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One of the advances in our understanding of two-sided markets or plat-

forms is the notion of a competitive bottleneck. This arises in the context of

competing platforms when a group on one side of the market always multi-

homes; that is, they pay to access each platform. More strongly, they pay

to access and use any one platform independently of what they are doing on

other platforms. This has a significant impact on the nature of competition

between platforms. If one side always multi-homes then it is, in some sense,

captured by each platform. The platform can act like a monopolist with

respect to those customers. However, this does not eliminate competition

as, by the very nature of two-sided markets, the level of activity on the other

side of the market impacts on the quality of the product served to the other.

In this situation, platforms may compete for increased use on one side of the

market in order to increase the supply and quality of the product they can

provide to captured customers.

This model is pervasive in two-sided markets involving advertisers. The

canonical model of media economics (Anderson and Coate, 2005) has, as

its baseline, a model where each advertiser wants to communicate to each

broadcast viewer. Consequently, competing broadcasters can charge adver-

tisers a monopoly price for access to any given viewer. The broadcasters

1

Joshua-Work
PRELIMINARY AND INCOMPLETE

PLEASE DO NOT CITE WITHOUT PERMISSION FROM THE AUTHORS

Joshua-Work




then compete over the number of viewers on their channel. An important

implication of this is that if broadcasters were to merge, there would be no

change in prices or welfare in the advertising-side of the market although

there would be a reduction in competition for viewers. This type of analy-

sis has played a significant role in anti-trust analysis involving advertising

markets and mergers.

For this reason, it is important to understand the behavior of advertisers

with respect to single or multi-homing or something in between. The baseline

view is that advertisers want to send messages to consumers and, indeed,

place a value on impressing each and every one of them. Thus, if a platform

happens to have attracted a consumer, then an advertiser must deal with the

platform to send a message to that consumer. Thus, multi-homing behavior

is a direct implication of a desire to send a message to all consumers. Of

course, this assumption might be relaxed if, for instance, advertisers are not

interested in such complete coverage. For instance, an advertiser may have

a limited quantity of products to sell or may have another limit on their

marketing budget. This will constrain their behavior in sending messages to

all consumers.

Another factor is that the platforms may not capture a consumer entirely.

As modelled by Ambrus, Calvano and Reisinger (2012), some consumers

may consume both platforms weakening platforms claim to capture those

consumers and leading to direct competition for them. Competition for

captured consumers would not arise. Or alternatively, as modelled by Athey,

Calvano and Gans (2012), some share of the consumer market may allocate

attention across platforms while others may concentrate it on platforms

but it may not be possible ex ante to identify particular consumers by their

single and multi-homing behavior. In this case, all consumers are potentially

contestable and this will impact on advertiser behavior in terms of single or

multi-homing. In each case, a merger between platforms may reduce the

competition for advertisers.

Here we present an alternative driver of advertiser behavior that we be-
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lieve is of relevance for online advertising markets. The markets we have in

mind are newly emerging ad networks that o↵er display advertising for many

web-pages and outlets. Unlike traditional media (such as newspapers), at

a base case, we can assume that consumers location on a platform is not

known ex ante; that is, there are no captured consumers as ad networks

cannot be assumed to drive a consumer’s choice of content. In this sense,

from the perspective of an ad network, all consumers are multi-homers.

By abstracting away from the standard, assumed behavior of consumers,

we are able to identify a new driver of advertiser behavior: the technology

by which messages are communicated to consumers. Put simply, the na-

ture of the communicating technology impacts on the e�ciency of choices

advertisers face in allocating messages across platforms. In the process, we

demonstrate that the type of technology available or adopted will impact on

conclusions regarding advertiser multi-homing.

We model communication as a stochastic process in which a sender

(for example an advertiser) transmits a number of (costly) messages (for

example ads) to a set of receivers (the consumers) through two di↵erent

channels (the outlets). The process determines who (and hence how many)

get at least one message (and hence are informed) if the sender transmits a

certain number of messages through given outlet. Such stochastic process

is what we call a “communication technology.” Di↵erent outlets supply one

such technology. It can be e�cient, in which case each additional message

hits an uniformed receiver. Or it can be dumb, in which case each additional

message hits a random receiver, possibly an already informed one. Or it can

be anything in between. Communication is costly in the sense that messages

are unit-priced.

The paper proceeds as follows. In Section 2, we present our model frame-

work embedded within a simple theory of communication. In Section 3, we

consider our baseline case with identical outlets both of which share the same

technology and the same set of receivers. This allows us to characterize the

impact of tracking technology on advertiser multi-homer behavior. In Sec-
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tion 4, we relax the latter assumption and consider how tracking technology

interacts with the share of overlapping receivers outlets have. In Section

5, we consider asymmetric outlets – specifically, a case where one outlet’s

consumers are a subset of the other’s. This allows us to consider trade-o↵s

between reach and readership and the impact of this on advertiser behavior.

We then turn to consider the welfare implications of advertiser behavior;

particularly, on receivers. This is done by recognizing that wasted messages

are likely to cost receivers attention with no other potential benefits. We

provide some speculative and illustrative discussion on these welfare e↵ects.

A final section concludes.

