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Abstract

We study the consequences of trading fragmentation and speed on liquidity and
asset prices. Trading venues invest in speed-enhancing technologies and price trading
services to attract investors. Investors trade due to preference shocks. We show how
the resulting market organization affects asset liquidity and the composition of par-
ticipating investors. In a consolidated market, speed investments raise liquidity and
prices. When markets fragment, liquidity and asset prices can move in opposite direc-
tions. We also show how mechanisms that protect execution prices, such as the SEC’s
trade-through rule, can decrease price levels and trading volume relative to unregulated
markets. Our results suggest that recent regulatory reforms in secondary markets may
have unintended negative consequences for public corporations.
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Economists widely accept that market frictions can significantly affect liquidity, and thus
have effects on asset prices, aggregate investments and welfare. Technological frictions,
for example, can prevent buyers and sellers from being continuously matched over time
and trading institutions’ market power can limit investor participation in financial markets.
During any given day, traders (e.g., households, dealers, or hedge funds) must incorporate
these frictions as a constraint in their investment plans. However, one can expect that, over a
longer period, the existence of such frictions can provide incentives to developing institutions
that would profit by alleviating them.1 In fact, consistent with this intuition, the last decade
has witnessed profound transformations in secondary markets for securities: The speed at
which investors trade has greatly increased (see Figure 1), and the number of new stock and
derivatives exchanges in the U.S. and Europe has grown significantly, rendering markets
more “fragmented” (see Figure 2). Do these transformations enhance liquidity and trading
activity? What are the consequences for asset prices? The answers to these questions are
the subject of heated debates in academic and policy circles.2

We address these issues by studying a tractable framework that characterizes why and how
investors with liquidity needs value trading speed, how investment in speed affects competi-
tion between trading institutions and investor market participation, and how the interaction
between investor and trading institution choices affect long-run liquidity and asset prices.
We show how aggregate outcomes critically depend on financial markets’ competitive struc-
ture and the linkages between trading venues. In particular, we show that when markets
fragment, liquidity and asset prices can move in opposite directions.

We consider an economy where a continuum of investors (“farmers”) consume a constant
stream of dividends (“perishable fruits”) from their random endowment of a real asset (a
non-stochastic Lucas (1978) “tree”). Investors can differ in their valuation of the dividend
over time due to idiosyncratic preference shocks, which creates potential gains from trade.
The size of these shocks can differ from investor to investor in a mean-preserving fashion, as
they would if some agents were more leveraged. Investors cannot buy or sell the asset directly;
they can only do so by participating in costly trading venues. Participating investors gain
repeated access to a given venue to trade, but with a certain time delay. Trading speed
allows investors to readjust holdings more effectively in response to shocks and thus realize
higher gains from trade. Venues therefore have incentives to earn rents by investing in

1Amihud, Mendelson, and Pedersen (2006), for example, argue that “Alleviating frictions is costly ...
and the institutions which alleviate frictions may be able to earn rents. For instance, setting up a market
requires computers, trading systems, clearing operations, risk and operational controls, legal documentation,
marketing, information and communication systems, and so on.”

2See, for example, the discussion in the SEC’s 2010 Concept Release on the U.S. market structure, and
the discussions following the recent creation of the Joint Commodity Futures Trading Commission–SEC
Advisory Committee on Emerging Regulatory Issues.
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trading technologies that enhance speed.

At the core of the model lies the idea that, everything else being equal, all investors are
(at least weakly) better off by trading faster, but not all investors value speed equally. For
example, a retail investor or pension fund manager may not be very sensitive to speed
changes measured in small sub-second time intervals. On the other hand, for sophisticated
investors such as derivatives market makers or equity index arbitrageurs, speed may be
central to their business model. This fact motivates the modeling of heterogeneous agents.

When all trading is consolidated in a single venue, speed alleviates market contact frictions,
enhances asset liquidity and thus raises the equilibrium asset price. This result is both
intuitive and consistent with empirical findings.3 However, market power gives a monopolist
venue the ability to limit investor participation by raising access fees. Investors with identical
mean valuations for the asset but unequal leverage may rationally make different market
participation decisions. As access costs increase, only the more highly levered investors
(for whom gains from trade are large) join the market. Investor participation frictions thus
alter the composition of traders in the market, which distorts the market clearing price. In
particular, the equilibrium asset price can increase with participation costs and be higher
than its frictionless Walrasian counterpart.4

Do frictions generate the same outcomes in economies with fragmented trading? We show in
a simple two-venue economy that speed-driven competition further reduces average trading
delays, encourages investor participation, and increases traded volumes. All these factors
enhance asset liquidity vis-à-vis the consolidated market. However, the equilibrium effect on
asset prices may be surprisingly different from the single-venue case. Competition between
venues, while leaving the relation of tradable assets to market participants unaltered, results
in lower market access fees and thus increases the fraction of participating investors. As this
fraction increases, the market average leverage decreases and the marginal participant (the
one that clears the market) sell her endowment to a pool of investors whose average gains
from trade become smaller. Provided the asset supply is not “too large,”5 the marginal
investor’s valuation decreases and fragmentation can thus lead to lower asset prices.

These results suggest an interesting empirical relation: When an entrant venue breaks a
monopoly and trading fragments, asset liquidity may increase and the asset price level may
decrease. The relative strength of the liquidity and investor composition effects on the

3See, for example, the single-venue empirical results of Hendershott, Jones, and Menkveld (2011) who
study fast (algorithmic) trading.

4This effect of costs on asset prices is of different nature from that stated in Vayanos (1998), where
trading costs affect trade sizes and holding periods but not the composition of investors in the market.

5If asset supply is sufficiently large relative to investor demand, the asset price reflects the minimum
investor valuation regardless of the market structure.
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asset price depend on the ability of venues to vertically differentiate their liquidity services
(Gabszewicz and Thisse (1979)), catering to different clienteles and thus relaxing cost-based
competition.

Our analysis is closely related to recent empirical work that investigates the impact of trading
fragmentation. For example, O’Hara and Ye (2011) find evidence that fragmentation has
a beneficial effect on widely used measures of “market quality” related to liquidity, such
as bid-ask spreads and execution delays.6 These findings seem to support policymakers in
the U.S. and other countries who have encouraged fragmentation in recent years.7 While
our theoretical results are consistent with the findings on liquidity, they also suggest that
one should be cautious when interpreting such findings as evidence that fragmentation is
enhancing financial markets. Fragmentation may have broader consequences for asset prices,
and thus have unintended impacts on related economic variables such as the cost of capital
for corporations in primary markets.

When an asset trades in different markets, its price can in principle be different in each mar-
ket, depending on the degree of integration between venues. Arbitrageurs can, of course,
work to move prices closer to each other, but their ability to do so is subject to well-
recognized frictions (Vayanos and Gromb (2010)). Policymakers have thus designed mecha-
nisms that address this issue directly, motivated by “protecting investors” from unfavorable
prices. In the U.S. equity market such a mechanism is applied via the SEC’s “trade-through”
rule (Rule 611 in Regulation National Market System, hereafter Reg NMS), which essentially
mandates the integration of price formation across markets and gives investors access to the
“national best” price independently of their trading location8 (see Appendix A). Although
many observers agree that the trade-through rule had a profound impact on U.S. equity
markets since its implementation in 2007, its precise effects on financial markets are less
clear. We show that a trade-through rule affects competition between venues, redistributes
investors across them and, importantly, favors the slowest market. The resulting distortions
in competition affect asset prices. We show that the national best price lies in between
the prices that would result in speed-differentiated venues were they perfectly segmented.
Moreover, when speed investment costs are moderate, the national best price is lower than
the volume-weighted average price (VWAP) in segmented markets.

6Foucault and Menkveld (2008) and Degryse, Jong, and Kervel (2011) find similar results analyzing
European markets. The latter study distinguishes between dark and lit fragmentation, and reports that
only lit fragmentation enhances liquidity.

7For example, the SEC motivates Reg NMS by stating that: “Mandating the consolidation of order flow
in a single venue would create a monopoly and thereby lose the important benefits of competition among
markets. The benefits of such competition include incentives for trading centers to create new products,
provide high quality trading services that meet the needs of investors, and keep fees low.”

8Following this concept, the Canadian market regulator, the Investment Industry Regulatory Organiza-
tion of Canada, adopted a similar rule in 2011.
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By considering countries with different financial markets, our results provide several inter-
national asset pricing predictions. Consider, for example, an asset with an identical payoff
structure that trades in different countries. Our results suggest that the trading price should
be higher in economies where there are single venues (e.g. China, Spain and Brazil) than in
economies with fragmented markets (e.g., the U.K, France and the Netherlands), and lowest
in countries with fragmented markets and price protection (the U.S. or Canada).

We seek to characterize several market designs (summarized in Table I) and its implications
on asset prices within an integrated framework. In order to make the connections between
markets and prices precise, we derive instructive decompositions of equilibrium prices of the
form

Price=pW + illiquidity discount+limited participation distorsion.

In words, deviations of the market price from a frictionless Walrasian benchmark (pW )
are captured by two quantities. The first is an illiquidity discount (ILD) that reflects the
degree of imperfection in market contact, and is driven by trading technologies, as well as
its shadow valuation, which depends on the marginal investor in the market. The second,
which we label limited participation distortion (LPD), corresponds to the difference between
the market and Walrasian prices in the absence of market contact frictions. This term arises
solely because of market power, and partly reflects how levered market participants are. We
are particularly interested in studying how these frictions vary in the short and long-run.
To be concrete, consider the basic three-stage sequence:

• Trading period: All determinants of liquidity are taken as given by investors. One or
more continuous-time markets for the asset open and participants trade.

• Short-run: Given trading technologies, one or two venues set access fees. Investors
make participation and trading location decisions, and pay fees accordingly.

• Long-run: Given the number of venues, speed investment decisions are made.

Thus, in the short-run investor participation is variable, while the number of venues and
technology can change only in the long-run. For example, the trading period can represent
any given trading day, the short-run may represent one or more quarters, and the long-run
one or more years.9

Having characterized the ILD and the LPD both in the short and long-run, we next calibrate
the model using U.S. equity data from the 2000s. To illustrate the calibration results, let

9If one interprets markets as representing a “liquidity production function”, each stage then resembles a
different production period in the spirit of Alfred Marshall (1890). According to Marshall, some but not all
production inputs can change in the short-run. Our trading period corresponds to what Marshall called the
market period, a period during which all production inputs are fixed.
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Table I: Organization of the Liquidity and Asset Markets
Trading Consolidated Fragmented
Linkages Segmentation Investor Protection

Liquidity Markets (‘venues’) 1 2 2
Asset Markets 1 2 1

us consider the effect of investments in trading technologies, keeping the number of markets
fixed. We find that in the long-run, investments increase the asset price nearly 3.2% in a
single-venue economy, but only 1.3% on average in a duopolistic economy. These values
reflect the fact that speed is more valuable to highly levered investors, who populate the
monopolist market. Consider next an economy where an entrant venue breaks a monopoly.
We find that the equilibrium asset price falls by nearly 12% in the short-run, and 14% in
the long-run. The effect in the short-run is dominated by the LPD, which sharply decreases
in the transition to a duopoly. In the long-run, investments allow venues to improve asset
liquidity, reducing the ILD. Moreover, vertical differentiation of their liquidity services allows
venues to relax Bertrand competition and increase access fees, which partially offsets the
initial effect on the LPD. Finally, consider a fragmented market where a trade-through rule
is implemented. We find that the national best price is in the long-run 128 basis points
(bps) lower than the unregulated average price. Turning to the market environment, we
find that in the long-run prices are negatively related to the cost of trading technologies.
Interestingly, such costs only affect market participation when markets are fragmented. An
increase in investors average leverage raises asset prices in both the short and long-run. The
effect is stronger in the long-run due to the fact that venues can extract higher rents from
investors by investing in faster platforms, rendering the asset more liquid.

Our model also provides novel predictions about trading fragmentation levels. Using a
simple Herfindahl-Hirschman Index (HHI) to measure fragmentation, we find that its level
(i) decreases as technology becomes cheaper, (ii) increases with positive technology shocks,
(iii) decreases with more frequent preference shocks, and (iv) is higher under price protection
than in unregulated markets. Turning to trading volume, we find that fragmentation can
have significant equilibrium effects. In the long-run equilibrium, fragmented markets achieve
approximately 88% of the Walrasian volume, which is more than twice the volume of a
monopolist venue. The volume effect of investor protection is negative but moderate.

Although we largely concentrate on venues’ investments, we also analyze the effect of in-
vestors acquiring fast trading technologies directly (Section III.B). When this is possible,
speed investments naturally depend on investors’ characteristics, yielding a market with
heterogeneous frequency traders. We show that in this case, asset prices may increase with
asset supply: Unlike in Walrasian analysis where the market structure is given, an increase
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in supply can incentivize investors to become more technologically sophisticated, rendering
assets more liquid, and increasing prices in equilibrium. The economic intuition is related
to Acemoglu (1998) in the context of labor economics and directed technological change.

In summary, this paper makes four key points about secondary markets’ frictions and as-
set pricing. First, investors with identical mean valuations for the asset but heterogeneous
leverage can rationally make different market participation decisions. When venue institu-
tions have market power, the resulting distortion in the composition of active participants
can drive the asset price higher than its frictionless level. This effect stresses the fact that
equilibrium valuations do not directly reflect the stream of cash flows but, rather, the con-
sumption stream that asset ownership generates. Second, the relationship between liquidity
and price evolutions crucially depends on the competitive structure in financial markets.
Liquidity can increase over time because of technical progress or increased competition be-
tween markets. However, when markets fragment, asset prices can evolve in the opposite
direction. This result may shed new light on recent empirical results that link fragmentation
with enhanced market quality. Third, regulations that protect investor executions distort
competition between trading venues and thus have equilibrium consequences on asset prices.
The result here should be of interest for policy makers evaluating optimal regulations in this
regard. Finally, our results illustrate that differences in leverage can have important asset-
pricing effects and can amplify or diminish illiquidity effects. Understanding their effects on
financial markets is crucial, given the increasingly important role of institutions in portfolio
and investment decisions.

Relation to the Literature Garbade and Silber (1977) provide early work on the issue
of separated markets and the role of speed.10 Theoretical analyses of fragmentation include
those of Mendelson (1987), Pagano (1989), and Madhavan (1995). These early papers
focus on the trade-off between liquidity externalities and market power. Our focus on
differentiation is in the spirit of Harris (1993), who argues that markets fragment partly
because not all traders solve the same problem. Importantly, these papers analyze liquidity
and price informativeness. We contribute to this literature by characterizing the effect of
fragmentation on equilibrium asset price levels. To the best of our knowledge, we also
provide the first formal analysis of the effects of investor protection on asset prices.

This paper centers around liquidity and the pricing implications of institutions’ responses
to alleviate frictions. A different focus is adopted by Pagnotta and Philippon (2012) in a

10Silber and Garbade offer a historical perspective of speed, that surprisingly resembles in spirit many
current developments. They analyze the impact of the domestic telegraph system between the New York
Stock Exchange (NYSE) and the Philadelphia Stock Exchange during the 1840s and the transatlantic cable
between New York and London in 1866.
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companion paper. These authors study the welfare implications of speed-driven competition,
the entry of venues, and optimal market design. Since our focus is on positive pricing and
quantity implications, our study examines price formation where investors are also able to
acquire technologies to reduce their individual “distance” to a market center. Appendix B
provides a version of the model with generalized asset holdings and preferences.

Venues can differentiate in areas other than speed.11 For example, Santos and Scheinkman
(2001) study competition in margin requirements, while Foucault and Parlour (2004) an-
alyze competition in listing fees.12 These papers do not analyze speed differentiation and
thus justifiably consider static frameworks. Our focus on technological speed reflects its
prominent role in modern asset markets and its direct relation with secondary market liq-
uidity and explains our effort in developing a suitable dynamic model where speed plays an
explicit role.

