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Abstract

Understanding the dynamics of a high dimensional non-normal dependency struc-

ture is a challenging task. A multivariate Gaussian or mixed normal time varying

models are limited in capturing important types of data features such as heavy tails,

asymmetry, and nonlinear dependencies. This research aims at tackling this prob-

lem by building up a hidden Markov model (HMM) for hierarchical Archimedean

copulae (HAC). The HAC constitute a wide class of models for high dimensional

dependencies, and HMM is a statistical technique for describing regime switching

dynamics. HMM applied to HAC �exibly models high dimensional non-Gaussian

time series.

In this paper we apply the expectation maximization (EM) algorithm for param-

eter estimation. Consistency results for both parameters and HAC structures are
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established in an HMM framework. The model is calibrated to exchange rate data

with a VaR application. This example is motivated by a local adaptive analysis that

yields a time varying HAC model. We compare the forecasting performance with

other classical dynamic models. In another, second, application we model a rainfall

process. This task is of particular theoretical and practical interest because of the

speci�c structure and required untypical treatment of precipitation data.

Keywords: Hidden Markov Model, Hierarchical Archimedean Copulae, Multivariate Dis-

tribution

JEL classi�cation: C13, C14, G50

1 Introduction

Modelling high-dimensional time series is an often underestimated exercise of routine

econometrical and statistical work. This slightly pejorative attitude towards day to day

statistical analysis is unjusti�ed since actually the calibration of time series models in

high dimensions for standard data sizes is not only di�cult on the numerical side but

also on the mathematical side. Computationally speaking, integrated models for high

dimensional time series become more involved when the parameter space is too large.

An example is the multivariate GARCH(1,1) BEKK model that for even two dimensions

has an associated parameter space of dimension 12. For moderate sample sizes, the

parameter space dimension might be in the range of the sample size or even bigger. This

data situation has evoked a new strand of literature on dimension reduction via penalty

methods.

In this paper we take a di�erent route, by calibrating an integrated dynamic model with

unknown dependency structure among the d dimensional time series variables. More

precisely, the unknown dependency structure may vary within a set of given dependencies.

The speci�c dependence at each time t is unknown to the data analyst, but depends on

the dependency pattern at time t−1. Therefore, hidden Markov models (HMM) naturally
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come into play. This leaves us with the problem of specifying the set of dependencies.

An approach based on assuming a multivariate Gaussian or mixed normal is handicapped

in capturing important types of data features such as heavy tails, asymmetry, and nonlin-

ear dependencies. Such a simpli�cation might in practice be too restrictive an assumption

and might lead to biased results. Copulae are one possible approach to solving these

problems. Moreover, copulae allow us to separate the marginal distributions and the de-

pendency model, see Sklar (1959). In recent decades, copula-based models have gained

popularity in various �elds like �nance, insurance, biology, hydrology, etc. Nevertheless,

many basic multivariate copulae are still too restrictive and a simple extension by putting

in more parameters would lead to the extreme of a totally nonparametric approach that

runs into the problem of the curse of dimensionality. A natural compromise is the class of

hierarchical Archimedean copulae (HAC). An HAC allows a rich copula structure with a

�nite number of parameters. Recent works which have shown their �exibility are McNeil

and Ne²lehová (2009), Okhrin, Okhrin and Schmid (2009), Whelan (2004).

Many attempts have been made to obtain insights into the dynamics of the copulae: Chen

and Fan (2005) assumes the underlying sequence is Markovian; Patton (2004) considers an

asset-allocation problem with a time-varying parameter of bivariate copulae; Rodriguez

(2007) studies �nancial contagion using switching-parameter bivariate copulae. A likeli-

hood based local adaptive method is an alternative approach for understanding the time

evolution, and such a method is also named as local change point method (LCP), see

Giacomini, Härdle and Spokoiny (2009), Härdle, Okhrin and Okhrin (2012). Figure 1

presents an analysis of HAC for exchange rate data using LCP on a moving window. One

observes that the structure (upper panel) very often remains the same for a long time,

and the parameters (lower panel) are only slowly varying over time. This indicates that

the dynamics of HAC functions is likely to be driven by a Markovian sequence connected

with the structures and parameter values. This suggests to us a di�erent path of modeling

the dynamics: instead of taking a local point of view, we adopt a global dynamic model

HMM for the change of both the tree structure and the parameters of the HAC along

the time horizon. In this situation, a stochastic process Y with a not directly observable
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Figure 1: LCP for exchange rates: structure (upper) and parameters (lower, θ1(green)
and θ2(blue)) for Gumbel HAC. m0 = 40.

underlying Markov process X is needed to determine the state of distributions of Y . This

has been widely applied to speech recognition, see Rabiner (1989), molecular biology, and

digital communications over unknown channels. For estimation and inference issues in

HMM, see Bickel, Ritov and Rydén (1998) and Fuh (2003), among others.