1 A simple theory of communication

Consider a set (measure one) of senders, a set (measure one) of receivers

and two outlets. Outlets are identical but for their set of receivers denoted

respectively R1 and R2 and assumed to be of equal measure. The measure of

R1[R2 is 1. Let Ds and D

l

i

denote the measure of R1\R2 and R

i

\(R1\R2)

respectively (s stands for switcher and l for loyal). With an abuse of notation

we denote with | · | the operator that maps a set to its measure. Senders

wish to inform receivers. The unit price of a message on either outlet is

p

i

> 0. If p
i

is equal to p

j

then we use p to denote the common prce. Let

v denote the expected value of informing a receiver. Type v’s payo↵ when

choosing to purchase (n1, n2) messages is v times the expected fraction of

the population informed minus communication costs p1 ⇤ n1 + p2 ⇤ n2.

A communication (or tracking) technology is a function  
i

: R+ ! [0, 1]

that maps the number of messages per receiver sent through a given outlet i

to the probability of informing a given receiver at least once. If there are D

receivers in total then  
i

(n/D) is also the expected fraction of the receivers

reached by at least one message out of the n messages sent through outlet

i. We assume  
i

strictly increasing on [0, 1) (if  
i

< 1, constantly equal to 1

otherwise) and concave. Finally, we assume that  
i

(n0) �  

i

(n00)  n

0 � n

00
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for all n0
, n

00 � 0. That is, one message can hit at most one receiver. This

implies that  
i

cannot increase at a rate greater than one and that  
i

(0) = 0.

One way to think about these assumptions is as reflecting a minimum

level of intelligence or e�ciency of the communication process. An extra

message should have some chance of informing. Concavity captures intel-

ligence in a subtler way. Any strategy that can help identify uninformed

receivers is exploited as soon as possible. These assumptions also rule out

learning by doing.

The above implicitly restricts attention to communication processes with

homogeneous receivers in the sense that no receiver is ex-ante more likely to

be informed than the others. Of course, that need not be true ex-interim,

since each additional message is a random trial whose realization can depend

on the realization of the previous trials. For example, an uniformed receiver

might be more likely to be reached by a given message as the number of

already informed receivers increases.

In what follows we introduce advertisers’ payo↵s and characterize their

choices as a function of the technology employed and the distribution of

receivers accross outlets. Rather then deploying the more general model

upfront, we build our theory step by step. We first study the simplest

degenerate case in which both outlets share the same set of receivers. We

then move on to the more complex cases in which receivers partly overlap.

2 The advertiser’s (symmetric) dilemma

2.1 Identical Outlets

We consider a situation where no one consumer can be identified exclusively

with a particular outlet. As mentioned earlier, this might arise because each

consumer may consume content on outlets utilizing any ad network. Thus,

we suppose that R1 = R2 with |R
i

| = 1 and  
i

(n) =  

j

(n) =:  (n). (figure

1)
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Channel 1

Channel 2

Fig. 1: Imperfect communication with full overlap.

A first observation is that the fraction of the population informed

through (n1, n2) messages is equal to one minus the probability that a given

receiver is not informed through either outlet. Under independence, that is

1� (1�  (n1))(1�  (n2)). Type v’s choice is determined by:

max
n1,n2�0

v(1� (1�  (n1))(1�  (n2)))� p(n1 + n2). (1)

Let (n⇤
1, n

⇤
2) denote a solution to the above problem and n

⇤ := n

⇤
1 + n

⇤
2

be the total number of impressions purchased across all outlets. We say

that a non-trivial (n⇤
> 0) solution point is characterized by maximum

diversification if n⇤
1 = n

⇤
2 and maximum concentration if either n

⇤
1 or

n

⇤
2 is equal to n

⇤. Consider the family of optimization problems parametrized

by v and let n1(v), n2(v) and n(v) := n1(v)+n2(v) denote the mapping form

v to the solution.

Proposition 1. For all values of v > 0 there is a unique solution n

⇤ � 0.

In addition n(v) is monotone increasing in v.

Proposition 2. a) If 1 �  is log-concave then there is maximum concen-

tration at all solution points.

b) If 1�  is log-linear then all elements of {n1, n2 � 0 : n1 + n2 = n

⇤} are

solutions.

c) If 1�  is log-convex then there is maximum diversification.

Proposition 1 follows from the increasing di↵erences property of the ob-

jective function. Higher types face a higher opportunity cost of not informing
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receivers. This implies that higher types will transmit more messages in total

(if any).1 To sketch the argument used to prove Proposition 2 it is useful to

study how impressions on di↵erent outlets substitute for one another under

technology  . That is, consider the following problem:

max
n1,n2�0

(1� (1�  (n1))(1�  (n2))) s.t. n1 + n2 = n.

A crucial observation is that log-concavity, log-convexity and log-linearity

pin down the sign of the rate of change of the marginal rate of substitution

of impressions on di↵erent outlets. In particular, if 1 �  is log-concave,

then the marginal rate of substitution is increasing (Figure 1, left). In

terms of the “optimal allocation” problem presented above log-concavity

calls for concentrating all impressions on one outlet. A simple illustra-

tion of a log-concave communication technology is perfect internal tracking:

 (n) = inf{n, 1}.2 Under log-linearity, impressions on di↵erent outlets are

perfect substitutes when it comes to impress the shared receivers. Figure

2, center, illustrates the level curves for  (n) = 1� e

�n (the so-called But-

ters (1977) “no tracking” technology). Finally, log-convexity implies strictly

convex upper-contour sets. (Figure 2, right). The solution to this problem

is characterized by a usual tangency condition between a level curve and the

budget set {n1, n2 � 0 : n1 + n2 = n}.
To build intuition, notice that there are two sources of missed and wasted

messages in this framework. First, additional messages transmitted through

the same outlet can reach an already informed receiver and hence get wasted.