Our paper complements the vast literature that analyzes the asset-pricing effects of illiquid-
ity.13 We contribute to this literature by developing links between the origin of liquidity in
secondary markets (i.e. competitive structure, investor participation and technology) and
asset price levels. Our trading model approach is closest to the part of this literature that
incorporates search-like frictions, which has been fostered by Duffie, Garleanu, and Pedersen
(2005).14 In particular, our trading model is in the spirit of Lagos and Rocheteau (2009),
whose model we extend by incorporating heterogeneously levered agents.15 We complement
this literature by endogenizing several important aspects of the market structure. To the
best of our knowledge, this paper is the first within this class to analyze liquidity and pricing
of a single security across different trading venues.16

Key to our results are participation decisions and the composition of investors in the mar-
ket.17 Consistent with the model’s outcomes, using microdata, Mankiw and Zeldes (1991)

11Models of vertically differentiated oligopolies have been pioneered by Gabszewicz and Thisse (1979)
and Shaked and Sutton (1982). Unlike classical models, we endogenize the value of “quality” (trading delays
here) through a microfounded trading game. In particular, we enrich the basic setup by having investors
“consuming” a differentiated product first (liquidity) and a homogeneous product (asset cash flows) second.

12Biais (1993), Glosten (1994), Hendershott and Mendelson (2000) and Parlour and Seppi (2003) study
competition between markets with different trading rules. More recently, Colliard and Foucault (2012) study
the effect of trading fees in a context where an exchange competes with an over-the-counter dealer.

13Important theoretical work in this area includes that of Amihud and Mendelson (1986), Constantinides
(1986), Vayanos (1998), Lo, Wang, and Mamaysky (2004), Eisfeldt (2004), Acharya and Pedersen (2005),
among many others. Amihud, Mendelson, and Pedersen (2006) and Vayanos and Wang (2011) provide
thorough surveys.

14Trejos and Wright (2012) discuss this growing literature, see the references therein.
15While the search literature in finance mainly concentrates on over-the-counter markets, Weill (2007) and

Biais, Hombert, and Weill (2012) also use a related framework to analyze trading in exchanges. Garleanu,
Pedersen, and Poteshman (2009) also uses Poisson contact times to analyze the effect of trading frictions on
prices.

16Vayanos and Wang (2007) and Weill (2008) use multiple assets but not multiple trading venues.
17Contributions to the analysis of participation costs in financial markets include the works of Brennan
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and Vissing-Jorgensen (2002) find that the preferences of stock market participants differ
greatly from those of non-market participants. Leverage is a universal feature of financial
markets, the banking sector, and real markets (e.g. mortgages in real estate equity). Ad-
mittedly, our analysis of leverage is stylized since we do not model the origin of leverage
differences. Frazzini and Pedersen (2010) study a setting where leverage differences arise
due to institutional constraints.

The remainder of the paper is organized as follows. Section I presents the empirical motiva-
tion for our model. Section II introduces the theoretical model in the case of a single trading
venue and Section III derives the theoretical results for asset prices in this setting. Section
IV analyzes competition among a given set of trading venues, the allocation of investors
across these venues, and the resulting asset prices. It also analyzes the effects of investor
protection on asset prices. Section V presents empirical implications for asset prices, trading
volume and fragmentation, as well as a calibration that illustrates the size of the effects.
Section VI discusses relationships between our results and previous findings. SectionVII
concludes the paper. Appendix A describes different investor protection regulations and
Appendix B develops an extension of the trading model with unrestricted asset portfolios.
All proofs are provided in the Online Appendix.

I Empirical Trends That Motivate the Theory

This section presents a brief account of the empirical facts that motivate our theory.18 It also
illustrates some of the speed choices that investors face in modern markets. See Appendix
A for a discussion of some of the important regulations that affect the evolution of speed
and fragmentation.

Trading Speed. Major market centers have made costly investments in fast, computerized
trading platforms to reduce order execution and communication latencies. This process has
gone beyond stock exchanges to include futures, options, bonds, and currencies. Although
these investments were chiefly first observed in the U.S., they have more recently been
undertaken on a global scale. This trend accelerated during the second half of the 2000s,
as Figure 1 illustrates with the average execution speed in the NYSE. The driving forces
underlying this speed frenzy are likely to be different from those of other historical periods.

(1975), Merton (1987), Allen and Gale (1994), Chatterjee and Corbae (1992), and more recently, Huang and
Wang (2009). Within the search tradition, Afonso (2011) studies a version of the model of Vayanos and
Wang (2007) with flow investor entry in the presence of thick market and congestion externalities.

18The Securities and Exchange Commission (2010) presents an informative summary of these trends and
a discussion of the challenges they pose to market quality.
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In the human-driven trading era, for example, higher execution speeds helped reduce moral
hazard problems between, say, floor brokers and investors. However, this aspect has become
less relevant today.

In our model, some investors decide to pay a premium for speed. In real markets this idea
relates to several dimensions of the investment process. Some important examples are the
following.

• Colocation. Colocation is a service offered by trading centers that operate their own
data centers and by third parties that host the matching engines of trading centers.
The trading center rents rack space to investors, which enables them to place their
servers in close physical proximity to a trading center’s matching engine, which helps
minimize network and other types of delays.

• Exchanges versus alternative venues. According to the SEC classification, U.S. in-
vestors can opt to direct their trading orders to registered exchanges (such as the
NASDAQ), Electronic Communication Networks, dark pools, or Broker-Dealer Inter-
nalizers. Although alternative and over-the-counter venues have also made significant
technological progress, organized exchanges typically offer investors the fastest com-
munication and trading responses.

• Markets with speed restrictions. In foreign exchange markets, for example, many so-
phisticated traders concentrate on Electronic Broking Services and Reuters inter-dealer
brokerage platforms, both of which have minimum quote life or minimum fill ratios.
One exchange that does not have such a minimum is Currenex, which is therefore
particularly attractive to high-frequency traders.

• Inter-market connectivity. The provision of connections between financial centers plays
a key role in modern markets. Take Chicago-New York as an example, an essential
route for derivative traders. In 2011 a firm named Spread Networks invested approx-
imately $300 million in a new fiber optic cable that links these cities through the
straightest possible route, saving about 100 miles over existing routes. This allows the
company to shave 6 milliseconds off their delay, for a total delay of 15 milliseconds.19

Clients of these superior connectivity services are willing to pay premium fees for their
use.

19The success of this business model motivated McKay Brothers, a leading provider of low-latency wireless
transport equipment, to contract the creation of a $300 million microwave-based network of towers connecting
the same cities to Aviat Networks.
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Figure 1: NYSE Average Order Execution Speed (Seconds)
Source: NYSE SEC Rule 605 reports (small orders executed at market; 5% tails excluded from the average).

Fragmentation. Securities trading, especially in North America and Europe, has become
significantly more fragmented over the last decade. Figure 2 illustrates this trend. Tradi-
tional markets in the U.S. and Europe have lost market share to (usually faster) entrants
such as Direct Edge, BATS and Chi-X. For instance, the fraction of NYSE-listed stocks
traded at the NYSE decreased from 80% in 2004 to just over 20% in 2009. Similar patterns
have been observed in other asset classes. For example, there are more than 10 options ex-
changes in the U.S. alone. Overall, fragmentation has increased so dramatically that market
participants now keep track of fragmentation indexes across asset classes and countries.20

Figure 2 also illustrates that the levels of fragmentation in other regions of the world are still
well behind those of North America and Europe. Given that several developing countries
are currently trying to foster competition between exchanges, the results in this paper may
help them anticipate effects on prices, liquidity and trading volumes.

II Trading Model

This section provides explicit micro foundations for how investors demand speed in financial
markets. We first analyze the problem of an investor trading in a single cost-free market
and characterize the ex ante value of speed. We then characterize an equilibrium where
investors decide whether to participate in such market by paying an access fee and a single
venue sets the fee to maximize profits.

20See, for example, the Fidessa fragmentation indexes
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Figure 2: Changes in Fragmentation Levels in Global Equity Markets
The Herfindahl-Hirschman Index of market concentration (the sum of squares of market shares; e.g., for the
NYSE in 2012, the sum of squares of market shares in NYSE-listed stocks trading for the NYSE, Nasdaq,
BATS, DirectEdge and others) for a cross-section of equity exchanges. Market share is defined as the
proportion of exchange-listed shares traded through the exchange itself and excludes dark pools.
Sources: Exchanges websites, RBC Global Asset Management, Bloomberg, and HSBC Research.

A Preferences and Technology

We start by describing the main building blocks of our model: investor preferences and
trading technology. The preferences need to incorporate heterogeneity to create gains from
trade as well as interesting participation decisions among venues. The trading technology
must capture the role of speed in financial markets.

Time is continuous and runs forever. The model has a continuum of heterogeneous investors,
two goods, and one asset. The measure of investors is normalized to one and their preferences
are quasilinear. The numéraire good (cash) has a constant marginal utility normalized to
one and can be freely invested at a constant rate of return r. We restrict asset holdings to
at 2 {0, 1}.21The asset is in fixed supply, ā, which is normalized to lie in [0, 1] so that it also
represents the expected endowment of each investor. That is, before trading, each investor
is endowed with one unit of the asset with probability a.

One unit of asset pays a constant dividend equal to one of a perishable non-tradable good.
The flow utility that an investor derives from holding at units of the asset at time t is

u�,✏
t

(at) = (µ+ �✏t) at, (1)
21See Appendix B for a generalization of the model where the equilibrium price is found relaxing this

assumption
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where (�, ✏t) denotes the type of investor. This type is defined by a fixed component � and
a time-varying (random) component ✏t.22 The fixed component � 2 [0, �̄) is known at time
zero and distributed according to the twice-differentiable cumulative distribution G, with a
log-concave density function g that is positive everywhere. The type ✏t 2 {�1,+1} changes
randomly over time. The times when a change can occur are distributed exponentially
with parameter �. Conditional on a change, the temporary shocks are independent and
identically distributed, and the value ✏ = 1 occurs with probability � (1) = � 2 (0, 1).

Our paper focuses on the trading technology for the asset. For clarity, we describe here
the case where all investors trade at the same speed (later we endogenize speed choices
and consider markets with different speeds). The market where investors trade the asset
is characterized by a constant contact rate ⇢. Conditional on being in contact, the market
is Walrasian and clears at a price p. Investors that are not in contact simply keep their
holdings constant.

Our assumptions about technology and preferences imply that the value function of a class-�
investor, with current valuation ✏t, and current asset holdings a at time t is

V�,✏
t

(a, t) = Et

ˆ T

t
e�r(s�t)u�,✏

s

(a)ds+ e�r(T�t) (V�,✏
T

(aT , T )� pT (aT � a))

�
, (2)

where the realization of the random type at time s > t is ✏s, T denotes the next time the
investor makes contact with the market, and aT corresponds to optimal time T holdings.
Expectations are defined over the random variables T and ✏s and are conditional on the
current type ✏t and the speed of the market ⇢.

B Trading Equilibrium and the Value of Speed

We characterize here the trading equilibrium with free market participation where all in-
vestors join the market. We show that the asset price remains constant during the trading
game, and the value functions are thus time independent and satisfy

rV
�,✏

(a) = u
�,✏

(a)+�
X

✏

0

�
✏

0 [V
�,✏

0(a)� V
�,✏

(a)]+⇢
⇥
V
�,✏

�
a⇤
�,✏

(p)
�
� V

�,✏

(a)� p
�
a⇤
�,✏

(p)� a
�⇤

. (3)

To analyze Equation 3, we then need to characterize the demand functions a⇤�,✏ (p). Note
that, on average, a proportion � of investors are of trading type ✏ = +1 representing natural
buyers, who are on the long side of the market when � � a. Following Duffie, Garleanu, and

22All random variables are defined on a probability space (X,F ,Pr), and all random variables at time t
are measurable with respect to the filtration {F

t

: t � 0} representing the information commonly available
to investors.
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Pedersen (2005), we concentrate on the case where supply is short hereafter and treat the
complementary case in Appendix B.23 To simplify the exposition we consider a symmetric
shock structure by setting � = 1/2. Since supply is short, low-� types always sell their
entire holdings when they contact the market. Moreover, there is a marginal type �̂ that is
indifferent between buying and not buying when ✏ = 1. Thus, we prove that when � > a

the demand system is as follows.

Lemma 1. The demand functions are a�,✏
⇤ = 0 when ✏ = �1 or when � < �̂, and a�,✏

⇤ = 1

when ✏ = +1 and � � �̂, where

�̂ (p, ⇢) ⌘
✓
1 +

�

r + ⇢

◆
(rp� µ) . (4)

Clearly, there cannot be an equilibrium where a�,� = 1 since in that case total demand
would exceed a preventing market clearing. Note also that the asset holdings of types � < �̂

are non-stationary since they never purchase the asset. A type � < �̂ sells its holdings on
first contact with the market and never holds the asset again. The value of �̂ then naturally
classifies investors into two categories, which we label as temporary investors (� < �̂) and
active (� � �̂) investors.24 Over time the assets move from the low-� types to the high-�
types and then keep circulating among high-� types in response to ✏ shocks and trading
opportunities.

It is easy to see that the price remains constant along the transition path. Given the ex
ante supply of the asset ā and the market contact rate ⇢, the gross supply of assets is always
⇢ā. All negative trading types ✏ = �1 want to hold a = 0 and they represent half of the
traders. The trading types ✏ = +1 want to hold one unit if � > �̂ and nothing if � < �̂. The
gross demand from high types is then always equal to ⇢ (1�G (�̂)) /2. The market clearing
condition, which holds at all times, is therefore

1

2
[1�G (�̂)] = ā. (5)

Let ↵�,✏ (a) be the share of class-� investors with trading type ✏ currently holding a units of
asset. Using the demand system in Lemma 1, and the market clearing condition 5, we can

23Although binary asset holdings simplify the analysis greatly, this assumption is not without loss of
generality. Like in Duffie, Garleanu, and Pedersen (2005), asset indivisibility generates an equilibrium price
that decreases in the contact rate ⇢ when asset supply is large, making such case somewhat less compelling.
We know from Lagos and Rocheteau (2009) that this extensive margin considerations are trivial when asset
holdings are unrestricted. We provide an extension of our framework with a � 0 in Appendix B.

24An alternative classification involves small- and high-volume investors, which would be natural under
a generalization with unrestricted asset holdings.
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now characterize the steady-state distribution among types � > �̂ and the single-market
equilibrium price as follows.

Proposition 1. The single market, full-participation trading equilibrium is as follows.

• When a < 1
2 there is a unique equilibrium price given by

p =
µ

r
+

G�1 (1� 2a)

r

✓
r + ⇢

r + � + ⇢

◆
(6)

• Transition dynamics: The price remains constant while asset holdings shift from low �-
types to high �-types. Low types (� < �̂) sell their initial holdings and never purchase
the asset again. High types � � �̂ buy when ✏ = 1 and sell when ✏ = �1.

• The distribution of holdings among high �-types converges to the steady-state distri-
bution of well-allocated assets ↵�,+ (1) = ↵�,� (0) = 1

4
2⇢+�
�+⇢ and misallocated assets

↵�,+ (0) = ↵�,� (1) = 1
4

�
�+⇢ .

• When ⇢ ! 1, allocations and the equilibrium price converge to the Walrasian outcome
↵�,+ (0) = ↵�,� (1) = 0 and pW = 1

r

⇥
µ+G�1 (1� 2a)

⇤
.

With full participation the value of �̂ = G�1 (1� 2a) can be derived directly from the market
clearing condition, and thus only depends on the asset supply and the distribution of investor
types. Consequently, the frictionless Walrasian price depends only on these variables.

Our next task is then to compute the value of speed for investors. We proceed in two steps:
we first compute the steady-state value functions for active investors, and later compute the
ex ante values, taking into account the transition dynamics. Consider the steady-state value
functions for any type � > �̂. Given the Bellman equation of Equation 3 and Lemma 1, for
the types holding assets, we have

rV�,+ (1) = µ+ � +
�

2
[V�,� (1)� V�,+ (1)] (7)

rV�,� (1) = µ� � +
�

2
[V�,+ (1)� V�,� (1)] + ⇢ (p+ V�,� (0)� V�,� (1)) . (8)

For the types not holding the assets, we have

rV�,� (0) =
�

2
[V�,+ (0)� V�,� (0)] (9)

rV�,+ (0) =
�

2
[V�,� (0)� V�,+ (0)] + ⇢ (V�,+ (1)� V�,+ (0)� p) . (10)
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It is convenient at this point to consider the change of variables given by

s (⇢) ⌘ ⇢

r + � + ⇢
. (11)

The variable s 2 [0, 1], which we denote effective speed, is economically more informative
than ⇢ alone, since it reflects the market’s ability to reallocate the asset between investors
for a given preference shock rate �.