In this paper, we propose a new type of dynamic model, called HMM HAC, by incor-

porating HAC into an HMM framework. The theoretical problems such as parameter

consistency and structure consistency are solved. The expectation maximization (EM)

algorithm is developed in this framework for parameter estimation. See Section 2 for the

model description, Section 3 for theorems about consistency. EM algorithm and compu-

tation issues are in Section 4. Section 5 is for the simulation study, and Section 6 is for

applications. The technical details are put into the Appendix.
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2 Model Description

2.1 Incorporating HAC into HMM

A hidden Markov model is a parameterized Markov random walk with an underlying

Markov chain viewed as missing data, as in Leroux (1992), Bickel et al. (1998), and

Gao and Song (2011). Speci�cally, in our HMM HAC framework, let {Xt, t ≥ 0} be a

stationary Markov chain of order one on a �nite state space D = {1, 2, . . . ,M}, with

transition probability matrix P = {pij}i,j=1,...,M and initial distribution π = {πi}i=1,...,M .

P(X0 = i) = πi, (1)

P(Xt = j|Xt−1 = i) = pij (2)

= P(Xt = j|Xt−1 = i,Xt−2 = xt−2, . . . , X1 = x1, X0 = x0),

i, j = 1, . . . ,M

Let {Yt, t ≥ 0} be the associated observations, and they are adjoined with {Xt, t ≥ 0} in

such a way that given Xt = i, i = 1, . . . ,M , the distribution of Yt is �xed:

P(Xt|X1:(t−1), Y1:(t−1)) = P(Xt|Xt−1) (3)

P(Yt|Y1:(t−1), X(1:t)) = P(Yt|Xt), (4)

where Y1:(t−1) stands for {Y1, . . . , Yt−1}, t < T .

Let fj{·;θθθ(j), s(j)} be the conditional density of Yt given Xt = j with θθθ ∈ Θ, s ∈ S, j =

1, . . . ,M being the unknown parameters. That is, {Xt, t ≥ 0} is a Markov chain, given

X0, X1, . . . , XT , with Y0, Y1, . . . , YT being independent. Note that θθθ = (θθθ(1), . . . , θθθ(M)) ∈

R(d−1)M are the unknown dependency parameters, s = (s(1), . . . , s(M)) are the unknown

HAC structure parameters, and its true value is denoted by θθθ∗ and s∗. See Figure 2 for

a graphical illustration, and in Appendix 7.2 we have a more strict formulation of the

de�nition of a HMM.
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Figure 1: Graphical representation of the dependence structure of HMM

1

Figure 2: Graphical representation of the dependence structure of HMM, where Xt de-
pends only on Xt−1 and Yt only on Xt.

For given d dimensional time series y1, . . . , yT ∈ Rd (yt = (y1t, y2t, y3t, . . . , ydt)
>) connected

with unobservable (or missing) x1, . . . , xT from the given hidden Markov model, de�ne

πxt as the πi for x0 = i, i = 1, . . . ,M , and pxt−1xt = pji for xt−1 = j and xt = i. The full

likelihood function given one realization of {xt, yt}Tt=1 is

pT (y1:T ;x1:T ) = πx0

T∏
t=1

pxt−1xtfxt(yt;θθθ
(xt), s(xt)), (5)

and the likelihood for only the observations {yt}Tt=1 by marginalization:

pT (y1:T ) =
M∑
x0=1

· · ·
M∑

xn=1

πx0

T∏
t=1

pxt−1xtfxt(yt;θθθ
(xt), s(xt)). (6)

The novelty of our approach lies in a special parametrization of fxt(yt;θθθ
(xt), s(xt))(xt = i)

(abbreviated as fi(·)), which helps to properly understand the dynamics of a multivariate

distribution. Up to now, typical parameterizations have been mixtures of log-concave or

elliptical symmetric densities, such as those from Gamma or Poisson families, which are

not �exible enough to model high dimensional time series. The advantage of the copula

is that it splits the multivariate distribution into its margins and a pure dependency

component. In other words, it captures the dependency between variables eliminating the

impact of the marginal distributions. Technical details and properties about copulae are

to be found in the Appendix 7.1.
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Furthermore, we incorporate this procedure into the HMM framework. We denote the

underlying Markov variable Xt as a dependency type variable. If xt = i, the parameters

(θθθ(i), s(i)) determined by state i = 1, . . . ,M take values on Θ × S, where S is a set of

discrete candidate states corresponding to di�erent dependency structures of the HAC,

and Θ is a compact set in Rd−1 wherein the HAC parameters take their values. Therefore,

fi(·) = c{Fm
1 (y1), Fm

2 (y2), . . . , Fm
d (yd), θθθ

(i), s(i)}fm
1 (y1)fm

2 (y2) · · · fm
d (yd), (7)

with fm
i (yi) the marginal densities, Fm

i (yi) the marginal cdf, c(·) the copula density, and

see more details in Appendix 7.1.

Let θθθ(i) = (θi1, . . . , θi,d−1)> be the dependency parameters of the copulae starting from

the lowest up to the highest level connected with a �xed state xt = i and the fi(.). The

multistage maximum likelihood estimator (θ̂θθ
(i)
, ŝ(i)) solves the system

(
∂L1

∂θi1
, . . . ,

∂Ld−1

∂θid−1

)>
= 0, (8)

where Lj =
T∑
t=1

witlij(Yt), for j = 1, . . . , d− 1,

lij(Yt) = log
(
c
[
{F̂m

m(ytm)}m∈{1,...,j}; {θi`}`=1,...,j−1, s
(i)
m

] ∏
m∈{1,...,j}

f̂m
m(ytm)

)
for t = 1, . . . , T.

where j denote the layers of a tree structure, and F̂m
m(·) is an estimator (either nonpara-

metric with F̂m
m(x) = (T + 1)−1

∑T
t=1 1(Ytm ≤ x) or parametric F̂m

m(·) = Fm
m(·, α̂ααm)) of the

marginal cdf Fm
m(·). The marginal densities f̂m

m(·) are estimated according to the cdfs, and

wit is the weight associated with state i and time t, see (12). Chen and Fan (2006) and

Okhrin et al. (2009) provide the asymptotic behavior of the estimates.

