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Abstract

Comparative advantage and trade costs shape the geography of cross-border supply
chains and trade flows. To quantify these forces, we build a model of trade with
sequential, multi-stage production that features technology differences both across and
within individual production stages. We estimate technology and trade costs in the
model via simulated method of moments, matching bilateral shipments of final and
intermediate goods for sixteen countries. We then apply the estimated model in a
series of counterfactual experiments. For example, we show that changes in the level
of trade costs generate concentration in gross relative to value-added trade, and that
technological improvements in one country induce changes in regional supply chains.
Surprisingly however, multi-stage production does not substantially inflate the gravity
distance elasticity of trade.
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In a global supply chain, sequential production stages are ‘sliced up’ and allocated across

countries to minimize total production costs. Comparative advantage and trade costs gov-

ern the allocation of stages to countries. First, countries differ in the cost with which they

perform individual production stages. Some countries have comparative advantage in down-

stream production stages (e.g., manufacturing assembly China), while other have compara-

tive advantage upstream stages (e.g., production of disk drives in Japan). Second, as inputs

are shipped from country to country through the chain, producers incur trade costs. Often

these costs are paid multiple times as goods travel back and forth across borders. Further,

the burden of these trade costs is large: ad valorem costs are paid on the gross value of goods

shipped, but cost savings from moving marginal production stages only apply to a fraction

of that gross value.

In this paper, we build a quantitative model of trade with cross-border supply chains to

study the role of comparative advantage and trade costs in shaping production fragmentation

and trade patterns. As in Yi (2003, 2010), the production of each good requires a discrete

number of stages, which must be performed in sequence.1 These stages are allocated across

countries to minimize production costs, given both bilateral trade frictions and differences in

technologies across countries and stages. In contrast to workhorse Ricardian models, such as

Eaton and Kortum (2002), that emphasize comparative advantage across goods, the multi-

stage model features comparative advantage across and within individual production stages.

Further, the discrete multi-stage production process allows supply chains to amplify the role

of trade costs in shaping trade flows, an effect that is shut down by assumption in standard

Ricardian models.

To quantify the role of technology and trade costs, we develop a new procedure to match

the multi-stage model to data on cross-border input-output linkages. Specifically, we build

a model-based global input-output table that tracks final and intermediate shipments across

stages and countries. We then estimate technology and trade costs via simulated method

of moments by minimizing deviations between final and intermediate trade shares in the

model and data.2 Because we ask the model to match observed trade flows, as is standard

in the trade literature, we are able to estimate both trade costs and productivity as free

parameters. This allows a tighter mapping between theory and data than previous calibration

1Related models with a discrete number of stages include Markusen and Venables (2007) and Baldwin and
Venables (2010). Costinot, Vogel, and Wang (forthcoming) develop a model with a continuum of production
stages, building on Dixit and Grossman (1982) and Sanyal (1983). Arkolakis and Ramanarayanan (2009)
and Bridgman (2008, 2012) also work with models that feature vertical specialization.

2In using a simulated method of moments procedure, we face the technical challenge that simulated
moments in Ricardian models are not continuous in model parameters. This typically makes estimation for
a large number of countries infeasible. We overcome this problem by borrowing smoothing techniques from
the discrete choice literature, drawing on McFadden (1989).
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procedures.3 Not only does this facilitate comparison between the multi-stage model and

competing alternatives, but it also paves the way for use of the multi-stage model in future

applications.

We implement this estimation procedure in a two-sector, two-stage version of the model

using data for 15 industrial and emerging market countries, plus a composite rest-of-the-

world region, in 2004.4 Our estimates suggest that there are large differences in technology

levels across countries and stages. Though technology levels covary strongly across stages,

countries exhibit pronounced differences in relative technology across stages, which induce

countries to specialize across stages. For example, we find that China has comparative ad-

vantage in downstream (stage 2) production, while Australia has comparative advantage in

upstream (stage 1) production. Comparative advantage in stage 2 production is not corre-

lated with country income. However, it is negatively correlated with the share of commodities

in exports, reflecting the upstream position of commodities in the production chain.

We also find that ad valorem trade costs are large in our framework, on the order of 250%

for a typical country pair. Thus, our multi-stage framework returns estimates of average

trade costs that coincide with levels obtained in standard Armington or Ricardian gravity-

style models. As we discuss further below, this observation has important implications for

interpreting the response of our model economy in counterfactual experiments. Finally, using

the model-based input-output table, we can measure simulated trade on a value-added basis,

comparable to data-based measures of trade in value added. We show the model matches

key stylized facts about value added trade. For example, the model matches both the share

of foreign value added in final goods produced in each country and the positive correlation

of bilateral ratios of value added to gross trade with distance.

We apply the estimated model in three quantitative exercises that advance our under-

standing of how trade costs shape cross-border fragmentation and bilateral trade flows. First,

we examine the role of multi-stage production in explaining the large negative elasticity of

bilateral trade to distance. Yi (2003) first pointed out that multi-stage production inflates

the effect of tariffs on trade, while Yi (2010) argues that it also increases the influence of

3Yi (2010) calibrates a similar multi-stage model for the US and two Canadian regions using a mixture
of data (on production, labor allocations, income, etc.) and ad hoc parameter restrictions. For example, Yi
assumes that productivity is equal across stages and sectors in several regions, but not in others. We do
not need to impose these restrictions on technology differences. Further, we are also able to estimate trade
costs, unlike Yi (2010) who measures trade costs based on auxiliary data.

4It is straightforward to extend our procedure to allow for more sectors and/or stages, or to vary the
number of countries. Because the estimation procedure is computationally costly, one needs to trade off
these dimensions in practice. We have opted here for a relatively few stages and a high level of aggregation
to maximize country coverage, which allows us to conduct gravity-style analysis of trade and allow richer
cross-country analysis of counterfactual experiments. We intend to examine other permutations of the basic
model in future iterations of this paper, as well as future work.
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country borders on trade. By analogy, one would expect that multi-stage production also

inflates the distance elasticity of trade.

Surprisingly, given our model estimates, we conclude that multi-stage production does

not play an important role in explaining the elasticity of trade to distance. The reason is

that the distance elasticity of trade is a function of the level of trade costs in the multi-stage

model. Like standard models, the multi-stage model requires large trade costs to explain

observed home bias and concentration in trade. These high trade costs dampen the extent

to which stages are separated across borders in the model, and therefore limit the extent

to which multi-stage production changes the mapping from trade costs to trade flows. To

demonstrate the role of trade costs, we show that the distance elasticity does increase (in

absolute value) as we lower trade costs uniformly across trade partners. However, sizable

inflation effects require much lower trade costs, on the order of 100-200 percentage points

than we estimate.

Second, we examine the response of trade flows and wages to a uniform 10% reduction in

international trade costs across all countries and partners.5 In this exercise, we distinguish

‘short run’ versus ‘long run’ responses to this change, where the ‘short run’ scenario holds

the location from which stage 2 producers source stage 1 inputs fixed, while the ‘long run’

scenario allows producers to reoptimize their sourcing choices. Comparing these scenarios

shed light on the extent to which reallocation of stages to countries is important in explaining

responses to trade.

We find that holding suppliers fixed significantly dampens the response of gross trade and

metrics of vertical specialization (e.g., value added to export ratios) in response to changes

in trade costs. In the long run, we find that gross trade becomes more concentrated relative

to value added trade following the decline in trade costs. That said, we do not find that the

multi-stage model yields larger changes in aggregate trade than more conventional Ricardian

frameworks.6 Similar to our conclusion regarding the distance elasticity, the reason is that the

elasticity of aggregate trade to uniform changes in trade costs is also a function of the initial

level of trade costs. Thus, the multi-stage model yields macro-level responses comparable to

more standard models, despite important differences in micro-level adjustment mechanisms.

Third, we examine the response of production chains and trade patterns to an increase in

productivity in China. We show that changes in vertical specialization, as measured both by

value added to export ratios and the share of foreign value added in final goods production,

5This liberalization exercise is only one of many possibly interesting scenarios that could be analyzed in
our estimated model. We will be adding additional exercises to future drafts.

6Specifically, we benchmark our results against a similar liberalization exercise in a two-sector version
of the Eaton-Kortum model with input-output linkages developed by Caliendo and Parro (2012), where we
parameterize that model using our simulated data.
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are concentrated among China’s Asian neighbors. Changes in vertical specialization are very

small for most other countries outside the region. This emphasizes the local character of

production chains in the model.

The rest of the paper proceeds as follows. Section 1 lays out the many-country, multi-

stage model, presents a solution procedure, and discusses some key features of the model.

Section 2 discusses how we assemble the model-based input-output framework. Section 3

describes how we calibrate elements of the model and estimate technology and trade costs,

as well as how we construct alternative measures value added trade. Section 4 presents our

estimates and statistics regarding model fit, while Section 5 presents our counter-factual

analysis. Section 6 concludes.

1 Framework

We start this section by laying out the basic elements of the framework. The model draws

heavily on models developed by Yi (2003, 2010), with the exposition here adapting the

model to a many country, multi-sector setting. Because the model does not admit analytical

solution, we then discuss how to solve the model numerically.

