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Abstract

This study presents a semiparametric identification and estimation method for censored

dynamic panel data models and their average partial effects using only two-period data.

The proposed method transforms the semi-parametric specification of censored dynamic

panel data models into a valid semi-parametric family of PDFs of observables without

modeling the distribution of the initial condition. Then the censored dynamic panel data

models can be identified by a standard maximum likelihood estimation (MLE). The iden-

tifying assumptions are related to the completeness of the families of known semiparamet-

ric PDFs corresponding to censored dynamic panel data models and observed conditional

density functions between the dependent and explanatory variables. This study shows

that the families of PDFs corresponding to dynamic tobit models and dynamic lognormal

hurdle models satisfy the identification assumptions with two types of data generating pro-

cess (DGP). This study proposes a sieve maximum likelihood estimator (sieve MLE) and

investigates the finite sample properties of these sieve-based estimators through Monte

Carlo analysis. This study presents the dynamic behavior of annual individual health

expenditures estimated as an empirical illustration using the dynamic tobit model and

data from the Medical Expenditure Panel Survey (MEPS).
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1. Introduction

The identification and estimation of dynamic panel data models is one of the main challenges

in econometrics. These models are appealing in applied research because they consider the

lagged value of the dependent variable as one of the explanatory variables and contain observed

and unobserved permanent (heterogeneous) or transitory (serially-correlated) individual dif-

ferences. In dynamic linear panel data models, researchers have developed and compared

several instrumental variables (IV) estimators and generalized method of moments (GMM)

estimators in the literature (Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano

and Bover (1995), Ahn and Schmidt (1995), Kiviet (1995), Blundell and Bond (1998) , Hahn

(1999), and Hsiao, Hashem Pesaran, and Kamil Tahmiscioglu (2002)).

When the time dimension, T, is fixed in nonlinear panel data models, the presence of the

unobserved effect prevents the construction of a log-likelihood function that can be used to

estimate structural parameters consistently. This is the so-called incidental parameters prob-

lem discussed by Neyman and Scott (1948). However, the dynamic nature of the models leads

to the initial conditions problem because integrating the individual unobserved effect out of

the distribution raises the issue of how to specify the distribution of the initial condition given

unobserved heterogeneity. Wooldridge (2005) proposed finding the distribution conditional

on the initial value and the observed history of strictly exogenous explanatory variables to

solve the initial conditions problem. Shiu and Hu (2010) adopted the correlated random ef-

fect approach for nonlinear dynamic panel data models without specifying the distribution

of the initial condition. They used the identification results of the nonclassical measurement

error models of Hu and Schennach (2008) to achieve nonparametric identification of nonlinear

dynamic panel data model with three periods of data. Honoré (1993), Hu (2002) and Honoré

and Hu (2004) used moment restrictions to identify and estimate the parameters of censored

dynamic panel data models. Their results were achieved without making distributions of

unobserved heterogeneity and the disturbance, but they failed to identify the average partial

effects.

Other quantities of interest in nonlinear panel data applications include the partial effects

on the mean response, averaged across the population distribution of the unobserved hetero-

geneity. Chernozhukov, Fernández-Val, Hahn, and Newey (2009) derived bounds for average
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effects in nonseparable panel data models and showed that they can tighten considerably for

semiparametric discrete choice models. Graham and Powell (2008) studied the average partial

effect over the distribution of unobserved heterogeneity, which represents the causal effect of a

small change in an endogenous regressor on a continuously-valued outcome of interest. Hoder-

lein and White (2009) considered identification of distributional effects and average effects in

general nonseparable models, allowing for arbitrary dependence between the persistent un-

observables and the regressors of interest even if there are only two time periods. However,

their approach explicitly rules out lagged dependent variables. Dynamic models focus on the

effects of the lagged dependent variables on the current dependent variable, whereas we want

to account or control for the influence of all other variables. The effect of a lagged dependent

variables reflects the persistence of the dependent variables over time and the amount of this

state dependence can be measured by the average partial effect.

This study focuses the identification and estimation of semi-parametric censored dynamic

panel data models and their average partial effects with two periods of data. Compared to

the identification results in Shiu and Hu (2010), the proposed approach requires a somewhat

stronger but places less demand on the time dimension of data. Under a semi-parametric

specification, the models are connected to the semi-parametric distribution of Yit conditional

on (Xit, Yit−1, Uit), i.e., fYit|Xit,Yit−1,Uit;θ which is called the semi-parametric censored density

function. Then, the identification of θ in fYit|Xit,Yit−1,Uit;θ may lead to that of the proposed

semi-parametric censored dynamic panel data models. As mentioned earlier, the maximum

likelihood estimator (MLE) for the semi-parametric censored density function fYit|Xit,Yit−1,Uit;θ

is inconsistent if the time-series dimension is finite and the unobserved covariate Uit is corre-

lated with explanatory variables. This study presents an identification strategy similar to the

approach in Hu and Shiu (2011a). The identification method transforms the semi-parametric

censored density function fYit|Xit,Yit−1,Uit;θ into a valid semi-parametric family of PDFs of

observable variables. This identification technique involves three steps of nontrivial transfor-

mation associate with the completeness of known PDFs. The first step is to apply the inverse

of an integral operator using fYit|Xit,Yit−1,Uit;θ as a kernel. The second step is to integrate out

the unobserved covariate. The last step is to normalize the integrated semi-parametric density

function created in the second step. The true value of structural parameters can be uniquely

determined by maximizing the likelihood function of the transformed semi-parametric fam-
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ily of the PDFs of observables. This process also identifies the average partial effect of the

censored dynamic panel data models. The nontrivial transformation steps rely on the com-

pleteness of the families of known PDFs fYit|Xit,Yit−1,Uit;θ corresponding to censored dynamic

panel data models and observed conditional density functions between the dependent and

explanatory variables fYit|Xit,Yit−1,Xit−1
. The completeness assumptions in this study are not

restrictive and applicable to certain types of censored dynamic panel data models with com-

mon DGPs. Examples include dynamic tobit models and dynamic lognormal hurdle models

for the observed conditional density functions fYit|Xit,Yit−1,Xit−1
following normal and distri-

butions or the distributions of exponential families.1

These identification results suggest a semi-parametric sieve maximum likelihood estimator

(sieve MLE) for the proposed model. The consistency of the sieve MLE estimator and the

asymptotic normality of its parametric components can be directly obtained from the stan-

dard treatment in the sieve MLE literature. This study shows how to implement sieve MLE

estimators for dynamic tobit models and dynamic lognormal hurdle models. Combining the

estimated parametric components with the nuisance parameter for the initial joint distribution

makes it possible to derive a consistent estimator for the average partial effect. An apparent

advantage of the proposed sieve MLE procedure is that we can estimate these nonlinear dy-

namic panel data models using two periods of data without specifying initial conditions. This

is beneficial because semi-nonparametric estimators usually require a large sample. Another

benefit is that the proposed method allows for time dummies, flexible functional forms of state

dependence Yit−1 such as quadratics or interaction terms, and parametric heteroskedasticity.

The rest of the article is organized as follows. Section 2 presents the identification of cen-

sored dynamic panel data models through several nontrivial transformations. Section 3 shows

the identification assumptions hold for dynamic tobit models and dynamic lognormal hurdle

models for two types of DGPs. Section 4 presents the proposed sieve MLE and inference.

Section 5 presents the results of Monte Carlo experiments for dynamic tobit models. Section

6 shows the application of the sieve MLE to a dynamic tobit model describing the dynamic

behaviors of annual individual health expenditures using data from the Medical Expenditure

Panel Survey (MEPS). Finally, Section 7 provides concluding remarks. Appendices include

proofs of each transformation step and a discrete case.

1More discussions of the completeness condition can be found in D’Haultfoeuille (2011), Andrews (2011),
and Hu and Shiu (2011b).
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2. Identification of Censored Dynamic Panel Data Models

Suppose g1(·, ·; θ1), g2(·, ·; θ2) are known parametric functions and g1 is strictly increasing in

its second argument. Consider the following censored dynamic panel data model:

Yit = g1

(
g2

(
X ′it, Yit−1; θ2

)
, Vi + εit; θ1

)
, ∀i = 1, ..., N ; t = 1, ..., T − 1, (1)

where Yit is the dependent variable, Xit is a vector of observed explanatory variables, εit is

a transitory error term, Vi is an unobservable individual-specific effect, and θ ≡ (θ1, θ2) is

the parameter to be estimated. The functions g1 and g2 may be specified by users, such as

g1 (χ, ν; θ1) = max (0, χ+ ν) and g2 (X ′it, Yit−1; θ2) = X ′itβ+ γYit−1, etc. The specifications of

g2 can contain time trends, allowing nonlinear relationships such as quadratics or interactions

terms. One of the difficulties of distinguishing between structures of Model (1) from observed

samples is that the explanatory variables, (X ′it, Yit−1, Vi), and the transitory error term, εit,

are not independently distributed. Assume that a function of variables in the past can purge

the statistical dependence that may exist between the explanatory variables and the transitory

error term εit in Model (1).

Assumption 2.1. (Exogenous Shocks) Set ηit as an unobserved serially-correlated component

in the past such that ηit = ϕ
(
{Xiτ , Yiτ−1, εiτ}τ=0,1,...,t−1

)
for some function ϕ. Assume that

a transitory random shock ξit is independent of {Xiτ , Yiτ−1, Vi, εiτ−1} for any τ ≤ t. Then,

the transitory error term εit has the following decomposition

εit = ηit + ξit. (2)

Plugging Eq. (2) into Model (1) leads to

Yit = g1

(
g2

(
X ′it, Yit−1; θ2

)
, Vi + ηit + ξit; θ1

)
≡ g1

(
g2

(
X ′it, Yit−1; θ2

)
, Uit + ξit; θ1

)
, (3)

where Uit = Vi + ηit is an unobserved covariate. To describe every structure of Model (3) by

a parameter, assume that the distribution of ξit has a semi-parametric representation. This
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effectively reduces the identification problem to identify a set of parameters.2 This framework

leads to the following definitions.3

Definition 2.1. Let Θα be a parameter space and let F (ξ;α) be a proper distribution function.

If dF (ξ;α0) is the true distribution, then dF (ξ;α) is correctly specified at α0. The parameter

point α0 is globally identifiable if there exists no other α ∈ Θα such that with probability 1,

dF (ξ;α) = dF (ξ;α0), where the measure is taken with respect to α0.

Definition 2.2. The parameter point α0 is locally identifiable if there exists an open neigh-

borhood of α0 containing no other α such that with probability 1, dF (ξ;α) = dF (ξ;α0), where

the measure is taken with respect to α0.

If α0 is globally identifiable then it is locally identifiable.

Assumption 2.2. (Semi-parametric Distribution) The semi-parametric distribution of the

transitory random shock dF (ξit;α) is known and is correctly specified at an unknown α0. The

parameter point α0 is locally identifiable.

Because g1 is strictly increasing in its second argument, the exogeneity of ξit makes it

possible to obtain

Fξit;α (ξ) = FYit|Xit,Yit−1,Uit

(
g1

(
g2

(
X ′it, Yit−1; θ2

)
, Uit + ξ; θ1

)
|Xit, Yit−1, Uit

)
, (4)

or

g1

(
g2

(
X ′it, Yit−1; θ2

)
, Uit + ξ; θ1

)
= F−1

Yit|Xit,Yit−1,Uit;θ
(Fξit;α (ξ) |Xit, Yit−1, Uit; θ) , (5)

if the inverse of FYit|Xit,Yit−1,Uit exists and θ ≡ (θ1, θ2, α)′. Thus, according to Assumptions

2.1 and 2.2, there is a unique conditional distribution associated with each structure in the

censored dynamic panel data Model (3) and the identification of the censored dynamic panel

data models (1) is implied by that of the distribution of Yit conditional on (Xit, Yit−1, Uit) (i.e.,

fYit|Xit,Yit−1,Uit;θ). Given this semi-parametric representation, the identification problem is to

find conditions such that a true underlying parameter θ0 can be distinguished on the basis of

2The parameters considered are potentially infinite-dimensional ones. We assume a parameter is constituted
of two components, a finite-dimensional parameter vector, and a potentially infinite-dimensional nuisance
parameter.

3The definitions can be found in Bowden (1973).
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sample observations. The conditional PDF fYit|Xit,Yit−1,Uit;θ corresponding to FYit|Xit,Yit−1,Uit;θ

is called the semi-parametric censored density function in this paper. We introduce two

examples to highlight this important connection. Suppose F· and f· denote the CDF and the

PDF of an independent random shock, respectively.

Example 1 (Dynamic Censored Model with the Lagged Dependent Variable): Assume

g1 (χ, ν; θ1) = max (0, χ+ ν).

Yit = max
{

0, g2

(
X ′it, Yit−1; θ2

)
+ Uit + ξit

}
with ∀i = 1, ..., N ; t = 1, ..., T − 1. (6)

The semi-parametric censored density function is

fYit|Xit,Yit−1,Uit;θ = Fξit;α
(
−g2

(
X ′it, Yit−1; θ2

)
− Uit

)1(Yit=0)

× fξit;α
(
Yit − g2

(
X ′it, Yit−1; θ2

)
− Uit

)1(Yit>0)
. (7)

Example 2 (Dynamic Log Hurdle Model with the Lagged Dependent Variable): Define a

binary indicator variable dit = 1 (g3 (X ′it, Yit−1; θ1) + ςit ≥ 0) where 1 (·) is the 0-1 indicator

function. Suppose that Yit > 0 is observed for dit = 1 and Yit = 0 for dit = 0. When Yit > 0,

Yit = g2

(
X ′it, Yit−1; θ2

)
+ Uit + ξit with ∀i = 1, ..., N ; t = 1, ..., T − 1. (8)

The conditional distribution of interest is

fYit|Xit,Yit−1,Uit;θ

= Fςit
(
−g3

(
X ′it, Yit−1; θ1

)
− Uit

)1(Yit=0)
{

(1− Fςit
(
−g3

(
X ′it, Yit−1; θ1

)
− Uit

)
)

× fξit;α
(
log(Yit)− g2

(
X ′it, Yit−1; θ2

)
− Uit

) 1

Yit

}1(Yit>0)
. (9)

Many nonlinear dynamic panel data models, such as dynamic discrete choice models, can be

converted into their corresponding semi-parametric density functions. However, a discrete

dependent variable may incur a very strong restriction that forbids a continuously distributed

unobserved covariate. These examples satisfy the identification assumptions when the unob-

served covariate is assumed to be continuously distributed.