2.2 Likelihood estimation

For the estimation of the HMM HAC model, we adopt the EM algorithm, Dempster,

Laird and Rubin (1997). In the context of HMM, the EM algorithm is also known as the
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Baum�Welch algorithm. Let us recall the description in the setting of HMM on HAC.

Recall the full likelihood pT (y1:T ;x1:T ) in (5) and the partial likelihood pT (y1:T ) in (6),

and the log likelihood:

log{pT (y1:T )} = log{
M∑
x0=1

· · ·
M∑

xn=1

πx0

T∏
t=1

pxt−1xtfxt(yt;θθθ
(xt), s(xt))}. (9)

The EM algorithm suggests estimating a sequence of parameters g(r)
def
= (P(r), θθθ(r), s(r))

(for the rth iteration) by iterative maximization of Q(g; g(r)) with

Q(g; g(r))
def
= E g(r){log pT (Y1:T ;X1:T )|Y1:T}.

Namely, one carries out the following two steps:

• (a) E-step: compute Q(g; g(r)),

• (b) M-step: choose the update parameters g(r+1) = arg maxgQ(g; g(r)).

The essence of the EM algorithm is that Q(g; g(r)) can be used as a surrogate for

log pT (y1:T ;x1:T ; θ), see Cappé, Moulines and Rydén (2005).

In our setting, we may write Q(g; g(r)) as:

Q(g; g(r)) =
M∑
i=1

E g(r) [1{X0 = i} log{πifi(y0)}|Y1:T ] +
T∑
t=1

M∑
i=1

E g(r) [1{Xt = i} log fi(yt)|Y1:T ]

+
T∑
t=1

M∑
i=1

M∑
j=1

E g(r) [1{Xt = j}1{Xt−1 = i} log{pij}|Y1:T ]

=
M∑
i=1

Pg(r)(X0 = i|Y1:T ) log{πifi(y0)}+
T∑
t=1

M∑
i=1

Pg(r)(Xt = i|Y1:T ) log fi(yt)

+
T∑
t=1

M∑
i=1

M∑
j=1

Pg(r)(Xt−1 = i,Xt = j|Y1:T ) log{pij}, (10)

where fi(·) is as in (7). The E-step, in which Pg(r)(Xt = i|Y1:T ),Pg(r)(Xt−1 = i,Xt =

j|Y1:T ) are evaluated, is carried out by the forward-backward algorithm and the M -step

8



is explicit in the pij and the πi. Adding constraints to (10) yields

L(g, λ; g′) = Q(g; g′) +
M∑
i=1

λi(1−
M∑
j=1

pij). (11)

For the M -step, we need to take the �rst order partial derivative, and plug into (11).

So, the dependency parameters θθθ and the structure parameters s need to be estimated

iteratively, for θθθ(i) (θθθ(i) = {θi1, . . . , θi(d−1)}):

∂L(g, λ; g′)

∂θij
=

T∑
t=1

Pg′(Xt = i|Y1:T )∂ log fi(yt)/∂θij. (12)

To simplify the procedure, we adopt the HAC estimation method (8) with weights in

terms of wit
def
= Pg′(Xt = i|Y1:T ). We also �x πi, i = 1, . . . ,M as it in�uences only the �rst

observation X0 which may be considered also as given and �xed. The estimation of the

transition probabilities pij follows:

∂L(g, λ; g′)

∂pij
=

T∑
t=1

Pg′(Xt−1 = i,Xt = j|Y1:T )

pij
− λi, (13)

∂L(g, λ; g′)

∂λi
= 1−

M∑
j=1

pij. (14)

Equating (13) and (14) yields:

p̂ij =

∑T
t=1 Pg′(Xt−1 = i,Xt = j|Y1:T )∑T

t=1

∑M
j=1 Pg′(Xt−1 = i,Xt = j|Y1:T )

(15)

3 Theoretical Results

Assumptions

A.1 {Xt} is stationary and irreducible.

A.2 The family of mixtures of at most M elements {f(y;θθθ(i), s(i)) : θθθ(i) ∈ Θ, s(i) ∈ S} is

9



identi�able w.r.t. the parameters and structures:

M∑
i=1

αif(y;θθθ(i), s(i)) =
M∑
i=1

α′if(y;θθθ′(i), s′(i)) a.e. (16)

=⇒
M∑
i=1

αjδθθθ(i),s(i) =
M∑
i=1

α′iδθθθ′(i),s′(i) , (17)

de�ning δθθθ(i),s(i) as the distribution function for a point mass in Θ associated with the

structure s(i), noting that θθθ(i) = θθθ′(i) is only meaningful when s(i) = s′(i). The property of

identi�ability is nothing else than the construction of a �nite mixture model, McLanchlan

and Peel (2000). As a copula is a special form of a multivariate distribution, similar

techniques may be applied to get identi�ability also in the case of copulae. The family of

copula mixtures has been thoroughly investigated in Caia, Chen, Fan and Wang (2006)

while developing estimation techniques. In that general case, one should be careful, as the

general copula class is very wide and its mixture identi�cation may cause some problems

because of the di�erent forms of the densities. The very construction of the HAC narrows

this class. Imposing the same generator functions on all levels of the HAC, we restrict the

family to the vector of parameters and the tree structure, see also Okhrin et al. (2009).

