arbitrary matrix with bounded entries, and let L̂ = L+ Z. Let A be an algorithm. Let F
be any family of functions. Then

ρ(A(L̂), L,F) ≤ ρ(A(L̂), L̂,F) + 2b.

Corollary 13. Let L ∈ [13 ,
2
3 ]T×k be any loss matrix and let Z ∈ RT×k be a random matrix such that

PZ
[
Z ∈ [−b, b]T×k

]
≥ 1− β for some b ∈ [0, 13 ], and let L̂ = L+ Z. Then

1. PZ
[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k
T + 2b

]
≤ β,

2. PZ
[
ρ(Aswap(L̂), L,Fswap) > k

√
2 log k
T + 2b

]
≤ β.

Note that the technical conditioned b ∈ [0, 13 ] is needed to ensure that the noisy loss matrix L̂ is contained
in [0, 1]T×k, which is required to apply the regret bounds of Theorem 11.

We prove a tighter bound on the additional regret in the case where the entries of Z are iid samples from
a Laplace distribution.

Lemma 14 (Regret Bounds for Laplace Noise). Let L ∈ [13 ,
2
3 ]T×k be any loss matrix. Let Z = (zjt ) ∈

RT×k be a random matrix formed by taking each entry to be an independent sample from Lap(σ), and let
L̂ = L+ Z. Let A be an algorithm. Let F be any family of functions. Then for any η ≤ σ.

P
Z

[
ρ(A(L̂), L,F)− ρ(A(L̂), L̂,F) > η

]
≤ 2|F|e−η2T/24σ2

.

Corollary 15. Let L ∈ [13 ,
2
3 ]T×k be any loss matrix and let Z ∈ RT×k be a random matrix formed by

taking each entry to be an independent sample from Lap(σ) for σ < 1
6 log(4KT/β) and let L̂ = L+ Z. Then

1. PZ
[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k
T + σ

√
24 log(4k/β)

T

]
≤ β,

2. PZ
[
ρ(Aswap(L̂), L,Fswap) > k

√
2 log k
T + σ

√
24k log(4k/β)

T

]
≤ β.

As before, the technical condition upper bounding σ is to ensure that the noisy loss matrix L̂ is contained
in [0, 1]T×k, so that the regret bounds of A apply.

4.3 From No Regret to Equilibrium

Let (u1, . . . , un) be utility functions for each of n players. Let S = {(πi,1, . . . , πi,T )}ni=1 be a collection
of n sequences of distributions over k actions, one for each player. Let {(li,1, . . . , li,T )}ni=1 be a collection
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of n sequences of loss vectors l ∈ [0, 1]k formed by the action distribution. More formally, for every j,
lji,t = 1− Eπ−i,t [ui(j, a−i)]. Define the maximum regret that any player has to her losses

ρmax(S,L,F) = max
i
ρ(Si, Li,F)

where Si = (πi,0, . . . , πi,T ) and Li = (li,1, . . . , li,T ).
Given the collection S, we define the correlated action distribution ΠS be the average distribution of play.

That is, ΠS is the distribution over An defined by the following sampling procedure: Choose t uniformly at
random from {1, 2, . . . , T}, then, for each player i, choose ai randomly according to the distribution πi,t,
independently of the other players.

The following well known theorem (see, e.g. [Nis07]) relates low-regret sequences of play to the equi-
librium concepts (Definition 1):

Theorem 16. If the maximum regret with respect to Ffixed is small, i.e. ρmax(S,L,Ffixed) ≤ α, then
the correlated action distribution ΠS is an α-approximate coarse correlated equilibrium. Similarly, if
ρmax(S,L,Fswap) ≤ α, then ΠS is an α-approximate correlated equilibrium.

In this section we show that no-regret algorithms are noise-tolerant, that is we still get good regret bounds
with respect to the real losses if we run a no-regret algorithm on noisy losses (real losses plus low-magnitude
noise).

Let L ∈ [0, 1]T×k be a loss matrix. Define L = L+1
3 (entrywise) and note that L ∈ [13 ,

2
3 ]T×k. The

following lemma states that running A on L doesn’t significantly increase the regret with respect to the real
losses.

Lemma 17. For every algorithm A, every family F , and every loss matrix L ∈ [0, 1]T×k,

ρ(A(L), L,F) ≤ 3ρ(A(L), L,F).

In particular, for every L ∈ [0, 1]T×k

ρ(Afixed(L), L,Ffixed) ≤
√

18 log k

T
and ρ(Aswap(L), L,Fswap) ≤ k

√
18 log k

T
.

In light of Lemma 17, for the rest of this section we will take L to be a loss matrix in [13 ,
2
3 ]T×k. This

rescaling will only incur an additional factor of 3 in the regret bounds we prove. Let Z ∈ RT×k be a
real valued noise matrix. Let L̂ = L + Z (entrywise). In the next section we consider the case where
Z is an arbitrary matrix with bounded entries. We prove a tighter bound for the case where Z consists of
independent draws from a Laplace distribution.

5 Private Equilibrium Computation

Having demonstrated the noise tolerance of no-regret algorithms, we now argue that for appropriately chosen
noise, the output of the algorithm constitutes a jointly-differentially private mechanism (Definition 5). We
prove two results of this type. First, in Section 5.2 we consider games with ‘few’ actions per player. While
the algorithm is conceptually more straightforward, it is not useful in certain cases of interest. For example,
in the routing games we described in the introduction, the set of actions available to a player consists of all
routes between her starting point and her destination. Even if the graph (road network) is small, the number
of feasible routes can be extremely large (exponential in the number of edges (roads)). However, in such
games, the set of types (utility functions) is small (i.e. the set of all source-destination pairs). Motivated by
this observation, in Section 5.3 we consider games with large action spaces, but bounded type spaces.
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5.1 Privacy Preliminaries

Before presenting our algorithms for computing correlated equilibria under joint differential privacy, we still
state some useful tools for achieving differential privacy. An important result we will use is that differentially
private mechanisms ‘compose’ nicely.

Theorem 18 (Adaptive Composition [DRV10]). Let A : U → RT be a T -fold adaptive composition5 of
(ε, δ)-differentially private mechanisms. Then A satisfies (ε′, T δ + δ′)-differential privacy for

ε′ = ε
√

2T ln(1/δ′) + Tε(eε − 1).

In particular, for any ε ≤ 1, if A is a T -fold adaptive composition of (ε/
√

8T ln(1/δ), 0)-differentially
privacy mechanisms, then A satisfies (ε, δ)-differential privacy.

Finally, differentially private mechanisms often involve adding Laplacian random noise. We will denote
a (mean 0) and scale σ Laplacian random variable by Lap(σ). The following foundational result shows that
adding Laplacian noise to a insensitive function makes it differentially private.

Theorem 19 (Privacy of the Laplace Mechanism [DMNS06]). Let Q : U → R be any γ-sensitive function.
Define the mechanismM(u) = Q(u) + Lap(σ). If σ = γ/ε, thenM is (ε, 0)-differentially private.

The following concentration inequality for Laplacian random variables will be useful.

