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Abstract

We develop a tractable uni�ed framework for solving optimal time- and state-dependent

price-setting problems. We illustrate our approach by solving a price-setting problem where

adjustments are costly, and there are two types of information. One type of information is

freely available and �ows continuously, while the other type is costly and requires the payment

of a lump-sum cost to be obtained. Our choice of state variables is key to make the problem

tractable. Speci�cally, we replace the usual state variable in state-dependent pricing problems -

the discrepancy between the �rm�s price and its frictionless optimal level - with its expectation

conditional on the �rm�s information set, and augment the state space with the time elapsed

since the last date when information was fully factored into the pricing decision (�information

date�). This allows us to formulate the price-setting problem as two-dimensional optimal stop-

ping problems. Our analysis uncovers new insights about price setting. Time dependency in

pricing rules arises as a consequence of the build up of unobserved information. In these circum-

stances, the inaction region changes as a function of the time elapsed since the last information

date. When the next information date is known, the presence of menu costs produces an extreme

form of inaction: irrespective of the size of the expected price discrepancy, it is never optimal

to adjust just prior to the information date.
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1 Introduction

The recent availability of vast amounts of micro price data has generated renewed interest in price

setting among macroeconomists, especially since the seminal work of Bils and Klenow (2004). This

has lead to noteworthy developments in this �eld - in particular in terms of microfounded models

with explicit price-setting frictions. Many papers have expanded the frontier of so-called menu-cost

models.1 In addition, recent work has analyzed the implications of explicit informational frictions

for price setting behavior.2 Despite this progress, the price setting literature still appears to be

guided by a dichotomy between time-dependent and state-dependent pricing rules,3 and these two

branches have developed essentially in paralell.

In this paper we develop a tractable uni�ed framework for solving optimal time- and state-

dependent price-setting problems. Although our framework may be used to study several models

with adjustment costs and infrequent information, including most price-setting problems analyzed

previously in the literature,4 here we focus on a speci�c model where the use our approach seems

essential. It is a model with costly price adjustments where part of the relevant information �ows

continuously and can be factored into pricing decisions somewhat costlessly, while the other part

can only be incorporated by paying a lump-sum information cost (F ).5 So, the model incorporates

both costly and free information in a otherwise standard menu-cost model.6

The key to making our approach tractable is our choice of state variables. We rely on a

commonly used second-order approximation to the pro�t loss due to price-setting frictions, which

implies that these losses are proportional to the square of the discrepancy between the �rm�s

(log) price and its frictionless optimal level (henceforth the price discrepancy). Because of the

intertemporal nature of the problem, the price setter must forecast the path of these squared

discrepancies. Given the stochastic processes used to model the frictionless optimal price, these

forecasts turn out to be a very simple function of two conveniently chosen state variables: the

conditional expectation of the price discrepancy and the time elapsed since the last date when

1Some examples are Golosov and Lucas (2007), Gertler and Leahy (2008), Midrigan (2011), and Nakamura and
Steinsson (2010).

2For instance, Reis (2006), Woodford (2009), Maćkowiak and Wiederholt (2009).
3The titles of the following papers, among others, are illustrative of this dichotomy: �Time- or state-dependent

price setting rules? Evidence from micro data,� (Dias, Marques and Silva 2007), �State-Dependent or Time-
Dependent Pricing: Does It Matter for Recent U.S. In�ation?�(Klenow and Kryvtsov 2008),�Is Firm Pricing State
or Time Dependent? Evidence from U.S. Manufacturing�(Midrigan 2010).

4 In Bonomo, Carvalho, Garcia (2011) we use this framework to solve several models with costly adjustment
and/or infrequent information.

5Gorodnichenko (2008), Knotek (2009) and Klenow and Willis (2007) propose menu-cost models in which �rms
continuously incorporate partial information into pricing decisions.

6 In general information frictions of one type has been incorporated into price-setting models (e.g.Caballero 1989,
Reis 2006, Moscarini 2004, Bonomo and Carvalho 2004,2010, Woodford 2009, Gorodnichenko 2008, Knotek 2009,
Klenow and Willis 2007, and Alvarez, Lippi, and Paciello 2011).
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information was fully factored into the pricing decision (henceforth information dates). This choice

of state variables allows us to cast each pricing problem as a two-dimensional optimal stopping

problem. For each case that we analyze, we rewrite the Bellman equation that characterizes the

�rm�s value function in the inaction region as either an ordinary di¤erential equation in one of those

two state variables, or as a partial di¤erential equation in both variables. Boundary conditions

dictated by the nature of the problem pin down the solution, which in some cases can be written

in (almost) closed form, or is otherwise obtained numerically through algorithms that make use of

�nite-di¤erence methods.

Our uni�ed framework makes it clear that pure time- and pure state-dependent pricing policies

are special cases of more general time-and-state-dependent rules that turn out to be optimal in the

presence of both adjustment and information frictions. Time dependency arises as a consequence of

the build up of unobserved information. In these circumstances, the optimal policy is characterized

by an inaction region that varies with the time elapsed since the last information date. The

reason is that the option value of waiting for new information tends to increase with time, due

to the accumulation of underlying (unobserved) innovations. To the best of our knowledge, this

dependence of the inaction region on the age of the �rm�s information set is a feature of optimal

pricing policies that had not emerged in previous work.