Moreover, we restrict the classes to only binary trees with distinct parameters to avoid

identi�ability issues induced by the case of the same parameter values on each layers of

a tree. Our preliminary numerical analysis shows that the HAC ful�lls the identi�ability

property for all the structures and parameters used in this study.

A.3 {Xt}Tt=1 is a time homogeneous Markov chain that is ergodic.

A.4 E{| log fi(y,θθθ
(i), s(i))|} <∞, for i = 1, . . . ,M , ∀s(i) ∈ S.

A.5 For every θθθ ∈ Θ, and any particular structure considered s ∈ S,

E[ sup
‖θθθ′−θθθ‖<δ

{fi(Y1, θθθ
′, s)}+] <∞,

for some δ > 0.
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Denote as pT (y1:T ; v, ω) the density in (6) with parameters {v, ω} ∈ {V,Ω} as described

in the Appendix 7.2. De�ne θ̂θθ
(i)
, ŝ(i) as θ̂θθ

(i)
(v̂, ω̂) and ŝ(i)(v̂, ω̂) with (v̂, ω̂) as the point

where pT (y1:T ; v, ω) achieve its maximum value over the parameter space {V,Ω}.

It is known that HMM is not itself identi�able as the permutation of states would yield

the same value for pT (y1:T ; v, ω). We assume therefore θθθ∗(j)s and s∗(j)s to be distinct in

the sense that for any s∗(i) = s∗(j), i 6= j we have θθθ∗(i) 6= θθθ∗(j).

Theorem 3.1. Under A.1�A.5, we �nd the corresponding structure:

lim
T→∞

max
i∈1,...,M

P(ŝ(i) = s∗(i)) = 1,∀i. (18)

Moreover,

Theorem 3.2. Assume A.1�A.5, and {Yt}Tt=1 are i.i.d and generated from an HAC HMM

model with parameters {s∗(i), θ∗(i), π∗, {p∗ij}i,j}. The parameter θ̂θθ
(i)

satis�es, ∀ε > 0:

lim
T→∞

min
i∈1,...,M

P(|θ̂θθ(i) − θθθ∗(i)| > ε|ŝ(i) = s∗(i)) = 0. (19)

For the proof, we refer to the Appendix.

4 Simulation

The estimation performance of HMM HAC is evaluated in this section: subsection I

considers four states with very disjoint copulae parameters, while subsection II considers

three realistic states. We show that our algorithm converges after a few iterations with

moderate estimation errors. Throughout the simulation study, we keep the marginal

distributions �xed.
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4.1 Simulation I

In this setup, a three dimensional generating process has �xed marginal distributions:

Yt1 ∼ N(0, 1), Yt2 ∼ t(3), Yt3 ∼ N(0, 3). The dependence structure is modeled through

HAC with Gumbel generators, and four di�erent dependency parameters and structures

corresponding to four states (M = 4):

C{u3, C(u1, u2; θ1 = 4.00); θ2 = 1.5},

C{u1, C(u2, u3; θ1 = 10.0); θ2 = 4.0},

C{u2, C(u1, u3; θ1 = 30.0); θ2 = 10.0},

C{u1, C(u2, u3; θ1 = 40.0); θ2 = 20.0}.

The quite di�erent state parameters help to easily visualize the dependency states. The

transition probability matrix is

P = {pij}i,j =



0.985 0.001 0.003 0.006

0.005 0.990 0.003 0.003

0.005 0.005 0.991 0.001

0.005 0.004 0.003 0.990


.

Sample size T = 2000 and π = (0.25, 0.25, 0.25, 0.25)>. Note that we set the diagonal

elements of P close to 1, since it is realistic to assume that the states remain the same with

a high probability. Figure 3 represents the underlying states and a marginal plot of the

generated three dimensional time series. No state switching pattern is evident from the

marginal plots. Figure 4, however, clearly displays the switching of dependency patterns.

The black, red, green, and blue dots correspond to the observations from di�erent states.

The green points represent the highest correlation state, whereas the red has smaller

correlation. The remaining colors blue and black represent states 1 and 2 as described

above. One clearly sees that how the HMM changes the dependency structures.

Figure 5 displays the �rst seven iterations. (The parameters remain constant after that).
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Figure 5: The convergence of states (upper panel), transition matrix (middle panel), and
parameters (lower panel). Estimation starts from a near true value (red); starts from
values provided by our proposal (blue).

Since the starting values may in�uence the result, a moving window estimation is proposed

to decide the initial parameters. The blue and the red dotted line show, respectively, how

the estimators behave with the initial values close to the true (red) and initial values

(blue) obtained from the proposed algorithm . The upper panel of Figure 5 shows the

number of wrongly estimated states at each iteration; the middle panel represents the

(L1) di�erence of the true transition matrix from the estimated ones; the lower panel is

the sum of the estimated parameter errors of the four states with the correctly estimated

states. One can see that our choice of initial values can perform as well as the true one.
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4.2 Simulation II

Let us consider now a Monte Carlo setup where the setting employs more realistic models.