Theorem 20 ([GRU12]). Suppose {Yi}Ti=1 are i.i.d. Lap(σ) random variables, and scalars qi ∈ [0, 1].
Define Y := 1

T

∑
i qiYi. Then for any α ≤ σ,

Pr[Y ≥ α] ≤ exp

(
−α

2T

6σ2

)
.

5.2 Games with Few Actions

To orient the reader at a high-level, our proof has two main steps. First, we construct a ‘wrapper’ NR-
LAPLACEA that will ensure privacy. The wrapper takes as input the parameters of the game, the reported
tuple of utilities, and any no-regret algorithmA. This wrapper will attempt to compute an equilibrium using
the method outlined in Section 4.3—for T periods, it will compute a mixed strategy for each player by run-
ningA on the previous period’s losses. In order to ensure privacy, instead of using the true losses as input to
A, it will use losses perturbed by suitably chosen Laplace noise. After running for T periods, the wrapper
will output to each player the sequence of T mixed strategies computed for that player. In Theorem 21 we
show that this constitutes a jointly differentially private mechanism. Then, in Theorem 22, we show that the
output of this wrapper converges to an approximate correlated equilibrium when the input algorithm is the
no-swap-regret algorithm Aswap.

5.2.1 Noisy No-Regret Algorithms are Differentially Private

Theorem 21 (Privacy of NRLAPLACEA). For any A, the algorithm NRLAPLACEA satisfies (ε, δ)-joint
differential privacy.

5See [DRV10] for further discussion
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NRLAPLACEA(u1, . . . un)

PARAMS: ε, δ, γ ∈ (0, 1], n, k, T ∈ N
LET: π1,1, . . . , πn,1 each be the uniform distribution over {1, 2, . . . , k}.
LET: σ = ε−1γ

√
8nkT ln(1/δ)

FOR: t = 1, 2, . . . , T
LET: lji,t = 1− Eπ−i,t [ui(j, a−i)] for every player i, action j.
LET: zji,t be an i.i.d. draw from Lap(σ) for every player i, action j.

LET: l̂ji,t = lji,t + zji,t for every player i, action j.

LET: πi,t+1 = A(πi,t, l̂i,t) for every player i.
END FOR

OUTPUT: (πi,1, . . . , πi,T ) to player i, for every i.

We now sketch the proof. Fix any player i and any utility functions u−i. We argue that the output to
all other players is differentially private as a function of ui. It will be easier to analyze a modified mech-
anism that outputs the noisy losses (l̂−i,1, . . . , l̂−i,T ), rather than the mixed strategies (π−i,1, . . . , π−i,T ).
Since the noisy losses are sufficient to compute (π−i,1, . . . , π−i,T ), proving that the noisy losses are jointly
differentially private is sufficient to prove that the mixed strategies are a well.

To get intuition for the proof, first consider the first period of noisy losses l̂−i,1. For each player i′ 6= i,
and each action j ∈ [k], the loss l1i′,j depends on πi,1, which is independent of the utility of player i. Thus, in
the first round there is no loss of privacy. In the second round, the loss l2i′,j depends on πi,2, which depends
on the losses for player i in period 1, and thus depends on the utility of player i. The loss l2i′,j also depends on
the mixed strategies πi′′,2 for players i′′ 6= i, i′, but as we’ve argued these mixed strategies are independent
of ui. We will take a pessimistic view and assume that changing player i’s utility function from ui to u′i will
change πi,2 arbitrarily. The assumption that ui′ is only γ-sensitive to the action of player i, ensures that the
expected losses of player i′, l2i′,j only change by at most γ. Thus, by Theorem 19 and our choice of the noise

parameter σ, each noisy loss l̂2i′,j will be ε/
√

8nkT ln(1/δ) differentially private as a function of ui.
Understanding the third round will be sufficient to argue the general case. Just as in period 2, the loss

l3i′,j depends on πi,3. However, the l3i′,j also depends on πi′′,3 for players i′′ 6= i, i′ and now these strategies
do indeed depend on ui, as we saw when reasoning about period 2. However, the key observation is that
πi′′,3 depends on the utility of player i only through the noisy losses l2i′′,j that we computed in the previous
round. Since we already argued that these losses are differentially private as a function of ui, it will not
compromise privacy further to use these noisy losses when computing l3i′,j . Thus, conditioned on the noisy
losses output in periods 1 and 2, the losses l3i′,j depend only on the mixed strategy of player i in period 3. As
we argued before, the amount of noise we add to these losses will be sufficient to ensure ε/

√
8nkT ln(1/δ)

differential privacy as a function of ui.
In summary, we have shown that for every period t, every player i′ 6= i, and every action j, the noisy loss

l̂ti′,j is an ε/
√

8nkT ln(1/δ)-differentially private function of ui and of the previous t − 1 periods’ noisy
losses, which are themselves already differentially private. In total we compute T (n − 1)k noisy losses.
Hence, the adaptive composition theorem (Theorem 18) ensures that the entire sequence of noisy losses
l̂1−i, . . . , l̂

T
−i is ε-differentially private as a function of ui. Since this analysis holds for every player i, and

shows that the output to all of the remaining players is ε-differentially private as a function of ui, the entire
mechanism is ε-jointly differentially private.

13



5.2.2 Noisy No-Regret Algorithms Compute Approximate Equilibria

Therefore we have shown how that the this ‘wrapper’ algorithm is jointly differentially private in the sense
of Definition 5. We now proceed to show that using this algorithm with Aswap will result in an approximate
correlated equilibrium (Corollary 22).

Theorem 22 (Computing CE). Let A = Aswap. Fix the environment, i.e. the number of players n, the
number of actions k, the sensitivity of the game γ, and the degree of privacy desired, (ε, δ). One can then
select the number of rounds the algorithm must run T , and two numbers α, β satisfying:

γε−1
√

8nkT log(1/δ) ≤ 1

6 log(4nkT/β)
, (2)

such that probability at least 1− β, the algorithm NRLAPLACEAswap , returns an α-approximate correlated
equilibrium for:6

α = Õ

(
γk3/2

√
n log(1/δ) log(1/β)

ε

)
Before we proceed to the proof, some discussion is appropriate. It is already well known that no-

regret alogrithms converge ‘quickly’ to approximate equilibria– recall Theorems 11 and 16. In the previous
section, we showed that adding noise still leads to low regret (and therefore to approximate equilibrium).
The tradeoff therefore is this. To get a more ‘exact’ equilibrium, the algorithm has to be run for more
rounds. By the arguments in Theorem 21, this will result in a less private outcome. The current theorem
makes precise the tradeoff between the two.

This is a strongly positive result—in several large games of interest, e.g. anonymous matching games,
γ = O(n−1). Therefore, for games of this sort α = Õ(

√
k/n). If k is fixed, but n is large, therefore, a rela-

tively exact equilibrium of the underlying game can be implemented, while still being jointly differentially
private to the desired degree.