1.1 Production

Consider a world economy with many countries, indexed by i, j, k ∈ {1, . . . , C}. Within

each country, we divide economic activity into two sectors s ∈ 1, 2, standing for goods and

services. Within each sector, there is a unit continuum of goods, indexed by z, and each

good requires two stages to produce. Production in both stages is perfectly competitive.

By way of notation, we generally put country labels in the superscript and stage labels

in the subscript. We put good and sector subscripts in parentheses, so that (z, s) denotes

good z in sector s.

Production in stage 1 uses labor and a composite input, and we assume the production

function for good z in sector s is:

qi1(z, s) = T i1(z, s)Θ(s)M i(z, s)θ(s)li1(z, s)1−θ(s) (1)

where T i1(z, s) is the good-sector specific productivity of country i in stage 1, li1(z, s) and

M i(z, s) are the quantities of labor and the composite input used in production, θ(s) is the

sector-specific share of the composite input in production, and Θ(s) = (1− θ)1−θ θθ is a

constant normalization. The output of the first stage is an input that is used in stage 2

production of good z in sector s.
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Production in stage 2 combines the first stage input and labor, with the production

function given by:

qi2(z, s) = T i2(z, s)Θ(s)xi1(z, s)θ(s)li2(z, s)1−θ(s), (2)

where T i2(z, s) is productivity in stage 2, xi1(z, s) is the quantity of the stage 1 input used,

li2(z, s) is labor used, θ(s) is again the cost share attached to the stage 1 input, and Θ(s) is

the same normalization as above.7

Output in each stage may be produced in any location, but every time output is shipped

it incurs an bilateral sector-specific iceberg transportation cost τ ij(s).8

1.2 Aggregation

Stage 2 goods are aggregated to form a non-traded composite good in each sector, and these

composite goods are sold to final consumers and used to form the composite input used in

stage 1.9 The composite goods, denoted Qi(s), are Cobb-Douglas combinations of stage 2

goods:

Qi(s) = exp

(∫ 1

0

log(q̃i(z, s))dz

)
, (3)

where q̃i(z, s) is the quantity of stage 2 good z in sector s purchased (from home or abroad)

by country i.

These sector-level composite goods are combined to form an aggregate final good and

the composite input used by stage 1 producers. We assume that the aggregate final good

is given by: F i = AF i(1)αF i(2)1−α, where F i(s) denotes the amount of the composite good

in sector s that is sold to final consumers and A = (1− α)1−α αα. Similarly, the composite

input is given by: M i = BM i(1)βM i(2)1−β, with M i =
∑

s

[∫ 1

0
M i(z, s)dz

]
in equilibrium

7In contrast to Yi (2003), we do not explicitly include capital as a produced factor in the model. This
implies that differences in capital are impounded in to the productivity term in our estimation. In com-
puting counterfactuals, we implicitly hold all factors fixed. Including endogenous capital stocks would be a
straightforward extension.

8Two points are worth noting here. First, we do not assume that the cost is stage-specific. Extensions in
which trade costs for final and intermediate goods differ would allow one to consider the effects of input-tariff
liberalization. Second, we assume that trade costs are ad valorem. Extensions with per unit trade costs
would give rise to differences in trade costs across stages because the gross value per unit shipped differs
across stages.

9One can think of aggregation step as a third production stage, with zero value added. Because there is
zero value added, one can alternatively write down the model with aggregation explicitly incorporated into
preferences and production functions.

6



and B = (1− β)1−β ββ.10 Finally, adding up requires that: Qi(s) = F i(s) +M i(s).

1.3 Households

Consumers supply labor inelastically to firms and consume the composite final good Fi.

In effect, they therefore have Cobb-Douglas preferences over stage 2 goods. The consumer

budget constraint is: wiLi = P i
FF

i + TBi, where wi is the wage, Li is the labor endowment,

P i
F is the price of the final composite, and TBi is the nominal trade balance. The trade

balance appears here in the budget constraint, since we treat it as an exogenous nominal

transfer necessary to equate income and expenditure for each country.

1.4 Solving the Model

To estimate and simulate the model, we solve a discrete approximation of the continuum

model described above. We assume that there are a large number (R) of goods within each

sector, and let r = {1, . . . , R} index discrete products.

We describe the solution to the model by walking through a three step numerical pro-

cedure here. First, given wages wi, we determine prices and the assignment of stages to

countries for each good. Second, given prices and this assignment, we find equilibrium quan-

tities produced of each good. Third, given prices and quantities, we compute labor demand

and check whether this matches labor supply in each country.

1.4.1 Prices and Assignment of Stages to Countries

Given wages, we can solve for the assignment of stages to countries for production of all goods

delivered to each destination.11 To do so, we construct prices for all possible assignments of

stages to countries for delivery of a given good to each destination, and pick the assignment

that minimizes costs.

This takes the form of a nested minimization problem:

p̃k2 (r, s) = min
j
τ jk(s)pj2 (r, s) , with pj2 (r, s) =

(wj)
1−θ(s) (

p̃j1 (r, s)
)θ(s)

T j2 (r, s)

and p̃j1 (r, s) = min
i
τ ij(s)pi1(r, s), with pi1(r, s) =

(wi)
1−θ(s)

(P i
M)

θ(s)

T i1 (r, s)
,

10Note that we assume the composite input is not sector-specific.
11The allocation of stages to countries for each good depends on the destination at which that good is

consumed.
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where the price of the composite intermediate input is given by P i
M = P i(1)βP i(2)1−β,

where P i(s) denotes the price of the composite good in each sector. This composite price

is itself a function of the prices of stage 2 output delivered to country i: log (P i(s)) =∫ 1

0
log(p̃k2 (z, s))dz ≈ 1

R

∑
r log(p̃k2 (r, s)).

To be clear, p̃k2 (r, s) is the realized price of stage 2 output of good r in sector s (i.e., the

price at which k actually purchases good (r, s)). It is equal the minimum over τ jk(s)pj2(r, s),

the possible prices at which each country j could deliver the stage 2 good if j chooses the

minimum cost source for stage 1. These prices are in turn a function of the cost of stage

1 inputs in each source j, where the low cost supplier of stage 1 goods delivers inputs to

country j at price p̃j1 (r, s). This input supply price is the minimum over delivered prices from

alternative source countries (i): τ ij(s)pi1(r, s). Finally, those input supply prices depend on

the composite input price in country i, which itself is a function of the realized prices of

stage 2 output in country i.

Starting with a guess for the composite input prices P i
M , we can solve the minimization

problem for prices {p̃j1 (r, s) , p̃k2 (r, s)}. We then use these prices to update the value of P i
M ,

and solve for an updated set of stage 1 and stage 2 prices. We iterate on this fixed point

problem to convergence. Having converged on a value for P i
M , we can easily compute the

solution for equilibrium stage 1 and stage 2 prices, as well as the allocation of stages to

countries. We denote the set of countries to which country i is the low cost supplier for a

particular stage of each good as: {Ωi
1 (r, s) ,Ωi

2 (r, s)}.

1.4.2 Quantities Supplied and Demanded

Given the prices obtained in the previous step, we can compute production of goods at

each stage in each country by working backwards from final demand. Total demand for the

sector-level composite goods is given by:

P k(1)Qk(1) = αP k
FF

k + βP k
MM

k (4)

P k(2)Qk(2) = (1− α)P k
FF

k + (1− β)P k
MM

k, (5)

where P k(s) is the price index for the sector composite. Since we have taken the wage as

given and observe the trade balance, we know P k
FF

k = wkLk − TBi. However, we do not

directly observe expenditure on the composite input P k
MM

k. We therefore need to solve for

this value.

Given P k
FF

k and a guess for Mk, we can compute P k(s)Qk(s). These then imply demand
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for individual stage 2 goods in destination k given by:

q̃k(r, s) =
1
R
P k(s)Qk(s)

p̃k2 (r, s)
, (6)

where again p̃k2 (r, s) is the delivered price from the actual source that supplies market k.

Tracing these demands back to the countries that supply those goods, we can compute

the quantity of stage 2 goods produced in each source j as:

qj2(r, s) =
∑

k∈Ωj
2(r,s)

τ jkq̃k(r, s). (7)

Then, given this stage 2 production in country j, demand for stage 1 inputs in country j is:

xj1(r, s) =
θ(s)pj2(r, s)qj2(r, s)

p̃j1 (r, s)
. (8)

These input demands allow us to then solve for the quantity of each stage 1 good supplied

by country i as:

qi1(r, s) =
∑

j∈Ωi
1(r,s)

τ ijxj1(r, s). (9)

Finally, given this stage 1 production, we can compute demand for the composite input:

M i =
1

P i
M

∑
s

∑
r

θ(s)pi1(r, s)qi1(r, s). (10)

This gives us an updated value for purchases of the composite input M i, and hence updated

values for the total amount of the composite goods supplied in each sector P k(s)Qk(s). We

iterate on this fixed point problem to convergence.

1.4.3 Labor Market Clearing

The candidate solution above involved a guess for wages, so we need to check whether this

guess clears the labor market. We can calculate total labor demand from both stages as:

li1 (r, s) = (1− θ(s)) p
i
1 (r, s) qi1 (r, s)

wi

li2 (r, s) = (1− θ(s)) p
i
2 (r, s) qi2 (r, s)

wi
.