The three states with M = 3 are taken as follows:

C{u1, C(u2, u3; θ1 = 1.3); θ2 = 1.05}

C{u2, C(u3, u1; θ1 = 2.0); θ2 = 1.35}

C{u3, C(u1, u2; θ1 = 4.5); θ2 = 2.85},

the transition matrix is chosen as:

P =


0.72 0.15 0.13

0.23 0.64 0.13

0.03 0.02 0.95

 ,

and sample size T = 2000. The iteration procedure stops after eleven steps. Figure 6

presents the deviations of the estimated states, the transition matrix, and the parameters

from their true values. The estimation error is presented in the same fashion as in Figure

5. To judge the estimation quality, a histogram of the estimation error from 400 samples

is presented in Figure 7. The proportion of the misspeci�ed states is centered around

roughly 15%− 17%.

5 Applications

To see how HMM HAC performs on a real data set, applications to �nancial and rainfall

data are o�ered. A good model for the dynamics of exchange rates gives insights into

exogenous economic conditions, such as the business cycle. It is also helpful for portfolio

risk management and decisions on asset allocation. We demonstrate the performance of

our proposed technique by applying it to forecasting the VaR of a portfolio and compare

it with multivariate GARCH models (DCC, BEKK, etc.) The backtesting results show
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Figure 6: The convergence of states (upper panel), transition matrix (middle panel),
parameters (lower panel). Estimation starts from near true value (red); starts from values
attained by our proposal (blue)
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that the VaR calculated from HMM HAC performs signi�cantly better.

The second application is on modeling a rainfall process. HMM is a conventional model

for rainfall data, however, bringing HMM and HAC together for modeling the multivariate

rainfall process is an innovative modeling path.

5.1 Application I

5.1.1 Data

The data set consists of the daily values for the exchange rates JPY/EUR, GBP/EUR and

USD/EUR. The covered period is [4.1.1999; 14.8.2009], resulting in 2771 observations.

To eliminate intertemporal conditional heteroscedasticity, we �t to each marginal time

series of log-returns a univariate GARCH(1,1) process

Yj,t = µj,t + σj,tεj,t with σ
2
j,t = ωj + αjσ

2
j,t−1 + βj(Yj,t−1 − µj,t−1)2 (20)

and ω > 0, αj ≥ 0, βj ≥ 0, αj + βj < 1.

The residuals exhibit the typical behavior: they are not normally distributed, which

motivates nonparametric estimation of the margins. From the results of the Box�Ljung

test, whose p-values are 0.73, 0.01, and 0.87 for JPY/EUR, GBP/EUR and USD/EUR,

we conclude that the autocorrelation of the residuals is strongly signi�cant only for the

GBP/EUR rate. After this intertemporal correction, we work only with the residuals.

The dependency variation is measured by Kendall's and Pearson's correlation coe�cients:

Figure 8 shows the variation of both coe�cients calculated in a rolling window of width

r = 250. Their dynamic behavior is similar, but not identical. This motivates once more

a time varying copula based model.
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Figure 8: Rolling window estimators of Pearson's (left) and Kendall's (right) correlation
coe�cients between the GARCH(1,1) residuals of exchange rates: JPY and USD (solid
line), JPY and GBP (dashed line), GBP and USD (dotted line). The width of the rolling
window is set to 250 observations.

5.1.2 Fitting an HMM model

Figures 1, 9, and 10 summarize the analysis using three methods: moving window, LCP,

and HMM HAC. LCP uses moving windows, with varying sizes. To be more speci�c, LCP

is a scaling technique which determines a local homogeneous window at each time point

Härdle et al. (2012). In contrast to LCP, HMMHAC is based on a global modeling concept

rather than a local one. One observes relatively smooth changes of the parameters, see

Figures 1 and 9. HMM HAC is as �exible as LCP, as can be seen from Figures 1, 9, and 10,

since the structure estimated also takes three values and is con�rmed by the variations of

structures estimated from LCP. Moreover, the moving window analysis or LCP can serve

as a guideline for choosing the initial values for our HMM HAC. Figure 11 displays the

number of states for HMM HAC for rolling windows with a length of 500 observations.

A VaR estimation example is to show the good performance of HMM HAC. We generate

N = 104 paths with T = 2219 observations, and |W | = 1000 combinations of di�erent

portfolios, where W = {(1/3, 1/3, 1/3)>
⋃

[w = (w1, w2, w3)>]}, with wi = w′i/
∑3

i=1w
′
i,

w′i ∈ U(0, 1). The Pro�t Loss (P&L) function of a weighted portfolio based on assets

ytd is Lt+1
def
=
∑3

d=1wi(yt+1d − ytd), with weights w = (w1, w2, w3) ∈ W . The VaR of a

particular portfolio at level 0 < α < 1 is de�ned as V aR(α)
def
= F−1

L (α), where the α̂w is

18



●●

st
ru

ct
ur

e

P
(D

Y
)

Y
(P

D
)

τ
0.

0
0.

2
0.

4
0.

6
0.

8

2000 2002 2003 2004 2005 2006 2007 2008 2009

Figure 9: Rolling window for exchange rates: structure (upper) and dependency param-
eters (lower, θ1 and θ2) for Gumbel HAC. Rolling window size win = 250.
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Figure 10: HMM for exchange rates: structure (upper) and dependency parameters
(lower, θ1 and θ2) for Gumbel HAC.
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Figure 11: Plot of estimated number of states for each window

estimated as a relative fraction of violations, see Table 1:

α̂w
def
= T−1

T∑
t=1

I{Lt < V̂ aRt(α)},

and the distance between α̂w and α is

ew
def
= (α̂w − α)/α.