Proof of Theorem 22. By our choice of the parameter σ, in the algorithm NRLAPLACEAswap , which is

σ = γε−1
√

8nkT log(1/δ),

and by assumption of the theorem, (2), we have σ ≤ 1/6 log(4nkT/β). Applying Theorem 15 we obtain:

P
Z

[
ρ(πi,1, . . . , πi,T , Li,Fswap) >

√
2 log k

T
+ σ

√
24k log(4nk/β)

T

]
≤ β

n

for any player i, where Li is the loss matrix derived from the given utility functions ui and the distributions
{πi,t}i∈[n],t∈[T ]. Now we can take a union bound over all players i, yielding:

P
Z

[
max
i
ρ(πi,1, . . . , πi,T , Li,Fswap) >

√
2 log k

T
+ σ

√
24k log(4nk/β)

T

]
≤ β,

=⇒ P
Z

[
ρmax(π, L,Fswap) >

√
2 log k

T
+ σ

√
24k log(4nk/β)

T

]
≤ β.

6Here, Õ hides lower order poly(logN, logK, log T, log(1/∆), log(1/ε), log log(1/β), log log(1/δ)) factors.
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By Theorem 16, therefore, the empirical distribution of play is a
(√

2 log k
T + σ

√
24k log(4nk/β)

T

)
-approximate

correlated equlibrium.
To finish, substitute σ = γε−1

√
8nkT log(1/δ) into the expression above. Therefore, with probability

at least 1− β, no player has regret larger than

α =

√
2 log k

T
+
γk
√

192n log(1/δ) log(4nk/β)

ε

Since T is a parameter of the algorithm, we can choose T to minimize α. Since α is monotonically de-
creasing in T , we would like to choose T as large as possible. However, our argument requires (2), which
(roughly) requires

√
T . 1/γ

√
nk, where we have suppressed dependence on some of the parameters. By

choosing T so that
√
T ∼ 1/γ

√
nk we can make the first term of the error ∼ γ

√
nk, which would make

it be of a smaller order to the second term. It is easy to verify that we can choose T is such a way that T
satisfies the assumption and the resulting value of α satisfies the conclusion of the theorem.

5.3 Upper bounds for Games with Bounded Type Spaces

In the previous section, we showed that a private equilibrium can be computed with aO(
√
k/n) approximate

equilibrium. While this result is positive for some settings (e.g. anonymous matching games for large
populations), it has no bite in settings where the number of actions is as large (or larger) than the number
of players. The reason is that, with large numbers of actions, the no-regret algorithm will need information
about the losses incurred by ‘many’ different actions. Giving the no-regret algorithms this information
requires that we either sacrifice privacy, or introduce a lot of noise to ensure privacy, which would make the
computed equilibrium a meaningless approximation.

In order to get a better bound on the accuracy as a function of the number of queries, we will need a
mechanism that is capable of answering a large number of queries accurately. One such mechanism is the
so-called Median Mechanism of Roth and Roughgarden [RR10], paired with the privacy analysis of Hardt
and Rothblum [HR10].7

Roughly, the Median Mechanism allows us to take a tuple u = (u1, . . . , un) ∈ U and answer any collec-
tion of Q (adaptively chosen) γ-sensitive queries about u while 1) satisfying (ε, δ)-differential privacy and
2) answer each query accurately to within error αMM

= O(γ
√
n logU logQ).8 The relevant comparison

here is to the use of Laplace noise, which would introduce error roughly αLap = O(γ
√
Q). Thus, when Q

is much larger than n, and U is not too large, the Median Mechanism answers queries with much greater
accuracy than adding Laplace noise.

Intuitively, our mechanism for computing equilibria in large games follows the same blueprint as in
the previous section, but uses noisy losses generated by the Median Mechanism rather than noisy losses
generated by the addition of Laplacian noise. However, there are some subtleties that arise from the fact
that the Median Mechanism will add correlated noise to the different losses, whereas the Laplacian noise
was generated independently for each loss. The challenge is that, when a particular player i uses the Median
Mechanism to generate the noise, the queries she makes depend on her type. Thus, when a player i′ 6= i
uses the Median mechanism, the noise used may itself depend on player i’s type, which was not the case

7Originally, the median mechanism of [RR10] was only defined and analyzed for the case of linear queries. A ‘folk’ result, first
observed by Hardt and Rothblum [Har] is that the Median Mechanism (when instantiated with a net of all possible size n datasets)
can be applied to arbitrary γ-sensitive queries, which immediately yields Theorem 26 when paired with the privacy analysis of
[HR10]. The simple proof can be found in [DR13].

8We have suppressed the dependence on some parameters for this informal discussion.
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previously. We resolve this issue essentially by having each player generate losses for each of the U possible
types, regardless of their own type, and then discard the answers not corresponding to that player’s actual
type. This modification ensures that the queries made to the Median Mechanism never depend explicitly on
the types of the players. Although this modification increases the number of queries we need to make by
a factor of U , since the Median Mechanism has error that depends only logarithmically on the number of
queries, we are still able to handle very large type spaces.

We defer a formal treatment to the appendix, and simply state our results for this section here.

Theorem 23 (Computing CE). Fix the environment, i.e the number of players n, the number of actions k,
number of possible utility functions U , sensitivity of the game γ, the desired privacy (ε, δ), and the failure
probability β. There exists an algorithm such that with probability at least 1 − β, the algorithm returns an
α-approximate CE for:9

α = Õ

(
γ
√
n log3/2 U log(k/β) log(1/δ)

ε

)

5.4 A Lower Bound

In the case where γ = O(1/n) and k = O(1), both of our algorithms from the previous Section compute a
differentially private, α-approximate equilibrium for α ∼ 1/

√
n (ignoring all other parameters). It is natural

to ask whether or not we can achieve significantly smaller values of α using some other algorithm. In this
section we prove a lower bound showing that this is not the case. Specifically, we show that there is no
algorithm that privately computes an α-approximate equilibrium of an arbitrary n-player 2-action game, for
α � 1/

√
n log n. In other words, there cannot exist an algorithm that privately computes a ‘signficantly’

more exact equilibrium.
Our proof is by a reduction to the problem of differentially private subset-sum query release, for which

strong information theoretic lower bounds are known [DN03, DY08]. The problem is as follows: Consider
a database D ∈ {0, 1}n, which we denote (d1, . . . , dn). A subset-sum query q ⊆ [n] is defined by a
subset of the n database entries and asks “What fraction of the entries in D are contained in q and are
set to 1?” Formally, we define the query q as q(D) = 1

n

∑
i∈q di. Given a set of subset-sum queries

Q = {q1, . . . , qm}, we say that an algorithmM(D) releases Q to accuracy α ifM(D) = (a1, . . . , am)
such that |aj − qj(D)| ≤ α for every j ∈ [m].

We show that an algorithm for computing approximate equilibrium in arbitrary games could also be used
to release arbitrary sets of subset-sum queries accurately. The following theorem shows that a differentially
private mechanism to compute approxmiate equilibrium implies a differentially private algorithm to compute
subset-sums.