Then total labor demand is: LiD (w) =
∑

s

∑
r l
i
1 (r, s) + li2 (r, s), where we have made total

labor demand explicitly a function of the wage vector. The equilibrium wage vector then
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sets labor demand equal to labor supply: LiD = Li for i = 2, .., N (where market 1 is dropped

appealing to Walras’ law).

1.5 Discussion

1.5.1 Snakes and Spiders

The model mixes sequential, multi-stage production with a roundabout input loop. We

illustrate the basic set-up in a closed economy in Figure 1. Borrowing terminology from

Baldwin and Venables (2010), we can think of this aggregate model as one with recursive

‘snakes’ and ‘spiders.’

To isolate the ‘snake’ part of the model, suppose that we were to set the share of the

composite input in stage 1 to zero. In that case, we would re-write the first stage production

function as qi1(z, s) = T i1(z, s)li1(z, s). And the stage 2 output would be used only to satisfy

final demand. This would turn the full model above into one with a continuum of two-stage

‘snakes’ – an economy of the sort analyzed in Yi (2003). If (as above) we classify both

stages of each good in the same sector, then there would be no inter-sectoral linkages in

this simplified model, which clearly is at odds with the data. This then leads us to the full

model, which includes both intra-sectoral and inter-sectoral input linkages.

In the full model, a ‘spider’ production process links the two ends of the ‘snakes.’ Output

from the second stage is aggregated within and between sectors to form a composite input

that is fed back into the first stage of the production process. Because the composite input

links ends of the sequential production process, it converts the two-stage process into a multi-

stage process with an effectively infinite number of production stages, where some fraction

of output is drawn out at each stage to satisfy final demand.

Not only does the spider link the ends of the sequential production process, it also links

the production process across sectors. Manufactures uses non-manufactures in production

(and vice versa) because the composite input is made from all goods. Put differently, inputs

flow across sectors through spiders, while inputs flow within each sector both via snakes and

spiders.

1.5.2 Elasticity of Trade to Trade Costs

In the model with multi-stage production above, the elasticity of trade flows to trade costs

depends on the level of trade costs. We discuss this relationship at length in simulations of

the model below, but pause here to develop some intuition for this result. This intuition

draws on arguments in Yi (2003, 2010), reworked here to emphasize points relevant to our
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empirical analysis. There are two observations that underpin our interpretation of the trade

elasticity.

First, as trade costs rise in the discrete multi-stage model, it becomes increasingly costly

to split up discrete stages of the production process across countries. Therefore, as trade

costs increase, the model behaves more like a standard multi-sector Ricardian model – an

analog to the multi-sector extension of the Eaton and Kortum (2003) model by Caliendo and

Parro (2012). With the standard assumption that productivities are drawn from the Fréchet

distribution, then the elasticity of trade to changes in trade costs is equal to the Fréchet

shape parameter. This elasticity anchors the trade elasticity in the multi-stage model for

high values of trade costs.

Second, as trade costs fall in the multi-stage model, it becomes increasingly attractive

to split up discrete production stages across borders to take advantage of cost differences.

The ability to substitute over the location of individual stages of the production process,

rather than simply over entire goods themselves, tends to amplify the sensitivity of trade to

changes in trade costs.

One force for amplification arises because trade costs are incurred multiple times when

inputs are shipped abroad and then embodied in imported final goods. For example, if a

good that is exported uses an imported input, then one pays ad valorem costs on the input

twice – once when it is imported, and again when it is exported embodied in final good. Yi

(2010) refers this as the ‘multiple border crossing’ force.

A second force for amplification arises because agents evaluate the burden of trade costs

relative to the cost savings on shifting the location of a single stage of the production process.

The benefits of moving the location of a single stage depend on that stage’s share in total

value added (equivalently, the value of the final good), and benefits are lower when the share

in total value added is also low. The trade costs incurred in shifting a production stage are

thus perceived to be more burdensome when total value added in the marginal stage is low.

Yi (2010) refers to this as the ‘effective rate of protection’ force.

At intermediate levels of for the trade cost, the model economy features both standard

Ricardian trade, where consumers substitute across entire goods, and trade through multi-

stage production chains in which agents substitute over production locations for each stage.

Therefore, the aggregate model elasticity of trade to trade costs depends on the mix of

Ricardian vs. multi-stage multistage trade. As trade costs fall, the share of trade via multi-

stage production chains rises, and the elasticity of trade to trade costs does as well.
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2 A Multi-Stage Input-Output Framework

In the model, there are input-output linkages across production stages, sectors, and countries.

These linkages can be represented in the form of a model-based global input-output (IO)

table. This model based table is helpful for explaining the structure of trade in final goods

and intermediate inputs in the model, and in describing the link between model and data.

Further, we can apply the model based input-output table to construct measures of value-

added trade in the model. We present the input-output framework here and then describe

this application in the next section.

To build the model-based IO table, we start with market clearing conditions. These

market clearing conditions hold good-by-good and stage-by-stage. In forming the model-

based IO table, we aggregate across goods within each sector to re-write these market clearing

conditions so that they hold stage-by-stage and sector-by-sector. We then assemble these

market clearing conditions into standard IO table formatting.

To start, we need to define notation for values of bilateral shipments and gross output.

Using the letter y to denote prices times delivered quantities, then we can write bilateral

shipments as:

yij1 (r, s) ≡ I
(
j ∈ Ωi

1(r, s)
)
p̃j1(r, s)xj1(r, s), (11)

yij2 (r, s) ≡ I
(
j ∈ Ωi

2(r, s)
)
p̃j2(r, s)q̃j(r, s), (12)

where the indicator functions I(·)take the value 1 when country i is the low cost supplier of

good (r, s) to country j in a given stage. Using this notation, we can then aggregate across

goods and destinations as necessary. Denoting stages by k, we can define total production

by good yik(r, s), total bilateral shipments by sector yijk (s), and total production by sector

yik(s) as:

yik(r, s) ≡
∑
j

yijk (r, s) (13)

yijk (s) ≡
∑
r

yijk (r, s) (14)

yik(s) ≡
∑
j

∑
r

yijk (r, s). (15)

We now turn to the market clearing condition for stage 1 output. Note that bilateral
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shipments of stage 1 inputs for sector s can be written as:

yij1 (s) =
∑
r

I
(
j ∈ Ωi

1(r, s)
)
p̃j1(r, s)xj1(r, s)

=
∑
r

I
(
j ∈ Ωi

1(r, s)
)
θ(s)yj2(r, s),

(16)

where the second line uses the fact that p̃j1(r, s)xj1(r, s) = θ(s)yj2(r, s). Then the market

clearing condition for stage 1 output can be written as:

yi1(s) =
∑
j

yij1 (s)

=
∑
j

[
yij1 (s)

yj2(s)

]
yj2(s)

=
∑
j

[
θ(s)

∑
r

I
(
j ∈ Ωi

1(r, s)
)(yj2(r, s)

yj2(s)

)]
yj2(s).

(17)

In the second line, the ratio
yij1 (r,s)

yj2(s)
records the share of stage 1 inputs from country i used

by country j in sector s as a share of stage 2 output of sector s in country j. The third line

says that this ratio is equal to the Cobb-Douglas input cost share times the weighted count

of goods in which country i is the low cost supplier of stage 1 inputs to country j, where

the weights equal the share of country j’s stage 2 production of each good in total stage 2

production in j.

Turning to stage 2 output, we need to divide this output across uses since it is both

absorbed as a final good and used to form the composite input. We can break down output

for sector s as follows:

yij2 (r, s) = I
(
j ∈ Ωi

2(r, s)
)
p̃j2(r, s)q̃j(r, s)

= I
(
j ∈ Ωi

2(r, s)
) P j(s)Qj(s)

R

=
I (j ∈ Ωi

2(r, s))

R

[
α(s)P j

FF
j + β(s)P j

MM
j
]

=
I (j ∈ Ωi

2(r, s))

R

[
α(s)P j

FF
j + β(s)

∑
s′

θ(s′)yj1(s′)

]
,

(18)

where the last line uses the fact that P j
MM

j =
∑

s′
∑

r θ(s
′)yj1(r, s′) and we introduce the

notation {α(s), β(s)} here to denote the Cobb-Douglas shares attached to sector s.12 The

12To be clear, α(1) = α, β(1) = β, α(2) = 1− α, and β(2) = 1− β.
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last line breaks down stage 2 shipments into final use and intermediate use by sector.

Then the full sector-level market clearing conditions for stage 2 output are given by:

yi2(s) =
∑
j

yij2 (s)

=
∑
j

∑
r

yij2 (r, s)

=
∑
j

[∑
r I (j ∈ Ωi

2(r, s))

R

][
α(s)P j

FF
j + β(s)

∑
s′

θ(s′)yj1(s′)

]
.

(19)

The ratio

[∑
r I(j∈Ωi

2(r,s))
R

]
is the fraction of stage 2 goods for which i is the low cost supplier

to country j in sector s. For shorthand, we define Rij(s) ≡
∑

r I (j ∈ Ωi
2(r, 1)), so then this

fraction is given by: Rij(s)
R

.