When the next information date is known, the presence of menu costs produces an extreme

form of inaction: irrespective of the size of the expected price discrepancy, it is never optimal to

adjust just prior to the information date. Notice that this is true even if the partial information

available indicates that the �rm�s price is very far from the frictionless optimal one. Finally, our

results show that despite the presence of menu costs, �rms may choose to change prices with only

partial information.

Section 2 introduces our framework, with a focus on our choice of state variables. Then, in

Section 3 we introduce the partial information model. In this costly adjustment model, there is

always some continuous �ow of information that can be factored into pricing decisions somewhat

costlessly, and some information that can only be incorporated by paying a lump-sum information

cost (F ).7 A �rm always has the option to incur the lump-sum adjustment cost (K) and make a

price adjustment based on its current information about the underlying frictionless optimal price.

It can also incur the lump-sum information cost F to become fully informed about that frictionless

price. the optimal pricing rule features both infrequent price changes and infrequent incorporation

of information into prices. It is characterized by an inaction region for price adjustment and infor-

mation gathering/processing, which is de�ned by the intersection between an adjustment inaction

7Gorodnichenko (2008), Knotek (2009) and Klenow and Willis (2007) propose menu-cost models in which �rms
continuously incorporate partial information into pricing decisions.
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region and an information inaction region. The borders inherited from the adjustment inaction

region trigger uninformed adjustments, while the border inherited from the information inaction

region triggers information gathering/processing. It is never optimal to make a partially informed

price adjustment just prior to an information date. Rather than incurring the menu cost to make

such an adjustment and then immediately incurring the information gathering/processing cost, it

is always better to reverse the order of these actions and keep the option to adjust, to be exer-

cized or not depending on the new information.We also study a simpler variant where besides the

continuous �ow of information there is an exogenous arrival of information at deterministic time.

This case illustrates more clearly the principle that is always worth waiting for information arrival,

instead of adjusting immediately, when the arrival is imminent.

In Section 4 we analyze a particular case of the previous model where there is no freely available

partial information. Then the model becomes one in which all the information is costly. The

�rm�s problem in this context is to choose adjustment and information dates subject to lump-sum

information and adjustment costs. Gorodnichenko (2008), Abel, Eberly, and Panageas (2010),

Alvarez, Guiso, and Lippi (2010), and Alvarez, Lippi, and Paciello (2011) also analyze models

in which agents face information and adjustment costs. The main di¤erence between our work

and theirs is that our approach to solving the problem with information and adjustment costs

encompasses cases in which uninformed adjustments are optimal.8

2 The framework

We start by setting up the problem of a �rm that faces a menu cost to change its price, and is

subject to information frictions that require it to pay a lump-sum cost in order to fully gather

and process information about the relevant underlying state of the economy. Our formulation

encompasses cases in which the �rm has continuous partial information about such state.

The general idea behind the price-setting problems that we study is that, in the absence of

frictions � and thus under full information �a �rm would set its price pt equal to the so-called

8 In Gorodnichenko�s (2008) model, �rms always have some (imperfect) information about the frictionless optimal
price. Abel, Eberly and Panageas (2010) show that their asymptotic result of convergence to a purely time-dependent
portfolio management policy survives if one allows for what they refer to as �automatic transfers�between the agent�s
investment portfolio and the transactions account. However, they do not investigate the optimality of automatic
transfer plans. Alvarez, Lippi and Paciello (2010, section 7.3) and Alvarez, Guiso and Lippi (2010, Appendix AA-3)
discuss the case of adjustment without information. They provide su¢ cient conditions under which such uninformed
adjustments are not optimal. For the price-setting problem, Alvarez, Lippi and Paciello (2010) show that this is the
case for a su¢ ciently small rate of in�ation. For the problem of asset management with consumption of durables,
Alvarez, Guiso and Lippi (2010) show that this is the case when there is no uncertainty in asset returns. These
two papers then focus on parameterizations that satisfy those su¢ cient conditions, and otherwise prevent agents
from making uninformed adjustments by imposing the restriction that adjustment requires observation. For a more
extensive discussion of the di¤erences between our work and these papers, see Bonomo, Carvalho, and Garcia (2011).
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frictionless optimal price p�t �which is its instantaneously pro�t-maximizing price.
9 In the presence

of impediments to such �ideal�price setting, �rms choose the optimal pricing policy subject to lump-

sum adjustment cost K and information cost F in order to maximize intertemporal pro�ts. This

policy consists of a sequence of information dates
n
t0j

o1
j=1
, and for each information date indexed

j (t0j ) a subsequent sequence of pairs of price adjustment dates and new prices
n
tnj ; ptnj

oNj
n=1

chosen

between this (t0j ) and the next information date (t
0
j+1).