If the portfolio distribution is i.i.d., and a well calibrated model is properly mimicking

the true underlying asset process, α̂w is close to its nominal level α. The performance is

measured through an average of αw over all |W | portfolios, see Table 1.

We considered four main models: HMM HAC for 500 observation windows for Gumbel

and rotated Gumbel; multiple rolling window with 250 observations windows; LCP with

m0 = 20 and m0 = 40 with Gumbel copulae (the LCP �nds the optimal length of window

in the past by a sequence of tests on windows of increasing sizes, m0 is a starting window

size); and DCC, see Engle (2002), based on 500 observation windows. For all the models

we made an out of sample forecast. To better evaluate the performance, we calculated

the average and SD of eW :

AW =
1

|W |
∑
w∈W

ew, DW =

{
1

|W |
∑
w∈W

(ew − AW )2

}1/2

.
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Window\α 0.1 0.05 0.01
HMM, RGum 500 0.0980 0.0507 0.0128

HMM, Gum 500 0.0981 0.0512 0.0135
Rolwin, RGum 250 0.1037 0.0529 0.0151
Rolwin, Gum 250 0.1043 0.0539 0.0162
LCP, m0 = 40 468 0.0973 0.0520 0.0146
LCP, m0 = 20 235 0.1034 0.0537 0.0169
DCC 500 0.0743 0.0393 0.0163

Table 1: VaR backtesting results, ¯̂α, where �Gum� denotes the Gumbel copula and
�RGum� the rotated survival Gumbel one.

Window\α 0.1 0.05 0.01
HMM, RGum 500 -0.0204 (0.013) 0.0147 (0.012) 0.2827 (0.064)
HMM, Gum 500 -0.0191 (0.008) 0.0233 (0.018) 0.3521 (0.029)
Rolwin, RGum 250 0.0375 (0.009) 0.0576 (0.012) 0.5076 (0.074)
Rolwin, Gum 250 0.0426 (0.009) 0.0772 (0.030) 0.6210 (0.043)
LCP, m0 = 40 468 -0.0270 (0.010) 0.0391 (0.018) 0.4553 (0.037)
LCP, m0 = 20 235 0.0344 (0.009) 0.0735 (0.026) 0.6888 (0.050)
DCC 500 -0.2573 (0.015) -0.2140 (0.015) 0.6346 (0.091)

Table 2: Robustness relative to AW (DW )

Tables 1 and 2 show the backtesting performance for the described models. One concludes

that HMM HAC performs better than the concurring moving window, LCP, or DCC, as

Aw and Dw are typically smaller in absolute value.

5.2 Application II

A realistic model for rainfall, which can be used to forecast or simulate rainfall is certainly

necessary. The di�culty in modeling precipitation data is the nonzero point mass at zero

of the rainfall distribution. Another di�culty arises when one incorporates spatial rela-

tionships, see Ailliot, Thompson and Thomson (2009) for an HMM application. However,

Ailliot et al. (2009) only consider Gaussian dependency among locations, and the method

is computationally expensive.

We extend Ailliot et al. (2009) to a copula framework. Di�erent from application I,

the marginal distribution here will be varying over states. We propose two methods for
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modeling the marginal distributions: one is to take ytk to be censored normal distributions,

with the following equation:

fm
k {ytk} =

 1− pxtk ytk = 0

pxtk ϕ[{ytk − µxt(k)}/{σxt(k)}]/σxt(k) ytk > 0

with k = 1, . . . , d as the location, ϕ(·) as the standard normal density, pxtk as the rainfall

occurrence probability for the location k and state xt, and µ
xt(k), σxt(k) the mean and

standard deviation parameters at time t for location k.

A second proposal for the marginal distributions are the gamma distributions:

fm
k {ytk} =

 1− pxtk ytk = 0

pxtk γ{ytk;α(k)xt , β(k)xt} ytk > 0,

where again the α(k)xt , β(k)xt are the shape and scale parameters for state xt and location

k. We take the joint distribution function to be a truncated version of a continuous copula

function, with the copula density cd(·) denoted by

cd(µ, θ) =

 cc(µ, θ), ytk > 0,∀k

∂Cc(µ, θ)/∂µk1 . . . ∂µkB , ki ∈ {ytki > 0}, i ∈ 1, . . . , E
(21)

where E denotes the number of wet places among the d locations, the Cc are the continuous

copula functions, and cc are the continuous copula densities. Our formulation is simpler

than that of Ailliot et al. (2009) since the copulae have closed-form cdfs, so we do not

need additional e�ort to calculate an integral. The representation in (21) is, however,

more general, as we consider copulae for capturing the dependencies.

Assume that the daily rainfall observations from the same month are yearly indepen-

dent realizations of a common underlying hidden Markov model, whose states represents
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Figure 12: Map of Guangxi, Guangdong, Fujian in China

di�erent weather types. As an example, we take every June's daily rainfall.

log pT (y1:T , x1:T ; v × ω)

=
M∑
i=1

1{x0 = i} log{πifi(y0)}+
T∑
t=1

M∑
i=1

M∑
j=1

1{xt = j}1{xt−1 = i} log{pijfj(yt)}

+
∑
t∈B

M∑
i=1

[
1{xt = i}{log(πi)} −

M∑
j=1

1{xt = i}1{xt−1 = j} log(pji)

]
,

with B is the set of days which are the �rst day of June for each year. We use here 50

years of rainfall data from three locations in China: Guangxi, Guangdong, and Fujian

(Figure 12). The graphical correlation can naturally be captured by the �tting of di�erent

copulae state parameters.