With these market clearing conditions, we can set up the input-output table. The com-

ponent pieces are bilateral input use matrices Aij and bilateral final goods shipments, which

we will denote f ij. The input use matrices have four rows/columns, corresponding to stages

and sectors, and take the form:

Aij =


0

yij1 (1)

yj2(1)
0 0

Rij
2 (1)

R
β(1)θ(1) 0

Rij
2 (1)

R
β(1)θ(2) 0

0 0 0
yij1 (2)

yj2(2)

Rij
2 (2)

R
β(2)θ(1) 0

Rij
2 (2)

R
β(2)θ(2) 0

 ,

with
yij1 (s)

yj2(s)
= θ(s)

∑
r

I
(
j ∈ Ωi

1(r, s)
)(yj2(r, s)

yj2(s)

)
.

(20)

The ordering of rows/columns is (sector 1, stage 1), (sector 1, stage 2), (sector 2, stage 1),

and (sector 2, stage 2).

These bilateral matrices can be arrayed to form the 4N × 4N dimensional global input-

output matrix:

A ≡


A11 A12 . . . A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 . . . ANN

 (21)
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Then we can organize the use of stage 2 goods as final goods in vector form as:

f ij =


0

Rij
2 (1)

R
α(1)P j

FF
j

0
Rij

2 (1)

R
α(2)P j

FF
j

 . (22)

And let F be the 4N × N matrix of all f ij vectors, where destinations j are arrayed along

columns and source countries i are stacked vertically. And defining ι as a N × 1 column of

ones, note that Fι is the vector of final goods produced by source i.

Finally, let us assemble output by stage and sector into vectors:

yi =


yi1(1)

yi2(1)

yi1(2)

yi2(2)

 . (23)

And let us stack these vertically to form an 4N × 1 dimensional vector Y .

Given this set-up, the standard input-output accounting identity holds: Y = AY + Fι.

We will use this input-output system to compute different model-based measures of trade in

value added.

3 Mapping the Model to Data

In this section, we discuss how we fit the model presented in Sections 1 and 2 to data. In

this, we now assign identities to the two sectors in the model and refer to sector 1 as the

‘goods’ sector and sector 2 as the ‘services’ sector. We begin by presenting our data source

and discuss how we assemble the global input-output framework from that data. We then

discuss how we calibrate a subset of the parameters of the model, and estimate the remainder

via a simulated method of moments procedure. We then conclude this section by describing

how we use the global input-output framework to compute several measures of trade in value

added.
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3.1 Global Input-Output Data

Our data source is the GTAP 7.1 Data Base assembled by the Global Trade Analysis Project

at Purdue University, which includes trade, production, and input-output data for 2004.13

While the underlying data includes more than 90 countries, we cannot use this fine country

detail due to computational constraints. Therefore, we retain 15 major countries – United

States, China, Japan, Germany, Italy, India, Great Britain, France, Canada, Spain, Brazil,

Australia, Russia, Mexico, and South Korea – and aggregate the remaining countries to form

a composite rest-of-the-world region.14 Further, there are 57 sectors in the underlying data.

In the data, we have information on 6 objects for each country:

1. yi is a 57× 1 vector of total gross production.

2. fDi is a 57 × 1 vector of domestic final expenditure, which includes consumption,

investment, and government purchases.

3. f Ii is a 57× 1 vector of domestic final import expenditure.

4. Aii is a 57× 57 domestic input-output matrix.

5. AIi is a 57× 57 import input-output matrix.

6. {xij} is a collection of 57× 1 bilateral export vectors for exports from i to j.

To form data-based bilateral input-output matrices Āji and final expenditure vectors

f̄ ji, we apply a proportionality assumption. Within each of the 57 sectors, we assume that

imports from each source country are split between final and intermediate in proportion to the

overall split of imports between final and intermediate use in the destination. And conditional

on being allocated to intermediate use, we assume that imported intermediates from each

source are split across purchasing sectors in proportion to overall imported intermediate use

in the destination. Mathematically, we compute Āji and f̄ ji as:

Āji(s, s′) = MsharejiAIi and f̄ ji(s) = Msharejif Ii,

where Mshareji is a 57× 57 matrix with elements xji(s)∑
j x

ji(s)
along the diagonal.

Stacking the production data to form an 57N × 1 vector of gross output Ȳ , assembling

the input output matrices to form a 57N×57N global input-output matrix Ā, and arranging

13See the GTAP website at http://www.gtap.agecon.purdue.edu for documentation of the source data.
This is the same dataset used in Johnson and Noguera (2012a).

14Because we have input-output data for the countries that comprise the rest-of-the-world region, we can
aggregate them in a way that preserves basic input-output identities for the world as a whole.
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the final expenditure vectors f̄ ij into 57N ×N matrix F̄ , we write the input-output identity

in the data as: Ȳ = ĀȲ + F̄ ι.

We use this system to compute value added in trade, as described in the next section.

We also use the final and intermediate shipments in this data in estimation of the model.

Specifically, we aggregate bilateral final and intermediate shipments to the two-sector level,

focusing on goods versus services shipments.15 Due to the proportionality assumptions used

above, variation in aggregate final and intermediate goods trade shares across trade partners

for a given destination arises solely due to differences in the composition of imports across

partners.16

3.2 Fitting the Model

There are a number of free parameters, including technology levels {T i1(r, s), T i1(r, s)}, trade

costs τ ij(s), and several share parameters in production functions and preferences {θ(s), α, β}.
We mix calibration and estimation in pinning down these parameters.

3.2.1 Calibrated Parameters

We calibrate {θ(s), α, β} to match ratios for ‘typical’ countries in the data. The parameter

θ(s) governs the value added to output ratio in each sector.17 We therefore set θ(s) to match

the median value added to output ratio across countries in each sector. These median values

are: θ(1) = 0.62 and θ(2) = 0.41.18 These imply that the value added to output ratio is

lower by roughly 0.2 in the goods sector relative to the services sector.

The parameter α is also straightforward to calibrate, since it is the share of goods in

final expenditure. We also set this value equal to the median across countries, given by

α = 0.25.19 Finally, β governs extent to which goods versus services are used in forming the

composite input. As we describe in Appendix A, we choose β to match inter-sectoral flows

for the world economy as a whole. This yields a value β = .6. Note that β > α, so goods

15Goods covers sectors 1-42 in the GTAP data, which includes agriculture, natural resources, and manu-
facturing.

16This likely understates true variation in final and intermediate input shares across partners. An alter-
native approach to measuring final goods trade flows across countries would be to use trade data classified
according the Broad Economic Categories (BEC) system, which categories goods based on final versus in-
termediate use. We intend to check our results using this alternative approach.

17To see this, note that value added is equal to the wage bill for each good r: vai(r, s) = wili1(r, s) +

wili2(r, s) = (1− θ(s))[yi1(r, s) + yi2(r, s)]. Adding up across goods yields: 1− θ(s) = vai(s)
[yi1(s)+yi2(s)

.
18The input share for goods varies from roughly 0.55 to 0.73 across countries, with most countries between

0.6 and 0.7. The input share for services varies from 0.31 to 0.53.
19Expenditure shares on manufactures tend to be higher than this baseline value emerging markets (up to

0.5), and near this benchmark in industrial countries.
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receive a larger weight in the composite input than in final demand.

3.2.2 Estimation via Simulated Method of Moments

The remaining unknown parameters are technology levels and trade costs.

For technology levels, we assume that countries draw productivity from country, stage,

and sector specific Fréchet distributions, where draws are assumed to be independent across

countries/stages/sectors.20 We parameterize these distributions with a common shape pa-

rameter κ, and location parameters {T i1(s), T i2(s)} for sector s in country i. We set κ = 4.12,

guided by Simonovska and Waugh (2011).21 [To simplify computation, we restrict T ik (1) =

T ik (2) in this draft, so that productivity in goods and services are equal within countries.

We plan to relax this assumption in future drafts.]

We also parameterize trade costs by assuming that bilateral trade costs are a power

function in distance. Specifically, we estimate a function of the form: τ ij(s) = τ(s) (dij)
ρ
,

where dij is the distance between country i and country j, τ(s) is a level parameter, and ρ

is the elasticity of trade costs to distance. We set trade costs on domestic shipments to one

in all countries (τii(s) = 1).

We denote the set of parameters to be estimated as Θ = {T i1(s), T i2(s), ρ}, and without

loss of generality set T 1
1 (s) = T 1

2 (s) = 1 so that technology levels are measured relative

to country 1. We estimate these parameters by matching the simulated data to measured

shipments of final and intermediate goods across countries. In effect, we choose parameters to

ensure that the model-based input-output table mimics data on global input-output linkages.

In this estimation, we generate simulated data taking final expenditure in each market P i
FF

i

and relative wages wi as given and set equal to values in the data (with w1 = 1 as a

normalization).22

Moments In this draft, we estimate the model using moments based on trade in goods

only, and therefore assume that services are non-traded (as if τ(s) → ∞). Specifically, we

estimate the model under the restrictions that stage 1 inputs in the services sector must be

source domestically, and that the stage 2 output of services must either be used to satisfy

20We have experimented with allowing draws to be correlated across stages for individual goods. The
parameter governing this correlation is weakly identified by the data and introducing this correlation does
not materially affect the results.

21Though we set the shape parameter to this value based on Simonovska and Waugh, we recognize that
this parameter is estimated in a model that is different than ours. Obtaining appropriate estimates for this
parameter in the context of our model is a topic for future work.