This is what we call within outlet waste. Precisely, there is no within

outlet waste if  (n) = inf{n, 1} for all n � 0. There is within outlet waste

otherwise. Second, because of independence, two messages sent on di↵erent

outlets can reach the very *same* receiver even when there is no within

outlet waste. This is what we call across outlet waste. Precisely, there is

1
In fact if some type v purchases a positive quantity, then all higher types will purchase

a strictly higher quantity.

2
Log(1-x) is concave.
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Figure 2: Level curves of 1� (1� (n1))(1� (n2). From left to right 1� 

is log-concave, log-linear and log-convex respectively.

no across outlet waste whenever 1�(1� (n1))(1� (n2)) = inf{n1+n2, 1}.
There is across outlet waste otherwise. Notice that the assumption that one

message hits at most one receiver implies that there is always across outlet

waste even if  (n) = n for all n  1.

The curvature of the logarithm of 1� captures the relationship between

within outlet waste and across outlet waste. This point can be illustrated

formally through the equivalence between log linearity and log additivity in

this particular context.

Lemma 1. (1�  ) is log-linear if and only if (1�  ) is log-additive, that

is: log(1� (n1+n2)) = log(1� (n1))+ log(1� (n2)) which is equivalent

to:

 (n1 + n2) = 1� (1�  (n1))(1�  (n2)) for all n1, n2 � 0 (2)

Proof. By lemma 4 in appendix we have that (1 �  (n1))(1 �  (n2)) is

constant over the set {n1, n2 � 0 : n1 + n2 = n} for all n � 0. This

coupled with the assumption that  (0) = 0 implies that for all n we have
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(1�  (n))(1�  (0)) = k = (1�  (n1))(1�  (n� n1)) which is equivalent

to (2).

Equation (2) states the equivalence between the two sources of waste.

Adapting the same logic we can characterize log-concavity and log-convexity.

1� is log concave (log-convex) if and only if  (n1 + n2) is strictly greater

(respectively strictly lower) than 1 � (1 �  (n1))(1 �  (n2)) for all n1, n2.

Using this characterization we can restate Proposition 2 as follows:

Proposition 3. a) If within outlet waste is lower than across outlet waste

then there is maximum concentration at all solution points.

b) If within outlet waste is equal to across outlet waste then all feasible

allocations of n

⇤
are solutions.

c) If within outlet waste is greater than across outlet waste then there is

maximum diversification.

This gives us a new understanding of a driver in advertiser multi-homing

behavior. For a given advertiser, v, and message price, p, the nature of the

communication technology will drive whether that advertiser will want to

concentrate their advertising on all outlets, be indi↵erent or alternatively

diversify maximally. If they choose to concentrate their advertising then, if

impressions sold for di↵erent prices on each outlet, advertisers will choose to

purchase impressions on the lowest price outlet. Thus, there will be direct

competition for advertising business and this price competition will only be

mitigated by any limitations (as yet unmodelled) on the capacity of an outlet

to deliver ads.

By contrast, under some communication technologies where within outlet

waste is greater than across outlet waste, advertisers will choose to diversify

their impressions across outlets. In this situation, it remains the case that a

price di↵erential can cause advertisers to place more impressions on the low

price outlet but the elasticity of the response will be mitigated by the lower

e�ciency of the marginal impression to that outlet. When might within

outlet waste be greater than across outlet waste? This might arise if there is
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Figure 3: Imperfect communication with partial overlap.

no internal tracking capability but a typical consumer chooses to consume

one outlet in the morning and the other in the afternoon; that is, there is

content diversification that aggregates to an attractive bundle for consumers

compared with the consumer choosing all the content of a particular outlet.

This highlights the fact that part of the communciation technology could

embed self-selection by consumers to tailored content.

2.2 Symmetric outlets with overlapping receivers

We now relax the assumption R1 = R2 allowing outlets to have their

own captured set of receivers (see figure 3). Here receivers belong to two

sets (or types): loyal of 1,2 and switchers. We retain the assumption that

receivers are homogeneous in the sense that they only di↵er with regard to

the outlet they are connected to. With partial overlap, capturing this simple

idea requires an extra ingredient. Switchers get messages from two di↵erent

sources. In order to avoid switchers being more likely to be informed because

of this, we assume that any given switcher is twice less likely to receive a

message sent through a given outlet.3 Specifically, suppose a total of n1

messages are transmitted through outlet 1. If loyals are twice as likely than

3
For example, consider the following application. All consumers are endowed with two

units of time. Some consumers choose to spend both units on outlet 1. Some consumers

allocate both units to outlet two. Some consumers spend one unit of time on each outlet.

If messages are sent at random times then a loyal is twice more likely than a switcher to

be the recipient of a given message.
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switchers to receive a message then the expected fraction of n1 that goes to

them is ⌘l1 := 2Dl

1/(2D
l

1 + D

s). (One way to think about this is as if each

loyal receiver of outlet i were endowed with two mailboxes, each switcher

receiver with one mailbox and messages on outlet i were randomly allocated

to each mailbox in a uniform way; in the sense that no *mailbox* is ex-ante

more or less likely to get a given message). Since by definition the argument

of the  function is the average (per receiver) number of messages sent,

then the corresponding fraction of Dl

1 informed when sending a total of n1

messages through channel i is equal to

 

✓
⌘

l

1n1

D

l

1

◆
=  

✓
2n1

2Dl

1 +D

s

◆
. (3)

The above simplifies to  (2n1) when outlets are symmetric: Dl

1 = D

l

2 =: Dl.