We can find the ex ante participation value, denoted W . For a given investor of type �

joining a market with effective speed s and a marginal investor given by �̂, this function is

W (�, �̂, s) ⌘ a

2

X

✏

V�,✏(1) +
1� a

2

X
V�,✏(0). (12)

The interpretation of the right-hand side of Equation 12 is straightforward: The investor is
endowed with one unit of the asset with probability a, and the probability of a temporary
type ✏ is one-half. The no-trade outside option of any investor is

Wout =
µā

r
. (13)

Naturally, given the symmetric shock structure, Wout does not depend on �.

Given the system of Equations 7-10, we have the following.

Lemma 2. The function W for a class-� investor is given by

W (�, �̂, s)| {z }
Ex ante value

=
µā

r|{z}
Outside option

+
sā�̂

r|{z}
Ownership Surplus

+
s

2r
max(0,� � �̂)

| {z }
Repeated Trading Surplus

(14)

where s is defined by Equation 11, and the marginal type �̂ (p, ⇢) is as in Equation 4.

The intuition is that the market participation gains, W net of the outside option Wout, is
composed of two parts. The (transient) ownership value µā+sā�̂

r , independent of � is the
value that can be achieved by all types � < �̂ with the “sell and leave” strategy. The second
part, s

2r max (0;� � �̂), represents the surplus of trading forever, which depends on the type
�. Importantly, the latter part is super-modular in (s,�). Hence, the value assigned to any
effective speed s increases with the investor type.
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C Equilibrium with Costly Participation

We can now analyze investors’ participation decisions and formally define an equilibrium
with costly participation. Let qi be the cost of accessing venue i, and let P (q, s|�) be the
participation mapping onto {0, 1, 2, ..., I}, where P = 0 means staying out, P = 1 means
joining venue 1, and so forth. Staying out costs nothing, so we take q0 = 0. Recall that
G was the ex ante distribution of permanent types. Let G̃i (�) be the measure of trader
types lower than � in market i. If all potential investors join market i, as before, we simply
have G̃i = G. In the generic case, however, we have G̃i  G since some investors may
not participate. Indeed, we shall see that in the multiple-venue model the distribution G̃ is
typically discontinuous. We then have the following.

Definition 1. An equilibrium is a set of market access fees q⇤ = (q⇤1, .., q
⇤
I ), effective speeds

s = (s1, ..., sI), participation decisions {P (q, s|�) ,� 2 [0,�)} by investors, asset prices
pi

⇣
q, s, G̃i

⌘
and marginal types �̂i

⇣
q, s, G̃i

⌘
such that for all i  I

• q⇤i 2 argmaxq
i

qi
´ �
0 1
�
P
�
qi, q

⇤
�i, s

���
�
= i
 
dG (�)

• P (q, s|�) 2 argmaxi2{0,...,I} [W (�, �̂i, si)� qi]

• pi

⇣
q, s, G̃i

⌘
and �̂i

⇣
q, s, G̃i

⌘
solve �̂i = (rpi � µ)

⇣
1 + �

r+⇢
i

⌘
and 1

2

⇣
G̃i (�)� G̃i (�̂i)

⌘
=

aG̃i (�), where G̃i (�) ⌘
´ �
0 1 {P (q, s| ⇠) = i} dG (⇠)

This equilibrium concept naturally extends to the case in which the speed s is also endoge-
nous. With only one venue, the investor with marginal trading type �̂ must simply be indif-
ferent between joining and not joining the market. So we must have W (�̂, �̂, s)�Wout = q

and therefore q = sā�̂
r . Consequently, all types below �̂ are indifferent between joining and

staying out since they obtain zero net participation gains. Let � be the mass of investors
that join, sell, and leave. Market clearing requires � to equal (1/2a � 1) (1�G (�̂)). This
condition holds at an interior solution as long as � < G (�̂), or in other words, as long as
G(�̂)

1�G(�̂) >
1
2ā � 1. In the remainder of the paper we assume that either ā is close enough to

1/2 or that there is a sufficient mass of low-type investors to ensure the existence of interior
solutions.

To derive analytical results, when convenient we assume the following distribution.

Assumption 1 (A.1).

G (�) = 1� e�
�

⌫ , ⌫ > 0 (15)

Note that under A.1 the Walrasian price is simply given by 1
r [µ� ⌫ log (2a)].
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Using Equation 11, we can express the equilibrium price 6 as

p =
µ

r
+

�̂

r

✓
r + �s

r + �

◆
. (16)

With costly participation we generally have �̂ > G�1 (1� 2a). It is worth noting that the
equilibrium price 16 differs from the benchmark liquidity-adjusted price in the literature
(e.g., Duffie, Garleanu, and Pedersen (2005)) in two key aspects:

1. Investors participation decisions that affect �̂ are determined endogenously. Natu-
rally, these decisions will be interrelated with the venue(s) optimization problem in
equilibrium.

2. Market contact frictions captured by s will also be endogenously determined.

Consequently, we can explicitly analyze how (�̂, s) are jointly determined as a function
of: investor characteristics, the state of technology, the market competitive structure, and
regulation. This is the main objective of the following two sections.

To gain intuition on the differences between the equilibrium and the benchmark frictionless
price pW , we define the following quantities.

Definition 2. The limited participation distortion (LPD) of the market price in venue i is
given by

LPD ⌘ lim
c!0

[pi � pW ] .

Let �i ⌘ r+�s
i

r+� . The illiquidity discount (ILD) of price pi is given by

ILD ⌘ �̂i (1� �i) .

The LPD represents the difference between the equilibrium and Walrasian prices in the
absence of market contact frictions. That is, it captures the distortion in the value of the
marginal investor due to venue’s market power. Naturally, this quantity vanishes when
the market access cost approaches zero. The ILD captures the value of the losses that the
market marginal investor faces due to her temporary inability to rebalance her portfolio
after a preference shock. Note that 1 � �i can be seen as a measure of market illiquidity,
and has a maximum value of zero when the effective speed si equals one.25

25Since s 2 (0, 1), whenever � � r, � also lies in the interval (0, 1)
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D Discussion of Assumptions

The ✏-shocks can capture time-varying liquidity demands, financing costs, hedging demands,
or specific investment opportunities (see Duffie, Garleanu, and Pedersen (2007) for a dis-
cussion). The important point is that these shocks affect the private value of the asset, not
its common value. For instance, a corporate investor may need to sell financial assets to
finance a real investment. A household may do the same for the purchase of a durable good
or a house. The parameter � then simply measures the size of these shocks and thus the
volatility of the private value process. One can interpret � as capturing leverage levels for a
given investor. For example, as a group, retail investors generally have lower leverage levels
than institutional investors. Thus, retail investors would correspond to lower values of �

in the model. Moreover, note that individual preference types do not drive the endowment
process in any way. Random ownership of a tree share may represent, for example, the
outcome of an unmodeled labor market where there is some sort of “stock compensation.”

The parameter � measures the mean reversion of the utility flow process and is assumed
for simplicity to be the same for all investors. In the context of delegated management, the
shock frequency can represent the sum of the shocks affecting all the investors in a given
fund or brokerage house. We introduce heterogeneity in �and not in � because the key point
in our analysis is the link between gains from trade and speed. It is important to understand
that a higher value of � implies lower gains from trade. Investors with a high value of � are
not eager to trade since they can simply wait for their type to mean-revert. In particular,
a high value of � would not capture the idea of fleeting trading opportunities. This idea is
better captured by a high value of �.

The non-Walrasian feature of the market is captured in a parsimonious fashion by a single
market contact rate ⇢. Real markets are of course more sophisticated, but for tractability
reasons we abstract from modeling the explicit connections between the venue and, say, a
population of potential market makers. One could add bargaining with market makers and
bid–ask spreads, but this would not likely bring new insights beyond those of Duffie, Gar-
leanu, and Pedersen (2005) and Lagos and Rocheteau (2009). A market mechanism similar
to ours is considered in the monetary economy of Rocheteau and Wright (2005), which they
label competitive equilibrium. We also abstract from liquidity (i.e., thick market) exter-
nalities. While this abstraction is not without loss of generality and liquidity externalities
may still be relevant for some exchange-traded assets, technology may arguably help realize
them, even when several trading venues coexist.26

26The fact that large cap stocks in the U.S. currently trade in nearly 50 different trading venues suggests
that liquidity externalities are not as important or prevalent as they were in the pre-electronic “human trade”
era.
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Figure 3: Timing Consolidated Market
After the venue chooses a trading speed and access fee, investors decide whether to participate. Once these
decisions are made, trading starts at time zero.

Because the focus of venue differentiation is on trading speed, we interpret q as ex ante costs
related to a speed decision that affect multiple trading rounds rather than transaction cost
related to a given trade volume. Such costs can include, for example, co-location fees at a
particular trading center (see Section I for a discussion). The online appendix of Pagnotta
and Philippon (2012) analyzes a model with transaction costs.

III Asset Prices in a Consolidated Market

In this section we derive equilibrium asset prices in an environment with a single profit-
maximizing venue. The single venue seeks to maximize profit by selecting a given access fee
and a given trading speed. Creating or adopting a new trading platform takes time, however.
We specialize our definition of short and long-run periods in the introduction according to
the timing illustrated in Figure 3. After the venue chooses a trading speed and access fee,
investors decide whether to participate. Once these decisions are made, trading starts at
time zero. After analyzing the benchmark case, in the remainder of this section we study
the case where investors, as opposed to the venue, have the ability to reduce trading delays.

A Speed Investments and Asset Price

Short Run Venue Program and Asset Price Consider the case of a market that
in the short-run operates under an exogenously given “default” speed ⇢ > 0 and seeks to
maximize profits by selecting an access fee. In this case the single venue behaves like a
classic monopolist and total profits are given by ⇡ = q (1�G (�̂) + �), which we can write
using the market clearing condition 5 as ⇡ = q

2a (1�G (�̂)). Note that if ā = 1/2 we obtain
� = 0, the simplest case to analyze. When ā is less than 1/2, we simply need to remember
that a mass � of investors joins, sells, and becomes inactive. The program of the monopolist
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then has a first-order condition given by

�̂con =
[1�G (�̂con)]

g (�̂con)
, (17)

where the subscript con denotes a market with consolidated trading. Importantly, the
implied marginal type depends only on the distribution function G. Denoting the price with
consolidated trading as pcon and using a superscript S to denote the short-run, we obtain

pScon =
µ

r
+

�̂S
con

r
⇥
✓
r + �s

r + �

◆
, (18)

where as before s =
⇢

r+�+⇢ and �̂S
con is given by Equation 17. Note that under A.1 we have

�̂S
con = ⌫.

Long-Run Venue Program and Asset Price In the long-run the venue can adapt
its trading technology s at a cost C(s), affecting the quality of its liquidity service and
potentially extracting higher rents from investors. Profit maximization requires solving

max
(q,s)�0

q (1�G (�̂ (q, s)))� C (s) . (19)

Where convenient, we assume the following cost function.27
Assumption 2 (A.2). The

cost of the contact rate ⇢ is given by c⇥max
�
⇢� ⇢; 0

 
, where c > 0. Equivalently, the cost

the cost of the effective speed s is

C (s) = c⇥max

⇢
(r + �)

s

1� s
� ⇢; 0

�
. (20)

In words, under A.2 investment costs are linear in speed improvements (⇢� ⇢) and thus, by
Equation 11, a convex function of s.

The analysis of the solution to the program 19 yields the characterization of the equilibrium
price pcon in the long-run. In the remainder of this section we assume A.1 and A.2, as given
by Equations 15 and 20, to obtain explicit expressions.

27Since we are focusing on long-term investment in trading infrastructures, we concentrate on fixed costs
of speed enhancements which represent items such as hardware, the development of matching algorithms,
integration with clients systems, among others, as opposed to variable costs such as energy or maintenance.
The cost of a given technology also does not depend on the number of traders that participate in the venue.
This is, of course, a simplification but, arguably, is does not involve much loss of generality in electronic
markets, as opposed to the era of trading floors.
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Proposition 2. The long-run equilibrium price in a consolidated market is given by

pLcon =
1

r
[µ� ⌫ log (2a)]

| {z }
Walrasian

Price (p
W

)

+
⌫

r
[1 + log (2a)]

| {z }
Limited Participation

Distortion

� ⌫

r

 
�

s
2rc

(r + �)

e

⌫

!

| {z }
Illiquidity

Discount

(21)

When market contact frictions are small, the market consolidated price pcon is higher than
the frictionless price pW .

The equilibrium long-run price has three components. The first is the Walrasian price pW ,
which corresponds to the limit price where market contact frictions vanish and where market
participation is costless for investors. The second and third terms correspond to the limited
participation and illiquidity adjustments. With a single venue, the LPD depends on the
distribution of investors, as implied by Equation 17, both in the short and long-run, so we
have �̂L

con = �̂S
con (= ⌫ under A.1). The relative value of the distortion also depends on

the asset supply and is largest when a = 1/2. This is because the single venue chooses �̂

irrespective of a, while �̂W decreases with asset supply.28 The size of the ILD depends on
the extent of illiquidity, captured by 1��con, and its shadow price �̂con = ⌫ corresponding to
the marginal investor type. Note that the ILD approaches zero as market contact frictions
become small. This occurs, for example, when c approaches zero. In such cases we have
pcon > pW , which is a reflection of the levered composition of market participants in the
market equilibrium.

B Heterogeneous Frequency Trading and Asset Demand Curves

We characterized in Section III.A the consolidated market equilibrium price in the long-
run, where the key investment role is played by the venue. In modern financial markets,
institutional investors also undertake costly investments to ensure fast responses to trading
signals and fast communication. For example, a given investment desk may acquire better
computer equipment, or invest in developing time-efficient trading algorithms. But does the
equilibrium asset price depend on who invests in speed? In this section we address this issue
by allowing investors to influence their effective rate of market contact before trading starts.

Consider again a market with contact speed ⇢, which investors take as given. We now assume
that all investors experience an additional time delay, possibly due to equal geographical
distance from the market center. In particular, the effective market contact rate for any

28This holds provided a is sufficiently large, that is �̂
con

> G�1(1 � 2a). Otherwise, we must have
�̂ = G�1(1� 2a)
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Figure 4: Heterogenous Investor Speeds
Panel A shows that investors that participate in the market are ex ante identical in their “distance” from
the market, 1

⇢�✓̄

. Panel B shows that endogenizing technology choice leads to �-dependent heterogeneity in
contact rates.

investor is given by ⇢ � ✓, with ✓ < ⇢. Before joining the market, investors can increase
their effective contact rate by investing in a latency reduction technology ✓ 2

⇥
0, ✓
⇤
, at a

type-independent cost cI✓ with cI > 0. Whenever investors select a technology ✓, their
agent-specific effective speed then becomes

s (⇢, ✓) =
⇢�

�
✓ � ✓

�

r + � + ⇢�
�
✓ � ✓

� . (22)

In this environment investors’ pre-trade decisions include both a participation and a tech-
nology acquisition component:

P : [0, �̄] �! {0, 1}⇥
⇥
0, ✓
⇤
.