22We compute total expenditure in each market by dividing observed final expenditure on goods value by
α. We also observe the trade surplus for goods TBi in the data. Since the consumer budget constraint is
given by wiLi = P iFF

i + TBi, then we back out wages as: wi =
(
P iFF

i + Si
)
/Li. We use 2004 population

data from the Penn World Table 7.1 to proxy for labor endowment Li.
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domestic final demand for services or shipped to domestic stage 1 producers to form the

composite input. We discuss the model-based global input-output table in this special case

further in Appendix C. [We restrict services trade here to reduce computation time, and

plan to estimate the full model in future drafts.]

Given calibrated parameters {κ, θ (s) , α, β}, relative wages, and final expenditure, we

choose values of Θ and draw productivities for each good and sector, which we denote T j1 (r, s)

and T j2 (r, s) with r = 1, .., R indexing the sequence of the draw. Given these parameters, we

solve the model following the procedure in Section 1.4.23 Using the simulated data from the

model, we then compute a vector of moments M (Θ), which we match to analogous moments

M in the data.

We form the first set of moments using trade shares for final goods. From Equation (22),

final goods shipments from i to j in sector 1 are
(
Rij

2 (1)

R

)
α(1)P j

FF
j, where α(1)P j

FF
j is total

expenditure on goods in j. So the share of final goods from source i in country j expenditure

is: Fshareij =
Rij

2 (1)

R
.24

The second set of moments consists of trade shares for inputs. Input shipments from coun-

try i to j include both stage 1 goods and stage 2 goods destined for the composite input. De-

fine input shipments from i to j of sector 1 goods as: Inij(1) =
∑

r I (j ∈ Ωi
1(r, 1)) [θ(s)yj2(r, 1)]+

1
R

∑
r I (j ∈ Ωi

2(r, 1)) [β(1)P j
MM

j]. Define total input purchases of sector 1 goods as: Inj(1) =

θ(1)yj2(1)+β(1)P j
MM

j. Then the share of inputs from source i in country j’s total purchases

of inputs from the goods sector is: Inshareij = Inij(1)
Inj(1)

. And

Since
∑

i π
ij
n = 1, we only use off diagonal trade shares, in total 2 (N2 −N) moments. We

denote the log difference between actual and simulated moments µij (Θ) = lnmij−ln m̂ij (Θ),

and stack all µij’s in a column vector M (Θ).

Estimation Procedure Our estimation procedure is based on the moment condition

E [M (Θ0)] = 0, where Θ0 is the true value of Θ. Hence, we estimate a Θ̂ that satisfies:

arg min
Θ

{
M (Θ)′M (Θ)

}
(24)

Since we have 2N variables and 2 (N2 −N) moments, the model is over identified. [Though

we do not compute standard errors in this draft, we will report them in future drafts.]

We note here that this minimization problem is not straightforward to solve numerically,

since the simulated moments are not continuous in the underlying parameters. To circumvent

23Since we take wages as given in the estimation, we drop the final stage of the procedure in Section 1.4
in which the wage is determined via labor market clearing.

24Note that in the model, these trade shares are identical to the trade shares for all stage 2 output,
including output dedicated for intermediate use. So they can alternatively be computed using total stage 2
trade flows.
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this problem, we borrow a technique to smooth the objective function from the discrete choice

literature. With this smoothing, we can turn to standard numerical routines to solve the

minimization problem. We discuss this technical issue further in Appendix B.

3.3 Value Added in Trade

Using the input-output frameworks described above, we can compute the value added content

of final goods shipments in both model and data. We focus on two alternative metrics. First,

we compute the amount of value added from each source country embodied in final goods

produced by a given country, which we refer to as ‘value-added inputs.’ Second, we compute

the amount of value added from each source country consumed in each destination, which

we refer to as ‘value-added exports’ as in Johnson and Noguera (2012a). The common

element in both calculations is the observation that multiplying the Leontief inverse of the

global input-output matrix by a vector of final goods returns the amount of gross output (by

country and sector) needed to produce those final goods. These gross output requirements

can then easily be converted to value added requirements, by multiplying by value added to

output ratios.

Starting with the data, we compute value-added inputs for final output from the goods

sector as follows. We construct total final goods shipped from each country as F̄ ι, and then

reshape the resulting vector into corresponding 57 × 1 vectors of final goods shipped from

each country, which we write f̄ i. Zeroing out elements of these vectors corresponding to

services sectors, we get modified vectors f̄ i,goods. Then we arrange the collection of f̄ i,goods

for all countries to form a 57N ×N block diagonal matrix F̄ V AI , and compute foreign value

added in final output in the goods sector as:

V AInputs ≡ R̄(I − Ā)−1F̄ V AI , (25)

where R̄ is a N × 57N block diagonal matrix with row vectors of value added to output

ratios for each country along the diagonal.

To explain this calculation, note that (I − Ā)−1F̄V AI returns a 57N × N matrix where

column j is the vector of output needed to produce final goods shipped from j to all destina-

tions. To compute value added embodied in those goods, we multiply by sector-level value

added to output ratios and sum across sectors, where both operations are accomplished si-

multaneously via pre-multiplication by R̄. The ij elements of the resulting matrix are the

amount of value added from country i embodied in final goods produced in country j. For

example, it measures the amount of Mexican value added in final goods produced in the

United States. We construct value added inputs in the model in an identical way, but slide
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in model-based definitions for the input-output matrix, final goods production, and value

added to output ratios.25 We denote the resulting values V AInputs.

We can also compute value added exports in the model and data. The procedure is

similar to that above, except that final goods are distinguished according to the destination

in which they are consumed.26 We express value added exports for the goods sector in matrix

form as:

V AExports = R̄V AX(I − Ā)−1F̄ , (26)

where here R̄V AX takes the same form as R̄, but replaces all value added to output ratios

for services with zeros. The ij elements of V AExports record the amount of value added

from the goods sector in country i that is absorbed in destination j, embodied in the final

goods that j consumes. As above, we can construct the model-equivalent measures using an

identical formula with values from the model-based input-output framework substituted for

values from data, denoting resulting values V AExports.

4 Estimation Results

4.1 Technology and Trade Costs

Technology We present estimates for technology levels by stage for the 14 countries and

the composite region in Table 1. All values are expressed relative to the United States.

The first two columns present estimates of the parameters {T i1(1), T i1(1)}, while the third

and fourth columns convert these estimates into average productivity levels, describing the

geometric means of T in(z, 1) in each country.27 The final column computes the productivity

of stage 2 relative to stage 1 production in each country.

The estimates indicate that most countries have technology/productivity levels lower

than the U.S. level. We plot the aggregate productivity level for each country again income

per capita in Figure 2, computed as an unweighted geometric mean of stage 1 and stage

2 productivities. As expected, average productivity is highly correlated with income per

capita.

Based on examination of Table 1, it is evident that technology and productivity levels

are correlated across stages, in that countries with high absolute productivity in stage 1 tend

25One point to note is that value added to output ratios in the model are pinned down by parameters,
equal to 1− θ(s) in each sector and common to all countries by assumption.

26See Johnson and Noguera (2012a,b) for further discussion of value-added exports.
27Since T in(z, 1) is drawn from a Fréschet, the geometric mean is given by T in(1)1/κ exp(γ/κ), where γ here

is the Euler-Mascheroni constant.
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to also have high absolute productivity in stage 2. Despite this correlation, there are sizable

differences in relative stage productivities across countries. To be clear about interpretation,

the final column Table 1 measures relative productivity in each country relative to relative

productivity in the U.S. So numbers greater than one indicate that a country has greater

comparative advantage in stage 2 production than does the U.S. Scanning the table, China,

Germany, India, Japan, and South Korea all have comparative advantage in stage 2 produc-

tion, while all other countries tend to have comparative advantage in stage 1 production. In

Figure 3, we plot the log difference between exports in the second stage versus the first stage

against relative productivity across stages. As is evident, comparative advantage manifests

itself strongly in export composition in the model.

Two points regarding patterns of comparative advantage across stages are worth further

comment. First, relative productivities across stages are uncorrelated with income per capita.

As is evident in Figure 4, there is significant variation in relative productivities at both

high and low income levels, but virtually zero correlation between relative productivity and

income.

Second, the relative productivity of stage 2 production is negatively correlated with a

country’s commodity share of exports. We plot relative productivities against commodity

export shares in Figure 5. This strong correlation makes sense from the perspective of

the model. Commodities are heavily used as intermediate inputs, so countries that export

commodities tend to account for a higher share of intermediate goods imports than final

goods imports. The model rationalizes this fact by assigning those countries relatively high

productivity in supplying stage 1 inputs. In this sense, the model describes comparative

advantage across goods based on how goods are used by importers.

Trade Costs Turning to estimated trade costs, we assumed that the trade cost function

took the form: τ ij = τ (dij)
ρ
. Our estimate of the elasticity of trade costs to distance is ρ =

0.28, and the level parameter is τ = .31.28 For the country pair separated by the median dis-

tance in our data (8500km), these estimates imply that international trade costs are roughly

3.76 times (276% higher than) domestic trade costs: τmedian = exp (lnκ+ ρ ln(8500)) = 3.76.

These costs are large, but in line with standard estimates from gravity-style models.29 We

examine what our estimates imply for gravity-style analyses of trade further below.