10 Any deviation between a �rm�s actual

price, pt, and p�t �what we refer to as a price discrepancy �entails an instantaneous �ow �cost�in

the form of foregone pro�ts. As we show in Appendix B, these �discrepancy costs�can be taken as

being approximately equal to the square of the price discrepancy: (pt � p�t )
2. The objective of �rms

is to minimize the present discounted value of expected total costs, which comprise the (integral

of) �ow discrepancy costs plus discounted adjustment and information costs.

Formally, the �rm�s problem at any information date labeled t00 is given by the following in-

tertemporal optimization program:11

V

�
st00 ; ptN�1�1

�
= (1)

min(
t0j ;

�
tnj ;ptnj

�Nj
n=1

)1
j=1

Et00

1X
j=0

Et0j

8>>>>>>>>>>>><>>>>>>>>>>>>:

e��(t
0
j+1�t00)F +

t1jR
t0j

e��(r�t
0
0)
�
p
t
Nj�1
j�1

� p�r
�2
dr

+
Nj�1P
n=1

24 tn+1jR
tnj

e��(r�t
0
0)
�
ptnj � p

�
r

�2
dr + e��(t

n
j �t00)K

35
+

t0j+1R
t
Nj
j

e��(r�t
0
0)
�
p
t
Nj
j

� p�r
�2
dr + e

��
�
t
Nj
j �t00

�
K

9>>>>>>>>>>>>=>>>>>>>>>>>>;
;

where st00 is the initial state, ptN�1�1
the inherited price, � is the time discount rate, and Et denotes

the expectation operator conditional on time t information.

Under infrequent information about p�t , in order to evaluate the expected �ow cost due to price

discrepancies the �rm must form a probabilistic assessment of p�t given its information. We can

decompose the instantaneous expected �ow cost due to a price discrepancy at time t as:

Et(pt � p�t )2 = (pt � Etp�t )2 + Et(p�t � Etp�t )2 (2)

= (pt � Etp�t )2 + V art (p�t ) ;

9 In Appendix A we present a simple general equilibrium model that yields an expression for the (logarithm of the)
frictionless optimal price for a �rm, p�t , as the sum of two components �an aggregate (nominal aggregate demand)
and an idiosyncratic (productivity) component.

10Among the adjustment date/price pairs we allow for a sequence before the �rst information date
�
tn0 ; ptn0

	Nj
n=1

.
11The formalization of the problem starting at an arbitrary date is similar, but heavier on notation.
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V art denotes the conditional variance given time t information. The �rst term in the right-hand

side of (2) represents the �ow cost of deviating from the expected level of the frictionless optimal

price, and the second term represents the expected �ow cost from not continuously entertaining

full information about the latter. In the absence of adjustment costs, pt would be set equal to Etp�t ,

reducing the �rst part of the discrepancy cost to zero. Otherwise the �rm must optimally solve the

trade-o¤ between letting pt drift away from Etp
�
t , and paying the cost to adjust.

As for the second term in (2), it is zero when information can be fully and continuously in-

corporated into the pricing decision at no cost, as in standard menu-cost models. If information

gathering and processing is costly, the �rm can reduce the second term at the expense of incur-

ring the information cost. If the �rm has continuous access to partial information about p�t , the

conditional variance V art (p�t ) refers to the component of the frictionless optimal price that is only

observed at a cost.

We assume throughout that p�t follows a Markovian stochastic process, and that for any �t > 0

the distribution of p�t+�t � p�t depends only on �t. In particular, this implies that the conditional
variance V art (p�t ) depends only on the time elapsed since the last information date. From this

assumption and the structure of the �rm�s problem, given an information date t0, the value function

at a time t > t0 �the optimized value of the �rm�s dynamic cost-minimization problem de�ned in

(1) �can be written in terms of two state variables: the time elapsed since the last information

date, denoted by � � t � t0, and the deviation of pt from its expected frictionless optimal level

given its current information (which we refer to as the expected discrepancy), de�ned as:

zt � pt � Etp�t : (3)

We can thus write the �rm�s expected discrepancy cost as a function of � and z:

Et(pt � p�t )2 = z2t + V art(p
�
t ) (4)

� f (zt; �) :

With lump-sum adjustment and information costs, price changes and information gathering will

be infrequent. In the inaction region (i.e., absent any price change and/or information gathering),

the value function V obeys the following Bellman equation:

V (zt; �) = f (zt; �) dt+ e
��dtEtV (zt+dt; � + dt): (5)

Equation (5) is valid for a variety of environments, including the standard full-information case.12

12 In an earlier working paper version (Bonomo, Carvalho and Garcia 2010) we use this framework to study a
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In the next section we apply this framework to a new price-setting problem.

3 A model with menu costs and costly partial information

We develop a price-setting model with costly price adjustments in which there is always some

continuous �ow of information that can be factored into pricing decisions somewhat costlessly, and

some information that can only be incorporated by paying a lump-sum information cost (F ).13 A

�rm always has the option to incur the lump-sum adjustment cost (K) and make a price adjustment

based on its current information about the underlying frictionless optimal price. It can also incur

the lump-sum information cost F to become fully informed about that frictionless price. These two

possible actions imply an optimal inaction region, which we describe heuristically before showing

how we solve this pricing problem.