A number of economic optimization studies have presented empirical applications of these
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censored dynamic panel data models, where the dependent variables Yit represents the amount

of insurance coverage chosen by an individual, annual women’s labor supply, a firm’s expen-

ditures on R&D, or annual individual health expenditures. In both examples, the models

contain the lagged censored dependent variables in the right-hand side(RHS), ruling out top-

coded censored models that contain a lagged value of a latent variable. Because piles of the

dependent variable at zero can be regarded as optimal solutions of utility maximizing be-

havior, these models are often called corner solution models with lagged censored dependent

variables.

2.1. General Identification

Consider the semi-parametric censored density function:

fYit|Xit,Yit−1,Uit;θ(yit|xit, yit−1, uit), (10)

where Yit is the dependent variable for an individual i, and the explanatory variables include

a lagged dependent variable, a set of possibly time-varying explanatory variables Xit, and

the unobserved covariate Uit. As discussed earlier, the identification of this semi-parametric

censored density function leads to the identification of certain types of censored dynamic panel

data models. Assume that θ0 ∈ Θ is local identifiable. In other words, θ0 is a unique value of

θ in an open neighborhood of θ0, which specifies the exact structure of the model. Consider

a panel data containing two periods, {Yit, Xit, Yit−1, Xit−1}i for i = 1, 2, ..., N . Assume that

for each i, (Yit, Xit, Yit−1, Xit−1) is an independent random draw from a bounded distribution

fYit,Xit,Yit−1,Xit−1 . The law of total probability leads to the following,

fYit,Xit,Yit−1,Xit−1 =

∫
fYit|Xit,Yit−1,Uit;θ0fXit,Yit−1,Xit−1,Uit;θ0duit (11)

where fXit,Yit−1,Xit−1,Uit;θ0 = fXit,Yit−1,Xit−1,Uit is the joint density function of variables (xit,

yit−1, xit−1, uit). Let Yit, Xit, and Uit be the support of random variables Yit, Xit, and Uit, re-

spectively. Set L2(Y) = {h(·) :
∫
Y |h(y)|2dy <∞} and L2(U , ω) = {h(·) :

∫
U |h(u)|2ω(u)du <

∞, and
∫
U ω(u)du < ∞}. Note the weighted L2-space, L2(U , ω), contains a constant func-

tion (i.e., c(u) = c ∀u ∈ U). The key idea of this identification method is to extend Eq. (11)

to the semi-parametric censored density function (10) over a proper subset of Yit. The first
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step is to construct fXit,Yit−1,Xit−1,Uit;θ and avoid an unwanted restriction.4 Set Y +
it as the

argument of yit in Ỹit ( Yit

fY +
it ,Xit,Yit−1,Xit−1︸ ︷︷ ︸

Observed from Data

=

∫
fY +

it |Xit,Yit−1,Uit;θ︸ ︷︷ ︸
Semi-parametric Specification

fXit,Yit−1,Xit−1,Uit;θduit. (12)

Because the observable density function fY +
it ,Xit,Yit−1,Xit−1

in the LHS and the semi-parametric

censored density function fY +
it |Xit,Yit−1,Uit;θ

are known, it is possible to construct a semi-

parametric joint density function fXit,Yit−1,Xit−1,Uit;θ using Eq. (12). Given (xit, yit−1) and a

parameter θ, define an integral operator as follows:

Lf
Y+
it
|Xit,Yit−1,Uit

;θ : L2(Uit, ω)→ L2(Ỹit) with (13)

(Lf
Y+
it
|Xit,Yit−1,Uit

;θh)(y+
it ) =

∫ fY +
it |Xit,Yit−1,Uit;θ

(y+
it |xit, yit−1, uit)

ω(uit)
h(uit)ω(uit)duit.

If the integral operator Lf
Y+
it
|Xit,Yit−1,Uit

;θ is invertible for each θ, then Eq. (12) suggests that

the semi-parametric joint density function can be obtained by

fXit,Yit−1,Xit−1,Uit;θ ≡ L
−1
f
Y+
it
|Xit,Yit−1,Uit

;θ(fY +
it ,Xit,Yit−1,Xit−1

). (14)

Plugging the true parameter θ0 into this equation results in

fXit,Yit−1,Xit−1,Uit;θ0 ≡ L
−1
f
Y+
it
|Xit,Yit−1,Uit

;θ0
(fY +

it ,Xit,Yit−1,Xit−1
)

by Eq. (11). The semi-parametric joint density function still achieves the true joint density

function at the population parameter θ0 or it is correctly specified at α0. The concept of

completeness provides a sufficient condition for the invertibility of the integral operator using

the semi-parametric censored density function as a kernel. The following definition presents

this completeness.

Definition 2.3. A density function f(y|u) satisfies a completeness condition if for h(u) ∈
4Extend Eq. (11) to θ by fYit,Xit,Yit−1,Xit−1 =

∫
fYit|Xit,Yit−1,Uit;θfXit,Yit−1,Xit−1,Uit;θduit over the whole

Yit. Integrating out yit over Yit results in fXit,Yit−1,Xit−1 =
∫
fXit,Yit−1,Xit−1,Uit;θduit. This suggests that

fXit,Yit−1,Xit−1,Uit;θ loses the variation over θ after integrating out the observed covariate Uit.
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L2(U , ω) such that

∫
h(u)f(y|u)ω(u)du = 0 for all y (15)

then h(u) = 0 almost everywhere. In other words, there is no nonzero function in L2(U , ω)

with zero integration for each function in the family of the density functions {f(y|u) : y ∈ Y}.

By switching the roles of y and u and dropping ω, it is possible to define {f(y|u) : u ∈ U} as

complete in L2(Y), and this definition can be generalized to function forms such as f(y, u).

Assumption 2.3. (Dependence between Yit and Uit) For each θ ∈ Θ and fixed (xit, yit−1), the

family of the semi-parametric censored density functions { 1
ω(uit)

fY +
it |Xit,Yit−1,Uit;θ

: y+
it ∈ Ỹit}

is complete over L2(Uit, ω).

Assumption 2.3 implies that a cardinality restriction in that the cardinality of Uit is less

than the cardinality of Ỹit. Thus, if Uit is a finite discrete set, then the proposed method

may apply to a dynamic discrete choice model in which the dependent variable Yit takes more

discrete values. However, because of inaccessibility of units of measurement of the unobserved

covariate Uit, to some extent it is restrictive to assume Uit is discrete.5 Therefore, allowing the

unobserved covariate Uit to take continuous values is more appealing and this study focuses

on censored dynamic panel data models.

Suppose that (Lf
Y+
it
|Xit,Yit−1,Uit

;θh1)(y+
it ) = (Lf

Y+
it
|Xit,Yit−1,Uit

;θh2)(y+
it ) for all y+

it ∈ Ỹit. As-

sumption 2.3 guarantees that h1 = h2 (i.e., Lf
Y+
it
|Xit,Yit−1,Uit

;θ is one-to-one). Hence, the

operators Lf
Y+
it
|Xit,Yit−1,Uit

;θ are invertible for each θ and (xit, yit−1). This assumption requires

dependence between Yit and Uit because the independence between Yit and Uit violates As-

sumption 2.3. Although Assumption 2.3 ensures the existence of the semi-parametric joint

density function, fXit,Yit−1,Xit−1,Uit;θ, it may not be identifiable. The variation of the param-

eter θ in fXit,Yit−1,Xit−1,Uit;θ might be lost in the sense that for any open neighborhood of θ0,

there exists some θ1 6= θ0 such that fXit,Yit−1,Xit−1,Uit;θ1 = fXit,Yit−1,Xit−1,Uit;θ0 . In other words,

fXit,Yit−1,Xit−1,Uit;θ is not locally identifiable. In this case, applying the inverse transformation

is useless because the parameter of interest θ is not distinguished in the new transformed joint

density functions, preventing the identification of the parameter. The assumption prevents

this loss.
5The term Uit is a composite error term whose support is involved with the supports of Vi and ηit. Assuming

discreteness suggests that both Vi and ηit are discrete, which may be a strong assumption.
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Assumption 2.4. Given each (xit, yit−1), suppose fXit,Yit−1,Xit−1 > 0. Assume the following

conditions:

(i)(Dependence between Yit and Xit−1) The family of the observable conditional density

functions over Xit−1, {fY +
it |Xit,Yit−1,Xit−1

: xit−1 ∈ Xit−1}, is complete over L2(Ỹit).

(ii)(Dependence between Yit and Uit) The family of the semi-parametric censored density

function over Uit, {fY +
it |Xit,Yit−1,Uit;θ0

: uit ∈ Uit}, is complete over L2(Ỹit)

This assumption warrants several comments. First, the conditional density functions in

the statement are both observable. Second, part (i) suggests that Xit cannot be constant over

time. If Xit is constant across time, then Xit = Xit−1 and fY +
it |Xit,Yit−1,Xit−1

= fY +
it |Xit,Yit−1

which clearly violates the completeness in part (i). Finally, similar to Assumption 2.3, part

(ii) requires that, the cardinality of Ỹit is less than the cardinality of Uit. Combining the

cardinality restrictions in Assumption 2.3 and Assumption 2.4(ii) shows that the cardinality

of Ỹit is equal to the cardinality of Uit. This restriction is compatible with both the dependent

variable Yit and the unobserved covariate Uit taking continuous values.

Lemma 2.1. (Applying the inverse) Under Assumptions 2.3-2.4, the semi-parametric joint

density fXit,Yit−1,Xit−1,Uit;θ is correctly specified at θ0 and the parameter θ0 is locally identifiable

(i.e., there is an open neighborhood of θ0 containing no other θ such that fXit,Yit−1,Xit−1,Uit;θ =

fXit,Yit−1,Xit−1,Uit;θ0).

Proof: See the appendix.

Because fXit,Yit−1,Xit−1,Uit;θ contains the unobserved component Uit, we need to integrate

it out to acquire an observable density function. Set

f̃Xit,Yit−1,Xit−1;θ(xit, yit−1, xit−1) ≡
∫
fXit,Yit−1,Xit−1,Uit;θ(xit, yit−1, xit−1, uit)duit. (16)

To identify θ from the integrated semi-parametric density function f̃Xit,Yit−1,Xit−1;θ, it is nec-

essary to examine whether f̃Xit,Yit−1,Xit−1;θ can be correctly specified at θ0 and the parameter

θ0 is locally identifiable after applying the integration. This integration step might impose

too many restrictions on the parameters and degenerate the variation of the function over

its parameter space. Thus, it is necessary to rule out these degenerated cases. The following

condition maintains the nontrivial semi-parametric representation of f̃Xit,Yit−1,Xit−1;θ.
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Assumption 2.5. (Variation of parameters around θ0) The family of the derivative of the

semi-parametric censored density functions with respect to θ, { ∂∂θfY +
it |Xit,Yit−1,Uit;θ0

: uit ∈ Uit},

is complete over L2(Ỹit).

We summarize the results of the nontrivial transformation of the semi-parametric censored

density function after the integration.

Lemma 2.2. (Integrating out) Under Assumptions 2.3-2.5, the integrated semi-parametric

joint density f̃Xit,Yit−1,Xit−1;θ is correctly specified at θ0 and the parameter θ0 is locally identi-

fiable.

Proof: See the appendix.

At this point in the process, the unobserved component of the semi-parametric censored

density function (10) has been transformed out and the parameter θ of the function be-

comes the parameter of the observable semi-parametric function f̃Xit,Yit−1,Xit−1;θ. However, if

f̃Xit,Yit−1,Xit−1;θ does not integrate to unity (with respect to the measure dxitdyit−1dxit−1), it

is not a candidate of the semi-parametric family of PDFs for fXit,Yit−1,Xit−1 and the standard

MLE cannot be applied to f̃Xit,Yit−1,Xit−1;θ. To obtain a valid semi-parametric family of PDFs,

perform the following normalization step

fXit,Yit−1,Xit−1;θ ≡
f̃Xit,Yit−1,Xit−1;θ∫ ∫ ∫

f̃Xit,Yit−1,Xit−1;θdxitdyit−1dxit−1

. (17)

Similar to the previous discussion, it is necessary to show that the PDF of observables

fXit,Yit−1,Xit−1;θ is correctly specified at θ0 and the parameter θ0 is locally identifiable af-

ter this normalization. The following assumption and lemma demonstrate the existence of a

nontrivial θ0 after normalization.

Assumption 2.6. (Dependence between Yit and Xit−1) Assume that the family of the observ-

able conditional density functions { ∂
∂xit−1

fY +
it |Xit,Yit−1,Xit−1

: xit−1 ∈ Xit−1} is complete over

L2(Ỹit) for each xit, yit−1.

If Xit−1 is discrete, the derivative can be replaced with the difference.6 Notice that both

Assumption 2.4(i) and Assumption 2.6 are related to the observable conditional distribution

6The appendix presents the discussion of a discrete case.
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fY +
it |Xit,Yit−1,Xit−1

and Assumption 2.6 implies Assumption 2.4(i).7 Hence, the two assump-

tions are compatible and it is only necessary to verify the completeness in Assumption 2.6.

The assumption rules out the cases that fY +
it |Xit,Yit−1,Xit−1

= f1(Y +
it , Xit, Yit−1)f2(Xit−1) or

fY +
it |Xit,Yit−1,Xit−1

= f1(Y +
it )f2(Xit, Yit−1, Xit−1).

Lemma 2.3. (Normalization) Under Assumptions 2.3, 2.4(ii) and 2.5-2.6, the PDF of ob-

servables after normalization, fXit,Yit−1,Xit−1;θ, is correctly specified at θ0 and the parameter

θ0 is locally identifiable.

Proof: See the appendix.

The nontrivial transformation includes applying the inverse of an integral operator using

fYit|Xit,Yit−1,Uit;θ as a kernel, integrating out the unobserved covariate, and normalization.