28This magnitude of this level parameter is not directly interpretable since it depends on the units in which
we measure distance. Therefore, we focus on total implied trade costs, which are interpretable as costs of
international relative to domestic trade.

29For example, Eaton and Kortum (2002) return estimated distance costs of roughly 300% for country
pairs in the 3000 to 6000 mile distance range. Anderson and van Wincoop argue trade costs are equivalent to
an ad-valorem tax of 170% for a representative rich country, which would translate presumably into higher
estimates for poorer countries.
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Model Fit Before turning to detailed analysis of the model, we quickly summarize how

the model fits various moments in the data. We start by examining how the model fits the

moments that we have targeted in estimation – intermediate and final goods trade shares –

in Figure 6, the true trade shares are on the x-axis and simulated trade shares are on the

y-axis.30 The model generally fits these trade shares well.31

Turning to untargeted moments, we are able to reproduce variation in several key metrics

of global production sharing. In the left panel of Figure 7, we plot value added input shares

– the share of value added from each bilateral source country in production of final goods

for a given exporter. In the right panel of Figure 7, we plot bilateral value added to gross

shipments ratios, which equal value added to export ratios for cross-border trade.32

The model does an excellent job at replicating bilateral sourcing of value added. The

model also generates a positive correlation between value added to export ratios in actual and

simulated data, though the overall fit here is not as tight. The dimension on which the model

misses is in generating value added to export ratios near/above one, which are observed in

the actual data but not the simulated data. Consistent with these bilateral data, we show in

Figure 8 that the model fits aggregate value adding sourcing patterns better than aggregate

VAX ratios. Though the model gets the level of the VAX ratio right for most countries, it

misses in explaining the cross-country variation of those levels.

Finally, we report several reduced form correlations between bilateral trade and dis-

tance that are helpful for interpreting counterfactuals below. To do this, we estimate

a simple gravity regression of the form: log yij = χi + χj + δ lnDistanceij + eij, where

where yij is either actual or simulated total bilateral exports (Exportsij) or VAX ratios

(V AExportsij/Exportsij), and χi and χj are exporter and importer fixed effects.33 We

present the results in Table 2. Not surprisingly, the model is able to reproduce the well

known dampening effect of distance on trade, producing a distance coefficient of −1.07,

slightly larger than the −1 in the actual data. Further, the model reproduces the positive

30The cluster of points in the upper right corner is the share of each country’s purchases from itself. Not
surprisingly, these own shares are uniformly large.

31Examining the more detailed data, the model struggles to fit import shares for each country vis-a-vis the
rest of the world. This is not surprising, since we force the model to assign a single productivity estimate to
the rest of the world, even though individual countries trade with different countries within that composite.
The model also struggles in fitting trade shares between the U.S. and its NAFTA partners.

32In both figures, we include domestic as well as cross-border transactions. Specifically, the cluster of
points in the upper right of the left panel is the share of domestic value added in final goods production
for each country, while the cluster of points in the lower left of the right panel is the value added to gross
shipment ratio for domestic shipments (as in, ‘exports’ to one-self). We include these domestic transactions
because these are important moments for the model to replicate in order to generate the correct degree of
aggregate openness for each country.

33In estimating this regression, we include exports to/from the rest of the world. Results are virtually
identical if we exclude these flows.
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correlation between value added to export ratios and distance, though the magnitude is

somewhat smaller in the simulated than actual data.34

4.2 Interpreting the Distance Coefficient in Gravity Regressions

In trade models that yield CES import demand equations, the elasticity of bilateral trade

to distance – the ‘distance coefficient’ in a gravity regression – is equal to the (constant)

elasticity of imports times the elasticity of trade costs to distance. If the elasticity of trade

costs to distance is constant, then the gravity distance coefficient is also constant and there-

fore independent of the level of trade costs. Further, if one knows the elasticity of import

demand (e.g., the Fréschet shape parameter in the Eaton-Kortum model) then one can infer

the elasticity of trade costs to distance by dividing the gravity distance coefficient by that

parameter.

In contrast to this CES benchmark, the elasticity of bilateral trade to distance depends on

the level of trade costs in the multi-stage model. Therefore, the gravity distance coefficient

is not necessarily directly informative regarding the true elasticity of trade costs to distance.

The extent to which the CES logic above would lead one to mis-estimate the elasticity of

trade costs to distance is an empirical matter. So, we turn to our estimated model to evaluate

this issue.

Our baseline estimates suggest that the standard procedure does provide a reasonable

guide for interpreting the data. In our data, as in most data sets, the elasticity of trade to

distance is close to -1 (see Table 2). Given this estimate and an import elasticity near 4, one

would infer that the elasticity of trade costs to distance is near 0.25. This is very close to

the actual distance elasticity we estimate (0.28), allowing for multi-stage production. Thus,

one would reach similar conclusions about the elasticity of trade costs to distance in our

multi-stage model and standard CES models.

This conclusion is surprising. Yi (2010) argues that multi-stage production is important

in inflating estimated border effects relative to true border frictions. By implication, Yi’s

work suggests that one should see inflation in other reduced form gravity coefficients as well.

Yet, we do not find significant inflation, at least relative to the CES benchmark.

The reason is that our model returns high estimates for the level of international trade

costs. As noted above, the elasticity of bilateral trade to distance is a function of the level

of trade costs in our model. In particular, the elasticity of trade to distance increases (in

absolute value) as the level of trade costs falls. Therefore, if trade costs were lower, then our

estimated model would generate significant inflation in gravity coefficients.

34Johnson and Noguera (2012b) present and discuss this correlation of VAX ratios and distance at length.

24



To illustrate this point, we estimate gravity regressions (with fixed effects) in simulated

data from our model for alternative levels of international trade costs. In these experiments,

we lower trade costs uniformly across all partners, leaving relative distances and hence rela-

tive trade costs unchanged across bilateral partners.35 Starting from our baseline simulated

data, we reduce the level of trade costs by 200 percentage points in 10 increments. This

takes the mean bilateral trade cost in the model from near 250% to 50%. We then resimu-

late bilateral trade flows at each of these new levels of trade costs, and estimate a standard

gravity regression in each simulated data set.

We plot the resulting distance coefficients against the mean bilateral trade cost in alterna-

tive scenarios in Figure 9. The distance coefficient in our baseline simulation is the furthest

point in the upper right corner, where average iceberg costs are near 250%. As trade costs

fall, the absolute value of the elasticity increases in the multistage case. As we lower trade

costs, this increase is initially gradual, but starts to increase sharply as average trade costs

fall to around 150%. With ad valorem trade costs at 50%, then the multistage elasticity is

inflated by roughly 13% relative to the baseline elasticity. In other words, a lower level of

trade costs make trade more sensitive to distance in a world with multistage production.

Our intuition for this result is as follows. For high levels of trade costs, breaking up pro-

duction stages across borders is costly and occurs less frequently. Hence, most substitution

is across goods, rather than over the location of production stages. And substitution across

goods is governed by the Fréchet elasticity, as in the Eaton-Kortum model. As we lower the

level of trade costs, fragmentation becomes more common and so the Yi-type amplification

effects kick in. Seen in this light, Yi apparently finds larger inflation in the influence of

borders and tariffs on trade because he analyzes cases in which trade costs are low. For

example, Yi (2010) focuses on US-Canada trade where ad valorem trade costs are in the

range of 10-40%, while Yi (2003) analyzes tariff liberalization starting with initial tariffs

near 15%.36 This level of trade costs is far too low to rationalize the observed home bias and

35In lowering the level of trade costs by large amounts, we run into a subtle technical constraint in analyzing
the resulting data. As the level of trade costs falls, country pairs with initially low trade costs hit the lower
bound of τ ij = 1. Once at this bound, we cannot lower trade costs further for these pairs. As a result, we
start to distort relative distances in the data when we proceed to lower trade costs among all other pairs
(i.e., pairs not at the lower bound). To estimate gravity coefficients using a constant set of relative distances
and trade costs at different absolute levels of trade costs, we drop these country pairs for which the lower
bound is attained from all regressions (both the high and low trade cost regressions). Because we drop some
countries here, the reduced form gravity coefficient is somewhat higher than in our full dataset, which is
reflected in a larger initial absolute value at the highest level of trade costs in Figure 9.

36There are of course many other differences between our model, calibration, and estimation procedure
and the quantitative models in Yi (2003, 2010), but we believe this to be the key difference between models
driving our results. Given this, it is natural to ask how the low level of trade costs assume in Yi’s analysis
yield realistic levels of trade. In Yi (2003), one reason is that the model is calibrated to two symmetric
countries. For example, suppose that we examine a symmetric two-country Ricardian model, and let us
assume for simplicity that relative wages are equal to one and constant (e.g., set in an outside, freely traded
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concentration in trade flows observed in the data.37

5 Technology and Trade Cost Counterfactuals

We now turn to analysis of several counterfactuals in the model. We start with a scenario

in which we lower trade costs across all partners. We then examine cross-country spillovers

and trade effects from an increase in productivity in China.