Figure 4 illustrates that, before trading starts, the effective distance from the market
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Figure 5: Timing Heterogenenous Frequency Traders
After the venue chooses an access fee, investors decide whether to participate, and if so, how much
to invest in speed. Once these decisions are made, trading starts at time zero.

is investor specific. Anticipating investor behavior, the venue then maximizes profits by

23



selecting an optimal market access fee q, as depicted in Figure 5.29

In a symmetric equilibrium, all type-� investors choose the same technology ✓ (�), so we can
write s (�) ⌘ s (⇢, ✓ (�)). Note that once a particular effective rate s (�) has been determined,
trading commences and the equilibrium analysis in Section II remains unchanged. Thus, we
can express the expected participation value for a type-� investor selecting a speed s (�) as

W (�, �̂, s (�))�Wout =
ā

r
s (�) �̂ +

s (�)

2r
max (0;� � �̂) , (23)

which is super-modular in (�, ✓). Because investors will optimally select trading technologies,
we can thus express the ex ante expected participation value as

fW (�, �̂, s (�)) = max
✓2[0,✓]

{W (�, �̂, s (✓ (�)))� CI (✓)} . (24)

Consequently, the marginal investor �̂ satisfies fW (�̂, �̂, s (�̂))�q = Wout. Finally, note that
the market clearing condition is not affected due to the independence of preference shocks
across investor types.

Let phft denote the equilibrium price in the market with “heterogeneous frequency traders.”
By jointly solving the investor speed selection problem and the venue optimal fee problem,
we can show the following.

Proposition 3. When investors select trading technologies, the equilibrium price is

phft =
1

r
[µ� ⌫ log (2a)]

| {z }
Walrasian

Price (p
W

)

+
�̂hft
r

[1 + ⌫ log (2a)]
| {z }
Limited Participation

Distortion

�
�̂hft
r

(1� �hft)
| {z }

Illiquidity

Discount

, (25)

where �̂hft and �hft are expressions given in the Online Appendix. When speed frictions are
small, investments in speed increase with the asset supply and asset demand curves can slope
upward.

According to Proposition 3, investors’ choices affect both the LPD and ILD relative to pcon

in Equation 21. In this case, the marginal investor type does not depend solely on the
investor type distribution but also on parameters such as the cost of latency reductions.
Consequently, we generally have �̂hft 6= �̂con = ⌫. The ILD is naturally affected by the
change in the value of the marginal investor type, and by the marginal investor’s distance

29Although one could analyze joint speed choices, to keep the analysis from being overly complicated, we
take the market speed as fixed and concentrate on investor choice in this section.
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to the market (embedded in �hft). When market contact frictions are relatively small, the
value of the ILD will be generally lower than in the previous section due to the fact that,
for our calibrated parameters, we have �̂hft < �̂con.

The equilibrium with heterogeneous frequency trading also has interesting implications for
the shape of demand curves. Consider an increase in the asset supply parameter a. This
change has a direct negative impact on the marginal investor type which tends to lower the
asset price 25. However, such an increase has a positive effect on the optimal speed choice
shft, which in turn raises �̂hft indirectly. The intuition behind this effect is clear when
comparing the investor ex ante values given by Equations 14 and 23. In the latter, the value
of ownership increases with the investor type � through the interaction between a and s (�).
In an economy where the asset supply incentive effect on shft is strong, one can observe,
at least at low frequencies, that demand curves slope upward. An implication of this latter
effect is that, in an environment with multiple assets, we would expect to see traders that
heavily invest in speed concentrate in large assets (e.g., large market capitalization stocks),
potentially widening the relative illiquidity of small assets.

IV Asset Prices in Fragmented Markets

In this section we analyze competition between a given set of trading venues, the allocation
of investors across these venues, and the resulting asset prices.

Consider two venues, 1 and 2, with speeds ⇢1 and ⇢2 (i.e effective speeds si =
⇢
i

r+�+⇢
i

) and
participation fees q1 and q2, respectively. If both speeds were equal, the venues would have
to compete à la Bertrand in fees, leaving each venue with zero profits. venues therefore
have an incentive to differentiate their intermediation services by offering different speeds
and thus relaxing competition in fees. We concentrate on this case and, without loss of
generality, take venue 2 as the fast market, so that ⇢1 < ⇢2. Since fees can be adjusted more
easily than trading platforms, it is natural to model venue competition as a sequential game
where markets first select a trading technology and subsequently compete on fees. In the
remainder of this paper we focus solely on venues’ speed choices.

With more than one trading venue, investors can find different prices to buy or sell an asset
in each of them. Policymakers are often concerned about “protecting” investors from bad
execution and have designed a number of rules that regulate how market prices relate to
each other (see the discussion in Appendix A). We consider two types of trading regimes,
which capture stylized extreme cases.

Definition 3. Trading regimes | 2 {seg, prot} are as follows.
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Figure 6: Timing Fragmented Markets
For a given trading regulation, the fast venue chooses a trading speed and then venues set access
fees. Investors decide whether to participate and, if so, which market to join. Once these decisions
are made, trading starts at time zero.

• Market segmentation (seg): When a venue refuses to execute trades coming from
investors of another venue. There are then two asset markets and two liquidity markets.

• Price protection (prot): The market authority enforces a single asset price. There are
then one asset market and two liquidity markets.

Under segmentation, an investor joins a market and cannot trade with an investor in another
market. Once investors have been allocated, the markets are effectively segmented and equi-
librium asset prices can be different. Under price protection, asset prices must be the same
in both venues.30 Note that a single price would also prevail if there were limitless arbitrage
opportunities for a mass of potential arbitrageurs. In this regard, price protection is equiva-
lent to perfect arbitrage. A more general framework with costly arbitrage (e.g., Shleifer and
Vishny (1997)) would deliver equilibrium asset prices that lie somewhere between the low
and high segmented prices we derive.

For a given trading regime, a market structure is characterized by a set of speed and fees
(s, q). Investors observe these outcomes and decide whether to participate in financial mar-
kets, and which trading venue is more attractive. The pre-trade decisions of type-� investors
are formally described as

P : (s, q)⇥ [0, �̄] �! {0, 1, 2} .

The timing of decisions is illustrated in Figure 6. We will see that investors choosing to
trade in the fast market do so by paying a higher access fee. In light of the discussion in
Section I, investors decision to pay a speed premium can be interpreted as a decision to
colocate with an venue’s servers.

30This is our simple way to capture access and trade-through rules in the SEC’s Reg NMS. The distinction
between the U.S.’s top-of-the-book and Canada’s full-depth protection becomes trivial here since we only
consider unitary orders. See Appendix A for a discussion of investor protection and more details.
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A Segmented Markets

Let us start studying investors’ pre-trade decisions given (s, q). When markets are effectively
segmented, we need to consider three indifference conditions. First, there is a type �̂1 who
is indifferent between joining market 1 and staying out. This type must satisfy

W (�̂1, �̂1, s1)�Wout = q1,

which, using Equation 14, implies

q1 =
ās1�̂1
r

. (26)

The second indifference condition defines the marginal type �̂12, who is indifferent between
joining market 1 and market 2. By definition, this type must be such that

W (�̂12, �̂2, s2)� q2 = W (�̂12, �̂1, s1)� q1. (27)

The third indifference condition is that the temporary investors are indifferent between
joining markets 1 and 2. Therefore we must have

W (�̂2, �̂2, s2)�Wout � q2 = W (�̂1, �̂1, s1)�Wout � q1

Given the indifference condition for �̂1 this implies W (�̂2, �̂2, s2)�Wout�q2 = 0. Combining
these conditions, we obtain s1

2r (�̂12 � �̂1) =
s2
2r (�̂12 � �̂2) and q2 =

ās2�̂2
r , and therefore

�̂12 =
r

ā

q2 � q1
s2 � s1

. (28)

Note that �̂1 < �̂2 < �̂12. The set of types that join market 2 cannot be an interval. It is
composed of all the types above �̂12 and some types below �̂1.

Let us consider venues’ optimization. The total revenue for the slow and fast venues is given
by q1 (G (�̂12)�G (�̂1) + �1) and q2 (1�G (�̂12) + �2), respectively, where as in Section II,
�i represents the mass of temporary investors joining market i. The mass of temporary
traders in each market is determined by market clearing. Due to market segmentation, we
need to consider two different market clearing conditions:

(1�G (�̂12) + �2) ā =
1�G (�̂12)

2

for market 2 and
(G (�̂12)�G (�̂1) + �1) ā =

G (�̂12)�G (�̂1)

2

for market 1. Using these conditions, we can express the slow and fast venue gross profit
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functions as ⇡seg
2 = q2

1�G(�̂12)
2ā and ⇡seg

1 = q1
G(�̂12)�G(�̂1)

2ā .

To simplify the analysis we take market 1’s speed as exogenously given by the economy’s
default speed, that is s1 = s, while market 2 chooses an effective speed s2 at a cost C (s2).
In the speed choice stage, market 2 thus solves

max
s2

q2 (s2)

2a
[1�G (�̂12 (s2))]� C (s2) (29)

We can naturally extend the equilibrium in Definition 1 to this environment by adding
an investment stage. To ensure sub-game perfection we must first find the access fee q⇤i
that maximizes ⇡seg

i given qj 6=i, for i, j = 1, 2; and where the marginal types are given by
Equations 26 and 28. Second, given q⇤1 and q⇤2, we must find the speed level s⇤2 that solves
program 29. We shall see in the next section that the equilibrium solution to this problem
implies a level of participation and speed in the fast market that exceeds the one in the
consolidated market.

Once these objects are determined, we can characterize the equilibrium prices.

Proposition 4. In the segmented markets equilibrium, asset prices are given by

p1 =
1

r

⇥
µ�G�1 (1� 2a)

⇤

| {z }
Walrasian

Price

+
1

r

⇥
�̂1 +G�1 (1� 2a)

⇤

| {z }
Limited Participation

Distortion market 1

� 1

r
�̂1(1� �1)
| {z }

Illiquidity

Discount market 1

, (30)

and

p2 =
1

r

⇥
µ�G�1 (1� 2a)

⇤

| {z }
Walrasian

Price

+
1

r

⇥
�̂2 +G�1 (1� 2a)

⇤

| {z }
Limited Participation

Distortion market 2

� 1

r
�̂2(1� �2(s2))
| {z }

Illiquidity

Discount market 2

, (31)

where marginal types �̂1 and �̂2 satisfy Equations 59-61 given in the Appendix. The limited partic-
ipation distortion (LPD) is higher in the fast market. The ILD in the fast market can be lower or
higher than in the slow market.

As in a consolidated market, we can see the prices in the markets of Proposition 4 as the
sum of three terms: the Walrasian price, an LPD, and an ILD. The LPD here reflects the
change in the value of the marginal investor relative to the Bertrand outcome. Intuitively,
when speed differentiation increases, markets are able to increasingly relax competition in
access fees. Given that investors with high types choose to trade in the fast market, this
distortion is naturally greater in market 2. However, it is interesting to note that when
markets are segmented the ILD is not necessarily lower in the faster market. Although the
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amount of illiquidity is lower in market 2 (i.e. 1 � �2 < 1 � �1), its marginal valuation in
that market is higher. In fact, when market contact frictions are small, the ILD is likely to
be higher in the fast market.

B Protected Markets

In this section we analyze how price protection in the trading period affects competition
between venues and equilibrium asset prices.

With price protection asset markets operate under a single market clearing condition. In-
vestors then self-select into trading venues that can be seen as different entry points into a
single integrated asset market. Following widely used terminology in U.S. stock markets, we
refer to the single clearing price as the national best price, denoted pnb. Active participants
in markets 1 and 2 are still characterized by the indifference condition 26 for the marginal
type �̂1, and the marginal type �̂12 is still characterized by Equation 27. However, with a
single asset price temporary traders are not indifferent between joining market 1 and joining
market 2. Intuitively, temporary traders now have a stronger incentive to join market 1,
where they pay a lower access fee, since they can sell their endowment at the same price in
either market. We then have �2 = 0 and the market clearing condition becomes

(1�G (�̂1) + �1) ā| {z }
Total Asset Supply

=
(1�G (�̂1))

2| {z }
Stationary Asset Demand

(32)

The redistribution of investors across venues impacts market revenue. In particular, the
Online Appendix shows that the gross revenue functions ⇡prot

1 and ⇡prot
2 are now q1

2a [1 �
G(�̂1) + 2a(G(�̂12) � 1)] and q2 (1�G (�̂12)), respectively. By solving the new two-stage
competition game, and imposing market clearing condition 32, we can characterize the
national best price.

Proposition 5. The single equilibrium price under price protection is

p
nb

=
1

r

⇥
µ�G�1 (1� 2a)

⇤

| {z }
Walrasian

Price

+
1

r

⇥
�seg

1 +G�1 (1� 2a)
⇤

| {z }
Limited Participation

Distortion (reg. free)

� 1

r
�seg

1 (1� �1)
| {z }

Illiquidity

Discount (reg. free)

+
1

r
(�prot

1 � �seg

1 )�1

| {z }
Price Protection

Distortion (PPD)

. (33)

Under A.1 (Equation 15) the price protection distortion (PPD) is positive.
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The first three terms on the right-hand side of Equation 33 in Proposition 5 coincide with
the regulation-free price in the slow market, as given by Equation 30. There is an additional
term in this case that captures the price distortion of the trading regulation in market 1:

PPD ⌘ pnb � pseg1 .

Under general conditions, such a distortion is positive, and the national best price pnb is
greater than pseg1 . The intuition is as follows. Price protection acts as a subsidy to the
slow market because its investors are (effectively) allowed to sell their assets to investors in
the fast market. This creates, everything else being constant, a larger demand for the slow
market, which encourages the slow market to increase its access fee q1, ultimately raising
the value of the marginal type �̂1. This is why we have �̂prot

1 > �̂seg
1 . Protection also softens

the price elasticity of the marginal type �̂12, which again is good for the slow venue. Thus
the slow venue’s profits increase under protection for two reasons: more demand and less
price elasticity.

Note that Proposition 5 does not characterize the impact of price protection on pseg2 . We
analyze this issue further in the following section.

V Empirical Implications

In this section we study the relation between the different asset prices obtained in Sections
III and IV, as well as implications for trading volume and fragmentation levels.

Our first task is to compare price outcomes in a consolidated market and in unregulated
fragmented markets. To do so, we would like to have a notion of the average price in
the segmented markets. A natural choice is to compute the volume-weighted average price
(VWAP). Let ⌧i represent the steady-state expected number of trades in market i per unit
of time, a natural notion of volume. We then define the VWAP as follows.

Definition 4. The VWAP pvw is given by

pvw ⌘
✓

⌧1
⌧1 + ⌧2

◆
p1 +

✓
⌧2

⌧1 + ⌧2

◆
p2. (34)

Note that we can easily derive the expressions for ⌧1 and ⌧2. First, the masses of active
traders in markets 1 and 2 are given by G (�̂12)�G (�̂1) and 1�G (�̂12), respectively. From
Proposition 1, we know that in the steady state the proportion of asset owners wanting to
sell their asset and the proportion of agents wanting to buy it is given by 1

4
�

�+⇢ . With the
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contact rates for markets 1 and 2 equal to ⇢1 and ⇢2, respectively, the average number of
trades in each market at any moment is then

⌧1 = ⇢1
�

4 (� + ⇢1)
[G (�̂12)�G (�̂1)] a (35)

⌧2 = ⇢2
�

4 (� + ⇢2)
[1�G (�̂12)] a. (36)

A The Pricing Effect of Trading Fragmentation

Does venue competition affect asset prices in the long-run? The relationship between pcon

and pvw is not obvious because there are two opposite effects in force. On the one hand,
the monopoly restricts entry and induces a high marginal type �̂con, raising the LPD and
thereby increasing the equilibrium price. On the other hand, speed increases prices and
competition can increase the market average speed. The following result characterizes the
relationship.

Proposition 6. (Competition and Asset Prices)

SR. The limited participation distortion (LPD) is always higher in the consolidated market.
Thus, for any given market speed, the consolidated price is higher than the VWAP in the
short-run.

LR. In the long-run, the VWAP can be higher or lower than the consolidated price. Provided
that market contact frictions are moderate, the consolidated price is higher. Under A.1
(Eq. 15), the illiquidity discount (ILD) of the fast market price is always lower than in the
consolidated market.