After these three steps of transformation associated with the completeness of PDFs, the

semi-parametric PDFs of observables {fXit,Yit−1,Xit−1;θ : θ ∈ Θ} is correctly specified at θ0

and the parameter θ0 is locally identifiable under Assumptions 2.3-2.6. To distinguish the

parameters of interest θ0 from the parameter space Θ on the basis of sample information, use

the Kullback-Leibler information criterion

K(θ) = E

[
log

(
fXit,Yit−1,Xit−1;θ(xit, yit−1, xit−1)

fXit,Yit−1,Xit−1(xit, yit−1, xit−1)

)]
(18)

where expectation is taken with respect to fXit,Yit−1,Xit−1 . Applying the standard framework

of the identifiability criterion of maximum likelihood estimation (MLE) produces the following

results.

Theorem 2.1. Suppose that K(θ) = 0 has a unique solution at θ = θ0 in Θ. Under Assump-

tions 2.3, 2.4(ii) and 2.5-2.6, the semi-parametric censored density function fYit|Xit,Yit−1,Uit;θ

and the joint density function fXit,Yit−1,Xit−1,Uit can then be identified given the distribution

of the two-period observable variables (yit, xit, yit−1, xit−1) for i = 1, 2, ..., N .

In addition to the Kullback-Leibler information of classical statistics, the identification re-

sult is based on the completeness of the families of known PDFs fYit|Xit,Yit−1,Uit;θ corresponding

7Suppose that h ∈ L2(Ỹit) and
∫
h(y+it)fY +

it |Xit,Yit−1,Xit−1
dy+it = 0 for any Xit−1. The inte-

gration does not involve Xit−1 and we can take derivative with respect to Xit−1. This leads to∫
h(y+it)

∂
∂xit−1

f
Y +
it |Xit,Yit−1,Xit−1

dy+it = 0 for any Xit−1. If { ∂
∂xit−1

f
Y +
it |Xit,Yit−1,Xit−1

: xit−1 ∈ Xit−1} sat-

isfies Assumption 2.6, then h = 0, which implies that Assumption 2.4(i) holds.
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to censored dynamic panel data models and observed conditional density functions between

the dependent and explanatory variables fYit|Xit,Yit−1,Xit−1
. For some semi-parametric speci-

fications, the conditions of completeness are easy to verify or draw inferences from samples.

The following sections provide detailed discussions.8

Theorem 2.1 provides the identification of the parameter θ. However, because Uit does not

have meaningful units of measurement, it is not apparent what values of Uit we should use.

In nonlinear models, estimating the average partial effects of explanatory variables is more

attractive than estimating parameters. Thus, this study introduces the average structure

function (ASF) by averaging a scalar function of yit, ω (yit), across the distribution of Uit in

the population. Let (Xit, Yit−1) be a given value of the explanatory variables, whose average

structure function is

µ(Xit, Yit−1) ≡ EUit [EYit [ω (yit) |Xit, Yit−1, Uit]]

=

∫
Uit

(∫
Yit

ω (yit) fYit|Xit,Yit−1,Uitdyit

)
fUitduit. (19)

The marginal distribution of the unobserved covariate Uit is also identified by the integration

of the joint density function:

fUit =

∫
Xit

∫
Yit−1

∫
Xit−1

fXit,Yit−1,Xit−1,Uitdxitdyit−1dxit−1. (20)

Combining the identification results of fYit|Xit,Yit−1,Uit and fUit provides the identification of

the average structure function µ(Xit, Yit−1). This indicates that the average partial effect

is also identified because the average partial effect can be defined by taking derivatives or

differences of ASF in Eq. (19) with respect to elements of (Xit, Yit−1). This yields the

identification of the average partial effect.

Corollary 2.1. Under Assumptions 2.3, 2.4(ii) and 2.5-2.6, the average partial effect defined

as derivatives or differences of Eq. (19) is identified by a two-period panel data,
{
Yit, Xit, Yit−1,

Xit−1

}
for i = 1, 2, ..., N .

The identification condition in Theorem 2.1 that the log-likelihood has a unique maximum

8Section 3 focuses on normal distributed ξit in Examples 1 & 2 satisfying the completeness assumptions with
two type of DGPs, whereas subsection 4.3 presents a test concerning the completeness of fYit|Xit,Yit−1,Xit−1

in Assumptions 2.6.
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at the true parameter θ0. In a parametric likelihood case,9 the local identifiability of the

unknown parameter vector is equivalent to the non-singularity of the information matrix

under weak regularity conditions. If the true parameter θ0 is a critical point of K(θ0), then

a sufficient condition of the uniqueness of θ0 is K ′′(θ0) is negative semidefinite. The second

derivative of K(θ0) in the scalar case is

K ′′(θ0) = −E

( ∂
∂θfXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

fXit,Yit−1,Xit−1

)2
 (21)

where the expression of ∂
∂θfXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

appears in Eq. (67). The vector case of K ′′(θ0)

is K ′′(θ0) = [Klm], where

Klm = −E

[(
∂
∂θl
fXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

∂
∂θm

fXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

f2
Xit,Yit−1,Xit−1

)]
, (22)

where ∂
∂θl
fXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

is equal to the term in Eq. (67) after replacing with the partial

derivative ∂
∂θl

. These results are sufficient conditions for the identification.

Corollary 2.2. Suppose that in an open neighbor of θ0 in Θ, the second derivative of the

Kullback-Leibler function K(θ) in Eq. (21) or (22) is negative definite. Under Assumptions

2.3, 2.4(ii) and 2.5-2.6,, the semi-parametric censored density function fYit|Xit,Yit−1,Uit;θ and

the joint density function fXit,Yit−1,Xit−1,Uit can be identified given the distribution of the two-

period observable variables (yit, xit, yit−1, xit−1) for i = 1, 2, ..., N .

Proof: See the appendix.

3. Examples

Consider the two examples presented at the beginning of Section 2. This section shows when

the completeness conditions in Section 2 hold in these cases. Assumptions 2.3, 2.4(ii), and 2.5

are related to the completeness of the variant forms of the semi-parametric censored density

function fY +
it |Xit,Yit−1,Uit;θ

. Equations (7) and (9) show that the completeness of the semi-

parametric censored density functions over positive Yit in the two motivating examples are

connected to the PDF of the random shock ξit. Therefore, this section focuses on what kind of

9The parameter θ only contains a finite-dimensional component.
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semi-parametric distribution assumptions in ξit make these examples satisfy the completeness

assumptions. For simplicity, assume the domains of ξit and Uit are R.

Most of the interesting leading cases for Models (7) and (9) occur when the random shock

ξit is assumed to have an independent Gaussian white noise process.10 For simplicity, assume

g2 (X ′it, Yit−1; θ2) = X ′itβ+γYit−1. In this case,, the semi-parametric censored density function

fYit|Xit,Yit−1,Uit is fully parameterized and correctly specified at θ0. The specifications of the

models under the normality assumption are as follows:

Semi-parametric Dynamic Tobit Models:

Assuming that ξit ∼ N(0, σξ), Eq. (7) leads to

fYit|Xit,Yit−1,Uit;θ =

[
1− Φ

(
X ′itβ + γYit−1 + Uit

σξ

)]1(Yit=0)

×[
1

σξ
φ

(
Yit −X ′itβ − γYit−1 − Uit

σξ

)]1(Yit>0)

, (23)

where θ = (β, γ, σ2
ξ )
T .

Semi-parametric Dynamic Lognormal Hurdle Models:

Let g3 (X ′it, Yit−1; θ1) = X ′itβd + γdYit−1. Suppose that ςit ∼ N(0, 1) and ξit ∼ N(0, σξ).

Equation (9) then becomes

fYit|Xit,Yit−1,Uit;θ

=
(
1− Φ

(
X ′itβd + γdYit−1 + Uit

))1(Yit=0)
{

Φ
(
X ′itβd + γdYit−1 + Uit

)
× φ

(
log(Yit)−X ′itβ − γYit−1 − Uit

σξ

)
1

σξYit

}1(Yit>0)

, (24)

where θ = (βd, γd, β, γ, σξ)
T .

The normality assumption makes it possible to verify the completeness of the semi-

parametric censored density function fY +
it |Xit,Yit−1,Uit;θ

in Assumptions 2.3, 2.4(ii), and 2.5

directly. It is then necessary to show that the semi-parametric censored density functions

(23) and (24) satisfy these completeness assumptions. To do this, introduce the completeness

of normal distributions and exponential families in L2 from Hu and Shiu (2011b) which are

10There may exist more different types of the distributions for the random shock ξit and the normality
assumption here only illustrates the application of the results in 2.1.
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variants of the results of Newey and Powell (2003).11

Lemma 3.1. Suppose that the distribution of u conditional on y is N(a+by, σ2) for b, σ2 > 0

and the support of y contains an open set. In this case, E [h(·)|y] = 0 for any x ∈ Y implies

h(u) = 0 almost everywhere in U ; equivalently, {f(u|y) : y ∈ Y} is complete in L2(U).

Lemma 3.2. Let f(u|y) = s(u)t(y) exp [µ(y)τ(u)], where s(u) > 0, τ(u) is one-to-one in u,

and the support of µ(y), Y, contains an open set. In this case, E [h(·)|y] = 0 for any y ∈ Y

implies h(u) = 0 almost everywhere in U ; equivalently, the family of conditional density

functions {f(u|y) : y ∈ Y} is complete in L2(U).

Lemma 3.1 implies that for an open set Oy ⊂ Y, {φ
(
u−(a+by)

σ

)
: y ∈ Oy} is complete in

L2(U). This completeness can be extended to a weighted space L2(U , ω) for an appropriately

chosen ω. Set ω(u) = e−
u2

2σ2 . Suppose that h ∈ L2(U , ω) such that for y ∈ Oy,

∫
h(u)φ

(
u− (a+ by)

σ

)
ω(u)du = 0.

Multiplying the equation by e
1

4σ2
(a+by)2 results in

0 =

∫
h(u)φ

(
u− (a+ by)

σ

)
ω(u)e

1
4σ2

(a+by)2du.

It follows that

0 =

∫
h(u)ω(u)

1
2φ

(
u− 1

2(a+ by)

σ/
√

2

)
du

for y ∈ Oy. Note h(u)ω(u)
1
2 ∈ L2(U) because h ∈ L2(U , ω). Lemma 3.1 also implies that

{φ
(
u− 1

2
(a+by)

σ/
√

2

)
: y ∈ Oy} is complete L2(U). Applying this result to the equation suggests

that h(u) = 0 almost everywhere. Therefore, {φ
(
u−(a+by)

σ

)
: y ∈ Oy} is complete in L2(U , ω).

Based on the information about the completeness of normal distributions, it is possible to

investigate the completeness condition of Models (23) and (24).

Semi-parametric Dynamic Tobit Models:

11See Theorems 2.2 and 2.3 in Newey and Powell (2003) for details. More general discussions of completeness
can be found in D’Haultfoeuille (2011), Andrews (2011), and Hu and Shiu (2011b).
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Set Ỹit = R+. Given θ ∈ Θ, and (xit, yit−1),

fY +
it |Xit,Yit−1,Uit;θ

=
1

σξ
φ

(
Y +
it −X ′itβ − γYit−1 − Uit

σξ

)
. (25)

Semi-parametric Dynamic Lognormal Hurdle Models:

Given θ ∈ Θ, and (xit, yit−1),

fY +
it |Xit,Yit−1,Uit;θ

= Φ
(
X ′itβd + γdYit−1 + Uit

)
φ

(
log(Y +

it )−X ′itβ − γYit−1 − Uit
σξ

)
1

σξY
+
it

(26)

The completeness conditions in Section 2 are all associated with the dependent variables

Y +
it and the unobserved covariate Uit. Therefore, it is necessary to investigate which functional

forms connect these two variables. In these models, the dependent variables Y +
it and the

unobserved covariate Uit are both inside the standard normal PDF φ. It follows that semi-

parametric dynamic tobit models satisfies Assumptions 2.3 and 2.4(ii) by switching the role

between Y +
it and Uit to the result of Lemma 3.1. Because the standard normal CDF Φ is

positive, the semi-parametric dynamic lognormal hurdle models also fulfill Assumptions 2.3

and 2.4(ii) using Lemma 3.1 and a change of variable.12

Assumption 2.5 requires that the partial derivatives of the semi-parametric censor density

function with respect to all components of the parameter θ be complete. According to the

functional forms in Eqs. (25) and (26) and use of a change of variable, two types of the partial

derivatives of fY +
it |Xit,Yit−1,Uit;θ0

should be considered. The first one is the partial derivative

with respect to the components of β and γ, and the second one is σξ. The completeness of the

first type can be reduced to the completeness of the family of {(y − c− u)φ
(
y−c−u
σξ

)
: u ∈ U}

in L2(Ỹ) for some constant c. Similarly, the completeness of the second type depends on

the family of {
(
σ2
ξ − (y − c− u)2

)
φ
(
y−c−u
σξ

)
: u ∈ U} in L2(Ỹ) for some constant c. The

following lemma provides the completeness of the families of variant of the normal PDF φ.

Lemma 3.3. Suppose the domain U contains an open set. For a constant c, the families of

functions {(y − c− u)φ
(
y−c−u
σξ

)
: u ∈ U} and {

(
σ2
ξ − (y − c− u)2

)
φ
(
y−c−u
σξ

)
: u ∈ U} are

12Use Ẏit = log(Y +
it ) and then dẎit = 1

Y +
it

dY +
it .
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complete in L2(Ỹ).

Proof: See the appendix.

This discussion also applies to models with heteroskedasticity, which allow more general

functional form in corner solution models. If ξit has a heteroskedastic normal distribution

such that ξit ∼ N(0, h(X ′it, Yit−1;σξ)) then the semi-parametric censored density functions in

Eqs. (23) and (24) respectively become

fYit|Xit,Yit−1,Uit;θ =

[
1− Φ

(
X ′itβ + γYit−1 + Uit
h(X ′it, Yit−1;σξ)

)]1(Yit=0)

×[
1

h(X ′it, Yit−1;σξ)
φ

(
Yit −X ′itβ − γYit−1 − Uit

h(X ′it, Yit−1;σξ)

)]1(Yit>0)

, (27)

and

fYit|Xit,Yit−1,Uit;θ

=
(
1− Φ

(
X ′itβd + γdYit−1 + Uit

))1(Yit=0)
{

Φ
(
X ′itβd + γdYit−1 + Uit

)
× φ

(
log(Yit)−X ′itβ − γYit−1 − Uit

h(X ′it, Yit−1;σξ)

)
1

h(X ′it, Yit−1;σξ)Yit

}1(Yit>0)

. (28)

Adding the heterogeneous structure does not affect the functional form, which dominates

both the dependent variables Y +
it and the unobserved covariate Uit. The derivations in ho-

moskedastic cases can be extended to heteroskedastic cases without difficulty.