Upon incurring the lump-sum adjustment cost K, a �rm can choose a new price, and will do

so in order to set the expected price discrepancy zt to an optimal level ct. For a given information

set, adjustment is only worthwhile if the expected price discrepancy is �large enough� to justify

incurring the menu cost. This implies that at each point in time there are bounds lt and ut on

the expected discrepancy such that the �rm will increase its price whenever zt is less than lt, and

decrease its price whenever zt exceeds than ut. The assumptions about the stochastic process for p�t

that we specify subsequently imply that the policy functions flt; ct; utg do not depend on calendar
time per se, but only on the time elapsed since the last information date (�). We thus write

fl (�) ; c (�) ; u (�)g, and refer to fl (�) ; u (�)g as the bounds of the adjustment inaction region.
Turning to the information decision, upon incurring the information cost F the �rm learns

the history of innovations to its frictionless optimal price that had not been freely observed. This

amounts to a shock to the expectation of the price discrepancy that the �rm held just prior to

gathering information. Because of the lump-sum nature of the information cost, it is clear that

the �rm will not gather information continuously. At any given time t, gathering information

is only worthwhile if the cost of not observing the innovations that have occurred since the last

information date exceeds the information cost F . As is clear from (4), as long as the conditional

variance V art(p�t ) increases with the time elapsed since the last information date, the cost of not

observing the underlying innovations will increase over time. The assumptions about p�t that we

specify subsequently ensure that the cost of not observing the underlying innovations will eventually

exceed the information cost for any given expected discrepancy. This implies, for each expected price

variety of price setting problems with explicit adjustment and/or information frictions, including the most common
speci�cations found in the literature, as well as some novel problems.

13Gorodnichenko (2008), Knotek (2009) and Klenow and Willis (2007) propose menu-cost models in which �rms
continuously incorporate partial information into pricing decisions.
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discrepancy z, a time elapsed since the last information date (�� (z)) that will trigger information

gathering. We refer to �� (z) as the boundary of the information inaction region.

3.1 Solution

We now characterize the conditions that determine the optimal pricing rule and solve the problem

numerically. We �rst characterize the partial di¤erential equation which governs the evolution of

the value function in the inaction range. We then specify the boundary and optimality conditions

which characterize the optimal pricing policy.

3.1.1 The value function PDE

We assume that the frictionless optimal price process is given by:14

dp�t = �dt� �idWi;t � �adWa;t;

whereWi;t andWa;t are independent standard Wiener processes. Information aboutWi;t is continu-

ously and freely available, and costless to process. In contrast, gathering and processing information

about Wa;t is costly.

Between information dates and in the absence of price adjustments (i.e., in the inaction region),

zt changes continuously because of both the drift � and the Wi;t process:

dzt = ��dt+ �idWi;t: (6)

Wa;t-driven uncertainty also impacts the expected discrepancy costs due to the build up of

unobserved innovations. Thus, the instantaneous �ow-cost function is given by:

f(zt; �) = z
2
t + V art(p

�
t ) = z

2
t + �

2
a� ; (7)

where, again, � denotes the time elapsed since the last information date. Taking into account the

process for z (6) and the �ow cost (7) in the di¤erential form of the Bellman equation (5), and

applying Ito�s lemma, results in the following partial di¤erential equation for the value function V :

1

2
�2iVzz (z; �)� Vz (z; �)�+ V� (z; �)� �V (z; �) + z2 + �2a� = 0: (8)

14As mentioned previously, the two-component representation of p�it can be justi�ed from �rst principles, as in
Appendix A.
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3.1.2 The adjustment decision

Because adjustment costs are lump-sum, any adjustment is made to the point that minimizes the

value function. So the target point c(�) when the time elapsed is � satis�es:

c(�) = argmin
z
V (z; �) : (9)

Since �rms always have the option to incur the adjustment cost K and reset the expected discrep-

ancy to c(�), the value function must always satisfy:

V (z; �) � V (c(�); �) +K: (10)

The bounds that de�ne the adjustment inaction region, l(�); u(�), are functions of the time elapsed

since the last information date that imply indi¤erence between adjusting and not adjusting. They

satisfy the value-matching conditions that obtain when (10) holds with equality:

V (l (�) ; �) = V (c (�) ; �) +K; (11)

V (u (�) ; �) = V (c (�) ; �) +K:

3.1.3 The information decision

Firms always have the option to incur the information cost F to gather and process information

about the unobserved Wa;t process. Upon doing so, they learn the realization of Wa;t �or, equiv-

alently, their frictionless optimal price p�t �and the time elapsed since the last information date �

is reset to zero. The decision on whether or not to get informed at any given point (z; �) involves

comparing the value function at that point with the expected value function given the conditional

distribution of the discrepancy that will be observed upon incurring the information cost. This

implies that the value function must satisfy the following condition:

8 (z; �) , V (z; �) � E
�
V
�
z + �a

p
�"; 0

��
+ F; (12)

where " is a standard normal random variable.