Theorem 24. For any α > 0, if there is an (ε, δ)-jointly differentially private mechanismM that computes
an α-approximate coarse correlated equilibria in (n+m log n)-player, 2-action, 1/n-sensitive games, then
there is an (ε, δ)-differentially private mechanism M′ that releases 36α-approximate answers to any m
subset-sum queries on a database of size n.

Applying the results of [DY08], a lower bound on equilibrium computation follows easily.

Corollary 25. Any (ε = O(1), δ = o(1))-differentially private mechanismM that computes anα-approximate
coarse correlated equilibria in n-player 2-action games with O(1/n)-sensitive utility functions must satisfy
α = Ω( 1√

n logn
).

9Õ hides lower order poly(logn, log log k, log T, log logU log(1/γ), log(1/ε), log log(1/β), log log(1/δ)) terms.
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Here, we provide a sketch of the proof of Theorem 24. Let D ∈ {0, 1}n be an n-bit database and
Q = {q1, . . . , qm} be a set of m subset-sum queries. For the sketch, assume that we have an algorithm that
computes exact equilibria. We will split the (n + m) players into n “data players” and m “query players.”
Roughly speaking, the data players will have utility functions that force them to play “0” or “1”, so that
their actions actually represent the database D. Each of the query players will represent a subset-sum query
q, and we will try to set up their utility function in such a way that it forces them to take an action that
corresponds to an approximate answer to q(D). In order to do this, first assume there are n + 1 possible
actions, denoted

{
0, 1n ,

2
n , . . . , 1

}
. We can set up the utility function so that for each action a, he receives

a payoff that is maximized when an a fraction of the data players in q are playing 1. That is, when playing
action a, his payoff is maximized when q(D) = a. Conversely, he will play the action a that is closest to the
true answer q(D). Thus, we can read off the answer to q from his equilibrium action. Using each of the m
query players to answer a different query, we can compute answers to m queries. Finally, notice that joint
differential privacy says that all of the actions of the query players will satisfy (standard) differential privacy
with respect to the inputs of the data players, thus the answers we read off will be differentially private (in
the standard sense) with respect to the database.

This sketch does not address two important issues. The first is that we do not assume that the algorithm
computes an exact equilibrium, only that it computes an approximate equilibrium. This relaxation means
that the data players do not have to play the correct bit with probability 1, and the query players do not have
to choose the answer that exactly maximizes their utility. In the proof we show that the error in the answers
we read off is only a small factor larger than the error in the equilibrium computed.

The second is that we do not want to assume that the (query) players have n + 1 available actions.
Instead, we use log n players per query, and use each to compute roughly one bit of the answer, rather than
the whole answer. However, if the query players’ utility actually depends on a specific bit of the answer,
then a single data player changing his action might result in a large change in utility. In the proof, we show
how to compute bits of the answer using 1/n-sensitive utility functions.

6 Discussion

In this work, we have introduced a new variant of differential privacy (joint differential privacy), and have
shown how it can be used as a tool to construct extremely weak proxy mechanisms which can implement
equilibria of full information games, even when the game is being played in a setting of only partial infor-
mation. Moreover, our privacy solution concept maintains the property that no coalition of players can learn
(much) more about any player’s type outside of the coalition than they could have learned in the original
Bayesian game, and thus players have almost no incentive not to participate even if they view their type as
sensitive information. Although our proxies are weak in most respects (they cannot enforce actions, they
cannot make payments or charge fees, they cannot compel participation), we do make the assumption that
player types are verifiable in the event that they choose to opt into the proxy. This assumption is reasonable
in many settings: for example, in financial markets, there may be legal penalties for a firm misrepresenting
relevant facts about itself, and in traffic routing games, the proxy may be embodied as a physical device (e.g.
a GPS device) that can itself verify player types (e.g. physical location). Nevertheless, we view relaxing this
assumption as an important direction for future work.
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A Additional Related Work

The most well studied problem is that of accurately answering numeric-valued queries on a data set. A
basic result of [DMNS06] is that any low sensitivity query (i.e. the addition or removal of a single entry can
change the value of the query by at most 1) can be answered efficiently and (ε-differential) privately while in-
troducing only O(1/ε) error. Another fundamental result of [DKM+06, DRV10] is that differential privacy
composes gracefully. Any algorithm composed of T subroutines, each of which are O(ε)-differentially pri-
vate, is itself

√
Tε-differentially private. Combined, these give an efficient algorithm for privately answering

any T low sensitivity queries with O(
√
T ) effort, a result which we make use of.

Using computationally inefficient algorithms, it is possible to privately answer queries much more accu-
rately [BLR08, DRV10, RR10, HR10, GHRU11, GRU12]. Combining the results of the latter two yields an
algorithm which can privately answer arbitrary low sensitivity queries as they arrive, with error that scales
only logarithmically in the number of queries. We use this when we consider games with large action spaces.

Our lower bounds for privately computing equilibria use recent information theoretic lower bounds on
the accuracy queries can be answered while preserving differential privacy [DN03, DMT07, DY08, De12].
Namely, we construct games whose equilibria encode answers to large numbers of queries on a database.

Variants of differential privacy related to joint differential privacy have been considered in the setting of
query release, specifically for analyst privacy [DNV12]. Specifically, the definition of one-analyst-to-many-
analyst privacy used by [HRU13] can be seen as an instantiation of joint differential privacy.

B Proofs of Noise Tolerance of No Regret Algorithms (Section 4)

Proof of Lemma 17. Let π0, . . . , πT ∈ Πk be any sequence of distributions and let f : {1, 2, . . . , k} →
{1, 2, . . . , k} be any function. Then

ρ(π0, . . . , πT , L, f) = λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L)

= 3
(
λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L)

)
= 3

(
ρ(π0, . . . , πT , L, f)

)
.

The second equality follows from the definition of λ and from linearity of expectation. The Lemma now
follows by setting (π0, . . . , πT ) = AT (L), taking a maximum over f ∈ F , and plugging in the guarantees
of Theorem 11.

Proof of Lemma 12. Let (π0, . . . , πT ) be any sequence of distributions and let f : {1, 2, . . . , k} → {1, 2, . . . , k}
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be any function. Then:

ρ(π0, . . . , πT , L, f)− ρ(π0, . . . , πT , L̂, f)

= (λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L))− (λ(π0, . . . , πT , L̂)− λ(f ◦π0, . . . , f ◦πT , L̂)).

= (λ(π0, . . . , πT , L)− λ(π0, . . . , πT , L̂)) + (λ(f ◦π0, . . . , f ◦πT , L̂)− λ(f ◦π0, . . . , f ◦πT , L̂))

=

 1

T

T∑
t=1

k∑
j=1

πjt (l
j
t − l̂

j
t )

+

 1

T

T∑
t=1

k∑
j=1

(f ◦πt)j(ljt − l̂
j
t )

 (by definition of λ)

=

 1

T

T∑
t=1

K∑
j=1

πjt z
j
t

+

 1

T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt

 (by definition of z) (3)

≤ b

 1

T

T∑
t=1

K∑
j=1

πjt

+ b

 1

T

T∑
t=1

K∑
j=1

(f ◦πt)j
 (∀j, t |zjt | ≤ b)

= 2b,

where the final equality follows from the fact that πt, f ◦πt are probability distributions.