Table 3 presents (with a truncated Gumbel) the estimated three states, the corresponding

di�erent marginal distributions and copula parameters, with estimated initial probability:

π̂Xt = (0.298, 0.660, 0.042) and estimated transition probability matrix:

P̂ =


0.590 0.321 0.298

0.188 0.742 0.660

0.329 0.271 0.042

 .

In our data situation, gamma distributions �t better as marginals. The states �ltered out

represent di�erent weather types. The third states are the most humid states, with a high
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Xt Shape Scale Occur Prob

1 (0.442,0.429,0.552) (139.33,116.70,169.66) (0.252,0.256,0.439)
2 (0.671,0.618,0.561) (273.83,253.25,427.46) (0.806,0.786,0.683)
3 (0.636,1.125,0.774) (381.09,264.83,514.08) (0.667,1.000,0.944)

Table 3: Rainfall occurrence probability and shape, scale parameters estimated from
HMM (data 1957�2006) .

Location True Ĉorr(Yt,1, Yt,2)

1−−2 0.308 0.300 (0.235, 0.373)
2−−3 0.261 0.411 (0.256, 0.586)
1−−3 0.203 0.130 (0.058, 0.215)

Table 4: True correlations, simulated averaged correlations from 1000 samples their 5%
con�dence intervals. 1 Fujian, 2 Guangdong, 3 Guangxi.

rainfall occurrence probabilities, while the second states are drier, and the �rst are the

driest. From the parameters of the gamma distributions, one sees the variance increases

from the �rst to the third states, which indicates a higher chance for heavy rainfall for

the humid states.

To validate our model, 1000 samples of arti�cial time series of 1500 observations were

generated from the �tted model and compared with the original data. Table 4 presents

the true Pearson correlation compared with the estimated ones from the generated time

series. The 5% con�dence intervals of the estimators cover the true correlation, which

implies that the simulated rainfall can describe the real correlation of the data quite well.

Figure 13 shows a marginal plot of the log survival function derived from the empirical

cdf of the real data and generated data. The log survival function is a transformation of

the marginal cdf Fm
k (ytk):

log{1− Fm
k (ytk)}. (22)

Again we show that the 95% con�dence interval can cover the true curve fairly well.

Figure 14 contains the autocorrelations and cross-correlations of the real data and the

generated time series. Unfortunately, our generated time series do not show a similar

autocorrelation or cross-correlation. Since there is usually more than one signi�cant lag

of autocorrelation or cross-correlation, the simulated time series mostly only have one lag.
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Figure 13: Log-survivor-function (red) and 95% prediction intervals (blue) of the sim-
ulated distribution for the �tted model with sample log-survivor-function superimposed
(black)

This is the issue also observed in Ailliot et al. (2009). The precipitation can be modelled

�rst by a vector autoregressive (VAR) type model, adjusted for zero observations. An

alternative could be a Markov switching model, Cappé et al. (2005).

6 Conclusion

We propose a dynamic model for multivariate time series with non-Gaussian dependency.

The idea has an easy extension to HMM for general copula models, and leads to a rich

�eld for further work on dynamic models with dependency structures. This method is

helpful in studying �nancial contagion at an extreme level over time, and naturally it

can help in deriving conditional risk measures, such as CoVaR, Adrian and Brunnermeier

(2011). As we have shown, dynamic copula models are good enough to mimic �nancial

markets as well as nature.
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7 Appendix

7.1 Copulae

Let Z1, . . . , Zd be r.v. with continuous cumulative distribution function (cdf) F (·). The

Sklar theorem guarantees the existence and uniqueness of copula functions by stating that

there exists a unique function C : [0, 1]d → [0, 1] satisfying

C(u1, . . . , ud) = F{F−1,m
1 (u1), . . . , F−1,m

d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−1,m
1 (u1), . . . , F−1,m

d (ud) are the quantile functions of the corresponding continuous

marginal distributions Fm
1 (Z1), . . . , Fm

d (Zd).

One of the families, which are �exible enough to capture a tail dependency, have an

explicit form, and are simple to estimate is the family of Archimedean copulae, see Nelsen

(2006),

C(u1, . . . , uk) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (23)

where φ(·) is de�ned as the generator of the copula and depends on the parameter θ. φ(·) ∈

L = {φ(·) : [0;∞) → [0, 1] |φ(0) = 1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . ,∞}; simpli�ed

assumptions on φ may be found in McNeil and Ne²lehová (2009). As an example, the

Gumbel generator is given by φ(x) = exp(−x1/θ) for 0 ≤ x <∞, 1 ≤ θ <∞.