5.1 Reduction in Trade Costs

Starting from the baseline estimated equilibrium, we now lower trade costs by 10% for all

country pairs, so that τ ijnew = 0.9τ ij, i 6= j.38 We examine three main outcomes: changes in

real wages, changes in gross trade, and changes in vertical specialization and value added

trade. In analyzing trade and vertical specialization, we describe ‘short run’ and ‘long run’

effects of the change in trade costs separately. By short run response, we mean changes

the model equilibrium holding the source from which each country purchases stage 1 in-

puts fixed.39 The long run responses then allow producers to re-optimize stage 1 sourcing

decisions. In dubbing these short run versus long run, we implicitly have in mind a more

complicated model in which producers are tied to suppliers in the short run due fixed costs

or time lags associated with forming new supplier relationships.40

In Figure 10, we plot changes in consumer prices (P i
F ), wages (wi), and real wages (wi/P i

F )

for each of the countries in our sample. The median increase in real wages is 1 percent, but

there is considerable heterogeneity across countries. Overall, real wages increase more in

markets with higher initial import shares (e.g. France and Spain), since imported goods

have a larger share of the price index in these countries.

sector). With Fréchet productivity distributions, then the share of imports in GDP is given by: τ−n

1+τ−n . If
n ∈ (3, 6), then one needs trade costs between 20-44% to achieve an import share of 0.25. In our model and
data, even very small countries exhibit extreme home bias, which requires much higher trade costs.

37At the same time, it might be possible to detect amplification effects at current levels of trade costs if
we were to use more disaggregated data, featuring sectors with lower implied trade costs. This remains a
topic for further work.

38In computing the new equilibrium, we hold trade imbalances constant at their initial levels.
39In response to the decline in trade costs, a given country may start to produce stage 2 goods that it did

not produce in the initial equilibrium. In these cases, we assume that the country sources stage 1 inputs from
the country that would have been the low cost supplier in the initial equilibrium. We could alternatively
allow new stage 2 producers to choose sources based on the new configuration of trade costs and prices in
the new equilibrium.

40One could of course introduce these frictions directly into the model, at the cost of increasing the
complexity of the optimization problem. We take this ad hoc approach to simply illustrate the functioning
of the model.
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The response of exports and imports is plotted in Figure 11. Overall, the median increase

in exports (imports) is 39% (30%) percent, and world trade overall rises by 32% in response

to this 10% change in trade costs. The short run effect is denoted by the black segment,

while the white segment is the additional long run effect. For most countries the short run

effect dominates the overall response of trade, but there are large differences across countries

in the relative importance of short run and long run adjustment.

Differences between short and long run changes in exports and imports are also naturally

linked to one another across countries. Countries that are upstream in the production process

(i.e., specialize in stage 1 goods) tend to see larger long run relative to short run responses

in their exports. On the flip side, countries that are downstream (i.e., specialize in stage 2

production) tend to see larger long run than short run responses in their imports. Further,

trade partners also tend to see similar symmetric adjustments. For example, the United

States sees a relatively small change in imports in the short run, but a much larger change in

the long run. This is matched by relatively large long run adjustment in exports for Canada

and Mexico, which makes sense since much of the increased foreign sourcing in the U.S. will

be concentrated on these markets.

Turning to trade measured in value added terms, we plot responses for two measures –

the share of foreign value added in final goods production and the value-added to export

ratio – in Figure 12. Lower trade costs lead to more fragmented production, as measured by

both metrics. For the median country, the foreign value added input share increases by 3.8

percentage points, while the VAX ratio decreases by 2.9 percentage points. Further, for most

countries, the bulk of the adjustment in these metrics comes from long run re-optimization

of stage 1 sourcing decisions.

In looking at bilateral changes in value added to export ratios, one finds that adjustments

tend to be larger among nearby partners. To illustrate this, we plot changes in VAX ratios

at the bilateral level in Figure 13. Overall, VAX ratios tend to fall among most (though

not all) bilateral pairs. And these changes are largest on average in the lower left portion

of the figure, where distances are smallest. This differential change by distance implies

that a uniform reduction in trade costs makes gross exports more concentrated relative to

value-added exports in the multi-stage model. This pattern of suggests that a declining

level of trade costs may be able to explain the increasing concentration in gross relative to

value-added exports documented in Johnson and Noguera (2012b, 2012c).

As in the evaluation of our estimates of trade costs above, it is natural to ask how the

response of trade and wages differs in the multi-stage model relative to more conventional Ri-

cardian models. Because the multi-stage model does not strictly speaking nest the standard

Ricardian model, this question is not straightforward to answer. However, we can broadly
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compare the multi-stage results to results from the a two-sector version of the Ricardian

model used by Caliendo and Parro (2012).

To do this, we construct a simulated data set from our estimated model, including bi-

lateral trade shares, income, sector-level production and expenditure, sector-level input cost

shares, and the trade surplus. Along with an assumed Fréchet shape parameter, these are

all the parameters needed to compute conterfactuals in the Caliendo-Parro model, following

techniques from Dekle, Eaton, and Kortum (2008).41 Parameterizing the Caliendo-Parro

model using our simulated data ensures that we start both the counterfactuals in the multi-

stage model and the Ricardian model at an observationally identical equilibrium.42 We then

feed the same change in trade costs used above (τ ijnew = 0.9τ ij, i 6= j) through the Caliendo-

Parro model. For reference, we describe the exact calibration and solution procedure in

Appendix D.

The responses of exports, imports, and real wages in the Caliendo-Parro benchmark are

reported in Figures 14 and 15. Overall, the response is similar to the multi-stage model.

Real wages rise by 1 percent for the median country, while exports (imports) increase by

47% (38%). Global trade rises by nearly 40%. Like the gravity results above, the fact that

the Caliendo-Parro model generates changes in trade as large as the multi-stage model also

surprising. Yi (2003) finds that a comparably sized liberalization generates a strong non-

linear response of trade in a multi-stage model, far in excess of what would be predicted by

a generic Ricardian model. Our intuition for why we do not find these large effects is largely

the same: at the high trade costs needed to match observed trade shares, the amplification

effects of vertical cross-border production are weak. That said, the mechanics of adjustment

and shuffling of the allocation of stages to countries in the multi-stage model are of course

different than substitution across goods in the benchmark Ricardian model. So the same

macro-behavior hides different underlying micro-behavior.

5.2 Changes in Technology

We now turn to investigating how improvements in local technology in one country induce

changes in global production chains. We focus on one experiment here: an increase in

technology in China. Starting with our estimated model, we increase both TCHN1 and TCHN2

by two log points, which brings Chinese technology roughly to the level of Mexico.

41Specifically, we do not need information about the trade cost function and technology parameters to
solve for counterfactuals in the model. See Caliendo and Parro (2012) and Dekle, Eaton, and Kortum (2008)
for details.

42To be clear, our simulated data naturally includes information about shipments between production
stages. We discard this information in calibrating the Caliendo-Parro model, since the meaning of a produc-
tion stage is undefined in that model.
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Figure 16 illustrates the changes in value added to export ratios and the share of foreign

value added in final goods production following the change in Chinese technology. The

largest adjustment occurs within China itself, where the VAX ratio rises and the foreign

value added sourcing share falls. Both adjustments reflect the fact that China sources a

larger fraction of inputs from itself in the new equilibrium.

Nearby countries – such as Japan, Australia and South Korea – experience the opposite

adjustment. For those countries, VAX ratios fall and foreign value-added input shares rise, as

China supplies more intermediate inputs into production in the Asian region. For European

countries and the U.S., the adjustments are generally very small. In Figure 17, we plot

changes in foreign value-added input shares by country on the vertical axis against distance

from China on the horizontal axis. The takeaway from both figures is that adjustments in

the production chain are mostly confined to proximate trading partners. As in the case of the

decline in trade costs above, this again reflects the predominantly local scope of production

chains.

6 Conclusion

[To Be Added]
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Table 1: Estimated Technology

Technology Average Productivity

Stage 1 Stage 2 Stage 1 Stage 2 Stage2
Stage1

United States 1 1 1 1 1
China 0.004 0.022 0.27 0.40 1.47
Japan 0.719 0.929 0.92 0.98 1.06
Germany 0.496 1.701 0.84 1.14 1.35
Italy 0.619 0.535 0.89 0.86 0.97
India 0.001 0.005 0.18 0.28 1.57
United Kingdom 0.888 0.381 0.97 0.79 0.81
France 0.562 0.378 0.87 0.79 0.91
Canada 0.724 0.181 0.92 0.66 0.71
Spain 0.247 0.224 0.71 0.70 0.98
Brazil 0.026 0.011 0.41 0.34 0.82
Australia 1.814 0.125 1.16 0.60 0.52
Russia 0.039 0.007 0.46 0.30 0.66
Mexico 0.080 0.037 0.54 0.45 0.83
South Korea 0.122 0.234 0.60 0.70 1.17
Rest of World 0.710 0.003 0.92 0.23 0.25

Note: Average productivity is the geometric mean of the Fréchet distribution with

estimated technology parameters given in columns 1 and 2: exp(γ/κ)T
1/κ
n , where γ

is the Euler-Mascheroni constant and κ = 4.12 as in our simulated model. Technol-
ogy and average productivity levels are normalized to one in the U.S. in both stages.
Relative productivities therefore measure comparative advantage across stages rel-
ative to U.S. comparative advantage.