Proof of Corollary 13. We will prove only item 1, the proof for 2 is analogous. First, by the assumption of
the theorem, we will have L̂ ∈ [0, 1]T×k except with probability at most β. Therefore, by Theorem 11,

P
Z

[
ρ(Afixed(L̂), L̂,Ffixed) >

√
2 log k

T

]
≤ β

Further, by Lemma 12, we know that L̂ ∈ [0, 1]T×k implies

ρ(Afixed(L̂), L,F) ≤ ρ(Afixed(L̂), L̂,F) + 2b.

Combining, we have the desired result, i.e.

P
Z

[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k

T
+ 2b

]
≤ β.

Proof of Lemma 14. Let (π0, . . . , πT ) be any sequence of distributions and let f : {1, 2, . . . , k} → {1, 2, . . . , k}
be any function. Recall by (3),

ρ(π0, . . . , πT , L, f)− ρ(π0, . . . , πT , L̂, f) =

 1
T

T∑
t=1

k∑
j=1

πjt z
j
t

+

 1
T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt

 . (4)

We wish to place a high probability bound on the quantities:

Yπ0,...,πT =
1

T

T∑
t=1

k∑
j=1

πjt z
j
t .
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Changing the order of summation,

Yπ0,...,πT =
∑

a1,...,aT∈A

(
T∏
t=1

πatt

)(
1

T

T∑
t=1

zatt

)
,

the equality follows by considering the following two ways of sampling elements zjt . The first expression
represents the expected value of zjt if t is chosen uniformly from {1, 2, . . . , T} and then j is chosen according
to πt. The second expression represents the expected value of zjt if (a1, . . . , aT ) are chosen independently
from the product distribution π1× π2× · · · × πT and then at is chosen uniformly from (a1, . . . , aT ). These
two sampling procedures induce the same distribution, and thus have the same expectation. Thus we can
write:

P
Z

[Yπ0,...,πT > η] ≤ max
a1,...,aT∈A

P
Z

[
1

T

T∑
t=1

zatt > η

]
≤ P

Z

[
1

T

T∑
t=1

z1t > η

]
.

where the second inequality follows from the fact that the variables zjt are identically distributed. Applying
Theorem 20, we have that for any η < σ,

P
Z

[Yπ0,...,πT > η] ≤ e−η2T/6σ2
. (5)

Let (π0, . . . , πT ) = A(L̂). By Equation (4) we have

P
Z

[
ρ(A(L̂), L, f)− ρ(A(L̂), L̂, f) > η

]
≤ P

Z

 1

T

T∑
t=1

k∑
j=1

πjt z
j
t > η/2

+ P
Z

 1

T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt > η/2

 ≤ 2e−η
2T/24σ2

where the last inequality follows from applying (5) to the sequences (π0, . . . , πT ) and (f ◦π0, . . . , f ◦πT ).
The Lemma now follows by taking a union bound over F .

Proof of Corollary 15. First, we demonstrate that L̂ ∈ [0, 1]T×k except with probability at most β, which
will be necessary to apply the regret bounds of Theorem 11. Specifically:

P
Z

[
∃zjt s.t. |zjt | >

1

3

]
≤ Tk P

Z

[
|z11 | >

1

3

]
≤ 2Tke−1/6σ ≤ β/2, (6)

where the first inequality follows from the union bound, the second from the definition of Laplacian r.v.’s
and the last inequality follows from the assumption that σ ≤ 1/6 log(4Tk/β).

The Theorem now follows by conditoning on the event L̂ ∈ [0, 1]T×k and combining the regret bounds of
Theorem 11 with the guarantees of Lemma 14. For parsimony, we will only demonstate the first inequality,
the second is analogous. Recall again by Theorem 11, we have that whenever l̂ ∈ [0, 1]T×k:

ρ(Afixed(L̂), L̂,Ffixed) ≤
√

2 log k

T
.
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Further, by Lemma 14, we know that:

P
Z

[
ρ(Afixed(L̂), L,Ffixed)− ρ(Afixed(L̂), L̂,Ffixed) > η

]
≤ 2|Ffixed|e−η

2T/24σ2

= 2ke−η
2T/24σ2

.

Substituting η = σ

√
24 log(4k/β)

T , we get:

P
Z

[
ρ(Afixed(L̂), L,Ffixed)− ρ(Afixed(L̂), L̂,Ffixed) > η

]
≤ β/2. (7)

The result follows by combining (6) and (7).

C Proofs for Computing Equilibria in Games with Few Actions (Section 5.2)

Proof of Theorem 21. Fix any player i, any pair of utility functions for i, ui, u′i, and a tuple of utility func-
tions u−i for everyone else. To show differential privacy, we need to analyze the change in the distribution
of the joint output for all players other than i, (π−i,1, . . . , π−i,T ) when the input is (ui, u−i) as opposed to
(u′i, u−i).

It will be easier to analyze the privacy of a modified mechanism that outputs (l̂−i,1, . . . , l̂−i,T ). Observe
that this output is sufficient to compute (π−i,1, . . . , π−i,T ) just by running A. Thus, if we can show the
modified output satisfies differential privacy, then same must be true for the mechanism as written.

For every player i′ 6= i, action j ∈ {1, 2, . . . , k}, and t ≤ T , we define the queryQji′,t(· | l̂−i,1, . . . , l̂−i,t−1)
on the utility functions ui, as well as u−i the output of the mechanism in rounds 1, . . . , t− 1.

Query Qji′,t(ui, u−i | l̂−i,1, . . . , l̂−i,t−1)

Using u−i, ui and l̂−i,1, . . . , l̂−i,t−1, compute lji′,t. Observe that this can be done in the following steps:

1. Using l̂−i,1, . . . , l̂−i,t−1, A, and u−i, compute π−i,1, . . . , π−i,t−1.

2. Using π−i,1, . . . , π−i,t−1, A, and ui, compute πi,1, . . . , πi,t−1.

3. Using πt−1 = (πi,t−1, π−i,t−1), A, and ui, compute lji′,t.

Observe that the only step of the query computation that directly involves ui is the second. Changing
player i’s utility function from ui to u′i can (potentially) affect πi,t−1, and can (potentially) alter it to an
arbitrary state πi,t−1. However, observe that

Qji′,t(ui | u−i, l̂−i,1, . . . , l̂−i,t−1) = 1− E
π−i′,t

[ui′(j, a−i′)]

= 1− E
π−(i,i′),t

[
E
πi,t

[
ui′(j, ai, a−(i′,i))

]]
≤ 1− E

π−(i′,i),t

[
E
πi,t

[
ui′(j, ai, a−(i′,i)) + γ

]]
= Qji′,t(u

′
i, | u−i, l̂−i,1, . . . , l̂−i,t−1) + γ,
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where the inequality comes from the fact that ui′ is assumed to be γ-sensitive in the action of player i
(Definition 3), and by linearity of expectation. A similar argument shows:

Qji′,t(ui | u−i l̂−i,1, . . . , l̂−i,t−1) ≥ Q
j
i′,t(u

′
i | u−i l̂−i,1, . . . , l̂−i,t−1)− γ.