The assumptions not related to the semi-parametric censored density functions include

Assumptions 2.4(i) and 2.6. These assumptions require functional form restrictions on the

conditional density function fY +
it |Xit,Yit−1,Xit−1

of observables. With the well-known complete-

ness from the normal distributions and the exponential families in Lemma 3.1 and Lemma

3.2, it is possible to construct two types of fY +
it |Xit,Yit−1,Xit−1

satisfying Assumptions 2.4(i)

and 2.6. Assumption 2.6 implies Assumption 2.4(i). Given a fixed (Xit, Yit−1), suppose Xit−1

contains an open set. If fY +
it |Xit,Yit−1,Xit−1

= φ(Y +
it − ψ1(Xit, Yit−1; θ1)− βψ2(Xit−1)), then

∂

∂Xit−1
fY +

it |Xit,Yit−1,Xit−1
(29)

= βψ′2(Xit−1)
(
Y +
it − ψ1(Xit, Yit−1; θ1)− βψ2(Xit−1)

)
φ(Y +

it − ψ1(Xit, Yit−1; θ1)− βψ2(Xit−1)).
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A sufficient condition to satisfy Assumption 2.6 for this specification of fY +
it |Xit,Yit−1,Xit−1

is

βψ′2(Xit−1) 6= 0 and the range of ψ2 contains an open set, according to Lemma 3.3. On the

other hand, consider

fY +
it |Xit,Yit−1,Xit−1

= s(Y +
it , Xit, Yit−1)t(Xit, Yit−1, Xit−1) exp

[
µ(Xit, Yit−1, Xit−1)τ(Y +

it , Xit, Yit−1)
]

where s(Y +
it , Xit, Yit−1) > 0, τ(Y +

it , Xit, Yit−1) 6= 0 is one-to-one in Y +
it , and the support of

µ contains an open set such that ∂
∂Xit−1

µ(Xit, Yit−1, Xit−1) 6= 0. This conditional density

function also fulfills Assumption 2.4(i) and Assumption 2.6.

The examples in this section rely on the normality of the random shock ξit and it is

possible to relax the normality assumption. However, in limited dependent variable models,

the key issue is comparing estimated average partial effects across different models rather than

parameter estimates. These models are likely to do an appropriate job of providing average

partial effects under more general settings.

4. Semiparametric Estimation and Inference

The semi-parametric censored density function (10) identified in Theorem 2.1 can be deter-

mined using Eq. (12). Optimizing certain empirical criteria in general parameter spaces

produces a sieve maximum likelihood estimator (sieve MLE). The integral Eq. (12) suggests

a corresponding sieve MLE:

(θ̂, f̂1)T (30)

= arg max
(θ,f1)T∈An

1

N

N∑
i=1

ln

∫
fYit|Xit,Yit−1,Uit;θ(yit|xit, yit−1, uit)f1(xit, yit−1, xit−1, uit; θ)duit,

using a two-period i.i.d. sample
{
yit, xit , yit−1, xit−1

}N
i=1

.13 The space An is a sequence of

approximating sieve spaces containing sieve approximations of the parameter because maxi-

mization over the whole parameter spaceA is undesirable. In addition, θ is a finite-dimensional

parameter of interest and f1 is a potentially infinite-dimensional nuisance parameter or non-

13A general review of semi-parametric sieve MLE appears in Shen (1997), Chen and Shen (1998), and Ai
and Chen (2003).
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parametric component that varies with θ. The following subsection provides a detailed im-

plementation of sieve approximations of the nonparametric component f1.

4.1. Restrictions on Sieve Coefficients

As for a nonparametric series estimator of fXit,Yit−1,Xit−1,Uit;θ, constructing a sieve approxi-

mating series that varies with the model parameter θ is an essential issue for the proposed

sieve MLE. The sieve expression of fXit,Yit−1,Xit−1,Uit;δ1 in dynamic censored models with a

lagged dependent variable consists of two different parts, Yit−1 = 0 and Yit−1 > 0, and these

parts can be build according to their numerical structures. Set fYit−1=0 = Prob(Yit−1 = 0).

A way to split these two parts is

fXit,Yit−1,Xit−1,Uit;θ,δ1 =

 fXit,Xit−1,Uit|Yit−1=0fYit−1=0 if y = 0,

fXit,Yit−1>0,Xit−1,Uit if y > 0.

The corresponding density restrictions are

∫
fXit,Xit−1,Uit|Yit−1=0dxitdxit−1duit = 1, and

fYit−1=0 +

∫
fXit,Yit−1>0,Xit−1,Uitdyit−1dxitdxit−1duit = 1.

Set z1,σξ ≡
x′itβ−x′it−1β−uit

σξ
, and z2,σξ ≡

x′itβ−uit
σξ

. For the Yit−1 = 0 part, consider

(
fXit,Xit−1,Uit|Yit−1=0

)1/2
=

in∑
i=0

jn∑
j=0

kn∑
k=0

âijkqi(z1,σξ)qj(z2,σξ)qk(
uit
σξ

).

where q′is, q
′
js, and q′ks represent the orthonormal Fourier series:

q0(z1) =
1√
l1

and qi(z1) =
1√
l1

sin(
iπ

l1
z1) or qi(z1) =

1√
l1

cos(
iπ

l1
z1),

q0(z2) =
1√
l2

and qj(z2) =
1√
l2

sin(
jπ

l2
z2) or qj(z2) =

1√
l2

cos(
jπ

l2
z2),

q0(uit) =
1√
l3
, qk(uit) =

√
2

l3
cos(

kπ

l3
uit),
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On the other hand, suppose that yit−1 ∈ (0, l4]. Write

(
fXit,Yit−1>0,Xit−1,Uit

)1/2
=

in∑
i=0

jn∑
j=0

kn∑
k=0

ln∑
l=0

ãijklq̃i(z
′
1,σξ

)q̃j(z
′
2,σξ

)q̃k(
uit
σξ

)q̃l(
yit−1

l4
),

where z′1,σξ ≡
x′itβ−γyit−1−x′it−1β−uit

σξ
, z′2,σξ ≡

x′itβ−γyit−1−uit
σξ

, and q0(z4) = 1√
l4

, ql(z4) =√
2
l4

cos( lπl4 z4).

The density restrictions for these sieve coefficients are

in∑
i=0

jn∑
j=0

kn∑
k=0

(âijk)
2 = 1 and fYit−1=0 +

in∑
i=0

jn∑
j=0

kn∑
k=0

ln∑
l=0

(ãijkl)
2 = 1. (31)

4.2. Estimating Average Partial Effects

Denote fXit,Yit−1,Xit−1,Uit;θ̂,δ1
as the sieve MLE of the initial joint distribution fXit,Yit−1,Xit−1,Uit

in the dynamic tobit model, where θ̂ is the estimated finite dimensional parameter of the

proposed sieve MLE. This parameter can be used to obtain the sieve approximations of the

marginal distribution of the unobserved covariate Uit:

f̂Uit =

∫
Xit

∫
Yit−1

∫
Xit−1

fXit,Yit−1,Xit−1,Uit;θ̂,δ1
dxitdyit−1dxit−1 (32)

Therefore, under the assumptions made in Theorem 2.1, it is possible to consistently esti-

mate average partial effects at interesting values of the explanatory variables. The average

structural functions in the dynamic tobit models are based on

µ̂(Xit, Yit−1) ≡
∫
Uit

(∫
Yit

max (0, yit) fYit|Xit,Yit−1,Uit;θ̂
dYit

)
f̂1,UitdUit

=

∫
Uit

[
Φ

(
X ′itβ̂ + γ̂Yit−1 + Uit

σ̂ξ

)
(X ′itβ̂ + γ̂Yit−1 + Uit)

+ σ̂ξφ

(
X ′itβ̂ + γ̂Yit−1 + Uit

σ̂ξ

)]
f̂1,UitdUit. (33)

The magnitude of state dependence or average partial effect from Y0 = 0 to Y1 at interesting

values of the explanatory variable Xit can be measured by the difference

µ̂(Xit, Y1)− µ̂(Xit, Y0 = 0). (34)
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On the other hand, the average partial effect (APE) of a continuous explanatory variable can

be defined using derivatives of the average structural functions in Eq. (33).

4.3. Inference

This study addresses two inference problems. One is to provide standard errors of the es-

timated finite dimensional parameter θ̂ and the other one is to test the completeness of

Assumptions 2.4(i) and 2.6. The parameter θ̂ is estimated by optimization methods for the

integrated nonlinear objective function in Eq. (30). Obtaining a formula of standard errors

for this sieve MLE estimator is somewhat complicated, but it can be done using bootstrap-

ping. Chen, Linton, and Van Keilegom (2003) studies sufficient conditions for the consistency

and asymptotic normality of a class of semiparametric optimization estimators in which the

criterion function does not obey the standard smoothness condition. Their results prove

the validity of the bootstrap method for estimating correct confidence regions for the finite

dimensional parameter θ asymptotically.

On the other hand, because the key conditional distribution fY +
it |Xit,Yit−1,Xit−1

in Assump-

tions 2.4(i) and 2.6 is observable, the conditions seem to be directly testable using both two

periods of data. However, in most cases, the exact form of the conditional distribution is not

obvious and it is difficult to test nonparametrically with continuous variables.14 To provide

more support for the validity of the condition, this study presents a test based on a parametric

setting and uses the data to estimate unknown parameters associated with the completeness

under parametric specifications. Although there are many ways to model completeness, this

study adopts a fairly flexible approach. The previous section provides an example of com-

pleteness in which fY +
it |Xit,Yit−1,Xit−1

is normally distributed. Given functions ψ1 and ψ2 such

that ψ′2 6= 0, suppose ψ2(Xit−1) contains an open set. Consider

fY +
it |Xit,Yit−1,Xit−1

= φ(Y +
it − ψ1(Xit, Yit−1; θ1)− βψ2(Xit−1)).

As shown in Eq. (29), under the parametric representation, the completeness in both As-

sumptions 2.4(i) and 2.6 depends on whether the parameter βψ′2(Xit−1) is equal to zero. The

14See Canay, Santos, and Shaikh (2011) for details.
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null hypothesis that fY +
it |Xit,Yit−1,Xit−1

fails Assumptions 2.4(i) and 2.6 is

H0 : β = 0.

When Xit, Xit−1 are vectors of covariates, it is possible to conduct these tests on continuously

distributed covariates. If we model ψ1(Xit, Yit−1; θ1) as a linear function of the regressors, a

standard t statistics to test H0 can be conducted using OLS regression.

5. Monte Carlo Simulation

This study presents the finite sample property of the proposed sieve MLE estimators based

on a Monte Carlo simulation study. The simulation design in this study is similar to the

dynamic panel data models discussed by Shiu and Hu (2010). The proposed model adopts

the following procedure:

Dynamic tobit Models with AR(1) Transitory Error:

Yit = max {β0 + β1Xit + γYit−1 + Vi + εit, 0} i = 1, ..., N ; t = 1, ..., T − 1. (35)

where Vi ∼ N(1, 1/2) and εit = ρεit−1 + ξit with ξit ∼ N(0, σ2
ξ ). The unobserved covariate

Uit = Vi + ρεit−1. As discussed earlier, the models can be transformed into fYit|Xit,Yit−1,Uit;θ

by Eq. (23). Set h(x) = 0.2 exp(−x). The generating processes of the covariate evolution

have the following form Xit+1 = Xit + h(Xit)ηit + Uit with ηit ∼ N(0, 1) or

fXit+1|Xit,Uit(xit+1|xit, uit) =
1

h(xit)
φη

(
xit+1 − xit − uit

h(xit)

)
,

where φη is the standard normal distribution. Four different data generating processes (DGP)

are as follows:

DGP I: (β0, β1, γ, σ
2
ξ , ρ) = (0.2,−1, 0, 0.5, 0)

DGP II: (β0, β1, γ, σ
2
ξ , ρ) = (0.2,−1, 0, 0.5, 0.5)

DGP III: (β0, β1, γ, σ
2
ξ , ρ) = (0.2,−1, 1, 0.5, 0.5)

DGP IV: (β0, β1, γ, σ
2
ξ , ρ) = (0.2,−1, 1, 0.5,−0.5).
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In the all designs, set β0 = 0.2, β1 = −1 and σ2
ξ = 0.5. These designs focus on different values

for state dependence, γ, and AR(1) coefficient of the serially correlated error term, ρ. The

simulation designs in DGPs I & II do not have state dependence (γ = 0), but the simulation

designs in DGPs III & IV show strong persistent effects from the past dependent variable

(γ = 1). This study assumes that the panel data is set in three different observations, 250,

500, 1000, and presents experiments for small T for which the sampling data are drawn over

T = 3 periods.

The two main differences between this experiment and the study by Shiu and Hu (2010)

is that 1) at least three periods of data are needed for the simulation in Shiu and Hu (2010),

and 2) the generating processes of the covariate evolution fXit+1|Xit,Uit is required to satisfy a

mode condition, which is one of the nonparametric identification assumptions in Shiu and Hu

(2010). Thus, the current estimation results cannot be compared to the results of Shiu and

Hu (2010) if we only use a two-period simulated sample. Another practical advantage of the

proposed sieve MLE estimator is that it does not require sieve implementation of the covariate

evolution. Hence, the implementation is easier but the normality assumption of ξit is required

and essential to the estimation. The proposed method uses the Fourier series in Subsection

4.2 with the number of term, in = 5, jn = 2, kn = 2, and ln = 2, to approximate the initial

joint distribution fXit,Yit−1,Xit−1,Uit;θ. Two-period or three-period simulated samples are used

to conduct estimations for 100 replications.

Tables 1-3 present simulation results for the model parameters of the dynamic tobit model.

These tables present the means and the medians in estimating β0, β1, σ2
ξ , and γ together with

their standard errors. In calculating the standard error of coefficient estimators, use the

variance of coefficients estimated from the 100 replications as a measure of true variance.