If both the monopolist venue and the fast market have access to the same speed in the short-
run, according to Equations 21, 30, and 31, price differences between pcon and pvw will be
due to the LPD only. Since the monopolist venue restricts participation to a greater extent,
the price in the consolidated market will be higher, regardless of the volume distribution
across venues 1 and 2. Figure 7 illustrates this fact by comparing the marginal investor �̂con
and a volume-weighted marginal type �̂vw. In the long-run, markets can invest in speed
technologies and the sign of pcon � pvw thus depends on the relative strengths of the effects
on the LPD and ILD. We have seen in Proposition 2 that the LPD remains unchanged in a
consolidated market but the ILD decreases. The LPD in fragmented markets will increase in
the long-run because of speed differentiation allowing markets to relax fee competition, but
it remains lower than in the consolidated market. The extent of frictions in the fragmented
market relative to the consolidated case is likely to decrease and thus reduce the ILD. In
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particular, under A.1, we have sseg2 > scon in the long-run and therefore the ILD is lower in
the fast market.31 Consequently, the sign of the total effect of competition on asset prices
depends on parameter values. However, when market contact frictions are small (e.g., stocks,
exchange-traded derivatives), the LPD effect dominates, implying pcon > pvw.

B The Pricing Effect of Price Protection

Consider an economy where asset markets are fragmented but unregulated. How would
adoption of a trade-through-like rule affect prices? A related question is what would the
effect on prices be like when the transition is from a consolidated to a regulated fragmented
market? Section IV shows that the protected price is higher than the unregulated price
in the slow market. We now want to compare the protected market with the consolidated
market and VWAP prices. The following result characterizes these relations.

Proposition 7. (Investor Protection and Asset Prices)

The consolidated market price is always higher than the national best price. Under A.1 (Eq.
15), the protected price pnb lies between the prices of the segmented venues, and is lower
than the VWAP, provided the speed cost parameters c and s are sufficiently low.

A single venue will distort participation to a greater extent than in a duopoly, increasing
the LPD with respect to the protected market regardless of the time period. This fact is
illustrated by the left-pointing arrows in Figure 7: The value of the marginal investor in the
consolidated market lies to right of the ones in fragmented markets. Moreover, the speed
investments in the long-run will reduce the amount of illiquidity in the consolidated market,
increasing pcon relative to pnb. Speed investments indirectly affect pnb in the long-run, by
increasing the value of the marginal investors as the venues differentiate themselves from
each other and relax fee competition. Note that the marginal investor in the duopolistic
economy resides in the slow market and thus its valuation of the asset depends on the default
technology. Consequently, there is no direct effect of investments on the ILD in the protected
market, and thus the ILD is lower in the consolidated market, regardless of the time period.

Whether the VWAP is higher than the protected price depends on the relative strength of
two effects. On the one hand, we know from Proposition 5 that price protection introduces
a positive distortion in the asset price of market 1, implying pseg1 < pnb. On the other hand,
both the LPD and the level of asset liquidity are higher in the fast market than in the
protected market, implying pseg2 > pnb. The volume distribution then becomes important

31It is easy to show that �̂
con

> �̂seg

2 does not depend on A.1.
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Figure 7: Distortions in Marginal Investor Types
This figure shows the location of marginal investor types in the different cases of the analysis. The parameter
values correspond to the baseline calibration (Table II). From left to right, the marginal types correspond to a
frictionless market (�̂

W

), a slow segmented market (�̂seg

1 ), a slow protected market (�̂prot

1 ), a fast segmented
market (�̂seg

2 ), and a consolidated market (�̂
con

). The type �̂seg

vw

represents the volume-weighted average of
the marginal investor types in each of the freely segmented markets.

in comparing pnb and pvw. When the ability of the fast market to differentiate its liquidity
service is substantial, this market can attract greater trading flows and thus pvw > pnb. This
occurs, for example, when technology costs and the default speed level are relatively low.
Figure 7 shows that this is the case in our baseline calibration.

C Calibration and Analysis of Price Distortions

In this section we consider a calibration of our model to illustrate the impact of long-
run investments and market organization on prices. Assuming A.1–A.2 (Equations 15 and
20), our model involves the nine exogenous parameters listed in Table II. Some of these
parameters, we argue, can be calibrated using secondary markets data. In cases where
parameters are more difficult to calibrate, we explain our choices and their impact on the
calibration results.

The illiquid asset in the model can represent one of the several asset classes that trade in
exchanges, such as stocks, futures, or equity options. In order to be specific, and motivated
by the empirical observations in Section I, we concentrate on U.S. equity markets during
2001-2007. This is an important time interval since it corresponds to the period in between
the SEC’s decimalization mandate and the final implementation of Reg NMS. Further, 2007
is the last year for which accurate data from the SEC Rule 605 is available, since in later
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years speeds are rounded down to zero. Stock prices obviously reflect market risk exposure,
which is not the focus of this paper. Hence, when interpreting the results it is important
to take into account that our main goal is instead quantifying the relative contribution of
each of the frictions we identify to distortions to the Walrasian price. For simplicity, we
also calibrate our parameters taking the NYSE as being the single trading venue. Although
other markets, chiefly the NASDAQ, may have competed with the NYSE during the period,
this approach allows us to calibrate parameters applying the simple formulas of Section III
to market data without much loss of generality.32

The asset characteristics are as follows. The interest rate is set equal to 2.5% annually, just
below the one-month T-bill rate average value for the period 2001–2007. The annual holding
cash flow µ is set to 2.4 units of the consumption good, which implies a dividend yield close
to that of S&P500 stocks for this period (relative to the baseline Walrasian price). The
asset supply a is normalized to 0.47 so that supply is short. This is almost without loss of
generality since the market price does not depend on a when this parameter is sufficiently
close to one half.33

To calibrate the speed contact parameters, we consider SEC Rule 605 data for the NYSE
for the years 2001 and 2007. We interpret the 2001 value as corresponding to our “slow”
(default) speed ⇢, which is relatively intensive in human trading, and the 2007 value as our
“fast” (long-run) speed. The default speed then corresponds to a daily Poisson rate of 1, 170,
which translates to an average execution speed of approximately 20 seconds. To match an
average execution speed of one second in 2007 for the NYSE, we consider a daily contact
rate equal to 23,400, the number of seconds in a trading day. In order to annualize these
values, as shown in Table II, we multiply daily rates by 252 trading days.

To calibrate the preference switching rate � we proceed as follows. We normalize the steady
state fraction of agents with misallocated assets, equal to 1

4
�

�+⇢ as given in Proposition 1, to
be 5%. Using the value of ⇢, we compute the implicit value for �, which yields a daily rate
equal to 292.5. We interpret this value as representing the trading needs of a given broker,
as opposed to a single individual investor, that represents a large number of customers with
the same �-type value. Such a broker, depending on its customers order flow, may find it
optimal to switch holdings between 0 and 1 positions multiple times during a trading day.34

32According to the Securities and Exchange Commission (2010), the NYSE executed as much as four-fifths
of the volume of NYSE-listed stocks in 2005.

33From Section II we know that the price is insensitive to asset supply when the marginal investor type
in market i, �̂

i

, is higher than G�1 (1� 2a).
34To illustrate this interpretation, consider a discretization of the steady-state trade volume formula 35:

⌧ = 1
4

�

�+⇢

⇥ ⇢⇥Number of brokers. According to data available at www.nyse.nyx.com, the average number
of daily trades for all 3,025 NYSE-listed stocks in 2001 was approximately equal to 452. Taking ⌧ = 452,
and considering our calibrated parameters, this formula implies that there were, on average, 8 active trading
brokers for the average NYSE-listed stock on any given day.
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Since we assume an exponential distribution of investor permanent types (assumption A.1),
we only need to calibrate the value of the average investor type ⌫. This parameter, however,
is not easy to compute based on market data. Since our calibration results are sensitive to
the choice of ⌫, we consider a range of different values and analyze the corresponding pricing
responses. In particular we take ⌫ to lie in the set

�
1
4 ,

1
2 ,

3
4 , 1
 
, and consider ⌫ = 1

2 as the
baseline value. To illustrate the economic interpretation of these values, consider the median
investor type, m (�), when ⌫ = 1

4 . The annual holding flow utility under a temporary shock
✏ (see equation 1) is um(�),✏(1) = 2.44+ ✏

4 ln(2). Consequently, the private component of the
annual utility flow for this investor is approximately 17.5 bps (relative to pW ). This implies
that, when facing a negative or positive temporary shock, the annual flow utility equals 2.27
and 2.61 units of consumption, respectively. Similarly, for the baseline value v = 1

2 , the
annual utility flow lies in {2.14; 2.78}. Given the lack of direct evidence on the cumulative
distribution function G it is difficult to ascertain whether ⌫ = 1

2 is the most plausible value,
so the success of our calibration analysis should be qualified.

The marginal cost of speed investment c is chosen so that in the long-run, and given the
other parameter values, the optimal single-market contact speed implies an average execution
speed of approximately one second.35 This value is close to the average trading speed for
the NYSE in 2007 according to the SEC Rule 605 data.

Table II: Parameter values in Calibration
Parameter Notation Baseline Value⇤

Interest rate r 2.5%

Holding cash flow µ 2.44

Default contact rate ⇢ 2.95⇥ 105

Short-run contact rate market 2 ⇢
2

1.18⇥ 106

Long-run contact rate consolidated market ⇢
con

5.90⇥ 106

Switching intensity temporary types � 73, 710

Marginal cost of speed investments c 7.6⇥ 10�9

Asset supply ā 0.47

Average investor type (baseline value) ⌫ 0.5

⇤The values of parameters {r, µ, ⇢, ⇢
2
, ⇢

con

, �} correspond to annual rates.

We start considering a short-run equilibrium where fees and market participation are en-
dogenously determined, but trading platforms’ speed are a given. To analyze the case of

35Inverting equation 47 in the Appendix, one finds that

c =
⌫ (r + �)

2er (r + � + ⇢
con

)2
.

The value of c is then recovered considering ⇢
con

= 23, 400⇥ 252.
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fragmented markets, we need to include in the parameter space a trading speed for the fast
market, denoted ⇢

2
. We consider an exchange that has an average execution speed of five

seconds, that is, ⇢
2
= 4⇢. This value is close to that reported by Angel, Harris, and Spatt

(2011) for the NASDAQ in late 2001, and can be seen as technologically feasible for other
markets during the early 2000s. It results, of course, in a slower average execution speed
than the one reported for the NYSE around 2007 (around one second).

Table III reports the model-implied value of the price decompositions derived in Sections III
and IV. A number of interesting observations are in order. First, we observe that consistent
with Propositions 6 and 7, for an asset class such as stocks where market contact frictions
are small, we have pcon > pvw and pvw > pnb. Note that in both inequalities, the LPD plays
a key role. In fact, without this quantity being endogenized, all the computed prices should
be below the frictionless Walrasian value (e.g., Duffie, Garleanu, and Pedersen (2005)),
while only p1 and pnb are below pW . For example, considering the baseline ⌫ = 0.5, the
absolute value of the ILD in the slow market (33 bps) is higher than the LPD (5 bps). It is
also interesting to note that an observer comparing the national best and Walrasian price
could conclude that the market is essentially frictionless, while in fact the small aggregate
distortion is due to the sum of the values of the three individual distortions we identified.
Although the absolute value of the PPD is fairly small in our parametrization, note that it
represents nearly half the size of the ILD, and about 42% of the LPD.

Let us now consider the long-run equilibrium of asset prices under the baseline parametriza-
tion, depicted in Table IV. Consistent with Proposition 2, the value of the LPD in a consol-
idated market (driven by the ex ante distribution of types G) is unchanged. However, the
ILD decreases significantly: It decreases to 25 bps from 4.05%. This change reflects the effect
of speed investments on allocative efficiency. In the case of fragmented trading, note that
the LPD increases in all cases, which reflects the enhanced ability of venues to increase their
access fees due to the relaxation of Bertrand competition through speed differentiation (the
average execution speed is now 20 times faster in the fast venue). This increase reflects the
interaction between the time-varying competitive environment due to technological progress
and trading regulations.

Finally, note that both in the short and long-run the LPD terms increase monotonically
in the value of the average investor type ⌫. While the effect is large for the consolidated
market, since the marginal investor type equals ⌫, in the other market structures analyzed
the effect of changes in ⌫ are quantitatively small.
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Table III: Short-Run Price Decomposition (Walrasian Price=100)
Limited

Participa-
tion

Distortion

Illiquidity
Discount

Price
Protection
Distortion

Price

⌫ = 0.25

Consolidated 9.55 -2.04 107.52
Slow Venue 0.19 -0.16 100.03
Fast Venue 0.90 -0.09 100.81
VWAP 0.66 -0.14 100.55
National Best 0.19 -0.16 0.08 100.11

⌫ = 0.5

Consolidated 18.98 -4.05 114.94
Slow Venue 0.38 -0.33 100.06
Fast Venue 1.78 -0.18 101.60
VWAP 1.32 -0.28 101.09
National Best 0.38 -0.33 0.16 100.21

⌫ = 0.75

Consolidated 28.30 -6.03 122.26
Slow Venue 0.57 -0.49 100.08
Fast Venue 2.66 -0.27 102.39
VWAP 1.96 -0.41 101.62
National Best 0.57 -0.49 0.24 100.32

⌫ = 1

Consolidated 37.50 -7.99 129.50
Slow Venue 0.76 -0.65 100.11
Fast Venue 3.52 -0.35 103.17
VWAP 2.60 -0.55 102.15
National Best 0.76 -0.65 0.31 100.42

This table presents the values of the price distortions and of the equilibrium asset price relative to the
frictionless Walrasian price, which is normalized to 100, in the short-run, for four values of the average
investor type ⌫. Parameter values (except ⌫) correspond to the baseline calibration (Table II). In the short-
run, investor participation is variable, but trading technologies are fixed. The Walrasian price is the price in
the absence of market contact and investor participation frictions. The VWAP corresponds to that between
the slow and fast venues. The national best price correspond to the unique price in fragmented markets
under price protection. The LPD and ILD are as in Definition 2.
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Table IV: Long Run Price Decomposition (Walrasian Price=100)
Limited

Participa-
tion

Distortion

Illiquidity
Discount

Price
Protection
Distortion

Price

⌫ = 0.25

Consolidated 9.55 -0.18 109.37
Slow Venue 0.39 -0.20 100.19
Fast Venue 1.28 -0.03 101.26
VWAP 0.99 -0.15 100.91
National Best 0.39 -0.20 0.10 100.28

⌫ = 0.5

Consolidated 18.98 -0.25 118.73
Slow Venue 0.82 -0.41 100.40
Fast Venue 2.62 -0.04 102.58
VWAP 2.04 -0.29 101.88
National Best 0.82 -0.41 0.19 100.60

⌫ = 0.75

Consolidated 28.30 -0.30 127.99
Slow Venue 1.24 -0.62 100.62
Fast Venue 3.96 -0.05 103.91
VWAP 3.08 -0.44 102.84
National Best 1.24 -0.62 0.29 100.91

⌫ = 1

Consolidated 37.50 -0.35 137.15
Slow Venue 1.66 -0.83 100.84
Fast Venue 5.28 -0.06 105.22
VWAP 4.11 -0.58 103.80
National Best 1.66 -0.83 0.39 101.22

This table presents the values of the price distortions and of the equilibrium asset price relative to the
frictionless Walrasian price, which is normalized to 100, in the long-run, for four values of the average
investor type ⌫. Parameter values (except ⌫) correspond to the baseline calibration (Table II). In the long-
run both investor participation and trading technologies are variable. The Walrasian price is the price in the
absence of market contact and investor participation frictions. The VWAP corresponds to that between the
slow and fast venues. The national best price correspond to the unique price in fragmented markets under
price protection. The limited LPD and hte ILD are as in Definition 2.
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D Comparative Statics of Asset Prices

Consolidated Market How is the equilibrium price in a consolidated market affected by
changes in the environment? Are the relations affected in the long-run? By differentiating
Equations 18 and 21, we can characterize the behavior of the market clearing asset price as
follows.

Proposition 8. In a consolidated market,

(i) The equilibrium asset price increases in the volatility of investors’ private utility process.
The effect is stronger in the long-run.

(ii) The equilibrium asset price decreases in the frequency of preference shocks. The effect
is weaker in the long-run, provided the cost of speed is not “too high.”

(iii) The equilibrium asset price decreases in the cost of speed.