Note two facts about these queries: (1) The answer to Qji′,t is exactly lji′,t, thus the noisy output to these
queries (i.e. answer plus Lap(σ)) is indeed equal to the output of the (modified) algorithm NRLAPLACEA.
(2) The noisy losses l̂−i,1, . . . , l̂−i,t−1 have already been computed when the mechanism reaches round t,
thus the mechanism fits the definition of adaptive composition.

Thus, we have rephrased the output (l̂i′,1, . . . , l̂i′,T ) as computing the answers to nkT (adaptively cho-
sen) queries on (u1, . . . , un), each of which is γ-sensitive to the input ui. Thus the Theorem follows from
our choice of σ = γε−1

√
8nkT log(1/δ) and Theorems 18 and 19.

D Proofs for Computing Equilibria in Games with Many Actions (Section 5.3)

In this section we will give a more complete treatment of our algorithms for computing equilibria in games
with many actions but bounded type spaces. First, we will formally state the privacy and accuracy guarantees
of the Median Mechanism (see [RR10, HR10]).

Theorem 26 (Median Mechanism For General Queries). Consider the following R-round experiment be-
tween a mechanismMM , who holds a tuple u1, . . . , uN ∈ U , and a adaptive querier B. For every round
r = 1, 2, . . . , R:

1. B(Q1, a1, . . . , Qr−1, ar−1) = Qr, where Qr is a γ-sensitive query.

2. ar ←R MM (u1, . . . , un;Qr).

For every ε, δ, γ, β ∈ (0, 1], N,R,U ∈ N, there is a mechanismMM such that for every B

1. The transcript (Q1, a1, . . . , QR, aR) satisfies (ε, δ)-differential privacy.

2. With probability 1− β (over the randomizations ofMM ), |ar −Qr(u1, . . . , uN )| ≤ αMM
for every

r = 1, 2, . . . , R and for

αMM
= 16ε−1γ

√
N logU log(2R/β) log(4/δ).

D.1 Noisy No-Regret via the Median Mechanism

We now define our algorithm for computing equilibria in games with exponentially many actions.
To keep notation straight, we will use u = (u1, . . . , uN ) to denote the utility functions specified by each

of the n players, and v ∈ U to denote a utility function considered within the mechanism. Let U = |U|, the
size of the set of possible utility functions for any player.

First we sketch some intuition for how the mechanism works. In particular, why we cannot simply
substitute the Median Mechanism for the Laplace mechanism and get a better error bound. Recall the queries
we used in analyzing the Laplace-based algorithmQji,t(· | u−i, l̂−i,1, . . . , l̂−i,T ) in our previous analysis. We
were able to argue that fixing u−i and the previous noisy losses, the query was low-sensitivity as a function
of its input ui. This argument relied on the fact that we were effectively running independent copies of
the Laplace mechanism, which guarantees that the answers given to each query do not explicitly depend
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on the previous queries that were asked (although the queries themselves may be correlated). However,
in the mechanism we are about to define, the queries are all answered using a single instantiation of the
Median mechanism. The Median mechanism correlates its answers across queries, and thus the answers to
one query may depend on the previous queries that were made. This fact will be problematic, because the
description of the queries Qji,t contains the utility functions u−i. Thus, the queries we made to construct the
output for players other than i will actually contain information about u−i, and we cannot guarantee that
this information does not leak into the answers given to other sets of players.

We address this problem by asking a larger set of queries whose description does not depend on any
particular player’s utility function. We will make the set of queries large enough that they will actually
contain every query that we might possibly have asked in the Laplace-based algorithm, and each player can
select from the larger set of answers only those which she needs to compute her losses. Since the queries do
not depend on any utility function, we do not have to worry about leaking the description of the queries.

In order to specify the mechanism it will be easier to define the following family of queries first. Let
i be any player, j any action, t any round of the algorithm, and v any utility function. The queries will be
specified by these parameters and a sequence Λ1, . . . ,Λt−1 where Λt′ ∈ Rn×k×U for every 1 ≤ t′ ≤ t− 1.
Intuitively, the query is given a description of the “state” of the mechanism in all previous rounds. Each state
variable Λt encodes the losses that would be experienced by every possible player i and every action j and
every utility function v, given that the previous t − 1 rounds of the mechanism were played using the real
utility functions. We will think of the variables Λ1, . . . ,Λt−1 as having been previously sanitized, and thus
we do not have to worry about the fact that these state variables encode information about the real utility
functions.

Qji,t,v(u1, . . . , uN | Λ1, . . . ,Λt−1)

Using u1, . . . , uN | Λ1, . . . ,Λt−1, compute lji,t,v = 1−Eπ−i,t [ui(j, a−i)]. This computation can be done
in the following steps:

1. For every i′ 6= i, use Λji′,1,ui′
, . . . ,Λji′,t−1,ui′

, A, and ui′ to compute πi′,1, . . . , πi′,t−1.

2. Using π−i,t−1, compute lji,t,v.

Observe that Qji,t,v is γ-sensitive for every player i, step t, action j, and utility function v. To see why,
consider what happens when a specific player i′ switches her input from ui′ to u′i′ . In that case that i = i′,
this has no effect on the query answer, because player i’s utility is never used in computing Qit,j,v. In the
case that i′ 6= i then the utility function of player i′ can (potentially) affect the computation of πi′,t−1, and
can (potentially) change it to an arbitrary state πi′,t−1. But then γ-sensitivity follows from the γ-sensitivity
of ui, the definition of lji,t,v, and linearity of expectation. Notice that ui′ does not, however, affect the state
of any other players, who will use the losses Λ1, . . . ,Λt−1 to generate their states, not the actual states of
the other players.

Now that we have this family of queries in places, we can describe the algorithm. Our mechanism uses
two steps. At a high level, there is an inner mechanism, NRMEDIAN-SHARED, that will use the Median
Mechanism to answer each queryQji,t,v

(
· | Λ̂1, . . . , Λ̂t−1

)
, and will output a set of noisy losses Λ̂1, . . . , Λ̂T .

The properties of the Median Mechanism will guarantee that these losses satisfy (ε, δ)-differential privacy
(in the standard sense of Definition 4).

There is also an outer mechanism that takes these losses and, for each player, uses the losses corre-
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sponding to her utility function to run a no-regret algorithm. This is NRMEDIAN which takes the sequence
Λ̂1, . . . , Λ̂T and using the utility function ui will compute the equilibrium strategy for player i. Since each
player’s output can be determined only from her own utility function and a set of losses that is (ε, δ)-
differentially private with respect to every utility function, the entire mechanism will satisfy (ε, δ)-joint
differential privacy.

NRMEDIAN-SHAREDA(u1, . . . uN )

PARAMS: ε, δ, γ ∈ (0, 1], n, k, T ∈ N
FOR: t = 1, 2, . . . , T

LET: l̂ji,t,v =MM

(
u1, . . . , uN ;Qji,t,v(· | Λ̂1, . . . , Λ̂t−1)

)
for every i, j, v.