Table 2: Distance and Trade in Data and Model

log (Exportsij) log (V AX ij)

Data Model Data Model

Log Distance -0.996*** -1.075*** 0.230*** 0.100***
(0.074) (0.012) (0.020) (0.006)

R2 0.92 0.98 0.62 0.81
N 240 240 240 240

All regressions include exporter and importer fixed effects. Robust standard
errors in parentheses.
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Figure 1: Diagram of Production Process in a Closed Economy
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Figure 2: Average Productivity and Income per Capita
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Average productivity is an unweighted geometric mean of Stage 1 and Stage 2 productivity estimates,
both measured relative to the United States. Income per capita is nominal expenditure at market
exchange rates divided by population.
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Figure 3: Relative Productivity and Export Composition by Stage
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Relative productivity is Stage 2 productivity divided by Stage 1 productivity, both measured relative
to the United States

Figure 4: Relative Productivity and Income per Capita
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Relative productivity is Stage 2 productivity divided by Stage 1 productivity, both measured relative
to the United States. Income per capita is GDP at market exchange rates divided by population.
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Figure 5: Relative Productivity and Commodity Share of Exports
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Relative productivity is Stage 2 productivity divided by Stage 1 productivity, both measured relative
to the United States. The commodity share of exports is computed from the GTAP 7.1 Database
and equals agriculture plus natural resources exports, divided by total goods exports.

Figure 6: Trade Shares in Data and Model
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Note: The solid line in both figures is the 45-degree line.
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Figure 7: Bilateral Value Added Trade in Data and Model

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Data

M
od

el

Bilateral Value Added Input Shares (in logs)

0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

1.2

1.4

Data
M

od
el

Bilateral Value Added to Gross Shipments Ratios

Note: The solid line in both figures is the 45-degree line.

Figure 8: Aggregate Value Added Trade in Data and Model
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Figure 9: The Gravity Distance Coefficient and the Level of Trade Costs in the Estimated
Model
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Figure 10: Price Responses to 10% Reduction in Trade Costs in Multi-Stage Model
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Figure 11: Trade Responses to 10% Reduction in Trade Costs in Multi-Stage Model
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Figure 12: Value Added Trade Responses to 10% Reduction in Trade Costs in Multi-Stage
Model
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Figure 13: Value Added to Export Ratio Changes by Distance in Response to 10% Reduction
in Trade Costs in Multi-Stage Model
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Figure 14: Price Responses to 10% Reduction in Trade Costs in Two-Sector Ricardian Model
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Figure 15: Trade Responses to 10% Reduction in Trade Costs in Two-Sector Ricardian
Model
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Figure 16: Value Added Trade Responses to Increase in Chinese Technology in Multi-Stage
Model
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Figure 17: Changes in Foreign Sourcing of Value Added in Response to Increase in Chinese
Technology in Multi-Stage Model
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A Calibration of the Composite Input Aggregator

This appendix discusses our basis for calibrating the weight of manufacturing and non-
manufacturing goods in the composite intermediate input, i.e., the parameter β. To pick a
value for this parameter, we lay out an approach to choosing a value for β that is appropriate
in a closed economy. We then use data for the world economy as a whole to calibrate β,
which is by definition closed. Because we focus on a closed economy here, we supress the
country superscript on variables below.

Using notation similar to Section 2, we can write total gross output in each sector as:
y(s) = y1(s)+y2(s). In the closed economy, all stage 2 goods are produced and use domestic
stage 1 goods as inputs. Therefore, y1(s) = θ(s)y2(s). Using this fact, we re-write gross
output as: y(s) = (1 + θ(s))y2(s). This links stage two output to observable sector level
output y(s) and a parameter θ(s) that can be measured from data. This is the first useful
accounting identity.

The second useful accounting identity is the market clearing for stage 2 goods from sector
1: y2(1) = αPFF + βPMM in the closed economy. We then recall that total purchases of
the composite intermediate inputs are given by: PMM = θ(1)y1(1) + θ(2)y1(2). Combining
these yields:

y2(1) = αPFF + βθ(1)y1(1) + βθ(2)y1(2). (27)

Recall that in our data, final purchases are observed at the sector level, so αPFF is data.
Then we can also link y2(1), y1(1), and y1(2) to data on gross output at the sector level, as
in the previous paragraph. This leaves us with one equation in one unknown β:

(1 + θ(1))−1y(1) = αPFF + βθ(1)

[
θ(1)

1 + θ(1)

]
y(1) + βθ(2)

[
θ(2)

1 + θ(2)

]
y(2). (28)

We pick β guided by this equation. To implement the calibration for the world, we
aggregate all countries in our data to form the composite input-output table for the world,
which records sector-to-sector sales of inputs, gross output, and final demand by sector. Using
this data, we compute the sector-level input shares (i.e., {θ(1), θ(2)}) that are consistent with
this world-level data, which happen to be nearly identical to cross-country median input
shares. Plugging in these values along with values for final demand and gross output into
the equation and solving yields a value of β ≈ .6.

B Smoothing the Objective Function

There are some technical details related to the discrete approximation of the model with a
continuum of goods that are worth mentioning here. In practice, we search for Θ̂ using a
standard gradient based optimization algorithm (fmincon in Matlab).43 To do this effectively,
we need the objective function to be relatively smooth in the underlying parameters. In the

43Gradient techniques are helpful to us, since the parameter space has relatively high dimensionality. We
attempted to use non-gradient methods initially, but they generally performed poorly (i.e., were both slow
and had difficulty finding the minimum).

42



discrete approximation, the trade shares are discontinuous in the underlying parameters.44

Our approach to simulating the trade shares borrows from the discrete choice literature,
building on the observation that the trade shares are mathematically equivalent to choice
probabilities. We use the logit-smoothed AR simulator to compute the trade shares (see
McFadden (1989) and Train (2009)), which replaces the indicator functions with a logit
function.

The first step in performing this transformation is to note that our indicator functions
above can be re-written as statements about supply prices from alternative sources. Coun-
try j buys stage n output from country i if i is the low cost supplier, which means that:
I (j ∈ Ωi

n(r, s)) = I
(
pijn (r, s) < pkjn (r, s), ∀k 6= i

)
. For example, the final trade shares can be

written as: Fshareij = 1
R

∑
r I
(
pij2 (r, 1) < pkj2 (r, 1), ∀k 6= i

)
. The second step then approxi-

mates the indicator function with logit function, as in:

Fshareij =
1

R

∑
r

e−p
ij
2 (r,1)/λ∑

k e
−pkj2 (r,1)/λ

, (29)

where λ is a scale factor.
Similarly, we can approximate the input trade shares as:

Inshareij =
∑
r

I
(
j ∈ Ωi

1(r, 1)
) [θ(s)yj2(r, 1)

Inj(1)

]
+

1

R

∑
r

I
(
j ∈ Ωi

2(r, 1)
) [β(1)P j

MM
j

Inj(1)

]

=
∑
r

e−p
ij
1 (r,1)/λ∑

k e
−pkj1 (r,1)/λ

[
θ(s)yj2(r, 1)

Inj(1)

]
+

e−p
ij
2 (r,1)/λ∑

k e
−pkj2 (r,1)/λ

[
β(1)P j

MM
j

Inj(1)

]
.

(30)

The scale factor λ determines the degree of smoothing. As λ → 0, the logit function
converges to the indicator function and the smoothed trade shares approach the exact trade
shares (in the discrete model). There is little guidance on the appropriate level of λ in
general. By trial and error, we find that λ = 0.02 yields a very good approximation to the
exact trade shares. Finally, we also need to choose R which yields an acceptable trade-off
between simulation accuracy and computing time. In Monte Carlo simulations, we have
found that the empirical model is able to recover the true parameters of the model when
R = 20, 000, so we use this value.

44For example, trade shares for final goods are given by:
Rij

2 (s)
R =

∑
r I(j∈Ωi

2(r,1))
R . This is essentially an

accept-reject (AR) simulator for the trade shares in the true model with a continuum of goods, where we
determine whether the indicator functions are zero or one for each discrete good, and then take the average.
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C Input-Output Framework for Restricted Model

In this appendix, we re-write the input-output framework in the restricted version of the
model in which services are non-traded. The bilateral input-output matrices take the form:

For i 6= j : Aij =


0

yij1 (1)

yj2(1)
0 0

Rij
2 (1)

R
β(1)θ(1) 0

Rij
2 (1)

R
β(1)θ(2) 0

0 0 0 0
0 0 0 0



For i = j : Aii =


0

yii1 (1)

yi2(1)
0 0

Rii
2 (1)

R
β(1)θ(1) 0

Rii
2 (1)

R
β(1)θ(2) 0

0 0 0
yii1 (2)

yi2(2)
Rii

2 (2)

R
β(2)θ(1) 0

Rii
2 (2)

R
β(2)θ(2) 0

 .
The vectors of bilateral final goods shipments take the form:

For i 6= j : f ij =


0

Rij
2 (1)

R
α(1)P j

FF
j

0
0

 ,

For i = j : f ij =


0

Rij
2 (1)

R
α(1)P j

FF
j

0

α(2)P j
FF

j

 .
These components can be collected to form the full global input-output table and manipu-
lated as in the main text.

D Benchmark Ricardian Trade Model with Input-Output

Linkages

To benchmark our model, we use a two-sector version of the model in Caliendo and Parro
(2012). In this appendix, we write down the key equilibrium conditions from that model,
translated into our notation and making minor modifications.

[To Be Added]
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