Observe the following patterns in the simulation results for the coefficient estimators. First,

there generally exists downward bias in estimating the autoregressive parameter γ in all sample

sizes. Second, the bias in estimating all parameters (β0, β1, σ
2
ξ ) is small, suggesting that the

proposed sieve MLE estimator achieves consistent estimation results. Finally, all standard

errors do not vary much. This suggests that for these samples, the statistical performances

of the proposed sieve MLE estimator are very close. This study presents a comparison of the

proposed sieve MLE estimators with the benchmark estimator and the three-period estimator

of Shiu and Hu (2010). The benchmark estimator treats the unobserved Uit as a covariate
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and applies a MLE method. As expected, this benchmark estimator performs better than the

other two estimators, and the biases and standard errors decrease in larger samples. In DPGs

with nontrivial state dependence, the three-period estimators provides better estimators for

γ. This suggests that in the same sample sizes, an additional period of data may help reveal

the dynamic structure of the data.

Table 4 presents the magnitude of the state dependence SD(X̄it). The results in DGP I

& II imply that the proposed sieve MLE performs well because the parameter γ = 0 in these

cases and the estimation results are close to zero. The DGPs with nontrivial positive state

dependence exhibit significant variation in the estimation results of SD(X̄it), and the average

response of the state dependence for these DGPs is at least approximately 0.5. In addition,

the means and medians of SD(X̄it) are similar, reflecting some symmetry in their respective

distributions.

6. Empirical Application

This study reports the application of the proposed sieve MLE estimator to a censored dynamic

tobit model describing the annual health expenditures of individuals given their past health

expenditures and other covariates. In this case, the dependent variables represent the log

values of annual individual medical expenditures plus one. To accommodate the piles of the

corner outcomes, this censored dynamic tobit model is a natural fit for this health expenditure

topic. Identification results show that the proposed model has some advantages: (i) arbitrary

correlation between unobserved time invariant factors, such as individual inherent health and

other explanatory variables, and (ii) allowing the absence of initial observations of individual

health expenditures. In addition, the proposed sieve MLE estimator only requires two periods

of data and provides average partial effects.

The empirical analysis in this study is based on the Medical Expenditure Panel Survey

(MEPS) Panel 4. The MEPS data provides nationally representative information on health

care use, expenditures, sources of payment, and insurance coverage for the U.S. population

from 1,999 to 2,000. The MEPS, which contains detailed data on annual total health care

expenditure, demographic characteristics, health conditions, health status, use of medical

care services, and income, is appropriate for our empirical application. Table 5 presents
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summary statistics of health insurance variables, socioeconomic variables, and health status

regressors for the first-year and the second-year of the data. We have a two-periods of the

data with 7,669 cross-sectional observations. There are sizable fractions of the sample with

zero medical expenditure, 18.646% (1,430/7,669) and 20.576% (1,578/7,669) in Periods 1 and

2, respectively.

The estimated equation of dynamic health expenditures is

Yit = max

0, X ′itβ + γYit−1 + Vi + ηit + ξit︸ ︷︷ ︸
εit

 ∀i = 1, ..., N ; t = 1, 2, (36)

= max
{

0, X ′itβ + γYit−1 + Uit + ξit
}

The dependent variable Yit = Lnexpit is the natural logarithm of health expenditure plus

one. The covariate Xit =
(
Lnincit, Lnfamit, Ageit,Maleit, Blackit, Educationit, Phsicalit,

Ndentalit, Goodit, Fairit, Poorit, ..., T ime dummies
)

. The unobserved heterogeneity Vi rep-

resents time-invariant individual heterogeneity factors, such as inherent ability or personal reg-

imen to resist negative health shock. Assume that Assumptions 2.1 and 2.2 split the transitory

error term εit into ηit and ξit, and that ξit is normally distributed. This normality assumption

guarantees that Assumptions 2.3, 2.4(ii), and 2.5 are fulfilled, as Section 3 shows. Assump-

tions 2.4(i) and 2.6 demand the completeness conditions related to the family of conditional

distribution of positive health expenditure y+
it over xit−1, {fY +

it |Xit,Yit−1,Xit−1
: xit−1 ∈ Xit−1}.

Choose ψ1 as a linear function and ψ2 as a linear function of squares to conduct the testing

proposed in Subsection 4.3. The estimated coefficient of the squared Lnincit−1 is -0.0014

with a p-value of 0.052. In an intuitive sense, the testing result suggests that the covari-

ate at the previous period xit−1 containing income squares has enough variation such that

the conditional distribution of positive health expenditure can cover all variation of positive

health expenditures. These assumptions, along with the mild regularity condition stated in

Theorem 2.1, provide the identification of Model (36) and the sieve MLE developed in Section

4 is applicable.

Table 6 shows the results of the estimation of panel data Model (36) using three speci-

fications, including a static linear fixed effect model (Column 1), a static tobit model with

random effect (Column 2), and the semiparametric dynamic tobit model (Column 3). The
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three sets of estimates present similar results in terms of directions of effects and estimated

coefficients. As expected, there are differences in the magnitudes of the estimated APEs in

the RE tobit and semiparametric dynamic tobit specifications. The APEs of semiparametric

dynamic tobit specifications have greater effects after controlling for the dynamic effect of

health expenditures. The coefficient estimates of state dependence effect of health expendi-

tures is up to 1.052. As a result, the effect of previous health expenditures on the future health

expenditures is estimated to be, in APE, 1.448. The estimated coefficient shows that the pre-

vious health expenditures have persistent effects or there is large first order state dependence

of health expenditures. One of the variables of interest is Lnincit, the natural logarithm of

the family income plus one. The coefficient of Lnincit in regression on Lnincit represents the

income elasticity of demand for health care. The result of the semiparametric dynamic tobit

specifications indicates that individuals consume more health care when their incomes go up

after controlling for the past health expenditures.

7. Conclusion

This study presents identification results for the semi-parametric censored dynamic panel data

models and their corresponding average partial effects. The main assumptions of the proposed

method include the existence of an independent random shock, a semi-parametric specifica-

tion of the random shock, and the completeness of families of known PDFs corresponding to

censored dynamic panel data models and observed conditional density functions between the

dependent and explanatory variables. The completeness of the families of PDFs is equivalent

to the invertibility of operators using these PDFs as kernel functions. Invertibility permits the

nontrivial transformation of semi-parametric censored dynamic panel data models into a valid

semi-parametric family of PDFs of observables. Then, identification can be achieved under

the MLE framework. The dynamic tobit models and dynamic lognormal hurdle models with

two common types of DGPs satisfy these completeness conditions. This identification leads

to the proposed sieve MLE, which is consistent and asymptotically normal. The advantage

of the proposed approach is that it does not rely on the availability of initial period data,

provides average partial effects, and requires only two-period data. In addition, this semi-

parametric method allows for time dummies, nonlinear functions of state dependence Yit−1
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such as quadratics or interaction terms, and parametric heteroskedasticity. These features

make the sieve MLE desirable in semi-parametric censored dynamic panel data models for

microeconometric applications.

Appendix

A. Proof of Lemma 2.1

Proof: First, we have shown fXit,Yit−1,Xit−1,Uit;θ0 = fXit,Yit−1,Xit−1,Uit . Next, given (xit, yit−1),

define integral operators

Lf
Y+
it
,Xit,Yit−1,Xit−1

: L2(Ỹit)→ L2(Xit−1) with (37)

(Lf
Y+
it
,Xit,Yit−1,Xit−1

h)(xit−1) =

∫
fY +

it ,Xit,Yit−1,Xit−1
(y+
it , xit, yit−1, xit−1)h(y+

it )dy
+
it ,

L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

: L2(Ỹit)→ L2(Uit, ω) with (38)

(L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

h)(uit) =

∫
fY +

it |Xit,Yit−1,Uit;θ0
(y+
it |xit, yit−1, uit)h(y+

it )dy
+
it ,

LfXit,Yit−1,Xit−1,Uit;θ0
: L2(Uit, ω)→ L2(Xit−1) with (39)

(LfXit,Yit−1,Xit−1,Uit;θ0
h)(xit−1) =

∫
fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
h(uit)ω(uit)duit.

For each h ∈ L2(Ỹit).

(
Lf

Y+
it
,Xit,Yit−1,Xit−1

)
(h) (xit−1)

=

∫
Ỹit
fY +

it ,Xit,Yit−1,Xit−1
h(y+

it )dy
+
it

=

∫
Ỹit

(∫
Uit
fY +

it |Xit,Yit−1,Uit;θ0

fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
ω(uit)duit

)
h(y+

it )dy
+
it

=

∫
Uit

fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)

(∫
Ỹit
fY +

it |Xit,Yit−1,Uit;θ0
h(y+

it )dy
+
it

)
ω(uit)duit

=

(
LfXit,Yit−1,Xit−1,Uit;θ0

L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

)
(h) (xit−1),
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based on Eq. (12). Because this derivation holds for arbitrary h, this amounts to the operator

relationship

Lf
Y+
it
,Xit,Yit−1,Xit−1︸ ︷︷ ︸

Assumption 2.4(i)

= LfXit,Yit−1,Xit−1,Uit;θ0
L̃f

Y+
it
|Xit,Yit−1,Uit;θ0︸ ︷︷ ︸

Assumption 2.4(ii)

.

Combining the condition fXit,Yit−1,Xit−1 > 0 and Assumption 2.4(i) results in {fY +
it ,Xit,Yit−1,Xit−1

:

xit−1 ∈ Xit−1}, is complete over L2(Ỹit) and then Lf
Y+
it
,Xit,Yit−1,Xit−1

is invertible. In addi-

tion, because Assumption 2.4(ii) ensures the operator L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

invertible, the op-

erator relationship implies that the invertibility of the operator LfXit,Yit−1,Xit−1,Uit;θ0
, i.e.,

{
fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
: xit−1 ∈ Xit−1} is complete over L2(Uit, ω).

Suppose that the parameter θ0 is not locally identifiable. Then, there exists θk 6= θ0

and θk 7→ θ0 such that fXit,Yit−1,Xit−1,Uit;θ0 = fXit,Yit−1,Xit−1,Uit;θk . Using the definition of

fXit,Yit−1,Xit−1,Uit;θ0 and fXit,Yit−1,Xit−1,Uit;θk ,

fY +
it ,Xit,Yit−1,Xit−1

=

∫
fY +

it |Xit,Yit−1,Uit;θ0
fXit,Yit−1,Xit−1,Uit;θ0duit, (40)

fY +
it ,Xit,Yit−1,Xit−1

=

∫
fY +

it |Xit,Yit−1,Uit;θk
fXit,Yit−1,Xit−1,Uit;θkduit. (41)

By subtracting Eq. (41) from Eq. (40), it follows that

0 =

∫
fY +

it |Xit,Yit−1,Uit;θk
fXit,Yit−1,Xit−1,Uit;θk − fY +

it |Xit,Yit−1,Uit;θ0
fXit,Yit−1,Xit−1,Uit;θ0duit,

=

∫
fY +

it |Xit,Yit−1,Uit;θk
fXit,Yit−1,Xit−1,Uit;θk − fY +

it |Xit,Yit−1,Uit;θk
fXit,Yit−1,Xit−1,Uit;θ0duit

+

∫
fY +

it |Xit,Yit−1,Uit;θk
fXit,Yit−1,Xit−1,Uit;θ0 − fY +

it |Xit,Yit−1,Uit;θ0
fXit,Yit−1,Xit−1,Uit;θ0duit,

=

∫
fY +

it |Xit,Yit−1,Uit;θk︸ ︷︷ ︸
Assumption 2.3

(fXit,Yit−1,Xit−1,Uit;θk − fXit,Yit−1,Xit−1,Uit;θ0)duit

+

∫
(fY +

it |Xit,Yit−1,Uit;θk
− fY +

it |Xit,Yit−1,Uit;θ0
) fXit,Yit−1,Xit−1,Uit;θ0︸ ︷︷ ︸

Assumption 2.4(i) & (ii)

duit. (42)

Plugging the relation fXit,Yit−1,Xit−1,Uit;θ0 = fXit,Yit−1,Xit−1,Uit;θk into the above equation yields

0 =

∫ (
fY +

it |Xit,Yit−1,Uit;θk
− fY +

it |Xit,Yit−1,Uit;θ0

) fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
ω(uit)duit,

30



for all xit−1 in Xit−1. Because Assumptions 2.4(i) & (ii) implies that {
fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
:

xit−1 ∈ Xit−1} is complete over L2(Uit, ω), we obtain fY +
it |Xit,Yit−1,Uit;θk

= fY +
it |Xit,Yit−1,Uit;θ0

for θk 6= θ0 and θk 7→ θ0. This contradicts to the local identifiability of θ0 in fY +
it |Xit,Yit−1,Uit;θ

,

proving the lemma. Q.E.D.

B. Proof of Lemma 2.2

Proof: Because fXit,Yit−1,Xit−1,Uit;θ is correctly specified at θ0 by Lemma 2.1, f̃Xit,Yit−1,Xit−1;θ

is also correctly specified at θ0 after integrating out. On the other hand, denote two integral

kernels asKA;θ0(xit, yit−1, xit−1, uit) ≡ 1
ω(uit)

∂
∂θfXit,Yit−1,Xit−1,Uit;θ0 andKB;θ0(y+

it , xit, yit−1, uit)

≡ ∂
∂θfY +

it |Xit,Yit−1,Uit;θ0
. Divide Eq. (42) by θ − θ0 6= 0 and rewrite it as follows:

0 =

∫
fY +

it |Xit,Yit−1,Uit;θ

1

ω(uit)

fXit,Yit−1,Xit−1,Uit;θ − fXit,Yit−1,Xit−1,Uit;θ0

θ − θ0
ω(uit)duit

+

∫ fY +
it |Xit,Yit−1,Uit;θ

− fY +
it |Xit,Yit−1,Uit;θ0

θ − θ0

fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
ω(uit)duit.