Figure 8 graphically displays these relationships. An increase in the average investor type
(⌫) increases the value of the marginal investor type. Everything else being constant, this
increases the LPD in the short-run. In the long-run, an increase in ⌫ also makes speed
investments more profitable for the exchange, resulting in a lower-ILD equilibrium and
further raising the asset price.

In the short-run, the equilibrium asset price decreases with the frequency of the temporary
shocks �. This effect is intuitive: For a given installed speed capacity, an increase in �

increases the proportion of agents with misallocated assets at any given time, rendering
the asset less valuable. In the long-run, speed investments facilitate more efficient asset
re allocation and, as the ILD approaches zero, the price becomes relatively insensitive to
changes in �.

An increase in the cost of speed decreases the asset price since, all else being equal, the venue
invests less in speed rendering the asset more illiquid. Interestingly, pcon is not affected in
the long-run by the default speed level. This fact reflects the lack of competitive forces in a
single-venue economy, and contrasts with the results for fragmented markets in the following
section.

Fragmented Markets Figure 9 displays the effect of changes in parameter values on the
VWAP and the national best price. As in the consolidated case, an increase in the marginal
cost of speed decreases asset prices, both with and without price protection. We can observe
in Panel A that the VWAP is more sensitive to this change. This is due to the fact that an
increase in c changes the ILD in market 2 as well as the marginal investor types �̂1 and �̂2
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Figure 8: Comparative Statics of Prices in a Consolidated Market
This figure plots the effect of parameter changes on consolidated market price in the short-run (SR), long-run
(LR), and in the frictionless Walrasian case. The parameter changes are relative to the baseline calibration
(Table II). Panel A shows the marginal cost (c); Panel B shows the default speed (⇢); Panel C shows the
average investor type (⌫), and Panel D the preference switching frequency (�).
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due to easier speed differentiation. Only the latter effect impacts the equilibrium price in
the protected market.

Interestingly, an increase in the level of default speed ⇢ decreases the VWAP. This is due
to the fact that, as market 1 becomes faster, speed differentiation becomes less effective in
relaxing fee competition. Note that we interpret the default speed as a minimum level of
speed that is acceptable to investors. Naturally, this effect could be mitigated if the slow
market were able to successfully market a service with a speed below the default level. The
effect on the national best price, however, can be very different. This is due to the fact that
in the protected market, not only the marginal investor �̂prot

1 (and thus the LPD) but also
the ILD depends directly on the default speed level. An increase in ⇢ exerts opposite effects
on the asset price: It decreases the ILD, raising the asset price, but it may reduce the LPD,
by reducing the scope of differentiation among venues.

An increase in the average investor type increases the equilibrium price in all cases, by
raising the value of the marginal investor type, but the effect is strongest in the absence of
price protection. This is because an increase in ⌫ provides the fast market with stronger
incentives to invest in speed, reducing the ILD in market 2, with a direct impact on pvw,
but only affecting pnb indirectly by further raising the value of the marginal investor in
market 1. Finally, an increase in the preference switching rate � has a twofold effect on the
asset price. On the one hand, it increases the demand for trading and speed. On the other
hand, it negatively impacts the market allocative efficiency and investors’ value functions.
The negative effect is relatively stronger in market 1, where speed remains fixed. Thus, the
national best price increases at a slower rate than the VWAP following an increase in this
rate.

E Trading Volume

Table V presents model-implied trading volumes relative to a Walrasian market. The effect
of changes in the average investor type ⌫ are moderate and thus, for brevity, we report values
for the baseline calibration only. Our measure of volume is given by the steady state value of
transaction rates per unit of time, as in Equations 35 and 36. We can observe that the lack
of competition between venues has a first order negative effect on volume: The total volume
in a consolidated market is nearly half that in the fragmented market cases in both the
short and long-run. However, note that the ability of the single venue to invest in trading
technologies has a large impact on traded values. Everything else being constant, when the
average execution speed decreases from 20 seconds to 1 second, the relative transaction rate
increases from 31.31 to 38.65.
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Figure 9: Comparative Statics of Prices in Fragmented Markets
This figure plots the effect of parameter changes on the VWAP in segmented markets, the single national
best price with price protection, and the frictionless Walrasian price. The parameter changes are relative to
the baseline calibration (Table II). Panel A shows the marginal cost (c); Panel B shows the default speed
(⇢); Panel C shows the average investor type (⌫), and Panel D the preference switching frequency (�).

Table V: Trading Volume (Volume in Walrasian market=100)

Short Run
Short Run
(Protected)

Long Run
Long Run
(Protected)

Consolidated 31.31 38.65
Slow Venue 29.01 28.66 28.64 28.37
Fast Venue 58.23 57.74 59.61 58.82
Slow + Fast 87.23 86.40 88.26 87.19

This table presents the trading volumes in the steady-state equilibrium relative to the frictionless Walrasian
case, which is normalized to 100. The parameter values correspond to the baseline calibration (Table II).
In the short-run investor participation is variable, but trading technologies are fixed. The Walrasian case
correspond to a market without contact or investor participation frictions. The volume is given by the
instantaneous expected transaction rate as in Equations 35 and 36.
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In fragmented markets, the fast venue displays significantly higher volume than the slow
venue. This volume difference increases in the long-run as the degree of speed differentia-
tion increases. Furthermore, consistent with our results in Proposition 5, price protection
decreases total investor participation in fragmented markets, generating a fall in traded
volumes of approximately 1% of the Walrasian values in both the short and long-run.

F Trading Fragmentation

How do parameter changes affect the volume distribution across trading venues in frag-
mented markets? To answer this question we need a formal notion of trading fragmentation.
A simple metric is given by 1 � HHI, where HHI is the standard Herfindahl–Hirschman
Index. Using the stationary equilibrium of the model, we can compute the HHI simply
as the sum of the squared terms ( ⌧

i

⌧
i

+⌧
j

)2, where the trading rates ⌧1 and ⌧2 are given by
Equations 35 and 36, respectively.

Figure 10 displays how fragmentation is affected by the trading environment in both seg-
mented and protected markets. Note that a general pattern arises across panels: Everything
else being equal, the level of fragmentation is higher under price protection. This makes
sense in light of our discussion in Section IV. Price protection increases the demand for the
slow market, reducing the amount of ex post competition between venues.

Lets analyze the effect of the cost parameters. We observe in Panels A and B of Figure 10
that, regardless of the trading regime, both an increase in the marginal speed cost and an
increase in the default speed level induce higher trading fragmentation. The intuition behind
this effect is that these cost parameter changes reduce markets’ ability to differentiate, and
thus venues are forced to compete more intensely in fees. As trading fees decrease, the
relative volume of the fast market increases, reducing fragmentation.

Panels C and D show that an increase in preference parameters ⌫ and � induce the opposite
effect on trading fragmentation. Everything else equal, an increase in the investor average
type results in more speed-sensitive investors, which helps the fast venue attract a higher
mass of the population and raises equilibrium trading volumes. Similarly, an increase in the
frequency of preference shocks increases the relative demand of the fast market, which is
able to realize a greater fraction of the total gains from trade.

VI Discussion

Liquidity and Participation Frictions. The quantitative analysis suggests that distor-
tions in participation incentives are important to understand the effects of market structures
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Figure 10: Comparative Statics of Trading Fragmentation
This figure plots the effect of parameter changes on fragmentation levels in the segmented and protected
markets. Trading fragmentation is measured as 1-HHI. The parameter changes are relative to the baseline
calibration (Table II). Panel A shows the marginal cost (c); Panel B shows the default speed (⇢); Panel C
shows the average investor type (⌫), and Panel D the preference switching frequency (�).

on liquidity and asset prices. Our analytical and quantitative analysis of participation dis-
tortions complements the work of Huang and Wang (2009). Note, however, an important
difference: While participation costs that lead to lower market liquidity always decrease
prices in their framework, they can increase prices in ours by changing both the mass and
composition of investors.

Although speed plays a key role as a differentiating factor for venues, the frequency of
market contact per se has a smaller effect on prices vis-a-vis participation distortions. For
our baseline calibration, the long-run value of the LPD is two times larger than the ILD in
the protected market, and seven times larger in the segmented market. The relatively small
value of the ILD is natural here given that our calibration is based on public equity data.
It is also consistent with the calibration results of Gârleanu (2009). In contrast, Longstaff
(2009) finds large pricing effects of illiquidity by calibrating an asset pricing model using
U.S. private equity data.

Does the Empirical Evidence Support the Model’s Results? The fact that fast
trading enhances liquidity is documented by Hendershott, Jones, and Menkveld (2011) and
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Hasbrouck and Saar (2010), among others. Boehmer (2005) documents the trade-off between
execution speed and costs in U.S. markets and finds that, analogously to market 2 in our
model, the NASDAQ is more expensive than the NYSE, but also faster.

Recent studies by O’Hara and Ye (2011) on U.S. markets and by Foucault and Menkveld
(2008) and Degryse, Jong, and Kervel (2011) on European markets support the model’s
prediction that liquidity increases with venue competition. Importantly, our results on
overall asset price levels suggest caution in interpreting such findings as definitive proof of
the “benign” effects of fragmentation on market quality.

To the best of our knowledge, Amihud, Lauterbach, and Mendelson (2003) provide the only
direct evidence of the effect of trading consolidation on asset prices. The authors study
consolidation of two almost identical equity claims: A stock and a warrant on the stock that
is deep in the money at expiration. They find that stock prices appreciate 1.27%, on average,
on the warrant expiration. This empirical finding is consistent with Proposition 6. Arguably,
their empirical analysis does not provide a direct test of our model’s prediction, which is
based on venue competition. However, since the Tel Aviv Stock Exchange market power
is not altered in their study, one could interpret such price appreciation as representing a
reduction of the ILD, with the LPD part of the price remaining constant.

An International Asset Pricing Perspective. In Section V we compare the pric-
ing outcomes of three stylized economies: (1) a consolidated market, (2) an unregulated
fragmented market, and (3) a price-protected fragmented market. We argue that when
market contact frictions are small (e.g., for stocks), the model offers a pricing ordering
pcon � pvw � pnb. In our long-run calibration, these prices are equal to 118.73, 101.88, and
100.6, relative to the Walrasian price. How could an econometrician test this hypothesis?
The first step would consist in identifying economic areas with market organizations that
can be represented by our stylized cases. Incumbent exchanges in Hong Kong, China, Brazil
and Spain, for example, experience little or no competition, and can thus be represented by
(1) (see Figure 2). The U.S. and Canada are chief examples of financial markets with trade-
through rules. Most of continental Europe and the U.K. can be seen as having unprotected
fragmented markets (see Appendix A) and thus are closest to (2). The second step would be
to match assets across such areas with almost identical fundamentals (e.g., loadings on risk
factors). An econometrician could then test whether within-groups prices are, say, highest
in Hong Kong, intermediate in Europe, and lowest in the U.S.

American Depositary Receipts (ADRs)

ADRs make trading a foreign stock easier for U.S. investors.
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Foerster and Karolyi (1999) provide evidence that the price of foreign stocks increase locally
in the year leading to the ADR issuance.

If ADRs provide competition for the incumbent market, then the price may decrease due
to lower LPD. However, in this case it is important to recognize that the distribution of
investors may be different. Let A be the listing country and B the U.S. Depending on
GA and GB, the price response maybe different. This would change the investor base and
postentially affect the price, but different from the “recognition effect” of Merton (1987)

One may expect that, due to the characteristics of U.S. markets, avergae leverage is larger
than, say, in Brazil. Then ⌫B > ⌫A. Opening an ADR market may threaten the incumbent,
reducing fees, but at the same time increase the price due to the stock exposure to higher �
investors.

China A and B Markets

Perhaps a unique case of total segmentation is that of China’s stock market with A-share
market (for domestic investors) and the B-share market (for foreign investors). These mar-
kets were completely segmented before Feb 19, 2001.

ETF-Mutual Funds

Financial Transaction Tax (FTT)

Is Price Protection Important? Segmented equity markets are obviously an analytical
abstraction here.36 In real markets arbitrageurs and smart routing technologies work to
(at least partially) undo price differentials between markets. Does this fact make a trade-
through rule redundant? Interestingly, empirical evidence by Foucault and Menkveld (2008)
suggest that the answer is no. These authors study the competition between a London
Stock Exchange order book (EuroSETS) and Euronext Amsterdam for Dutch firms and
find that, even when there is formal entry barrier to arbitrageurs, the trade-through rate in
their sample equals 73%.

Our calibration results suggest that price protection distorts the asset price in the slow venue
by approximately 20 bps in the baseline calibration. Although this value may seem low, note
that we define the PPD conceptually as pnb � pseg1 . This difference may not represent the
full effect of the introduction of such regulation. If a given market, say, the U.K., adopts a
trade-through rule, the total pricing effect would instead be given by pnb�pvw, which equals
128 bps in our calibration. As mentioned, our VWAP may not accurately represent prices

36If one reinterprets the model market choice from an international perspective, say, a choice between
two European countries, stock market segmentation is far from negligible (Bekaert, Harvey, Lundblad, and
Siegel (2011)).
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in partially integrated markets, but as an approximation it suggests that the total effect of
regulation may in fact be larger than our PPD. Further research on this topic is needed to
assess this issue quantitatively.

Beyond its effect on asset prices, price protection affects the nature of competition between
venues in our model. This is consistent with an earlier discussion by Stoll (2006), who argues
the following:

“The casual observer of the heated debate that has surrounded the order pro-
tection rule may well wonder what the fuss is all about. After all, we are just
talking about pennies. But for the exchanges, it may be a matter of business
survival. Pennies matter, but more important, the rule requires the linkage of
markets, which threatens established markets and benefits new markets. The
battle appears to be over pennies, but in fact, it is over the ability of markets to
separate themselves from the pack.”

Furthermore, by endogenizing the entry decisions of venues, Pagnotta and Philippon (2012)
show that price protection can expand the ex ante number of trading venues.

Fast and Slow Traders. The result that equilibrium prices can increase in the asset
supply through investors’ speed investments is, to the best of our knowledge, new to the
literature. Our result suggests that traders that invest heavily in speed concentrate on big
cap assets, such as large S&P500 stocks or the E-mini futures. Industry reports and the
evidence of Brogaard (2011) and Kirilenko, Kyle, Mehrmad, and Tuzun (2010) for high-
frequency traders support this intuition.

VII Concluding Remarks

We study a tractable model that links the organization of financial markets with asset
liquidity and prices. The model highlights the importance of competition between venues,
their incentives to innovate to differentiate their services, and the linkages with investors’
choices. We show that trading fragmentation can improve market quality, as measured by
traditional measures of liquidity, while having negative effects on asset prices in the long-run.
The model also provides, to the best of our knowledge, the first analysis of the impact of
order protection regulations on asset prices.

Our model suffers from several limitations and suggests interesting avenues for further re-
search. First, it would be natural to introduce heterogeneity in investors’ information on the
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asset common value component. This would provide additional incentives for investors to de-
mand speed. Promisingly, recent theory developments (e.g., Guerrieri, Shimer, and Wright
(2010)) have made progress integrating search-like frictions and asymmetric information.
Another interesting extension is to consider more sophisticated execution mechanisms. For
example, one could exploit the modeling technology of Biais, Hombert, and Weill (2012) to
include limit orders.

Empirically, it would be interesting to test the effects of fragmentation on prices more
directly. In this regard, recent national regulation reforms that allow the introduction of new
trading venues (e.g., South Korea, Australia, Brazil) can provide useful natural experiments
for event studies. Such empirical work is important to guide policymakers and to further our
understanding of the connections between secondary and primary markets and their effects
on the cost of capital and other important variables for corporations.

The economics of the model are also relevant for large classes of derivatives that will start
trading in exchanges in the near future. These market will see a growth in the number of
electronic platforms and liquidity will spread between Operating Trading Facilities, Swap
Execution Facilities, and other institutions as mandated by regulations such as Dodd-Frank
and EMIR. As derivatives and equity market structures continue to converge, understanding
liquidity and pricing in multiple derivative markets will require some of the same techniques
developed here.
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Appendices

A Regulatory Frameworks

In this section we briefly discuss some regulations that are closely related to the model in
the main body of the paper.