Iterating the same reasoning we find that switchers receive a total num-

ber of n1(1 � ⌘

l

1) = n1D
s

/(2Dl

1 + D

s) from outlet one. Under symmetry,

2Dl

1+D

s = 1 so the total number is n1D
s. That is n1 messages per switcher.

Symmetrically, if n2 messages are sent through outlet 2 then n2 per switcher

reaches these latter. Since messages sent through di↵erent outlets are statis-

tically independent, the expected number of switchers reached when sending

(n1, n2) messages is 1� (1�  (n1))(1�  (n2)).

The sender’s dilemma (normalizing by v the price p) is:

max
n1,n2�0

2Dl( (2n1)+ (2n2))+D

s(1�( (n1))(1� (n2)))�(n1+n2)p/v (4)

Note that if Ds = 1 (so that D

l = 0) we are back to the previous sec-

tion’s case. It is useful to decompose this problem in two sub-problems.

First, given a total number of impressions n to allocate across outlets, which

of all possible allocations maximizes reach? Second, given the solution to

the above problem (denoted with star decorations), how many impressions

should an advertiser of type v purchase if the price is the same for both
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outlets? Consider the first stage problem.

max
n1,n2�0

2Dl( (2n1)+ (2n2))+D

s(1�(1� (n1))(1� (n2))) s.t. n1+n2 = n.

(5)

Proposition 4. If 1� is log-concave there exists a threshold 0 < D̃

s

< 1

such that the solution to the optimal allocation problem entails maximum

concentration if D

s

> D̃

s

and full diversification if D

s

< D̃

s

. If 1� is log-

linear, for all D

s

< 1 the solution to the optimal allocation problem entails

full diversification.

Consider firstly the case 1 �  log-concave. If Ds were equal to zero

then decreasing marginal returns on loyals would imply an even allocation

of impressions across outlets: n

⇤
1 = n

⇤
2 = n/2. Indeed the level curves of

 (2n1) +  (2n2) are always convex towards the origin (strictly convex if

 

00
< 0) and the solution can be easily visualized as the tangency point at

n1 = n2 (figure 4).

On the contrary if Ds is equal to one then we know that the optimal

allocation calls for maximum concentration from the previous section. The

threshold D

s is such that within outlet waste equals accross outlet waste so

that the level curves of the objective function (5) have constant slope. In
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this case, the optimal allocation problem has infinite solutions.

Finally, given the optimal allocation (n⇤
1(n), n

⇤
2(n)) the optimal total

number of messages purchased is found by solving:

max
n�0

D

l

 (2n⇤
1(n))+D

l

 (2n⇤
2(n))+D

s(1�(1� (n⇤
1(n)))(1� (n⇤

2(n))))�np/v

(6)

How does the choice of the sender change with D

s?

Proposition 5. Suppose  : R++ ! [0, 1] is continuous, a.e. di↵eren-

tiable, increasing, concave, bounded above by one and satisfies the following

boundary conditions:  (0) = 0, lim
n!1  (n) = 1. If (1 �  ) is log-linear

then advertisers’ choices do not depend on consumer switching.

Thus, when (1 �  ) is log-concave, advertisers’ multi-homing choices

interact with the share of consumers who are switchers. If there are no

switchers, advertisers will choose maximum diversification because there is

technically no across outlet waste as this depends on there being switchers.

As the number of switchers rises, any across outlet waste will rise and weaken

advertiser incentives to multi-home. Interestingly, this does not occur when

(1� ) is log-linear as within and across outlet waste are the same regardless

of the number of switchers. If (1 �  ) is log-concave we conjecture that

there exists a threshold ṽ such that advertisers’ demand for impressions

decreases with D

s in (p, ṽ) and increases with D

s in (ṽ,1). We have no yet

demonstrated this conjecture for the general case here but it does emerge in

the specific model in Athey, Calvano and Gans (2012).

3 The advertiser’s asymmetric dilemma

Suppose R2 ⇢ R1 (Figure 5). That is, one set of receivers fully contains the

other. In line with the above notation let D

s = |R2|, Dl

1 = |R1 \ R2| and

13



Outlet 1

Outlet 2

S
R2

R1

Fig. 5: Asymmetric outlets with D

l

2 = 0

D

l

2 = 0. Assume once more p1 = p2 = p. Then the advertiser’s dilemma is

(dividing everything by v):

max
n1,n2

D

l

1 

✓
2Dl

1

2Dl

1 +D

s

n1

D

l

1

◆
+D

s

✓
1�

✓
1�  

✓
D

s

2Dl

1 +D

s

n1

D

s

◆◆⇣
1�  

⇣
n2

D

s

⌘⌘◆
�(n1+n2)p/v.

(7)

The first term are the expected revenues on loyals of outlet 1. 2Dl

1/(2D
l

1 +D

s)

is the expected fraction of the total number of messages n1 that lands on

the loyals of 1. This quantity is then normalized by the amount of loyals

D

l

1. That gives the average number of messages that land on loyals; i.e.,

on receivers in R1 \ R2. It follows that the expected reach among these is

D

l

1 (2n1/(2Dl

1 + D

s)). The second term represents expected revenues on

shared receivers. It can be easily derived resorting to the same logic. As

will be clear later on, for our purpose it is convenient to operate a change

of variables and rewrite the above objective in terms of the average number

of impressions. So suppose the control variables are

ñ1 :=
n1

D

l

1 +D

s

/2
and ñ2 :=

n2

D

s

/2
.