If θ 7→ θ0 then the above equation implies

0 =

∫
fY +

it |Xit,Yit−1,Uit;θ0
KA;θ0(xit, yit−1, xit−1, uit)ω(uit)duit

+

∫
KB;θ0(y+

it , xit, yit−1, uit)
fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
ω(uit)duit. (43)

This equation can be used to establish an operator relationship. For each given (xit, yit−1),

define integral operators as follows

LKA;θ0
: L2(Uit, ω)→ L2(Xit−1) with (44)

(LKA;θ0
h)(xit−1) =

∫
1

ω(uit)

∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ0(xit, yit−1, xit−1, uit)h(uit)ω(uit)duit,

LKB;θ0
: L2(Ỹit)→ L2(Uit, ω) with (45)

(LKB;θ0
h)(uit) =

∫
∂

∂θ
fY +

it |Xit,Yit−1,Uit;θ0
(y+
it |xit, yit−1, uit)h(y+

it )dy
+
it .
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Set h ∈ L2(Xit−1). Given each (xit, yit−1),

(
LKA;θ0

L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

)
(h) (xit−1)

=

∫
Uit
KA;θ0(xit, yit−1, xit−1, uit)

(∫
Yit
fY +

it |Xit,Yit−1,Uit;θ0
h(y+

it )dy
+
it

)
ω(uit)duit

=

∫
Yit

(∫
Uit
fY +

it |Xit,Yit−1,Uit;θ0
KA;θ0(xit, yit−1, xit−1, uit)ω(uit)duit

)
h(y+

it )dy
+
it

= −
∫
Yit

(∫
Uit
KB;θ0(y+

it , xit, yit−1, uit)
fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)
ω(uit)duit

)
h(y+

it )dy
+
it

= −
∫
Uit

fXit,Yit−1,Xit−1,Uit;θ0

ω(uit)

(∫
Yit
KB;θ0(y+

it , xit, yit−1, uit)h(y+
it )dy

+
it

)
ω(uit)duit

= −
(
LfXit,Yit−1,Xit−1,Uit;θ0

LKB;θ0

)
(h) (xit−1)

where we have used (i) an interchange of the order of integration (justified by Fubini’s theo-

rem), (ii) Eq. (43), (iii) the definitions of these operators in Eqs. (38), (39), (44), and (45).

This derivation yields the following operator relationship

LKA;θ0
L̃f

Y+
it
|Xit,Yit−1,Uit;θ0︸ ︷︷ ︸

Assumptions 2.4(ii)

+LfXit,Yit−1,Xit−1,Uit;θ0︸ ︷︷ ︸
Lemma 2.1

LKB;θ0︸ ︷︷ ︸
Assumptions 2.5

= 0. (46)

Whereas Assumptions 2.4(i) & (ii) imply that L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

and LfXit,Yit−1,Xit−1,Uit;θ0
are

invertible,15 Assumption 2.5 guarantees that LKB;θ0
is invertible. Because the operators other

than LKA;θ0
in Eq. (46) are all invertible, the integral operator LKA;θ0

is also invertible. This

implies that the family of its corresponding kernel functions { 1
ω(uit)

∂
∂θfXit,Yit−1,Xit−1,Uit;θ0 :

xit−1 ∈ Xit−1} is complete over L2(Uit, ω).

Suppose θ0 is not locally identifiable in f̃Xit,Yit−1,Xit−1;θ. This implies that there exists θk 6=

θ0 and θk 7→ θ0 such that f̃Xit,Yit−1,Xit−1;θk(xit, yit−1, xit−1) = f̃Xit,Yit−1,Xit−1;θ0(xit, yit−1, xit−1).

This implies that
∫
fXit,Yit−1,Xit−1,Uit;θkduit =

∫
fXit,Yit−1,Xit−1,Uit;θ0duit for each θk. It follows

that for each θk

∫
1

ω(uit)

(
fXit,Yit−1,Xit−1,Uit;θk − fXit,Yit−1,Xit−1,Uit;θ0

θk − θ0

)
ω(uit)duit = 0 for all xit−1.

15Assumptions 2.4(i) & (ii) imply that the invertibility of LfXit,Yit−1,Xit−1,Uit;θ0
is in the proof of Lemma

2.1.

32



If θk 7→ θ0, the equation becomes

∫ (
1

ω(uit)

∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ0

)
ω(uit)duit = 0 for all xit−1. (47)

Because L2(Uit, ω) contains the constant function, Eq. (47) is in contradiction with the

completeness of { 1
ω(uit)

∂
∂θfXit,Yit−1,Xit−1,Uit;θ0 : xit−1 ∈ Xit−1} over L2(Uit, ω). Therefore,

under Assumptions 2.3-2.5, θ0 is locally identifiable. Q.E.D.

C. Proof of Lemma 2.3

Before proving Lemma 2.3, consider the following result as the cornerstone of the proof of

Lemma 2.3.

Lemma C.1. Under Assumptions 2.3-2.6, the family of functions { 1
ω(uit)

∂
∂xit−1

fUit|Xit,Yit−1,Xit−1
:

xit−1 ∈ Xit−1} is complete over L2(Uit, ω).

Proof: In a similar manner to Eq. (12), write the conditional version of Eq. (12) for θ = θ0,

fY +
it |Xit,Yit−1,Xit−1

=

∫
fY +

it |Xit,Yit−1,Uit
fUit|Xit,Yit−1,Xit−1

duit. (48)

Taking derivative with respect to Xit−1 results in

∂

∂xit−1
fY +

it |Xit,Yit−1,Xit−1
=

∫
fY +

it |Xit,Yit−1,Uit

∂

∂xit−1
fUit|Xit,Yit−1,Xit−1

duit. (49)

Set κ1 = ∂
∂xit−1

fY +
it |Xit,Yit−1,Xit−1

and φ = ∂
∂xit−1

fUit|Xit,Yit−1,Xit−1
. For each (xit, yit−1), define

operators

Lκ1 : L2(Ỹit)→ L2(Xit−1) with (Lκ1h)(xit−1) =

∫
κ1(y+

it , xit, yit−1, xit−1)h(y+
it )dy

+
it ,

Lφ : Lp(Uit, ω)→ L2(Xit−1) with

(Lφh)(xit−1) =

∫
1

ω(uit)
φ(uit, xit, yit−1, xit−1)h(uit)ω(uit)duit.
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For h ∈ L2(Ỹit).

(Lκ1) (h) (xit−1)

=

∫
Ỹit
κ1(y+

it , xit, yit−1, xit−1)h(y+
it )dy

+
it

=

∫
Ỹit

(∫
Uit
fY +

it |Xit,Yit−1,Uit
φ(uit, xit, yit−1, xit−1)duit

)
h(y+

it )y
+
it

=

∫
Uit

1

ω(uit)
φ(uit, xit, yit−1, xit−1)

(∫
Yit
fY +

it |Xit,Yit−1,Uit
h(yit)dyit

)
ω(uit)duit

=

(
LφL̃f

Y+
it
|Xit,Yit−1,Uit;θ0

)
(h) (xit−1),

where Eq. (38) defines the operator L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

. With the definitions of the operators,

this equation can be rewritten as an operator relationship

Lκ1 = LφL̃f
Y+
it
|Xit,Yit−1,Uit;θ0

. (50)

Assumptions 2.4(ii) and 2.6 guarantee the invertibility of the operators L̃f
Y+
it
|Xit,Yit−1,Uit;θ0

and

Lκ1 , respectively. Applying this invertibility to Eq. (50) results in the invertibility of Lφ.

Thus, the family { 1
ω(uit)

φ(uit, xit, yit−1, xit−1) : xit−1 ∈ Xit−1} is complete over L2(Uit, ω) for

each xit, yit−1. Q.E.D.

Proof of Lemma 2.3: First, fXit,Yit−1,Xit−1;θ is correctly specified at θ0 because by Lemma

2.2, f̃Xit,Yit−1,Xit−1;θ is correctly specified at θ0. Suppose that θ0 is not locally identifiable in

the observable joint density function fXit,Yit−1,Xit−1;θ. There exists θk 6= θ0 and θk 7→ θ0 such

that, fXit,Yit−1,Xit−1;θk = fXit,Yit−1,Xit−1;θ0 . This implies that

f̃Xit,Yit−1,Xit−1;θk∫ ∫ ∫
f̃Xit,Yit−1,Xit−1;θkdxitdyit−1dxit−1

=
f̃Xit,Yit−1,Xit−1;θ0

1
= fXit,Yit−1,Xit−1 . (51)

This equation can be expressed as

∫
fXit,Yit−1,Xit−1,Uit;θkduit

fXit,Yit−1,Xit−1

=

∫ ∫ ∫
f̃Xit,Yit−1,Xit−1;θkdxitdyit−1dxit−1. (52)

The multiple integral in the RHS of Eq. (52) only depends on the parameter θk, and is
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independent of xit−1. This suggests that given x1t−1 6= x2t−1,

∫
fXit,Yit−1,X1t−1,Uit;θk

fXit,Yit−1,X1t−1

duit =

∫
fXit,Yit−1,X2t−1,Uit;θk

fXit,Yit−1,X2t−1

duit.

If θk 7→ θ0, this yields

0 =

∫ (
fUit|Xit,Yit−1,X1t−1

− fUit|Xit,Yit−1,X2t−1

)
duit

Divide the equation by X1t−1−X2t−1 and let X1t−1−X2t−1 7→ 0. This equation then changes

into

0 =

∫
∂

∂xit−1
fUit|Xit,Yit−1,X1t−1

duit

=

∫
1

ω(uit)

∂

∂xit−1
fUit|Xit,Yit−1,X1t−1

ω(uit)duit,

which contradicts the completeness in Lemma C.1. Therefore, the parameter θ0 is locally

identifiable in the observable joint density function fXit,Yit−1,Xit−1;θ. Q.E.D.

D. Identification in the Discrete Case

This section presents a simple case in which the observed variables Yit, Xit, Yit−1, Xit−1 and

the unobserved covariate Uit are all discrete. This section shows how to use the identification

techniques in Theorem 2.1 for this discrete case. For simplicity, assume that the variables

Y +
it , Xit−1 and Uit have the same size J (i.e., Y +

it , Xit−1, Uit ∈ {1, 2, ..., J}). For this setting,

the integral operators used previously can be represented by J-by-J matrices. The idea of

using the identification strategy in the discrete case for ease of exposition is because a complete

integral operators is associated with an invertible matrix.16

16If y, u ∈ {1, 2} and
∫
U h(u)f(y|u)du = 0, then the condition is equivalent to[

fy|u(1|1) fy|u(1|2)
fy|u(2|1) fy|u(2|2)

] [
h(1)
h(2)

]
=

[
0
0

]
.

The function h can be uniquely determined as h = 0 iff the first matrix representing fy|u is invertible.
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Equation (12) in the discrete case is

fY +
it ,Xit,Yit−1,Xit−1

=
J∑

Uit=1

fY +
it |Xit,Yit−1,Uit;θ

fXit,Yit−1,Xit−1,Uit;θ. (53)

Given (xit, yit−1), define J-by-J matrices

Mf
Y+
it
,xit,yit−1,Xit−1

=
[
fY +

it ,Xit,Yit−1,Xit−1
(Y +
it , xit, yit−1, Xit−1)

]
y+it ,xit−1

Lf
Y+
it
|xit,yit−1,Uit;θ

=
[
fY +

it |Xit,Yit−1,Uit;θ
(Y +
it , xit, yit−1, Uit)

]
y+it ,uit

Mfxit,yit−1,Xit−1,Uit;θ
=
[
fXit,Yit−1,Xit−1,Uit;θ(xit, yit−1, Xit−1, Uit)

]
uit,xit−1

.

Rewrite the equality (53) in terms of these matrices as follows:

Mf
Y+
it
,xit,yit−1,Xit−1︸ ︷︷ ︸

Observed from Data

= Lf
Y+
it
|xit,yit−1,Uit;θ︸ ︷︷ ︸

Model Specification

Mfxit,yit−1,Xit−1,Uit;θ
. (54)

Assumption 2.3 implies that the square matrix Lf
Y+
it
|xit,yit−1,Uit;θ

is invertible, leading to

Mfxit,yit−1,Xit−1,Uit;θ
=

(
Lf

Y+
it
|xit,yit−1,Uit;θ

)−1

Mf
Y+
it
,xit,yit−1,Xit−1

. (55)

As discussed earlier, it is necessary to ensure that Mfxit,yit−1,Xit−1,Uit;θ
is identifiable at θ0.

According to the proof of Lemma 2.1, there are two steps for identifiability. First, given

(xit, yit−1), define

Lf
Y+
it
,xit,yit−1,Xit−1

=
[
fY +

it ,Xit,Yit−1,Xit−1
(Y +
it , xit, yit−1, Xit−1)

]
xit−1,y

+
it

L̃f
Y+
it
|xit,yit−1,Uit;θ

=
[
fY +

it |Xit,Yit−1,Uit;θ
(Y +
it , xit, yit−1, Uit)

]
uit,y

+
it

Lfxit,yit−1,Xit−1,Uit;θ
=
[
fXit,Yit−1,Xit−1,Uit;θ(xit, yit−1, xit−1, Uit)

]
xit−1,uit

.

Equality (53) can then be expressed by these matrices as follows:

Lf
Y+
it
,xit,yit−1,Xit−1︸ ︷︷ ︸

Assumption 2.4(i)

= Lfxit,yit−1,Xit−1,Uit;θ0
L̃f

Y+
it
|xit,yit−1,Uit;θ0︸ ︷︷ ︸

Assumption 2.4(ii)

. (56)
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Notice that in this simple case, Lf
Y+
it
,xit,yit−1,Xit−1

= MT
f
Y+
it
,xit,yit−1,Xit−1

, L̃f
Y+
it
|xit,yit−1,Uit;θ

=

LTf
Y+
it
|xit,yit−1,Uit;θ

, and Lfxit,yit−1,Xit−1,Uit;θ
= MT

fxit,yit−1,Xit−1,Uit;θ
which we may not have for

a general continuous case. The matrix notations used here are based on integral operators

in the proofs of lemmas. Assumption 2.4 makes Lfxit,yit−1,Xit−1,Uit;θ0
invertible. Hence, its

transpose Mfxit,yit−1,Xit−1,Uit;θ0
is also invertible. Then, suppose that there exists θk 6= θ0 and

θk 7→ θ0 such that

Mfxit,yit−1,Xit−1,Uit;θk
= Mfxit,yit−1,Xit−1,Uit;θ0

. (57)

Following the derivation in Eq. (42), we have a matrix expression

0 = Lf
Y+
it
|xit,yit−1,Uit;θk

(
Mfxit,yit−1,Xit−1,Uit;θk

−Mfxit,yit−1,Xit−1,Uit;θ0

)
+

(
Lf

Y+
it
|xit,yit−1,Uit;θk

− Lf
Y+
it
|xit,yit−1,Uit;θ0

)
Mfxit,yit−1,Xit−1,Uit;θ0

The invertibility of Mfxit,yit−1,Xit−1,Uit;θ0
and Eq. (57) implies that Lf

Y+
it
|xit,yit−1,Uit;θ

is not

identifiable at θ0, which is a contradiction.