Entry of New Exchanges. The SEC introduced the Regulation of Exchanges and Al-
ternative Trading Systems (Reg ATS) in 1998. It was designed with the aim of protecting
investors and resolving concerns arising from alternative trading systems. A second objec-
tive of this regulation was to foster innovation in the space of trading systems and matching
technologies by facilitating the entry of new participants. This intention is reflected in the
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“lax” control of trading venues that represent less than 5% of the trading volume for any
given security.

In Europe, the Markets in Financial Instruments Directive (MiFID) implemented during the
last half of the 2000s played a similar role in fostering competition between trading venues.

Investor Protection. There are essentially two approaches to investor protection: the
trade-through model and the principles-based model.

Trade-Through Model. Under this approach price is the primary criterion for best execution.
Market centers must be connected to one another and prevent trading through better prices
available elsewhere, which requires complex connections as well as strong monitoring activity
by regulators. In the U.S. the modern form of investor protection was introduced by Reg
NMS. In particular, Rule 611 (trade-through) states that prices are quoted gross of trading
fees (the SEC places a cap on fees) and only the top of the book is protected: When a big
trading order arrives in a given marketplace, only the amount of shares represented by the
depth of the book at the national best bid and offer is protected. As an example, suppose
that NASDAQ and NYSE are the only market centers and that an investor submits a market
order to buy 100,000 shares of a given stock to NASDAQ. Currently the ask price at the
NASDAQ is higher than the ask price at the NYSE (where the ask depth is 10,000 shares).
Then NASDAQ can either match the price at the NYSE or the first execution occurs at the
NYSE for 10,000 shares. The remaining 90,000 shares “walk up” the book at the NASDAQ.

In Canada, the Order Protection Rule (OPR) implemented by the Investment Industry Reg-
ulatory Organization of Canada shares the same spirit, but aims to protect orders throughout
the entire order book (as opposed to just the top level).

Principles-Based Model. Criteria other than price, such as the type of investor behind the
trade, are included in the best execution policy here. Thus, this approach allows for more
discretion and less transparency in the assessment of execution results. This approach best
represents the spirit of Europe’s MiFID and Japan’s Financial Instruments and Exchange
Act. For example, Article 40-2(1) of the Financial Instruments and Exchange Act defines
best execution policy as a “method for executing orders from customers ... under the best
terms and conditions.” Some of the criteria to be considered are the listing trading venue,
price, liquidity, execution probability, and execution speed. In Japan this system does not
apply to professional investors. In both Europe and Japan, sell-side best execution policies
are not obliged to consider every venue. The monitoring of execution quality is generally left
to clients, which can be a problem in countries where investors have inadequate knowledge
of financial markets. The claimed advantages of the principles-based approach lie in a much
simpler set of linkages between markets and promoting innovation by not forcing uniformity.
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2005 2007 2011

Reg NMS* (USA)
MiFID (Europe)
FIEA (Japan)

OPR* (Canada)
FSCMA (S. Korea)
MIR (Australia)

Figure 11: Timeline of the Introduction of Current Market Regulations
This timeline shows the year of introduction of several regulations related to competition between
trading venues. Regulations marked by an asterisk (*) contain a trade-through provision. In the
U.S. Reg NMS was not fully implemented until 2007. Source: www.fidessa.com

B Generalized Asset Holdings

In this section we generalize investors’ asset demand holdings allowing for asymmetric shock
frequency and general asset holdings a � 0.

Let the preference shocks be represented by ✏i 2 {✏l, ✏h} and let � be the probability of the
high shock. An investor of type � under state ✏i and with asset holdings a � 0 enjoys a
utility flow

ui� (a) = ✓i�u(a)

where ✓i� = µ+ ✏i�. The adjusted utility in Equation 39 becomes

ui� (a) =
(r + ⇢)ui� (a) + �Ei [ui0� (a)]

r + � + ⇢

=

✓
µ+

(r + ⇢) ✏i� + � (2�� 1)�

r + � + ⇢

◆

| {z }
⌘✓

i�

u (a)

Optimal portfolio holdings in an interior solution satisfy ✓i�u
0 (a) = rp. Thus, whenever u

is invertible we have
a⇤i� =

�
u0
��1

✓
rp

✓i�

◆
.

The market clearing condition is
ˆ
�

X

i

�ia
⇤
i� (p) dG (�) = a.

Consequently, the equilibrium price p solves
ˆ
�

X

i

�i

�
u0
��1

✓
rp (r + � + ⇢)

(r + � + ⇢)µ+ (r + ⇢) ✏i� + � (2�� 1)�

◆
dG (�) = a.
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Example: CRRA utility Let u (a) be given by a1�⇠

1�⇠ . The asset demand function then
satisfies ✓i�a

�⇠ = rp, and thus

a⇤i�(p) = (rp)
� 1

⇠

�
✓i�
� 1

⇠ .

The market clearing condition is
ˆ
�

⇢
� (rp)

� 1
⇠

�
✓h�
� 1

⇠ + (1� �) (rp)
� 1

⇠

�
✓l�
� 1

⇠

�
dG (�) = a

)
ˆ
�

⇢
�
�
✓h�
� 1

⇠ + (1� �)
�
✓l�
� 1

⇠

�
dG (�) = a (rp)

1
⇠

To simplify things further, consider the normalization µ = 0, � = 1/2, and assume A.1.
Then, the market clearing condition becomes

1

2

✓
r + ⇢

r + � + ⇢

◆ 1
⇠

✓
✏
1
⇠

l + ✏
1
⇠

h

◆ˆ
�
�

1
⇠

e�
�

⌫

⌫
d� = a (rp)

1
⇠ .

Thus, the equilibrium price is given by

p =
⌫

r


1

2a

✓
r + ⇢

r + � + ⇢

◆✓
✏
1
⇠

l + ✏
1
⇠

h

◆
�

✓
1 +

1

⇠

◆�⇠
, (37)

where � denotes the Gamma function.

Note the following properties of equilibrium price 37. First, differently from the consolidated
price in Section III, it decreases smoothly in the asset supply a. Second, whether higher
market speed raises the asset price depends on the elasticity of asset demand, driven by
parameter ⇠. Consistent with Proposition 5 in Lagos and Rocheteau (2009), ⇠ 2 (0, 1) is a
sufficient condition for @p

@⇢ > 0.
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This Appendix comprises proofs of propositions and lemmas in the main paper.

Proof of Lemma 1

We follow Lagos and Rocheteau (2009) in expressing the optimal holdings problem
recursively as follows37

a⇤ (p; �, ✏) = arg max

a2{0,1}
{ū (a; �, ✏)� rpa} (38)

where u, the adjusted holding utility, is given by

ū (a; �, ✏) ⌘ (r + ⇢) u�,✏ (a) + �E [u�,✏0 (a) | ✏]
r + ⇢+ �

. (39)

The RHS of Equation 39, denoted as the adjusted holding utility, represents the
expected average utility when holding the asset, for a given ✏. Note that since ✏ is
i.i.d. with mean zero, we have E [u�,✏0 (a) | ✏] = µa for any a and any ✏. This expected
utility over ✏0 does not depend on � or ✏. This implies that

ū (a; �, ✏) =

✓
µ+ �✏

r + ⇢

r + ⇢+ �

◆
a. (40)

From Equation 38 it is clear that �̂ satisfies

ū (a; �̂, 1) = rpa. (41)
37See Lemma 1 there. The Lemma only needs to be adapted to take into account heterogeneity in �.
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Combining Equations 40 and 41 when a = 1, yields Equation 4. Thus, the displayed
demand functions represent optimal holdings.

Proof of Proposition 1

Case a < 1/2. Combining Equations 4 and 5 yields �̂ = G�1
(1� 2a). Replacing this

value back in Equation 4, and re arranging, delivers the equilibrium price in Equation
6. Also note that

lim

⇢!1
p = pW =

1

r

⇥
µ+G�1

(1� 2a)
⇤
.

We analyze next equilibrium allocations. Consider first a type (✏ = +1, a = 1). This
type is satisfied with its current holding and does not trade even if it contacts the
market. Outflows result only from changes of ✏ from +1 to -1, which happens with
intensity �/2. There are two sources of inflow: types (✏ = �1, a = 1) that switch to
✏ = 1 and types (✏ = +1, a = 0) that purchase one unit when they contact the market.
In steady state, outflows must equal inflows:

�

2

↵�,+ (1) =

�

2

↵�,� (1) + ⇢↵�,+ (0) . (42)

Dynamics for types (✏ = �1, a = 0) are similar:

�

2

↵�,� (0) = ⇢↵�,� (1) +

�

2

↵�,+ (0) . (43)

For types (✏ = +1, a = 0) and (✏ = �1, a = 1) trade creates outflows so we have
⇣�
2

+ ⇢
⌘
↵�,+ (0) =

�

2

↵�,� (0) (44)
⇣�
2

+ ⇢
⌘
↵�,� (1) =

�

2

↵�,+ (1) (45)

Finally, the shares must add up to one, therefore
X

✏=±,a=0,1

↵�,✏ (a) = 1 (46)

To see the steady state allocations, add (42) and (45) to get ↵�,� (1) = ↵�,+ (0).
This immediately implies ↵�,� (0) = ↵�,+ (1). Using (42), we obtain ↵�,+ (1) =⇣
1 + 2

⇢
�

⌘
↵�,� (1). We can then solve for the shares of each type ↵�,+ (1) =

1
4
�+2⇢
�+⇢

and
↵�,+ (0) =

1
4

�
�+⇢

. Notice also that the market clearing condition among high types is
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simply ↵�,+ (1) + ↵�,� (1) = 1/2. It is immediate that when ⇢ ! 1, the Walrasian
limits of these allocations satisfy ↵�,� (1) = ↵�,+ (0) = 0.

Case a � 1/2. When a > 1/2, sellers become the short side of the market and the
equilibrium price equals p =

µ
r
� �̂

r

⇣
r+⇢

r+�+⇢

⌘
. In the knife-edge case a = 1/2, the

equilibrium price belongs to the interval

µ

r
� �̂

r

✓
r + ⇢

r + � + ⇢

◆
,
µ

r
+

�̂

r

✓
r + ⇢

r + � + ⇢

◆�
.

Proof of Lemma 2

This lemma is a particular case of Proposition 1 in Pagnotta and Philippon (2012),
which applies to the costless participation environment here. We include the deriva-
tion of the function W for completeness. Define I�,✏ ⌘ V�,✏ (1)� V�,✏ (0) as the value
of owning the asset for type (�, ✏). Then, taking differences of Equations 7-10 we get

rI�,� = µ� � +

�

2

(I�,+ � I�,�) + ⇢ (p� I�,�)

rI�,+ = µ+ � � �

2

(I�,+ � I�,�)� ⇢ (I�,+ � p)

We can then solve r (I�,+ � I�,�) = 2��(� + ⇢) (I�,+ � I�,�) and obtain the gains from
trade for type � in market ⇢: I�,+ � I�,� =

2�
r+�+⇢

. We then have I�,✏ =
µ+⇢p
r+⇢

+ ✏ �
r+�+⇢

and the average values

V̄
�

(0) =
⇢

2r
(I

�,+ � p)

V̄
�

(1) =
µ

r
+

⇢

2r
(p� I

�,�)

where V̄
�

(0) ⌘ V

�,+(0)+V

�,�(0)
2 and V̄

�

(1) ⌘ V

�,+(1)+V

�,�(1)
2 .

Let us now compute the ex ante value functions. Let us first consider types � < �̂. They join the
market to sell at price p, and then do not trade again. Averaging over types ✏ = ±1, we get the ex
ante value function Ŵ that solves the Bellman equation

rŴ = µā+ ⇢
⇣
pā� Ŵ

⌘
=) Ŵ =

µ+ ⇢p

r + ⇢
ā

Since µ+ ⇢p = µ

r

(r + ⇢) + ⇢
�
p� µ

r

�
we can rewrite

Ŵ =
µā

r
+

⇢

r + ⇢
(rp� µ)

ā

r
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From the definition of �̂ in Equation 4 and s (⇢) ⌘ ⇢

r+�+⇢

we then have Ŵ = µā

r

+ s ā

r

�̂. Note that
Ŵ does not depend on the type �, but only on the price and speed of the market. Of course we also
have Ŵ = āV̄

�̂

(1).

Let us now consider the steady state types, � > �̂. Since the probability of owning one unit of the
asset is ā, we have

W (�) = āV̄
�

(1) + (1� ā) V̄
�

(0) .

Using the expression above, we get

W
�

= āµ+ ā
⇢

2r
(p� I

�,�) + (1� ā)
⇢

2r
(I

�,+ � p)

=
µā

r
+ ā

⇢

r

rp� µ

r + ⇢
+

1

2r

✓
⇢

r + ⇢
(µ� rp) +

⇢

r + � + ⇢
�

◆

=
µā

r
+

ā

r
s (⇢) �̂ +

1

2r
s (⇢) (� � �̂)

Therefore, we have, when � > �̂, we have

W (�, ⇢) = Ŵ +
1

2
s
� � �̂

r

Proof of Proposition 2

We proceed in two steps, first analyzing the FOC of Equation 19 with respect to q

and s, and then studying the price decomposition in Equation 21.

Step 1. Note that the FOC with respect to q is the same in the short and in the
long-run equilibrium, as given by Equation 17. Under A.1, �̂L

con = �̂S
con = ⌫ and thus

qcon =

as
r
⌫. We can then write the single venue program as

max

1�s�0

s

2r

⌫

e
� C (s) .

The interior solution FOC with respect to s is (1� s)2 =
�
e
⌫

�
2rc (� + r). The optimal

effective speed is then

scon = 1� (2rce (� + r))
1/2 ⌫

�1/2. (47)
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Step 2. Using Equation 16, and � ⌘ r+�s
r+�

we have

pLcon =

µ

r
+

�̂con

r
�con (48)

Adding and subtracting 1
r
G�1

(1� 2a) and �̂
con

r
to the RHS of Equation 48, and re

arranging, we have

pLcon =

1

r

⇥
µ+G�1

(1� 2a)
⇤
+

1

r

⇥
�̂con �G�1

(1� 2a)
⇤
� �̂con

r
(1� �con) (49)

Note that the first term of the RHS of 49 corresponds to the expression for pW in
Proposition 1. Further, note from Equation 47 that limc!0 scon = 1, which implies
limc!0 �con = 1. Using this fact and Definition 2, we have that the limited participa-
tion distortion equals

lim

c!0
[p� pW ] =

1

r

⇥
�̂con �G�1

(1� 2a)
⇤

=

⌫

r
[1 + ln (2a)] ,

where the second equality uses A.1. Finally, the illiquidity discount is given by

�̂con

r
(1� �con) =

⌫

r

✓
�

r
2rc

r + �

e

⌫

◆
.

where the second equality uses A.1 and Equation 47.

Proof of Proposition 3

The decomposition of the equilibrium price is an in Proposition 2. To derive the
components of the equilibrium price, we proceed in two steps. First, we derive the
first order condition of the investor speed choice problem, which yields � 7! ✓ (�);
and we compute the marginal type �̂ for a given participation fee q. Second, we solve
the venue optimization program. Finally, we analyze the effect of changes in a on s.

Step 1. Investors optimization.

Before trading, a type � investor maximizes the RHS of Equation 24, which can be
written as

max

0✓✓

⇢
s (✓)


ā

r
�̂ +

1

2r
max (0;� � �̂)

�
� cI✓

�
.
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The interior first order condition at � = �̂ yields

✓ (�̂) = max

(
0,min

(
✓,

✓
a

r

(� + r)

cI
�̂

◆ 1
2

�
�
r + � + ⇢� ✓

�
))

, (50)

which by Equation 22 implies that, at an interior solution,

s (�̂) = 1�
hr
a
(� + r) cI

i 1
2
�̂� 1

2
= 1� (y�̂)

1
2 , (51)

where y ⌘ r
a
(� + r) cI . The marginal investor �̂ satisfies

q = ˜W (�̂, �̂, s (�̂))�Wout = s (�̂)
ā

r
�̂ � cI✓ (�̂) . (52)

Then we have
˜W =

a

r

h
�̂ � 2 (y�̂)

1
2

i
+ cI

�
r + � + ⇢� ✓

�
.