Points in the state space in which the �rm is indi¤erent between getting informed and continuing

with outdated information, for which (12) holds with equality, de�ne the information boundary

(z; �� (z)). Thus, on information dates the expected discrepancy receives a shock with distribution

N(0; �2a�
� (z)), and � is reset to zero, yielding the following informational matching condition:

V (z; �� (z)) = E
h
V
�
z + �a

p
�� (z)"; 0

�i
+ F: (13)
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3.1.4 The optimal rule

Figure 1 illustrates the optimal pricing rule under adjustment and information costs, and partial

information.15 The numerical methodology used for solving this problem, based on a �nite di¤erence

approach can be found in Bonomo, Carvalho and Garcia (2011). When we jointly take into account

the adjustment and information inaction regions, we do not need to consider information decisions

at (z; �) points that are outside the adjustment inaction region, since those points will never be

reached. Likewise, there is no need to contemplate (z; �) points that are outside the information

inaction region. Thus, the resulting inaction region (depicted in Figure 1), in which no adjustment

or information gathering occurs, is the intersection between the adjusment and information inaction

regions.

Under the optimal rule, the �rm uses Wi;t-information between information dates and adjusts

the expected price discrepancy to c (�) whenever it hits the l (�) or u (�) boundaries of the inaction

region (outer dashed (red) lines, inherited from the adjustment inaction region). The inner dashed

(red) line, c (�), gives the discrepancy to which the �rm reverts whenever it chooses to adjust.

The solid (blue) line �� (z) is the boundary of the inaction region inherited from the information

inaction region, which triggers information gathering.

Notice that the sizes of price adjustments implied by the optimal rule are not constant, as they

would be under full information.16 Partially informed upward adjustments have size c (�) � l (�),
while partially informed price decreases have size u (�)� c (�). Those adjustment sizes depend on
the time elapsed since the last information date. In the example presented in Figure 1, in which

there is a positive drift in the frictionless optimal price process, the partially informed upward

adjustment size clearly increases with � . Fully informed adjustments are potentially much more

variable in size, with lower bound c (0)� l (0) for price increases and u (0)�c (0) for price decreases.
In the sample path realization for the expected price discrepancy (zt) that we depict in Figure

1 (solid (black) line), there are two partially-informed adjustments before the �rm decides to incur

the cost to entertain information about Wa;t. At that point the time-elapsed variable � is reset to

zero, and the �rm learns the cumulative innovation Wa;t �Wa;t���(z) � N
�
0; �2a�

� (z)
�
. Then, the

�rm decides whether or not to incur the menu cost and change its price, depending on whether the

price discrepancy is inside or outside the inaction region de�ned by (l (0) ; u (0)).

For small � , the limits of the inaction region are dictated by the boundaries of the adjustment

15The parameter values used in this section are merely illustrative. In Section XX we estimate them using price
setting statistics from micro data.

16 In a pure menu-cost version of the model, our assumed process for the frictionless optimal price would generate
constant adjustment sizes for both price increases and decreases. Of course adding mean reversion in the frictionless
optimal price process, as in Golosov and Lucas (2008), or economics of scope in menu costs, as in Midrigan (2011),
would add some size variability.
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inaction, whereas for large � they are de�ned by the boundary of the information inaction region.

When information about Wa;t is not yet too stale, if partial information gives rise to a large enough

expected price discrepancy, the �rm �nds it optimal to make a partially-informed adjustment. After

some point (corresponding to � � 0:65 in Figure 1), making partially-informed adjustments is no
longer optimal. The reason is that by that time the �rm�s information set has �depreciated�enough

(due to the accumulation of unobserved innovations to Wa;t). Thus, a given expected discrepancy

that might have triggered a partially-informed adjustment early on, will now trigger information

gathering instead.

An interesting implication of optimal pricing behavior under adjustment and information costs,

which can be glimpsed from the previous description, is that it is never optimal to make a partially-

informed adjustment just prior to an information date. Rather than incurring the menu cost to

make such an adjustment and then immediately incurring the information cost, it is always better

to reverse the order of these actions and keep the option to adjust, to be exercized or not depending

on the new information.

The principle that it is never optimal to make an adjustment just prior to the arrival of relevant

information is rather general. The next section provides a context in which this principle manifests

itself in a particularly stark fashion.
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Optimal pricing policy with partial information, and adjustment and information costs

3.2 Extreme inertia before information dates

In this section we assume that information about Wa;t arrives infrequently for reasons that are

outside the control of �rms.17 This case is analytically simpler than the problem with costly

information gathering and processing, analyzed above. Nevertheless, it highlights in a striking way

the importance of cumulative unobserved information for price adjustment decisions.

The function f and the dynamics for z are still given by (7) and (6), respectively. Therefore

the di¤erential form of the Bellman equation is also given by (8).

The condition that determines c (�), (9), the adjustment-option condition, (10), and the condi-

tions that determine l (�) and u (�), (11), remain the same. However, the value-matching condition

now applies to the exogenous time elapsed since the prior information date, denoted T :

V (z; T ) = E
h
V
�
z + �a

p
T"; 0

�i
:

The numerical solution algorithm used to solve this problem, described in Appendix E, is similar

to the one used in the costly information problem.