Then (7) can be rewritten as follows:

max
ñ1,ñ2

D

l

1 (ñ1)+D

s

✓
1�

✓
1�  

✓
ñ1

2

◆◆✓
1�  

✓
ñ2

2

◆◆◆
�
�
ñ1(D

l

1 +D

s

/2) + ñ2(D
s

/2)
�
p/v.

(8)

Proposition 6. If  is log-linear then ñ

⇤
1(p/v) = ñ

⇤
2(p/v) and decreases with

p/v.
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Note that despite the asymmetric model there is a symmetric character-

ization of the equilibrium advertising policy provided the focus is shifted to

the average number of messages sent to each subgroup.

Next we look at the case where accross outlet waste is not equal to

within outlet waste. To gain insight on the problem we assume the following

functional form:

 (n) = 2en/(1 + e

n)� 1, (9)

and specific parameters p = 1, v = 10 and one outlet assumed to be twice

as large as the other. That is D

l

1 = 1/2 and D

s = 1/2. The correponding

optimal choices are ñ1 ⇡ 2.9 while ñ2 ⇡ 3.4. So the smaller outlet commands

a higher demand in proportion to the number of its customers. The higher

marginal returns on shared customers induce a higher average demand for

messages to be delivered this subgroup.

More generally, in the appendix, we show that if  (n) = 2en/(1+ e

n)�1

and the outlets are asymmetric (Dl

1 6= D

l

2) then ñ1 6= ñ2 whenever p1 = p2.

We expect this property to hold for any log-concave  function but we have

not proved it as yet.

The result here mirrors the magnet content discussion in Athey, Cal-

vano and Gans (2012). Similar to this case, there one outlet only attracted

switchers while the other outlet could have some exclusive consumers. The

context we had in mind were sites like Facebook that had a large reach but

did not necessarily capture the exclusive attention of consumers. We demon-

strated that as the reach of the high reach outlet increased, it attracted more

demand from single-homing advertisers who chose to advertise exclusively

on the high reach outlet so as to eliminate across outlet waste. They could

do this because the share of missed consumers would be relatively low. We

saw this as indicative of the impact that imperfect tracking technologies can

have on the type of content supplied by outlets; that is, whether the content

emphasized reach versus attention per se.
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4 Receivers’ welfare and e�cient communi-

cation

Thusfar, we have focussed on advertiser incentives to send messages and, in

particular, their allocation across outlets. The primary cost to advertisers

of wasted messages was the additional payments for those messages. How-

ever, there is also an additional cost that is not necessarily incurred by the

advertisers; the attention of receivers. In this section we order the di↵erent

advertising policies according to how wasteful these policies are from the

point of view of the receivers. We sidestep the issue of comparing welfare

changes accross senders and receivers by characterizing those policies that

minimize the burden on receivers while keeping the senders’ welfare fixed at

some predetermined level.

Total waste (or duplicated impressions) equals the di↵erence between

the total number of messages sent and the total number of receivers hit by

at least one message. If this latter quantity is denoted r(n1, n2) then total

waste is equal to:

n1 + n2 � r(n1, n2) (10)

With this measure at hand we can ask if there is any wedge between

what the sender chooses and what the recievers would like them to choose

conditional on leaving them at least on the same utility level. That is,

conditional on keeping the expected reach of the campaign equal or higher.

We say that an advertising policy is k-e�cient given prices (p1, p2) if (n⇤
1, n

⇤
2)

minimizes (10) subject to informing at least an expected fraction of the

population k 2 (0, 1). Formally, given the following choice set:

{(n1, n2) 2 R+ : r(n1, n2) � k} (11)

an advertising policy (n⇤
1, n

⇤
2) belonging to the above set is k-e�cient if
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(n⇤
1, n

⇤
2) also minimizes (10) for all (n1, n2) belonging to the set; i.e., a

self-interested and message-adverse receiver who therefore minimizes (10)

subject to (11) would choose the same element of the set.

Proposition 7. Suppose that the advertiser’s optimal choice at prices (p1, p2)

is (n⇤
1, n

⇤
2) and the associated expected fraction of the population reached is

k

⇤
. Then (n⇤

1, n
⇤
2) is k-e�cient if and only if p1 = p2.

E�ciency requires the marginal reach to be equalized across channels:

@r(n1, n2)

@n1
=
@r(n1, n2)

@n2
. (12)

Intuitively, if this condition were violated then it would be possible to reduce

the total number of messages sent n1 + n2 while keeping the total reach of

the campaign fixed by subsituting messages across outelts. The sender’s

optimal policy given unit prices p1 and p2 solves:

@r(n1, n2)

@n

i

=
p

i

v

i = 1, 2. (13)

That is, it equates the marginal reach to the unit price normalized by the

value of informing a receiver. So the sender’s optimal choice satisfies (13) if

and only if p1 = p2. So it follows that any gap in unit prices will result in a

wasteful allocation of messages from the perspective of receivers.

The next section supplies one (obvious) reason for why the prices, which

we intepret as market clearing prices, need not be equal: log-concave tracking

coupled with asymmetries across outlets.

5 Allocating messages through a simple mar-

ket mechanism

We introduce here a simple market mechanism that allocates messages (and

therefore the receivers’ attention) to a population of identical senders of mass

17



1. In line with the above, we model receivers as passive and do not study the

more complex problem in which the total amount of attention supplied to

each outlet depends on the amount of messages (i.e. advertising) provided.