Step 2. Venue optimization.

Using Equation 52 we can write the venue program as

max

�̂2[0,�]

⇢✓
a

r
s (�̂) �̂ � cI✓ (�̂)

◆
[1�G (�̂)]

�
.

Using 1�G(�)
g(�) = ⌫ by A.1, we can write the first order condition as follows

⌫

✓
a

r
(s (�̂) + �̂s0 (�̂))� cI✓

0
(�̂)

◆
=

a

r
s (�̂)� cI✓ (�̂) . (53)

Using Equations 50 and 51, we can express Equation 53 as the following polynomial
equation

F (�̂) ⌘ �̂
3
2 � 2y

1
2 �̂ +

⇣r
a
cI
�
r + � + ⇢� ✓

�
� ⌫
⌘
�̂

1
2
+ ⌫y

1
2 . (54)

The polynomial 54 has three roots. Descartes’ rule of signs suggest that F (�̂) has
two or zero positive roots. Note that this holds regardless of the sign of the �̂

1
2 term

coefficient. A numerical analysis based on our baseline calibration indicates that F

has two positive roots, only one of which satisfies the condition s (�̂) > s. Substituting
this solution, �hft, in Equation 51, and using � ⌘ r+�s

r+�
, yields �hft.

Computing

ds
da

.
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Using 51, we can re express 54 as

H (s, a) =
r

a
(� + r) cI

(2s� 1)

(1� s)2
� ⌫s+

r

a
cI
�
r + � + ⇢� ✓

�
. (55)

Given 55, we have ds
da

= �H
a

H
s

. Computing the corresponding derivatives, we obtain

ds

da
=

(2s� 1) (1� s) + (1� s)3
⇣
1 +

⇢�✓
r+�

⌘

2a (3s� 1)

Note that if s ⇡ 1 then we have ds
da

> 0. Consequently, when market frictions are
relatively small, investors’ investment in low latency technology increase with a.

Proofs of Proposition 4

In the case of segmented markets prices are formed independently. We can then apply
the single equilibrium formula in Equation 16 to market i 2 {1, 2}

pi =
µ

r
+

�̂i

r
�i. (56)

Adding and subtracting 1
r
G�1

(1� 2a) and �̂
i

r
to the RHS of Equation 56, and re-

arranging, we have

pi = pW +

1

r

⇥
�̂i �G�1

(1� 2a)
⇤
� �̂i

r
(1� �i) , (57)

which yields Equations 30 and 31. For temporary investors to be indifferent between
joining and staying out, we must have W (�̂i, �̂i, si)�Wout � qi = 0 in each market i.
Otherwise all the low types would strictly prefer one market to another. For market
1 this condition is satisfied by Equation 26. For market 2 then we must have

q2 =
ās2�̂2

r
. (58)

Recall that the type that is indifferent between joining market 1 and 2 is given by
Equation 28. When both markets are active we have �̂1 < �̂2 < �̂12, which implies
that the limited participation distortion is higher in market 2. Note that whether
the illiquidity premium is higher in market one depends on whether �̂1 (1� �1) Q
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�̂2 (1� �2). Since �̂1 < �̂2 and 1 � �1 > 1 � �2, the relative size of the illiquidity
premiums is not determined a priori.

We now characterize the conditions that determine the equilibrium values of (�̂seg
1 , �̂seg

12 ).
In the fee competition stage, venue i 2 {1, 2} seek to maximize the profit function
⇡seg
i of Section IV with respect to qi, taking as given the conditions describing the

affiliation of investors to markets 1 and 2, that is Equations 26 and 28. The system
of first-order conditions is then given by

1�G (�̂12) = g (�̂12) (�̂12 + �̂1k) , (59)

G (�̂12)�G (�̂1) = (g (�̂1) + kg (�̂12)) �̂1, (60)

where k ⌘ s1
s2�s1

. Given the equilibrium values of (�̂1, �̂12), from Equation 28 we have

�̂2 =
1

s2
(�̂12 (s2 � s1) + s1�̂1) . (61)

The types �̂1, �̂2 and �̂12 are then defined by Equations 59-61.

Proof of Proposition 5

In the protected market case there is a single price pnb satisfying

pnb =
µ

r
+

�̂prot
1

r
�1. (62)

Adding and subtracting 1
r
G�1

(1� 2a), �̂seg

1
r

, and �̂seg

1
r
�1 to the RHS of Equation 56,

and re-arranging, yields Equation 33.

We now show that under A.1 the price protection distortion is positive, which is equivalent to

�prot

1 � �seg

1 > 0. From Equation (4), a single asset price in both markets implies
✓
1 +

�

r + ⇢1

◆
�̂2 =

✓
1 +

�

r + ⇢2

◆
�̂1. (63)

This means that in the protected case. �̂2 < �̂1. For �̂12 we have

s2ā�̂2

r
+

s2
2r

(�̂12 � �̂2)� q2 =
s1ā�̂1

r
+

s1
2r

(�̂12 � �̂1)� q1.

8



We can write it as

s2 � s1
2r

�̂12 = q2 � q1 +

✓
s1�̂1

r
� s2�̂2

r

◆✓
ā� 1

2

◆

then we can use (63) to write �̂2 =
1+ �

r+⇢2
1+ �

r+⇢1

�̂1. Then

s2 � s1
2r

�̂12 = q2 � q1 +
s1�̂1

r

 
1� s2

s1

1 +

�
r+⇢2

1 +

�
r+⇢1

!✓
ā� 1

2

◆

and since �̂1 =
rq1
ās1

we get

s2 � s1
2r

�̂12 = q2 � q1

 
1

2ā
�

⇢2
r+⇢2
⇢1

r+⇢1

✓
1

2ā
� 1

◆!
.

Re-arranging the above expression yields

�̂prot
12 =

2r

s2 � s1

⇣
q2 �

z

2ā
q1

⌘
, (64)

where z ⌘ 1�
1+ r

⇢1
1+ r

⇢2

(1� 2ā).

The profits of market 1 are q1 (G (�̂12)�G (�̂1) + �1). To simplify the notation, let ↵ ⌘ 2ā and
k ⌘ s1

s2�s1
. Using Equation 32, we can write venues’ second stage programs as

max
q1

⇡prot

1 =
q1
↵

(1� ↵+ ↵G (�̂12)�G (�̂1))

max
q2

⇡prot

2 =q2 (1�G (�̂12))

The conditions @⇡

prot

1
@q1

= 0 and @⇡

prot

2
@q2

= 0 lead to

1�G (�̂12) = g (�̂12) (�̂12 + zk�̂1) (65)

1� ↵+ ↵G (�̂12)�G (�̂1) = (g (�̂1) + ↵zkg (�̂12)) �̂1. (66)

Using A.1, we can express the system above as

�̂12

⌫
= 1� zk

�̂1

⌫
�̂1

⌫

⇣
e

�̂12��̂1
⌫ + ↵zk

⌘
= e

�̂12��̂1
⌫ � ↵

9



It is convenient to defined � ⌘ (�̂12 � �̂1) /⌫ and x ⌘ �̂1
⌫

, so that we can write the system in (x,�):

(1 + zk)x = 1�� (67)

e� � ↵ =
�
e� + ↵zk

�
x (68)

The second equation of the system is 1 � x = ↵(1+zk)
e

�+↵zk

. This leads to a schedule x increasing in �.

The issue is how it changes with ↵. We study the function on the RHS, namely: log
⇣

↵(1+zk)
e

�+↵zk

⌘
=

log (↵) + log (1 + zk)� log
�
e� + ↵zk

�
. Taking the derivative w.r.t. ↵

1

↵
+

kz0

1 + zk
� ↵kz0 + kz

e� + ↵kz
=

1

↵
� 1

↵+ e

�

kz

+ kz0

 
1

1 + kz
� 1

e

�

↵

+ kz

!

since e

�

↵

> 1 we have 1
1+kz

� 1
e

�
↵

+kz

> 0. Similarly 1
↵

� 1

↵+ e

�
kz

> 0. So ↵(1+kz)
e

�+↵zk

is increasing in ↵.

Therefore the equilibrium condition e��↵ =
�
e� + ↵kz

�
x implies a schedule x increasing in � and

decreasing in ↵. The first equilibrium condition (1 + zk)x = 1 � � gives a schedule x decreasing
in � and decreasing in ↵. Straightforward analysis then shows that x must be decreasing in ↵.
The free price structure corresponds to ↵ = 1, while the protected price structure corresponds to
↵ = 2a < 1. Therefore, since �̂1 = ⌫x, �̂1 must be higher under price protection.

Proof of Proposition 6

To prove that the limited participation distortion is always larger is a consolidated
market it suffices to show that �̂con > �̂2. Notice that given �̂1 < �̂2 < �̂12, a sufficient
condition is �̂con � �̂12. For the single venue, �̂con satisfies Equation 17

�̂con =

1�G (�̂con)

g (�̂con)
. (69)

From Equation 59 we have

�̂12 =
1�G (�̂12)

g (�̂12)
� �̂1

s1
s2 � s1

Since �̂1
s1

s2�s1
� 0, the log-concavity of g implies �̂con � �̂12 and thus

1

r

⇥
�̂con �G�1

(1� 2a)
⇤
>

1

r

⇥
�̂2 �G�1

(1� 2a)
⇤
.
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Note that given the pricing expressions in Section III-IV, pcon � p2 depends on
whether

�̂con

�̂2
� r + �s2

r + �scon
. (70)

As market contact frictions become small (s approaches one), the RHS of inequality
70 approaches one, and the ability of venues to differentiate their services decreases,
reducing �̂2. On the other hand, Equation 69 shows that �̂con is unaffected. This
implies that inequality 70 holds strictly for a large enough value of s.

Finally, the inequality sseg2 > scon follows from Proposition 5 in Pagnotta and Philip-
pon (2012), which we provide below as a Lemma for completeness. This fact implies
that in the long-run 1 � �seg

2 < 1 � �con and thus the illiquidity discounts satisfy:
�̂seg
2 (1� �seg

2 ) < �̂con (1� �con).

Lemma 3. Under A.1 sseg2 > scon.

Proof. Under A.1 and with ↵ = 1, we have �̂12 = ⌫ � s1
s2�s1

�̂1 and q2 = ⌫

2r (s2 � s1). The profits of
the fast venue are ⇡2 = q2 (1�G (�̂12)), and therefore

⇡2 =
⌫

2r
(s2 � s1) (1�G (�̂12))

Note that this system is equivalent to the monopoly case when s1 = 0. The FOC for speed is

2rC 0 (s2) = ⌫ (1�G (�̂12))� ⌫ (s2 � s1) g (�̂12)
@�̂12

@s2
(71)

The consolidated solution is 2rC 0 (s2) = ⌫e�1. With two active venues we have @�̂12
@s2

= k

s2�s1
�̂1 �

k @�̂1
@s2

. Then,

2rC 0 (s2) = ⌫ (1�G (�̂12))� ⌫g (�̂12)


k�̂1 � s1

@�̂1

@s2

�

= e�
�̂12
⌫

✓
⌫ �


k�̂1 � s1

@�̂1

@s2

�◆
.

Using x ⌘ �̂1
⌫

,� ⌘ �̂12��̂1
⌫

2rC 0 (s2) = ⌫ekx�1

✓
1� kx+ s1

@x

@s2

◆
. (72)

Since C 0 is an increasing function, market 2 chooses a higher speed whenever the RHS of 72 is greater
than ⌫e�1. That is,

ekx
✓
1� kx+ s1

@x

@s2

◆
� 1 > 0. (73)
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Now we derive @x

@s2
. Differentiating the system 67-68 we have

(1 + k) dx+ d�� k

(s2 � s1)
ds2 = 0

�
e� + k

�
dx+ e� (x� 1) d�� k

(s2 � s1)
ds2 = 0.

After appropriate substitutions we get

s1
@x

@s2
=

k2x
�
1 + e� (1� x)

�

e� (1 +�) + k (1 + e�)
. (74)

In order to verify 73, we plug 74 in 73, and define

S (k) ⌘ ekx

 
1� kx+

k2x
�
1 + e� (1� x)

�

e� (1 +�) + k (1 + e�)

!
� 1. (75)

Re-arranging we have

S(k) = ekx

 
e� (1 +�) + k

�
1 + e�

�
� kxe� (1 +�� kx)

e� (1 +�) + k (1 + e�)

!
� 1. (76)

To satisfy the inequality we need S (k) > 0 for all k > 0 and S (0) = 0 (corresponding to the
monopolist case where s1 = 0). Let x (k) and � (k) denote the solutions to the system 67-68 for a
given k � 0. Since x (k) and � (k) are continuous functions, S(k) is continuous. Using 67-68 one can
see that lim

k!1 x (k) = 0 and lim
k!1 � (k) = �, where � is defined by e� +� = 2. Notice that

lim
k!1 x (k) k = 1��. Similarly, lim

k!0 x (k) = 1�� and lim
k!0 � (k) = �, where � is defined

by e�� = 1. Taking limits of 75 we find lim
k!0 S (k) = e0�1 = 0 and lim

k!1 S (k) = e1���1 > 0.

A sufficient condition for S(k) > 0 for all k > 0 is to show that the term between brackets in 76 is
greater than one. This is the case whenever

e� (1 +�+ k) + k + e�k
h
(1� x) + (xk)

2 � x�
i
> e� (1 +�+ k) + k (77)

Note from 67 that 1� x = kx+�. Then,

(1� x) + (xk)
2 � x� = kx+�(1� x) + (xk)

2
> 0.

We conclude that S(k) > 0 for all k > 0.

Proof of Proposition 7

To prove the first part of the proposition we need to show that �̂con�con > �̂prot
1 �1.

Using the system of Equations 65-66, and following the steps of Proposition 6 it is

12



easy to show that �̂con > �̂prot
1 . Given the value of the default technology s we have

�con � �1, with strict inequality any time that the single venue invests in speed. We
conclude that pcon > pnb.

Following Proposition 5, under A.1 we have �̂seg
1 < �̂prot

1 and thus pnb > p1. To prove
that pnb < p2 it is sufficient to show that �seg

2 > �prot
1 . From Equation 28 we have

that
�seg
2

s2
s2 � s1

= �seg
12 + �seg

1

s1
s2 � s1

.

The RHS of this expression is according to Equation 59 equal to ⌫, and thus we have
�seg

2
⌫

=

s2�s1
s2

=

1
1+k

. According to Equation 65 we have �̂prot

1
⌫

=

�
1��
1+↵k

�
and thus,

provided a is large enough, we have �seg
2 > �prot

1 .

Finally note that when frictions are relatively large (s low) and/or costs are low, we
have s2 ⇡ 1 and s1 ⌧ s2. By Equation 28 this increases �̂seg

12 . The combined effect
of these factors is to lower traded volume in market 1 (Equation 35) and to increase
volume in market 2 (Equation 36), which makes pvw closer to pseg2 and thus higher
than pnb.

Proof of Proposition 8

I calculate the comparative statics for the short and long-term consolidated prices.
The effect @pS

con

@⌫
> 0 is immediate. The expression @pL

con

@⌫
is given by

@pLcon
@⌫

=

@pScon
@⌫

+

@

@⌫

✓
r + �scon
r + �

◆
.

By Equation 47 we have @s
con

@⌫
> 0 and thus @pL

con

@⌫
> @pS

con

@⌫
.

Note that in a consolidated market the effect of a change in � only affects the illiquidity
discount term. In the short-run price, @pS

con

@�
is given by ⌫(s�1)

(r+�)2
, which is negative since

s  1. In the long-run, the effect is given by

@pLcon
@�

= �
⇣ce⌫
2r

⌘ 1
2 (2r + �)

(r + �)
3
2

,

which is clearly negative. It is immediate that the ratio
���@p

S

con

@�

��� /
���@p

L

con

@�

��� is greater than
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one provided
1� scon <

r

r + �
(1� s) ,

or equivalently using Equation 47

c <

✓
1� s

2r + �

◆2
2r⌫

(r + �) e
.

Finally, the cost parameter c effect on the price is given by

@pLcon
@c

= ��

✓
e⌫

2cr (r + �)

◆ 1
2

< 0.
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