Figure 2 shows the optimal pricing rule and a sample path for zt, assuming T = 1. For �

between zero and one, adjustment is dictated by the evolution of the expected discrepancy, which

depends on � and on realizations of Wi;t. When zt reaches the lower barrier l (�), adjustment

is triggered to c(�). These adjustments take into consideration only the continuously and freely

availableWi;t-information. When � reaches time T = 1,Wa;t-information arrives and zt jumps. If it

falls outside the inaction region for � = 0, the �rm changes its price, resetting the price discrepancy

to c(0).

In this environment there are no totally-uninformed adjustments. The �rm uses the Wi;t-

information between information dates, and adjusts if the expected price discrepancy becomes large

enough. Despite the continuous �ow of Wi;t-information, the inaction region becomes arbitrarily

wide before the deterministic times of Wa;t-information arrival, clearly showing that, as in the case

with costly information, it is never optimal to adjust immediately before becoming informed. In

the case of exogenous deterministic information, since getting information is not an option, this

principle has a slightly di¤erent meaning, implying that one should not adjust before an important

information announcement.

17Examples of exogenously infrequent information are pervasive. Economic developments often become news
after having evolved unnoticed for some time. Data releases on prespeci�ed dates usually re�ect cumulative past
information about the state of the economy.
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In the case of prespeci�ed information dates the inaction range becomes arbitrarily large just

before information releases. The intuition is clear: by delaying adjustment the �rm incurs additional

�ow costs due to the expected price discrepancy, but retains the option to adjust or not after it

receives information. If the �rm chooses not to adjust, it saves the lump-sum menu cost, which is

in�nitely larger than the discrepancy �ow costs (over an in�nitesimal time interval). Since there

is a positive probability of not adjusting, just prior to the information date the option value of

waiting becomes arbitrarily large relative to those �ow costs. This is a stark testable implication

of this speci�cation: one should see fewer adjustments when potentially important information is

about to be released.
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Optimal pricing policy under partial continuous information, and exogenous and deterministically

infrequent information

4 A special case with costly information only

In this section, we use our framework to tackle a particular case of the problem in section 3, where

no information is freely observable. While in the setting of that section the model generated both

partially informed and fully informed adjustments, now besides the fully informed adjustments

there is the possility of having uninformed adjusments. If adjustment costs are relatively small

with respect to information costs and in�ation has a drift, the �rm has an incentive to counteract

13



the trend in the frictionless optimal price by adjusting more often than becoming informed.

Although this same problem of optimal adjustment and information acquisition has been posed

by Alvarez, Lippi, and Paciello (2011), they preclude the possibility of uninformed adjustments

since their framework did not keep track of the expected price discrepancy at dates di¤erent from

information dates.

We solve this problem by setting �i = 0 and relabeling � = �a in the setting of section 3. Thus,

the di¤erential equation which characterizes the evolution of the value function inside the inaction

range becames:

��Vz (z; �) + V� (z; �)� �V (z; �) + z2 + �2� = 0;

with general solution given by (??):

V (z; �) =
2�2

�3
� 2z�
�2

+
z2

�
+
�2

�2
+
�2�

�
+ e

� �z
� G

�
z + ��

�

�
;

where G (�) is a function to be determined by the nature of the �rm�s optimization problem.
The conditions related to the adjustment decision (9, 10 and 11) and information decision

(12,13)remain the same.

In Appendix E we provide an algorithm for solving this problem numerically using a �nite-

di¤erence method. Figure 4 illustrates the optimal pricing rule under adjustment and information

gathering/processing costs. The dashed (red) lines l(�); u(�) are the boundaries of the inaction

region that trigger uninformed adjustments, while the solid (blue) line �� (z) is the boundary that

triggers information gathering/processing. We illustrate a sample path in which zt is initially close

to zero. Due to the high enough drift �, the expected discrepancy hits the lower boundary l (�),

leading to an uninformed adjustment to c (�). After that, the expected discrepancy drifts down

until it touches the information boundary �� (z) at a point where z � �0:04 and � � 0:73. At

that point the �rm incorporates information into the pricing decision, as the expected discrepancy

receives a shock with distribution N
�
0; �2 � 0:73

�
. The time-elapsed variable � is reset to zero, and

the �rm decides whether or not to pay the menu cost and change its price, depending on whether

the just-learned price discrepancy is inside or outside the information-date inaction region, de�ned

by (l (0) ; u (0)).