LET: Λ̂j(i, t, v) = l̂ji,t,v for every i, j, v.
END FOR

OUTPUT: (Λ̂1, . . . , Λ̂T ).

NRMEDIANA(u1, . . . uN )

PARAMS: ε, δ,∆ ∈ (0, 1], n, k, T ∈ N
LET: (Λ̂1, . . . , Λ̂T ) = NRMEDIAN-SHAREDA(u1, . . . , uN ).
FOR: i = 1, . . . , N
LET: πi,1 be the uniform distribution over {1, 2, . . . , k}.

FOR: t = 1, . . . , T

LET: πi,t = A
(
πi,t−1, Λ̂i,t−1,ui

)
END FOR

OUTPUT TO PLAYER i: (πi,1, . . . , πi,T ).
END FOR

Theorem 27 (Privacy of NRMEDIAN). The algorithm NRMEDIAN satisfies (ε, δ)-joint differential privacy.

Proof. Observe that NRMEDIAN can be written as h(u) = (f1(g(u)), . . . , fN (g(u))) where fi depends
only on ui for every player i. (Here, g is NRMEDIAN-SHARED and fi is the i-th iteration of the main
loop in NRMEDIAN). The privacy of the Median Mechanism (Theorem 26) directly implies that g is (ε, δ)-
differentially private (in the standard sense).

Consider a player i and two profiles u,u′ that differ only in the input of player i, and consider the
output (f−i(g(u))). Let S ⊆ Range(f−i) and let R(u) =

{
o ∈ Range(g) | f−i(o) ∈ S

}
. Notice that f is

deterministic, so R is well-defined. Also notice that R depends only on S and u−i (in particular, not on ui).
Then we have

P
h(u)

[
h−i(u) ∈ S

]
= P

g(u)

[
g(u) ∈ R(u) = R(u′)

]
≤ eε P

g(u′)

[
g(u′) ∈ R(u) = R(u′)

]
+ δ

≤ eε P
h(u)

[
h−i(u′) ∈ S

]
+ δ

where the first inequality follows from the (standard) (ε, δ)-differential privacy of g. Thus, NRMEDIAN

satisfies (ε, δ)-joint differential privacy.
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D.2 Computing Approximate Equilibria

Theorem 28 (Computing CE). Let A be Aswap. Fix the environment, i.e the number of players n, the
number of actions k, number of possible utility functions U , sensitivity of the game γ and desired privacy
(ε, δ). Suppose β and T are such that:

16ε−1γ
√
n logU log(2nkTU/β) log(4/δ) ≤ 1

6 (8)

Then with probability at least 1− β the algorithm NRMEDIANAfixed returns an α-approximate CE for:10

α = Õ

(
γ
√
N log3/2 U log(k/β) log(1/δ)

ε

)
.

Again, considering ‘low sensitivity’ games where γ is O(1/n), the theorem says that fixing the desired

degree of privacy, we can compute an α-approximate equilibrium for α = Õ

(
(logU)

3
2 log k√
N

)
. The tradeoff

to the old results is in dependence on the number of actions. The results in the previous section had a
√
k

dependence on the number of actions k. This would have no bite if k grew even linearly in n. We show
that positive results still exist if the number of possible private types is is bounded - the dependence on
the number of actions and the number of types is now logarithmic. However this comes with two costs.
First, we can only consider situations where the number of types any player could have is bounded, and
grows sub-exponentially in n. Second, we lose computational tractability– the running time of the median
mechanism is exponential in the number of players in the game.

Proof. By the accuracy guarantees of the Median Mechanism:

P
MM

[
∃i, t, j, v s.t. |l̂ji,t,v − l

j
i,t,v| > AMM

]
≤ β

where
αMM

= 16γε−1
√
n logU log(2nkTU/β) log(4/δ)

By (8), αMM
≤ 1/6. Therefore,

P
MM

[
∃i, j, t, v s.t. |l̂ji,t,v − l

j
i,t,v| >

1
6

]
≤ β

Applying Theorem 13 and substituting AMM
, we obtain:

P
Z

[
∃i s.t. ρ(πi,1, . . . , πi,T , L,Fswap) >

√
2k log k

T
+ 2αMM

]
≤ β

Now we can choose
√
T = k(γ

√
n)−1 to conclude the proof.

10Here, Õ hides lower order poly(logn, log log k, log T, log logU log(1/γ), log(1/ε), log log(1/β), log log(1/δ)) terms.
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E Proof of the Lower Bound (Theorem 24)

Given a database D ∈ {0, 1}n, D = (d1, . . . , dn) and m queries Q = {q1, . . . , qm}, we will construct
the following (N = n + m log n)-player 2-action game. We denote the set of actions for each player by
A = {0, 1}. We also use {(j, h)}j∈[m],h∈[logn] to denote the m log n players {n+ 1, . . . , n+m log n}. For
intuition, think of player (j, h) as computing the h-th bit of qj(D).

Each player i ∈ [n] has the utility function

ui(a) =

{
1 if ai = di

0 otherwise

That is, player i receives utility 1 if they play the action matching the i-th entry inD, and utility 0 otherwise.
Clearly, these are 0-sensitive utility functions.

The specification of the utility functions for the query players (j, h) is somewhat more complicated.
First, we define the functions fh, gh : [0, 1]→ [0, 1] as

fh(x) = 1− min
r∈{0,...,2h−1−1}

∣∣∣x− (2−(h+1) + r2−(h−1))
∣∣∣

gh(x) = 1− min
r∈{0,...,2h−1−1}

∣∣∣x− (2−h + 2−(h+1) + r2−(h−1))
∣∣∣

Each player (j, h) will have the utility function

u(j,h)(a−(j,h), 0) = fh(qj(a1, . . . , an))

u(j,h)(a−(j,h), 1) = gh(qj(a1, . . . , an))

Since q(a1, . . . , an) is defined to be 1/n-sensitive in the actions a1, . . . , an, and fh, gh are 1-Lipschitz in x,
u(j,h) is also 1/n-sensitive.

Also notice that since Q is part of the definition of the game, we can simply define the set of feasible
utility functions to be all those we have given to the players. For the data players we only used 2 distinct
utility functions, and each of the m log n query players may have a distinct utility function. Thus we only
need the set U to be a particular set of utility functions of size m log n + 2 in order to implement the
reduction.

Now we can analyze the structure of α-approximate equilibrium in this game, and show how, given any
equilibrium set of strategies for the query players, we can compute a set of O(α)-approximate answers to
the set of queries Q.

We start by claiming that in any α-approximate CCE, every data player players the action di in most
rounds. Specifically,

Claim 29. Let π be any distribution over AN that constitutes an α-approximate CCE of the game described
above. Then for every data player i,

P
π

[ai 6= di] ≤ α.

Proof.