Formally, each loyal receiver generates an inventory of � messages whereas

each switcher generates an inventory of �/2 messages on each outlet. So the

total supply of messages on outlet i is equal to �(Dl

i

+ D

s

/2). If messages

are unit prices then the market clearing prices, denoted p

⇤
1 and p

⇤
2 solve:

n1(p1, p2) = �(Dl

1 +D

s

/2)

n2(p1, p2) = �(Dl

2 +D

s

/2) (14)

Or, alternatively, in average terms:

ñ1(p1, p2) = �

ñ2(p1, p2) = �. (15)

Let n

⇤
1 := n1(p⇤1, p

⇤
2) and n

⇤
2 := n2(p⇤1, p

⇤
2) denote a competitive allocation,

that is the senders’ demand evaluated at the market clearing prices.

A corollary of Proposition 6 is that if the technology is log-linear then

the corresponding market clearing prices must be equal. By Proposition

7 then the competitive allocation must be k-e�cient. However the same

need not hold if  is log-concave. For instance, given the log-concave 1 �
 function (9) we have that ñ1 never equals ñ2 when p1 = p2. Because

market clearing requires ñ1 = ñ2, the combination of log-concave tracking

technlogies and asymmetries accross outlets can potentially induce a wedge

in the equilibrium prices and, therefore, an ine↵cient allocation of the outlets’

inventory.

Note that the market clearing prices reflect only (relative) scarcity con-

siderations. Because the receivers’ attention is an unpriced resource, there

is no market mechanism at work to restore e�ciency. This is despite there

being a simple coincidence of interest between senders and receivers: the

18



lower the waste the higher the amount of information that can be pushed

to receivers.

6 Conclusions

To be done.
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Appendix

A Proofs

A.1 Proof of Propositions 1 and 2.

We shall split the problem into two subproblems as follows. Problem 1:

max
n1,n2�0

v (1� (1�  (n1)) (1�  (n2)))� p (n1 + n2) s.t. n1 + n2 = n.

Let n1 (n) and n2 (n) = n�n1 (n) be the solution of Problem 1. Problem 2:

max
n�0

v (1� (1�  (n1 (n))) (1�  (n� n1 (n))))� pn.

a) Consider the case when 1 �  is log-concave. By the property of log-

concave functions for any n1 and n:

(1�  (n1)) =
⇣
1�  

⇣
n1

n

n

⌘⌘
=

⇣
1�  

⇣
n1

n

n+
⇣
1� n1

n

⌘
0
⌘⌘

�

� (1�  (n))
n1
n (1�  (0))1�

n1
n = (1�  (n))

n1
n

so:

(1�  (n1)) � (1�  (n))
n1
n (16)

Similar result holds for n2:

(1�  (n2)) � (1�  (n))1�
n1
n (17)

Multiply both parts of (16) by (1�  (n2)) (it is strictly positive) and use

inequality (17):
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(1�  (n1)) (1�  (n2)) �

� (1�  (n))
n1
n (1�  (n2)) � (1�  (n))

n1
n (1�  (n))1�

n1
n = (1�  (n1 + n2))

So,

(1�  (n1)) (1�  (n2)) � (1�  (n1 + n2))

Multiply by �1 both parts and add 1:

1� (1�  (n1)) (1�  (n2))   (n1 + n2)

Hence, for any given n full concentration gives higher profit than any level

of diversification. So, in the solution either n1 or n2 is equal to 0.

Now consider the second problem that in the case of full concentration can

be written as:

max
n�0

v (n)� pn

FOC of this problem is:

v 

0 (n) = p

It has unique solution.

Derive w.r.t. v:

 

0 (n) + v 

00 (n)
@n

@v

= 0

@n

@v

= �  

0 (n)

v 

00 (n)
> 0

Last inequality holds by properties of function  .

b) Consider the case of log-linear 1 �  . We apply similar argument as in
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case a) but for log-linear function. Now:

(1�  (n1)) =
⇣
1�  

⇣
n1

n

n

⌘⌘
=

⇣
1�  

⇣
n1

n

n+
⇣
1� n1

n

⌘
0
⌘⌘

=

= (1�  (n))
n1
n (1�  (0))1�

n1
n = (1�  (n))

n1
n

So:

(1�  (n1)) = (1�  (n1 + n2))
n1
n

and

(1�  (n2)) = (1�  (n1 + n2))
1�n1

n

So, for any n1 and n2 we have:

1� (1�  (n1)) (1�  (n2)) = 1� (1�  (n1 + n2))
n1
n (1�  (n1 + n2))

1�n1
n =

= 1� (1�  (n1 + n2)) =  (n1 + n2)

(18)

Hence, for any fixed n and n1 2 [0, n] the following equality holds:

 (n) = 1� (1�  (n1)) (1�  (n� n1))

The second part of the proof is identical to case a).

c) Consider the case of log-convex 1�  . By the same argument as before:

1� (1�  (n1)) (1�  (n� n1)) �  (n)

So, for any n and n1 2 [0, n], any degree of diversification is more optimal

than full concentration. Find the optimal degree of diversification for a fixed

n:
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max
k2(0,1)

1� (1�  (kn)) (1�  ((1� k)n))

FOC is:

(1�  ((1� k)n)) 0 (kn) = (1�  (kn)) 0 ((1� k)n)

or

 

0 (kn)

(1�  (kn))
=

 

0 ((1� k)n)

(1�  ((1� k)n))
(19)

By properties of log-convex functions,  

0(x)
1� (x) is monotone increasing in x, so

the LHS of (19) is monotone increasing with k when it’s RHS is monotone

decreasing. Hence it has a unique solution for k, because trivial solution

k = 1
2 always holds, it is unique solution. So maximum diversification is

always optimal in this case.