As in the case with deterministic information releases, notice that it is never optimal to make an

uninformed price adjustment just prior to an information date. This result can be seen visually in

the example depicted in Figure 4. For � > 0 the (red) dashed l (�) and u (�) lines trigger adjustment

without information. Such an adjustment brings the expected discrepancy to c (�), which is always

�distant�from the information boundary �� (z) that triggers information gathering/processing. The

14



intuition for this feature of the optimal policy is similar to the case with deterministic information

releases, the di¤erence arising from the fact that in the current problem information is controlled

by the price setter: rather than incurring the menu cost to make an uninformed adjustment and

then immediately incurring the information gathering/processing cost, it is always better to reverse

the order of these actions and keep the option to adjust, to be exercized or not depending on the

new information.
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Figure 1: Optimal pricing policy under adjustment and information gathering/processing costs

Alvarez, Lippi, and Paciello (2010) also propose a price-setting model with costly adjustments

and information acquisition. Beyond the di¤erence in the solution approach, another key di¤er-

ence is that our approach to solving the problem with dissociated costs entertains cases in which

uninformed adjustments are optimal. In turn, Alvarez, Lippi and Paciello (2010) provide su¢ cient

conditions under which such uninformed adjustments are not optimal and focus on parameteriza-

tions that satisfy those conditions. They otherwise prevent agents from making such adjustments

by imposing the restriction that adjustment requires observation.18

In this example we assume the same parameter values as in Subsection ??, splitting the sources

18For a more detailed discussion of the di¤erences between our papers see Bonomo, Carvalho, and Garcia (2011).
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of variation of the p�t process evenly between the Wi;t and Wa;t processes (i.e. �i = �a = �=
p
2).

This leads to a quite dramatic change in the optimal pricing policy, in that the �rm is now willing

to wait longer until the subsequent information date than in the case without interim information.

This is quite intuitive, since the expected �ow deviation cost due to unobserved variation in p�t is

now smaller.

5 Conclusion

In this paper we study optimal price setting under adjustment costs and infrequent information

arising from various sources. Pricing rules are more complex than the usual purely state-dependent

strategies. In general, the inaction regions depend on the time elapsed since the last information

date. There is scope for uninformed adjustments. When some important determinant of the

frictionless optimal price can be freely and continuously factored into pricing decisions, there can

be partially-informed adjustments. There should be no adjustment just prior to the release of

important information, if the release date is known. Likewise, it is never optimal to make an

uninformed price adjustment just before incurring the information gathering and processing cost.

While in this paper we focus on price setting, as emphasized in the early Bonomo and Garcia

(2003) paper, our framework is, more generally, suitable for studying optimal decision-making under

adjustment costs and infrequent information. For instance, our results might be of interest in the

context of employment adjustment, inventory management, and investment problems.

In its current form, our framework has the big advantage that the optimal policies can be solved

for independently of equilibrium considerations. This makes the various models that we entertain

relatively cheap to solve computationally, and thus allows for a relatively straightforward attack

on their quantitative micro and macro implications. Of course such simplicity, which is a¤orded

by the nature of the underlying economic environment, also has some costs. Importantly, it pre-

cludes interactions of agents�decisions through general-equilibrium e¤ects. While our formulations

can be extended to allow for such interations, they have to be handled with methods for solving

(in�nitely-dimensional) heterogeneous agents models, which typically make computational solu-

tions more costly. Despite this complication, solutions are feasible, and should open the possibility

of addressing important research questions.
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6 Appendix A

We derive the frictionless optimal price in a simple general equilibrium framework. A representative

consumer maximizes expected discounted utility:

Et0

Z 1

t0

e��(t�t0) [log(Ct)�Ht] dt;

subject to the budget constraints:

Bt = B0 +

Z t

0
WrHrdr �

Z t

0

�Z 1

0
PirCirdi

�
dr +

Z t

0
Trdr +

Z t

0
�rdQr +

Z t

0
�rdDr; for t � 0:

Utility is de�ned over the composite consumption good Ct �
hR 1
0 (Cit=Ait)

��1
� di

i �
��1

with � > 1,

where Cit is the consumption of variety i, and Ait is a relative-preference shock. Pit is the price of

variety i, Ht is the supply of labor, which commands a wage Wt; Bt is total �nancial wealth, Tt are

total net transfers, including any lump-sum �ow transfer from the government, and pro�ts received

from the �rms owned by the representative consumer. Qr is the vector of prices of traded assets,

Dr is the corresponding vector of cumulative dividend processes, and �r is the trading strategy,

which satis�es conditions that preclude Ponzi schemes. The associated consumption price index,

Pt, is given by:

Pt =

�Z 1

0
P 1��it di

� 1
1��

: (14)

The demand for an individual variety is:

Cit = A
1��
it

�
Pit
Pt

���
Ct: (15)

Firms hire labor to produce according to the following production function:

Yit = AitHit:

Note that we assume that the productivity shock is perfectly correlated with the relative-preference

shock in the consumption aggregator. This has precedence in the sticky-price literature (for in-

stance, King and Wolman 1999 and Woodford 2009). Our speci�c assumption follows Woodford

(2009), and aims to produce a tractable pro�t-maximization problem that can be written as a

price-setting �tracking problem�in which the �rm only cares about the ratio of the two stochastic

processes driving pro�ts, which will be speci�ed below.19

19More generally, assumptions relating preference and technology processes have been used previously in the
literature on �balanced growth�in multi-sector models (e.g. Kongsamut et al. 2001).
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The static pro�t-maximizing price for �rm i, P �it (also referred to as its frictionless optimal

price), is given by the usual markup rule:

P �it =
�

� � 1
Wt

Ait
: (16)

From the representative household�s labor supply:

Wt

Pt
= Ct;

which leads to:

P �it =
�

� � 1
PtCt
Ait

:

In logarithms (lowercase variables denote logarithms throughout), this reads:

p�it = log

�
�

� � 1

�
+ log (PtCt)� log (Ait) :

Ignoring the unimportant constant and assuming appropriate exogenous stochastic processes for

nominal aggregate demand and for idiosyncratic productivity yields the speci�cations used through-

out the main text.