P
π

[ai 6= di] = 1− E
π

[ui(ai, a−i)]

≤ 1−
(
E
π

[ui(di, a−i)]− α
)

(Definition of α-approximate CCE)

= 1− (1− α) = α (Definition of ui) (9)
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The next claim asserts that if we view the actions of the data players, a1, . . . , an, as a database, then
q(a1, . . . , an) is close to q(d1, . . . , dn) on average.

Claim 30. Let π be any distribution over AN that constitutes an α-approximate CCE of the game described
above. Let q ⊆ [n] be any subset-sum query. Then

E
π

[|q(d1, . . . , dn)− q(a1, . . . , an)|] ≤ α.

Proof.

E
π

[|q(d1, . . . , dn)− q(a1, . . . , an)|] = E
π

 1

n

∑
i∈q

(di − ai)


≤ 1

n

∑
i∈q

E
π

[|di − ai|] =
1

n

∑
i∈q

P
π

[ai 6= di]

≤ 1

n

∑
i∈q

α ≤ α (Claim 29, q ⊆ [n]) (10)

We now prove a useful lemma that relates the expected utility of an action (under any distribution) to
the expected difference between qj(a1, . . . , an) and qj(D).

Claim 31. Let µ be any distribution over AN . Then for any query player (j, h),∣∣∣∣Eµ [u(j,h)(0, a−(j,h))]− fh(qj(D))

∣∣∣∣ ≤ E
µ

[|qj(a1, . . . , an)− qj(D)|] , and∣∣∣∣Eµ [u(j,h)(1, a−(j,h))]− gh(qj(D))

∣∣∣∣ ≤ E
µ

[|qj(a1, . . . , an)− qj(D)|] .

Proof. We prove the first assertion, the proof of the second is identical.∣∣∣∣Eµ [u(j,h)(0, a−i)]− fh(qj(D))

∣∣∣∣
=

∣∣∣∣Eµ [fh(qj(a1, . . . , an))− fh(qj(D))]

∣∣∣∣
≤ E

π
[|qj(a1, . . . , an)− qj(D)|] (fh is 1-Lipschitz) (11)

The next claim, which establishes a lower bound on the expected utility player (j, h) will obtain for
playing a fixed action, is an easy consequence of Claims 30 and 31.

Claim 32. Let π be any distribution over AN that constitutes an α-approximate CCE of the game described
above. Then for every query player (j, h),∣∣∣E

π

[
u(j,h)(0, a−i)

]
− fh(qj(D))

∣∣∣ ≤ α, and∣∣∣E
π

[
u(j,h)(1, a−i)

]
− gh(qj(D))

∣∣∣ ≤ α.
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Now we state a simple fact about the functions fh and gh. Informally, this asserts that we can find
alternating intervals of width nearly 2−h, that nearly partition [0, 1], in which fh(x) is significantly larger
than gh(x) or vice versa.

Observation 33. Let β ≤ 2−(h+1). If

x ∈
⋃

r∈{0,1,...,2h−1−1}

(
r2−h + β, (r + 1)2−h − β

)
then fh(x) > gh(x) + β. We denote this region Fh,β . Similarly, if

x ∈
⋃

r∈{0,1,...,2h−1−1}

(
(r + 1)2−h + β, (r + 2)2−h − β

)
then gh(x) > fh(x) + β. We denote this region Gh,β

For example, when h = 3, F3,β = [0, 18 − β] ∪ [28 + β, 38 − β] ∪ [48 + β, 58 − β] ∪ [68 + β, 78 − β].
By combining this fact, with Claim 32, we can show that if qj(D) falls in the region Fh,α, then in an

α-approximate CCE, player (j, h) must be playing action 0 ‘often’.

Claim 34. Let π be any distribution over AN that constitutes an α-approximate CCE of the game described
above. Let j ∈ [m] and 2−h ≥ 10α. Then, if qj(D) ∈ Fh,9α, Pπ [ai = 0] ≥ 2/3. Similarly, if qj(D) ∈
Gh,9α, then Pπ [ai = 1] ≥ 2/3.

Proof. We prove the first assertion. The proof of the second is identical. If player (j, h) plays the fixed
action 0, then, by Claim 32,

E
π

[
u(j,h)(0, a−(j,h))

]
≥ fh(qj(D))− α.

Thus, if π is an α-approximate CCE, player (j, h) must receive at least fh(qj(D)) − 2α under π. Assume
towards a contradiction that P

[
a(j,h) = 0

]
< 2/3. We can bound player (j, h)’s expected utility as follows:

E
a←Rπ

[
u(j,h)(a)

]
= P

[
a(j,h) = 0

]
E
π

[
u(j,h)(0, a−(j,h)) | a(j,h) = 0

]
+ P

[
a(j,h) = 1

]
E
π

[
u(j,h)(1, a−(j,h)) | a(j,h) = 1

]
≤ P

[
a(j,h) = 0

](
fh(qj(D)) + E

a←Rπ

[
|qj(a1, . . . , an)− qj(D)| | a(j,h) = 0

])
+ P

[
a(j,h) = 1

](
gh(qj(D)) + E

a←Rπ

[
|qj(a1, . . . , an)− qj(D)| | a(j,h) = 1

])
(12)

= fh(qj(D)) + E
a←Rπ

[|qj(a1, . . . , an)− qj(D)|]− P
[
a(j,h) = 1

]
(fh(qj(D))− gh(qj(D)))

≤ fh(qj(D)) + α− 9αP
[
a(j,h) = 1

]
(13)

< fh(qj(D))− 2α (14)

Line (12) follows from the Claim 31 (applied to the distributions π | a(j,h) = 0 and π | a(j,h) = 1). Line (13)
follows from Claim 30 (applied to the expectation in the second term) and the fact that qj(D) ∈ Fh,9α
(applied to the difference in the final term). Line (14) follows from the assumption that P

[
a(j,h) = 0

]
< 2/3.

Thus we have established a contradiction to the fact that π is an α-approximate CCE.
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Given the previous claim, the rest of the proof is fairly straightforward. For each query j, we will start
at h = 1 and consider two cases: If player (j, 1) plays 0 and 1 with roughly equal probability, then we
must have that qj(D) 6∈ F1,9α ∪ G1,9α. It is easy to see that this will confine qj(D) to an interval of width
18α, and we can stop. If player (j, 1) does play one action, say 0, a significant majority of the time, then
we will know that qj(D) ∈ F1,9α, which is an interval of width 1/2 − 9α. However, now we can consider
h = 2 and repeat the case analysis: Either (j, 2) does not significantly favor one action, in which case we
know that qj(D) 6∈ F2,9α ∪ G2,9α, which confines qj(D) to the union of two intervals, each of width 18α.
However, only one of these intervals will be contained in F1,9α, which we know contains qj(D). Thus, if
we are in this case, we have learned qj(D) to within 18α and can stop. Otherwise, if player (j, 2) plays, say,
0 a significant majority of the time, then we know that qj(D) ∈ F1,9α ∩ F2,9α, which is an interval of width
1/4 − 9α. It is not too difficult to see that we can repeat this process as long as 2−h ≥ 18α, and we will
terminate with an interval of width at most 36α that contains qj(D).
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