We can rewrite the final problem as follows:

max
n�0

v

✓
1�

⇣
1�  

⇣
n

2

⌘⌘2
◆
� pn

FOC is:

v

⇣
1�  

⇣
n

2

⌘⌘
 

0
⇣
n

2

⌘
= p

Derive w.r.t. v:

⇣
1�  

⇣
n

2

⌘⌘
 

0
⇣
n

2

⌘
+ v

1

2

✓⇣
1�  

⇣
n

2

⌘⌘
 

00
⇣
n

2

⌘
�
⇣
 

0
⇣
n

2

⌘⌘2
◆
@n

@v

= 0

@n

@v

= �
�
1�  

�
n

2

��
 

0 �n

2

�

v

1
2

⇣�
1�  

�
n

2

��
 

00
�
n

2

�
�
�
 

0
�
n

2

��2⌘ > 0

by properties of  .
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Proof of Proposition 4

Start with log-concave case. For any given n in case of full concentration

advertiser gets:

⇡

C

=
�
D

l +D

s

�
 (n)

when in case of diversification he gets:

⇡

D

= 2Dl

 (n) +D

s

✓
1�

⇣
1�  

⇣
n

2

⌘⌘2
◆

The di↵erence ⇡
C

� ⇡

D

is:

⇡

C

� ⇡

D

= D

s

✓
 (n)�

✓
1�

⇣
1�  

⇣
n

2

⌘⌘2
◆◆

�D

l

 (n) =

= D

s

✓
 (n)�

✓
1�

⇣
1�  

⇣
n

2

⌘⌘2
◆◆

� 1�D

s

2
 (n)

where  (n)�
⇣
1�

�
1�  

�
n

2

��2⌘
> 0 for log-concave case, so the di↵erence

is linearly increasing withD

s from�1
2 (n) < 0 to  (n)�

⇣
1�

�
1�  

�
n

2

��2⌘
>

0. So, for every n there is a point D̃s (n) where he is indi↵erent between two

cases:

D̃

s (n) =
1
2 (n)

3
2 (n)�

⇣
1�

�
1�  

�
n

2

��2⌘

And for all Ds

< D̃

s (n) diversification is optimal, when for all Ds

> D̃ (n)

concentration is optimal.

In log-linear case:

⇡

C

� ⇡

D

= D

s

✓
 (n)�

✓
1�

⇣
1�  

⇣
n

2

⌘⌘2
◆◆

�D

l

 (n) = �D

l

 (n) < 0
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so, for every n, so diversification always brings higher profit.

Proof of Proposition 5

By Proposition 4, full diversification is always optimal in log-linear case, so

advertiser maximizes ⇡
D

. But in log-linear case from (18):

⇡

D

= 2Dl

 (n) +D

s

✓
1�

⇣
1�  

⇣
n

2

⌘⌘2
◆

= 2Dl

 (n) +D

s

 (n) =  (n)

that does not depend on D

s.

Proof of Proposition 6

By properties of log-linear function the following equality holds:

1�
✓
1�  

✓
ñ1

2

◆◆✓
1�  

✓
ñ2

2

◆◆
=  

✓
ñ1

2
+

ñ2

2

◆

so we can rewrite the problem as follows:

max
ñ1,ñ2

D

l

1 (ñ1) +D

s

 

✓
ñ1

2
+

ñ2

2

◆
�

✓
ñ1

✓
D

l

1 +
D

s

2

◆
+ ñ2

D

s

2

◆
p

v

FOCs of this problem are:

D

l

1 
0 (ñ1) +

D

s

2
 

0
✓
ñ1

2
+

ñ2

2

◆
=

✓
D

l

1 +
D

s

2

◆
p

v

D

s

2
 

0
✓
ñ1

2
+

ñ2

2

◆
=

D

s

2

p

v

Obviously, ñ1 = ñ2 s.t.  

0 (ñ1) = p

v

is a solution of this problem. And

because  is concave, solution is decreasing with p

v

.
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Proof of Proposition 7

In general case, optimal allocation is a solution for:

max
ñ1,ñ2

D

l

1 (ñ1) +D

l

2 (ñ2)+

+D

s

✓
1�

✓
1�  

✓
ñ1

2

◆◆✓
1�  

✓
ñ2

2

◆◆◆
�

✓
p1ñ1

✓
D

l

1 +
D

s

2

◆
+ p2ñ2

✓
D

l

2 +
D

s

2

◆◆
1

v

where ñ

i

= ni

D

l
i+

Ds

2

and k-e�cient allocation is a solution for:

min
ñ1,ñ2

ñ1

✓
D

l

1 +
D

s

2

◆
+ ñ2

✓
D

l

2 +
D

s

2

◆
+

�

D

l

1 (ñ1) +D

l

2 (ñ2) +D

s

✓
1�

✓
1�  

✓
ñ1

2

◆◆✓
1�  

✓
ñ2

2

◆◆◆�

s.t. D

l

1 (ñ1) +D

l

2 (ñ2) +D

s

✓
1�

✓
1�  

✓
ñ1

2

◆◆✓
1�  

✓
ñ2

2

◆◆◆
= k

Compare FOCs for optimal allocation:

D

l

1 
0 (ñ1) +

D

s

2

✓
1�  

✓
ñ2

2

◆◆
 

0
✓
ñ1

2

◆
=

✓
D

l

1 +
D

s

2

◆
p1

v

D

l

2 
0 (ñ2) +

D

s

2

✓
1�  

✓
ñ1

2

◆◆
 

0
✓
ñ2

2

◆
=

✓
D

l

2 +
D

s

2

◆
p2

v

and for e�cient one:

(1 + � (k))


D

l

1 
0 (ñ1) +

D

s

2

✓
1�  

✓
ñ2

2

◆◆
 

0
✓
ñ1

2

◆�
=

✓
D

l

1 +
D

s

2

◆
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(1 + � (k))


D

l

2 
0 (ñ2) +

D

s

2

✓
1�  

✓
ñ1

2

◆◆
 

0
✓
ñ2

2

◆�
=

✓
D

l

2 +
D

s

2

◆

For these two systems of equations to coincide we need:

p1

v

=
1

1 + � (k)

p2

v

=
1

1 + � (k)

or, p1 = p2 . So, for every k there are prices p1 = p2 = v

1+�(k) , such

that solution of the optimal allocation problem coincides with solution of k

-e�ciency problem.

For every p1 = p2 = p we setk⇤ :

k

⇤ = D

l

1 (ñ⇤
1) +D

l

2 (ñ⇤
2) +D

s

✓
1�

✓
1�  

✓
ñ

⇤
1

2

◆◆✓
1�  

✓
ñ

⇤
2

2

◆◆◆

whereñ⇤
1 and ñ

⇤
2 are solutions of the optimal allocation problem, ñ⇤

1 and ñ

⇤
2

will be also solutions for e�ciency problem with k

⇤ . To prove it, suppose

per contra that solution of e�ciency problem (ñk

1, ñ
k

2 ) is not equal to ñ

⇤
1, ñ

⇤
2

, so we can guarantee k

⇤ with smaller ñ1

�
D

l

1 +
D

s

2

�
+ ñ2

�
D

l

2 +
D

s

2

�
:

ñ

⇤
1

✓
D

l

1 +
D

s

2

◆
+ ñ

⇤
2

✓
D

l

2 +
D

s

2

◆
> ñ

k

1

✓
D

l

1 +
D

s

2

◆
+ ñ

k

2

✓
D

l

2 +
D

s

2

◆

But then, for the value function of optimal allocation ⇡ :
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⇡ (ñ⇤
1, ñ

⇤
2) = k

⇤ �
✓
ñ

⇤
1

✓
D

l

1 +
D

s

2

◆
+ ñ

⇤
2

✓
D

l

2 +
D

s

2

◆◆
p

v

<

< k

⇤ �
✓
ñ

k

1

✓
D

l

1 +
D

s

2

◆
+ ñ

k

2

✓
D

l

2 +
D

s

2

◆◆
p

v

= ⇡

�
ñ

k

1, ñ
k

2

�

that contradicts the fact that ñ⇤
1 and ñ

⇤
2 are solutions of this problem. So,

(ñk

1, ñ
k

2) is equal to (ñ⇤
1, ñ

⇤
2 ).

B Instrumental Results (used in proofs)

B.1 Log-linear and log-additive tracking functions

Definition 1. A positive real valued function f : X ! R+ is log-concave if

log f is concave, log-convex if log f is convex and log-linear if log f is linear.

Straightforward calculus delivers the following equivalence (proof omit-

ted):

Lemma 2. Consider a positive, real valued continuous and twice di↵eren-

tiable function f : X ! R+ The following are equivalent:

1. f is log-concave,

2. f

0
/F is monotone decreasing.

Analogously, log-convexity is equivalent to f 0
/F increasing and log-linearity

to f

0
/F constant.

An important result which will be key in the first proposition is the follow-

ing. Suppose  : R++ ! [0, 1] is continuous, a.e. di↵erentiable, increasing,

concave, bounded above by one and satisfies the following boundary condi-

tions:  (0) = 0, lim
n!1  (n) = 1.

Lemma 3. (1�  (n)) is log-linear if and only if (1�  (n1))(1�  (n2)) is

constant over the set {n1, n2 � 0 : n1 + n2 = n} for all n � 0.
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Proof. Take any (n̂1, n̂2) 2 {n1, n2 > 0 : n1 + n2 = n > 0} and let k > 0 be

the value of (1 �  (n1))(1 �  (n2)) computed at that point. Consider the

following (non empty) level set A := {n1, n2 � 0 : (1� (n1)(1� (n2)) = k}.
Note that A is symmetric in the sense that if (n1 = a, n2 = b) 2 A then

(n1 = b, n2 = a) 2 A. Strict monotonicity implies that for each n1 there is

at most one n2 such that (n1, n2) 2 A which, by continuity and surjectivity

of  , always exists. Let n2(n1) > 0 be the implicit function, which is a.e.

di↵erentiable with slope equal to

�  

0(n1)

(1�  (n1))
/

 

0(n2(n1))

1�  (n2(n1))
. (20)

By lemma 2, log-linearity of 1 �  is equivalent to (20) being constant.

Symmetry of A and continuity of n2(n1) imply that the point n1 = n2 also

belongs to A. (20) computed in n1 = n2 equals -1, which then implies that

n2(n1) = n � n1. That is (n̂1, n̂2) 2 {(n1, n2) > 0 : n1 + n2 = n} implies

(1�  (n̂1))(1�  (n̂2)) = k.

A second important and, as we shall see, intuitive property of our tracking

function is the following:

Definition 2. A positive real valued function f : X ! R+ is log-additive

if log f is additive. That is: log f(x+ y) = log f(x) + log f(y) for all x, y 2
X; f is log-superadditive if the former relation holds with > and f is log-

subadditive if the former relation holds with <.
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