7 Appendix B

Here we derive the quadratic approximation to the static pro�t-maximization problem used in the

main text. Write real �ow pro�ts as:

�

�
Pi
P
;C;Ai

�
= A1��i

Pi
P

�
Pi
P

���
C � W

PAi
A1��i

�
Pi
P

���
C;

where Pi is the price charged by �rm i. We can use the labor supply equation to express the real

wage as a function of aggregate consumption (WP = C), and rewrite the expression for real �ow

pro�ts as:

�

�
Pi
P
;C;Ai

�
= A1��i

�
Pi
P

�1��
C � C2A��i

�
Pi
P

���
:

Let � be the steady-state level of real pro�ts in a frictionless economy (upper bars denote

steady-state values):20

� � �
�
P �i
P
;C;Ai

�
:

20A constant level of aggregate consumption requires the restriction
hR 1
0
A��1it di

i 1
1��

= 1, which we assume holds

throughout the paper.
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We want to approximate the loss function L de�ned as:

L

�
P �i
P
;
Pi
P
;C;Ai

�
=

�
�
P �i
P ; C;Ai

�
��

�
Pi
P ; C;Ai

�
�

=
�
�
P �i
P ; C;Ai

�
��

�
Pi
P ; C;Ai

�
�
�
P �i
P ; C;Ai

� �
�
P �i
P ; C;Ai

�
�

; (17)

The second ratio in (17) can be written as:

�
�
P �i
P ; C;Ai

�
�

=
A1��i

�
P �i
P

�1��
C � C2A��i

�
P �i
P

���
C � C2

(18)

=
A1��i

�
P �i
P

�1��
C � ��1

� CA
1��
i

�
P �i
P

�1��
C � ��1

� C

= A1��i

C

C

�
P �i
P

�1��
=

�
C

C

�2��
;

where we use the facts that P
�
i
P = �

��1
C
Ai
and C = ��1

� . Note how the link between preferences and

technology makes the idiosyncratic shock drop from the expression for maximized pro�ts.

The �rst ratio in (17) is the proportional pro�t loss due to the �suboptimal� price Pi. It is

convenient to rewrite it as:

�
�
P �i
P ; C;Ai

�
��

�
Pi
P ; C;Ai

�
�
�
P �i
P ; C;Ai

� = 1�
�
�
Pi
P ; C;Ai

�
�
�
P �i
P ; C;Ai

� :
The pro�t ratio in the above expression can be written as:

�
�
Pi
P ; C;Ai

�
�
�
P �i
P ; C;Ai

� =
A1��i

�
Pi
P

�1��
C � C2A��i

�
Pi
P

���
A1��i

�
P �i
P

�1��
C � C2A��i

�
P �i
P

���
=

A1��i

�
Pi
P

�1��
� ��1

�
P �i
P A

1��
i

�
Pi
P

���
A1��i

�
P �i
P

�1��
� ��1

�
P �i
P A

1��
i

�
P �i
P

���
= �

�
Pi
P

�1��
� ��1

�
P �i
P

�
Pi
P

���
�
P �i
P

�1��
= �

�
P �i
Pi

���1
� (� � 1)

�
P �i
Pi

��
;
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so that:
�
�
P �i
P ; C;Ai

�
��

�
Pi
P ; C;Ai

�
�
�
P �i
P ; C;Ai

� = 1� �
�
P �i
Pi

���1
+ (� � 1)

�
P �i
Pi

��
: (19)

As before, note how the link between preference and technology makes the idiosyncratic shock drop

from the expression above.

Combining (18) and (19), and keeping the relevant arguments of the loss function, we obtain:

L

�
P �i
P
;
Pi
P
;C;Ai

�
= L

�
P �i
Pi
; C

�
=

�
C

C

�2�� "
1� �

�
P �i
Pi

���1
+ (� � 1)

�
P �i
Pi

��#
: (20)

We can rewrite the loss function L in terms of logarithms:

G (p�i � pi; c) = e(2��)c
h�
1� �e(��1)(p�i�pi)

�
+ (� � 1) e�(p�i�pi)

i
:

The exact loss function G (p�i � pi; c) can be used in the optimal price-setting problems. How-
ever, the presence of aggregate consumption in the expression implies that solving for the optimal

pricing rule in the presence of pricing frictions involves a �xed-point problem, even in the absence of

strategic complementarity or substitutability in price setting. To make the optimal pricing problem

more tractable, we eliminate the e¤ect of aggregate output by assuming � = 2 (as in Danziger 1999

and Bonomo and Carvalho 2010). In addition, for analytical convenience we take a second-order

Taylor expansion of �ow pro�t losses around the frictionless optimal price, based on which we

analyze the price-setting problems discussed in the paper:

flow profit losses (pit) / (pit � p�it)
2 :
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