Set J×1-vector J1 = (1, 1, ..., 1)T . Integrating out the unobserved covariate in the discrete

case leads to JT1 Mfxit,yit−1,Xit−1,Uit;θ
. Suppose that there exists θk 6= θ0 and θk 7→ θ0 such that

JT1 Mfxit,yit−1,Xit−1,Uit;θk
= JT1 Mfxit,yit−1,Xit−1,Uit;θ0

. It then follows that

0 = JT1

(
Mfxit,yit−1,Xit−1,Uit;θk

−Mfxit,yit−1,Xit−1,Uit;θ0

θk − θ0

)
(58)

If θ 7→ θ0, the above equation implies 0 = JT1 M ∂
∂θ
fxit,yit−1,Xit−1,Uit;θ0

, where

M ∂
∂θ
fxit,yit−1,Xit−1,Uit;θ

=

[
∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ(xit, yit−1, Xit−1, Uit)

]
uit,xit−1

.

Rewrite Eq. (43) in the discrete case as

0 =
J∑

Uit=1

fY +
it |Xit,Yit−1,Uit;θ0

∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ0

+
J∑

Uit=1

∂

∂θ
fY +

it |Xit,Yit−1,Uit;θ0
fXit,Yit−1,Xit−1,Uit;θ0 . (59)
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This leads to the following matrix expression

M ∂
∂θ
fxit,yit−1,Xit−1,Uit;θ0

L̃f
Y+
it
|xit,yit−1,Uit;θ0︸ ︷︷ ︸

Assumptions 2.4(ii)

+Lfxit,yit−1,Xit−1,Uit;θ0︸ ︷︷ ︸
Lemma 2.1

M ∂
∂θ
f
Y+
it
|xit,yit−1,Uit;θ0︸ ︷︷ ︸

Assumptions 2.5

= 0, (60)

where M ∂
∂θ
f
Y+
it
|xit,yit−1,Uit;θ0

=
[
∂
∂θfY +

it |xit,yit−1,Uit;θ0

]
uit,y

+
it

. Applying assumptions to Eq. (60)

shows thatM ∂
∂θ
fxit,yit−1,Xit−1,Uit;θ0

is invertible, which contradicts 0 = JT1 M ∂
∂θ
fxit,yit−1,Xit−1,Uit;θ0

.

Finally, the normalization in the discrete case is equivalent to

Vfxit,yit−1,Xit−1;θ
≡

JT1 Mfxit,yit−1,Xit−1,Uit;θ

Jxit∑
xit=1

Jyit−1∑
yit−1=1

(
JT1 Mfxit,yit−1,Xit−1,Uit;θ

J
) , (61)

where Jxit and Jyit−1 represent the sizes of the discrete variables xit and yit−1, respectively.

Suppose the normalization step does not lead to local identifiability at θ0. This implies that

there exists θk 6= θ0 and θk 7→ θ0 such that

JT1 Mfxit,yit−1,Xit−1,Uit;θk

Jxit∑
xit=1

Jyit−1∑
yit−1=1

(
JT1 Mfxit,yit−1,Xit−1,Uit;θk

J
) =

JT1 Mfxit,yit−1,Xit−1,Uit;θ0

1
= Vfxit,yit−1,Xit−1;θ0

(62)

Rearrange the term

(
JT1 Mfxit,yit−1,Xit−1,Uit;θk

)
./Vfxit,yit−1,Xit−1;θ0

=

 Jxit∑
xit=1

Jyit−1∑
yit−1=1

(
JT1 Mfxit,yit−1,Xit−1,Uit;θk

J
)J1,

where the notation ./ divides two 1 × J-vectors element-wise. The right-hand side of this

equation is constant in xit−1. Hence, if x1t−1 6= x2t−1, we have

(
JT1 Mfxit,yit−1,X1t−1,Uit;θk

)
./Vfxit,yit−1,X1t−1;θ0

=
(
JT1 Mfxit,yit−1,X2t−1,Uit;θk

)
./Vfxit,yit−1,X2t−1;θ0

.

Using Eq. (55), rewrite this equation as

0 = JT1

(
Lf

Y+
it
|xit,yit−1,Uit;θk

)−1(
Mf

Y+
it
,xit,yit−1,X1t−1

−Mf
Y+
it
,xit,yit−1,X2t−1

)
./Vfxit,yit−1,X2t−1;θ0

.

Denote Mf
Y+
it
|xit,yit−1,4Xit−1

as a matrix of the difference of fY +
it |Xit,Yit−1,Xit−1

with respect to
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Xit−1. If θk 7→ θ0, then

0 = JT1

(
Lf

Y+
it
|xit,yit−1,Uit;θ0

)−1(
Mf

Y+
it
|xit,yit−1,X1t−1

−Mf
Y+
it
|xit,yit−1,X2t−1

)
≡ JT1

(
Lf

Y+
it
|xit,yit−1,Uit;θ0

)−1

︸ ︷︷ ︸
Assumption 2.3

Mf
Y+
it
|xit,yit−1,4Xit−1︸ ︷︷ ︸

Assumption 2.6

,

where Mf
Y+
it
|xit,yit−1,Xit−1

≡
[
fY +

it |Xit,Yit−1,Xit−1
(Y +
it |xit, yit−1, Xit−1)

]
y+it ,xit−1

. This contradicts

the invertibility under Assumptions 2.3 and 2.6, showing that the density function is still

locally identifiable at θ0.

E. Proof of a Sufficient Condition of the Uniqueness of K(θ)

Proof: Start with a scalar θ, and combine Eqs. (16) and (17),

fXit,Yit−1,Xit−1;θ ≡
∫
fXit,Yit−1,Xit−1,Uit;θduit∫ ∫ ∫ ∫

fXit,Yit−1,Xit−1,Uit;θduitdxitdyit−1dxit−1
. (63)

and recall Eq. (43),

0 =

∫
fY +

it |Xit,Yit−1,Uit;θ0

∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ

∣∣
θ=θ0

duit

+

∫
∂

∂θ
fY +

it |Xit,Yit−1,Uit;θ0
fXit,Yit−1,Xit−1,Uit;θ0duit. (64)

It follows that ∂
∂θfXit,Yit−1,Xit−1,Uit;θ

∣∣
θ=θ0

is implicitly defined in Eq. (64) by

∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ0 = L−1

f
Y+
it
|Xit,Yit−1,Uit

(∫
∂

∂θ
fY +

it |Xit,Yit−1,Uit;θ0
fXit,Yit−1,Xit−1,Uitduit

)
.

(65)
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These relationships can help expand the Kullback-Leibler function K(θ). Differentiating w.r.t.

θ at θ = θ0 leads to

K ′(θ0) =

∫ ∫ ∫
∂

∂θ
log
(
fXit,Yit−1,Xit−1;θ

) ∣∣∣∣
θ=θ0

fXit,Yit−1,Xit−1dxitdyit−1dxit−1

=

∫ ∫ ∫ ∂
∂θfXit,Yit−1,Xit−1;θ

fXit,Yit−1,Xit−1;θ

∣∣∣∣
θ=θ0

fXit,Yit−1,Xit−1dxitdyit−1dxit−1

=

∫ ∫ ∫
∂

∂θ
fXit,Yit−1,Xit−1;θdxitdyit−1dxit−1

=
∂

∂θ

(∫ ∫ ∫
fXit,Yit−1,Xit−1;θdxitdyit−1dxit−1

) ∣∣∣∣
θ=θ0

= 0.

Thus, the true parameter θ0 is a critical point of K(θ0) and a sufficient condition of the

uniqueness of θ0 is K ′′(θ0) is negative semidefinite. Denote E as the expectation w.r.t.

(xit, yit−1, xit−1). The second derivative of K(θ0) in the scalar case is

K ′′(θ0)

=

∫ ∫ ∫
∂2

∂θ2
fXit,Yit−1,Xit−1;θ

∣∣∣
θ=θ0

dxitdyit−1dxit−1

−
∫ ∫ ∫ (

∂
∂θfXit,Yit−1,Xit−1;θ

)2
fXit,Yit−1,Xit−1;θ

∣∣∣∣
θ=θ0

fXit,Yit−1,Xit−1dxitdyit−1dxit−1

=
∂2

∂θ2

(∫ ∫ ∫
fXit,Yit−1,Xit−1;θdxitdyit−1dxit−1

)∣∣∣∣
θ=θ0

− E

( ∂
∂θfXit,Yit−1,Xit−1;θ

fXit,Yit−1,Xit−1;θ

∣∣∣∣
θ=θ0

)2


= −E

( ∂
∂θfXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

fXit,Yit−1,Xit−1

)2
 (66)
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where

∂

∂θ
fXit,Yit−1,Xit−1;θ

∣∣
θ=θ0

=
∂

∂θ

∫
fXit,Yit−1,Xit−1,Uit;θduit∫ ∫ ∫ ∫

fXit,Yit−1,Xit−1,Uit;θduitdxitdyit−1dxit−1

∣∣∣
θ=θ0

=

∫
∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ0︸ ︷︷ ︸
defined in Eq. (65)

duit

−

∫ ∫ ∫ ∫ ∂

∂θ
fXit,Yit−1,Xit−1,Uit;θ0︸ ︷︷ ︸
defined in Eq. (65)

dxitdyit−1dxit−1duit

 fXit,Yit−1,Xit−1 . (67)

A similar derivation can be applied to the vector case and the form K ′′(θ0), as Eq. (22) shows.

Q.E.D.

F. Proof of Lemma 3.3

Proof: First, suppose Ỹ is a domain such that Ỹ ⊂ R. Let the family {f(y|u) : u ∈ U}

be complete in L2(R). For each h ∈ L2(Ỹ) such that
∫
Ỹ h(y)f(y|u)dy = 0 for all u. Extend

h to a function in L2(R) by h̃(x) =

 h if x ∈ Ỹ,

0 otherwise.
It follows that

∫
R h̃(y)f(y|u)dy = 0

for all u. By the completeness of f(y|u) over L2(R), h̃ = 0. Thus, h = 0 and f(y|u) is

complete over L2(R). Thus, the completeness of a function over a smaller domain is implied

by the completeness of the function over a larger domain, and sufficient conditions for the

completeness of these two families can be reduced to the completeness in L2(R).

The family of functions {(y − c− u)φ
(
y−c−u
σξ

)
: u ∈ U} is complete in L2(R). Let

h(y) ∈ L2(R) and
∫
h(y) (y − c− u)φ

(
y−c−u
σξ

)
dy = 0 for all u ∈ U . Because ∂

∂yφ
(
y−c−u
σξ

)
=

−y−c−u
σξ

φ
(
y−c−u
σξ

)
, it follows that

∫
h(y) ∂∂yφ

(
y−c−u
σξ

)
dy = 0 for all u ∈ U . Using the integra-

tion by part for each u leads to

∫
h(y)

∂

∂y
φ

(
y − c− u

σξ

)
dy = h(y)φ

(
y − c− u

σξ

) ∣∣∣∞
−∞
−
∫

∂

∂y
h(y)φ

(
y − c− u

σξ

)
dy

= −
∫

∂

∂y
h(y)φ

(
y − c− u

σξ

)
dy.
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Applying the completeness of {φ
(
y−c−u
σξ

)
: u ∈ U} to this equation yields ∂

∂yh(y) = 0, which

implies that h(y) is a constant function. The condition h(y) ∈ L2(R) makes h(y) = 0,

proving the first completeness. As for the second completeness, suppose h(y) ∈ L2(R) such

that
∫
h(y)

(
σ2
ξ − (y − c− u)2

)
φ
(
y−c−u
σξ

)
dy = 0 for all u ∈ U . Using ∂2

∂2y
φ
(
y−c−u
σξ

)
=

− 1
σ3
ξ

(
σ2
ξ − (y − c− u)2

)
φ
(
y−c−u
σξ

)
and the integration by part, rewrite the equation as

0 =

∫
h(y)

∂2

∂2y
φ

(
y − c− u

σξ

)
dy

= h(y)
∂

∂y
φ

(
y − c− u

σξ

) ∣∣∣∞
−∞
−
∫

∂

∂y
h(y)

∂

∂y
φ

(
y − c− u

σξ

)
dy

= − ∂

∂y
h(y)φ

(
y − c− u

σξ

) ∣∣∣∞
−∞

+

∫
∂2

∂2y
h(y)φ

(
y − c− u

σξ

)
dy

=

∫
∂2

∂2y
h(y)φ

(
y − c− u

σξ

)
dy

The completeness of {φ
(
y−c−u
σξ

)
: u ∈ U} implies that h satisfies the second order differential

equation, ∂2

∂2y
h(y) = 0. The characteristic equation of the differential equation is r2 = 0. This

suggests that the general solution of the differential equation is h(y) = c1 + c2y, where c1

and c2 are constants. The condition h(y) ∈ L2(R) indicates h(y) = 0, reaching the second

completeness. Q.E.D.
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Honoré, B., and L. Hu (2004): “Estimation of Cross Sectional and Panel Data Censored

Regression Models with Endogeneity,” Journal of Econometrics, 122(2), 293–316.

Hsiao, C., M. Hashem Pesaran, and A. Kamil Tahmiscioglu (2002): “Maximum

Likelihood Estimation of Fixed Effects Dynamic Panel Data Models Covering Short Time

Periods,” Journal of Econometrics, 109(1), 107–150.

Hu, L. (2002): “Estimation of a Censored Dynamic Panel Data Model,” Econometrica, 70(6),

2499–2517.

Hu, Y., and S. Schennach (2008): “Instrumental Variable Treatment of Nonclassical Mea-

surement Error Models,” Econometrica, 76(1), 195–216.

Hu, Y., and J. Shiu (2011a): “Identification of Semiparametric Measurement Error Models,”

Working Paper.

(2011b): “Nonparametric Identification Using Instrumental Variables: Sufficient

Conditions For Completeness,” Working Paper.

Kiviet, J. (1995): “On Bias, Inconsistency, and Efficiency of Various Estimators in Dynamic

Panel Data Models,” Journal of Econometrics, 68(1), 53–78.

Newey, W., and J. Powell (2003): “Instrumental Variable Estimation of Nonparametric

Models,” Econometrica, 71(5), 1565–1578.

Neyman, J., and E. Scott (1948): “Consistent Estimates Based on Partially Consistent

Observations,” Econometrica, 93, 1–32.

Shen, X. (1997): “On Methods of Sieves and Penalization,” Annals of Statistics, 25, 2555–

2591.

Shiu, J., and Y. Hu (2010): “Identification and Estimation of Nonlinear Dynamic Panel

Data Models with Unobserved Covariates,” Economics Working Paper Archive.

Wooldridge, J. (2005): “Simple Solutions to the Initial Conditions Problem in Dynamic,

Nonlinear Panel Data Models with Unobserved Heterogeneity,” Journal of Applied Econo-

metrics, 20(1), 39–54.

44



Table 1: Simulation of Dynamic tobit model (N=250)
Parameters

DGP β0 β1 γ σ2
ξ

DGP I: True value 0.2 -1 0 0.5

Infeasible Mean 0.221 -1.004 -0.006 0.478

Infeasible Median 0.234 -1.002 -0.005 0.470

Standard error 0.139 0.116 0.108 0.086

Mean 0.202 -1.009 -0.003 0.499

Median 0.211 -1.006 -0.013 0.500

Standard error 0.093 0.099 0.095 0.033

Three-period Mean 0.201 -0.993 0.020 0.531
Three-period Median 0.204 -0.995 0.018 0.544
Standard error 0.097 0.109 0.104 0.105

DGP II: True value 0.2 -1 0 0.5

Infeasible Mean 0.204 -1.011 0.007 0.504

Infeasible Median 0.190 -0.996 0.012 0.498

Standard error 0.129 0.098 0.086 0.085

Mean 0.185 -0.998 0.028 0.501

Median 0.186 -0.985 0.033 0.503

Standard error 0.084 0.101 0.094 0.034

Three-period Mean 0.210 -1.018 0.010 0.552
Three-period Median 0.210 -1.013 0.004 0.543
Standard error 0.096 0.094 0.095 0.092

DGP III: True value 0.2 -1 1 0.5

Infeasible Mean 0.205 -1.012 1.008 0.501

Infeasible Median 0.202 -1.009 1.004 0.497

Standard error 0.113 0.087 0.080 0.057

Mean 0.201 -1.059 0.876 0.518

Median 0.196 -1.052 0.878 0.526

Standard error 0.100 0.096 0.106 0.027

Three-period Mean 0.210 -1.035 0.977 0.548
Three-period Median 0.205 -1.036 0.982 0.544
Standard error 0.095 0.107 0.122 0.038

DGP IV: True value 0.2 -1 1 0.5

Infeasible Mean 0.203 -1.011 1.008 0.505

Infeasible Median 0.201 -1.005 0.997 0.504

Standard error 0.111 0.090 0.079 0.058

Mean 0.197 -1.062 0.881 0.548

Median 0.197 -1.057 0.889 0.551

Standard error 0.096 0.119 0.116 0.035

Three-period Mean 0.191 -1.057 0.964 0.565
Three-period Median 0.185 -1.071 0.964 0.557
Standard error 0.103 0.126 0.146 0.075

Note: Standard errors of the parameters are based on the standard error of the estimates
across 100 simulations. The three-period results are estimated using the sieve MLE in
Shiu and Hu (2010).
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Table 2: Simulation of Dynamic tobit model (N=500)
Parameters

DGP β0 β1 γ σ2
ξ

DGP I: True value 0.2 -1 0 0.5

Infeasible Mean 0.220 -1.017 0.007 0.505

Infeasible Median 0.217 -1.018 0.018 0.504

Standard error 0.123 0.075 0.063 0.074

Mean 0.192 -1.015 -0.009 0.498

Median 0.192 -1.018 -0.001 0.503

Standard error 0.098 0.110 0.109 0.036

Three-period Mean 0.207 -0.986 0.004 0.556
Three-period Median 0.202 -0.988 -0.003 0.551
Standard error 0.089 0.121 0.095 0.083

DGP II: True value 0.2 -1 0 0.5

Infeasible Mean 0.196 -1.001 0.004 0.500

Infeasible Median 0.193 -1.005 0.004 0.497

Standard error 0.091 0.077 0.069 0.056

Mean 0.179 -0.991 -0.013 0.499

Median 0.181 -0.995 -0.009 0.500

Standard error 0.099 0.102 0.099 0.037

Three-period Mean 0.197 -1.017 0.004 0.553
Three-period Median 0.208 -1.026 0.014 0.554
Standard error 0.097 0.105 0.100 0.033

DGP III: True value 0.2 -1 1 0.5

Infeasible Mean 0.193 -1.001 1.006 0.501

Infeasible Median 0.196 -0.994 1.007 0.495

Standard error 0.083 0.066 0.062 0.041

Mean 0.196 -1.058 0.856 0.519

Median 0.192 -1.058 0.860 0.519

Standard error 0.105 0.090 0.093 0.028

Three-period Mean 0.192 -1.047 0.976 0.564
Three-period Median 0.193 -1.043 0.975 0.565
Standard error 0.096 0.129 0.124 0.047

DGP IV: True value 0.2 -1 1 0.5

Infeasible Mean 0.201 -1.001 1.000 0.498

Infeasible Median 0.210 -1.001 1.003 0.498

Standard error 0.090 0.061 0.054 0.039

Mean 0.186 -1.070 0.888 0.551

Median 0.192 -1.072 0.899 0.554

Standard error 0.090 0.123 0.103 0.036

Three-period Mean 0.198 -1.068 0.937 0.573
Three-period Median 0.198 -1.054 0.947 0.567
Standard error 0.095 0.126 0.144 0.071

Note: Standard errors of the parameters are based on the standard error of the estimates
across 100 simulations. The three-period results are estimated using the sieve MLE in
Shiu and Hu (2010).
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Table 3: Simulation of Dynamic tobit model (N=1000)
Parameters

DGP β0 β1 γ σ2
ξ

DGP I: True value 0.2 -1 0 0.5

Infeasible Mean 0.208 -1.006 0.005 0.490

Infeasible Median 0.206 -1.005 0.001 0.489

Standard error 0.063 0.049 0.040 0.043

Mean 0.189 -0.967 -0.003 0.502

Median 0.174 -0.973 -0.008 0.512

Standard error 0.098 0.095 0.092 0.032

Three-period Mean 0.208 -0.993 -0.005 0.550
Three-period Median 0.216 -0.992 -0.004 0.554
Standard error 0.093 0.112 0.107 0.044

DGP II: True value 0.2 -1 0 0.5

Infeasible Mean 0.210 -1.010 0.007 0.505

Infeasible Median 0.202 -1.002 0.005 0.496

Standard error 0.067 0.061 0.056 0.041

Mean 0.199 -0.995 -0.006 0.503

Median 0.200 -1.002 -0.008 0.509

Standard error 0.107 0.102 0.105 0.509

Three-period Mean 0.208 -0.996 -0.005 0.556
Three-period Median 0.216 -0.999 -0.004 0.557
Standard error 0.094 0.108 0.107 0.031

DGP III: True value 0.2 -1 1 0.5

Infeasible Mean 0.211 -1.006 1.005 0.499

Infeasible Median 0.205 -1.004 1.005 0.498

Standard error 0.058 0.052 0.050 0.027

Mean 0.217 -1.051 0.839 0.526

Median 0.230 -1.053 0.836 0.528

Standard error 0.087 0.101 0.096 0.026

Three-period Mean 0.205 -1.014 0.952 0.568
Three-period Median 0.206 -1.014 0.975 0.566
Standard error 0.092 0.114 0.136 0.047

DGP IV: True value 0.2 -1 1 0.5

Infeasible Mean 0.208 -1.004 1.004 0.499

Infeasible Median 0.208 -1.008 1.005 0.497

Standard error 0.058 0.049 0.046 0.026

Mean 0.204 -1.058 0.879 0.558

Median 0.213 -1.063 0.880 0.559

Standard error 0.090 0.116 0.101 0.032

Three-period Mean 0.210 -1.067 0.917 0.590
Three-period Median 0.213 -1.052 0.930 0.577
Standard error 0.099 0.133 0.144 0.068

Note: Standard errors of the parameters are based on the standard error of the estimates
across 100 simulations. The three-period results are estimated using the sieve MLE in
Shiu and Hu (2010).
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Table 4: Simulation of Average Partial Effects

State Dependence SD(X̄it, Ȳit−1)

DGP N=250 N=500 N=1000

DGP I: True value 0 0 0

Mean 0.002 -0.002 -0.001

Median 0.002 -0.003 0.001

Standard error 0.008 0.008 0.009

DGP II: True value 0 0 0

Mean -0.001 -0.001 0.001

Median 0.002 0.001 0.002

Standard error 0.008 0.010 0.010

DGP III: True value 0.579 0.579 0.579

Mean 0.660 0.652 0.644

Median 0.665 0.655 0.652

Standard error 0.115 0.093 0.082

DGP IV: True value 0.479 0.479 0.479

Mean 0.618 0.620 0.646

Median 0.632 0.635 0.645

Standard error 0.177 0.139 0.145

Note: Standard errors of the parameters are based on the stan-
dard error of the estimates across 100 simulations. SD(X̄it, Ȳit−1) ≡
µ1(X̄it, Ȳit−1)− µ1(X̄it, 0), where (X̄it, Ȳit−1) is the mean of (Xit, Yit)
and it is the difference of the average structural functions of two differ-
ent outcomes of Yit−1, 0 and Ȳit−1. This represents the magnitude of
the state dependence.
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Table 5: Sample Statistics

Variable Definition Periodit Periodt+1

Lnexp log(medical expenditures+1) 5.292 5.307
(2.903) (3.038)

Lninc ln(family income+1) 9.056 9.217
(2.821) (2.695)

Lnfam ln(family size) 1.036 1.034
(0.538) (0.542)

Age Age 39.427 40.429
(12.498) (12.500)

Male =1 if person is male; 0 otherwise 0.469 0.469
(0.499) (0.499)

Black =1 if race of household head is black; 0.148 0.148
0 otherwise (0.355) (0.355)

Education Education of the household head 12.599 12.599
(3.087) (3.087)

Pysical =1 if the person has a physical limitation; 0.057 0.059
0 otherwise (0.231) (0.235)

Ndental Number of dental care visits 0.938 0.857
(1.746) (1.617)

Good =1 if self-rated health is good; 0 otherwise 0.266 0.276
(0.442) (0.447)

Fair =1 if self-rated health is fair; 0 otherwise 0.086 0.081
(0.280) (0.274)

Poor =1 if self-rated health is poor; 0 otherwise 0.026 0.027
(0.158) (0.162)

Deduction =1 if the person has nonzero itemized 0.057 0.054
deductions; 0 otherwise (0.232) (0.227)

Medicare =1 if the person is covered by Medicare; 0.025 0.034
0 otherwise (0.156) (0.182)

Medicaid =1 if the person is covered by Medicaid; 0.070 0.068
0 otherwise (0.255) (0.253)

Sample size 7,669 7,669

Note: The variables in Periodit and Periodt+1 refer to the first-year and the second-year values
of each participation respectively. There are 1,430 and 1,578 individuals with zero medical
expenditures in Periodit and Periodt+1, respectively. Standard deviations are in parentheses.
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Table 6: Panel Censored Estimates for Health Expenditure

Linear RE Semi-parametric
Fixed Effects Tobit Dynamic Tobit

(1) (2) (3)

Coefficient Coefficient APE Coefficient APE

Lnexpit−1 – – – 1.052*** 1.448***

– – – (0.001) (0.006)

Lninc 0.031*** 0.042*** 0.039*** 0.041*** 0.056***

(0.008) (0.011) (0.001) (0.001) (0.001)

Lnfam -0.252*** -0.299*** -0.276*** -0.301*** -0.414***

(0.045) (0.056) (0.003) (0.001) (0.002)

Age 0.040*** 0.048*** 0.044*** 0.050*** 0.068***

(0.002) (0.003) (0.001) (0.001) (0.001)

Male -1.130*** -1.399*** -1.294*** -1.399*** -1.927***

(0.049) (0.062) (0.032) (0.001) (0.008)

Black -0.581*** -0.717*** -0.653*** -0.717*** -0.987***

(0.069) (0.086) (0.012) (0.001) (0.004)

Education 0.145*** 0.184*** 0.170*** 0.181*** 0.250***

(0.008) (0.011) (0.002) (0.001) (0.001)

Pysical 0.806*** 0.854*** 0.788*** 0.855*** 1.177***

(0.098) (0.119) (0.007) (0.001) (0.005)

Ndental 0.442*** 0.496*** 0.458*** 0.502*** 0.691***

(0.012) (0.015) (0.004) (0.001) (0.003)

Good 0.342*** 0.391*** 0.362*** 0.392*** 0.539***

(0.047) (0.059) (0.008) (0.001) (0.002)

Fair 1.037*** 1.180*** 1.111*** 1.178*** 1.621***

(0.080) (0.098) (0.031) (0.001) (0.007)

Poor 1.777*** 1.956*** 1.865*** 1.957*** 2.694***

(0.142) (0.173) (0.054) (0.001) (0.011)

Deduction 0.384*** 0.432*** 0.402*** 0.429*** 0.590***

(0.089) (0.108) (0.010) (0.001) (0.003)

Medicare 0.900*** 0.995*** 0.936*** 0.995*** 1.370***

(0.143) (0.175) (0.035) (0.001) (0.006)

Medicaid 1.138*** 1.346*** 1.270*** 1.343*** 1.849***

(0.092) (0.114) (0.001) (0.001) (0.008)

Note: Bootstrap (simulation) standard errors are reported in parentheses, using 100
bootstrap replications. APEs are reported by taking derivatives or differences of ASF
at the sample mean of (xit, yit−1).
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