In this work we consider less restrictive compositions of simple Archimedean copulae

leading to a Hierarchical Archimedean Copula (HAC) C(u1, . . . , ud;θθθ, s), where s =

{(. . . (i1 . . . ij1) . . . (. . .) . . .)} denotes the structure of HAC, with i` ∈ {1, . . . , d} being

a reordering of the indices of the variables and sj the structure of the subcopulae with

sd = s, and θθθ is the set of copula parameters. For example, the fully nested HAC (see
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Figure 15, left) can be expressed by

C(u1, . . . , ud;θθθ, s = sd) = C{u1, . . . , ud; (θ1, . . . , θd−1)>, ((sd−1)d)}

= φd−1,θd−1
(φ−1

d−1,θd−1
◦ C{u1, . . . , ud−1; (θ1, . . . , θd−2)>, ((sd−2)(d− 1))}+ φ−1

d−1,θd−1
(ud)),

where s = {(. . . (12)3) . . . )d)}. On the RHS of Figure 15 we have the partially nested

HAC with s = ((12)(34)) in dimension d = 4. For more details of HAC, see Joe (1997),

Whelan (2004), Savu and Trede (2010), Okhrin et al. (2009).

Not all generator functions can be mixed within one HAC. To make the problem more con-

crete, we concentrate on one single generator family within one HAC, and the discussion

is constrained to binary structures, i.e., at each level of the hierarchy only two variables

are joined together. This makes our model very �exible and yet also parsimonious.

Note that for each HAC not only are the parameters unknown, but also the structure

has to be determined. We adopt the computation procedure in Okhrin et al. (2009) to

estimate the HAC structure and parameters, which leads to e�cient and unbiased estima-

tors. In this procedure, one estimates the marginal distributions either parametrically or

nonparametrically. Then assuming that the marginal distributions are known, one selects

the couple of variables with the strongest �t and denotes the corresponding estimator

of the parameter at the �rst level by θ̂1 and the set of indices of the variables by I1.

The selected couple is joined together to de�ne the pseudo-variables z1 = C{(I1); θ̂1, φ1}.

Next, one proceeds in the same way by considering the remaining variables and the new

pseudo-variable. At every level, the copula parameter is estimated by assuming that the

margins as well as the copula parameters at lower levels are known. This procedure allows

us to determine the estimated structure of the copula recursively.

7.2 Proof of Theorems 3.1 and 3.2

In the HMM HAC framework, let {Xt, t ≥ 0} with transition probability matrix P v,ω =

[pv,ωij ]i,j=1,...,M and initial distribution πv,ω = {πv,ωi }i=1,...,M , where {v, ω} ∈ {V,Ω} de-
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notes an element in the parameter space {V,Ω} which parametrizes this model, and q

is the number of continuous parameters (note that our parameter space is partly dis-

crete (V ), and partly continuous (Ω)). Suppose that a real-valued additive compo-

nent Bt,j =
∑t

k=0 Yk,j, j ∈ 1, . . . , d, with Bt = (Bt,1, Bt,2, . . . , Bt,d)
> and with Yk =

(Yk,1, Yk,2, . . . , Yk,d)
> a r.v. taking values on Rd, is adjoined to the chain such that

{(Xt, Bt), t ≥ 0} is a Markov chain on D × Rd and

P{(Xt, Bt) ∈ A× (B + b)|(Xt−1, Bt−1) = (i, b)} (24)

= P{(X1, B1) ∈ A×B|(X0, B0) = (i, 0)}

= P(i, A×B) =
∑
j∈A

∫
b∈B

pv×ωij fj{b;θθθ(j)(v × ω), s(j)(v × ω)}µ(db),

where B, b ⊆ Rd, A ⊆ D, fj{b;θθθ(j)(v, ω), s(j)(v, ω)} is the conditional density of Yt given

Xt−1, Xt with respect to a σ-�nite measure µ on Rd, and θθθ(v, ω) ∈ Θ, s(v, ω) ∈ S, j =

1, . . . ,M are the unknown parameters. That is, {Xt, t ≥ 0} is a Markov chain, given

X0, X1, . . . , XT , with Y1, . . . , YT being independent.{Bt, t ≥ 0} is called a hidden Markov

model if there is a Markov chain {Xt, t ≥ 0} such that the process {(Xt, Bt), t ≥ 0} satis�es

(24). Note that in (24), the usual parameterization θθθ(j)(v, ω) = θθθ(j), and s(j)(v, ω) = s(j).

Recall the associated parameter space {V,Ω}, where V consists of a set of discrete �nite

elements and Ω is associated with the parameters θθθ, [pij]i,j. De�ne s∗ and θθθ∗ associated

with the point {v0, ω0} in the parameter space, as in the following de�nitions:

qT (Y1:T ; v0, ω0)
def
= max

j∈1,...,M
pT (Y1:T |x1 = j; v0, ω0) (25)

H(v0, ω0)
def
= E v0,ω0{− log p(Y0|Y−1, Y−2, . . . ; v

0, ω0)},

where Y−1, . . . , Y−T are a �nite number of past values of the process.

H(v0, ω0, v, ω)
def
= E v0,ω0{log pT (Y1:T ; v, ω)}
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Theorem 7.1 (Leroux (1992)). Under A.1�A.5,

lim
T→∞

T−1
E v0,ω0{log pT (Y1:T ; v0, ω0)} = −H(v0, ω0)

lim
T→∞

T−1 log pT (Y1:T ; v0, ω0) = −H(v0, ω0),

with probability 1, under (v0, ω0), and

lim
T→∞

T−1
E v0,ω0{log pT (Y1:T ; v, ω)} = H(v0, ω0, v, ω)

lim
T→∞

T−1 log pT (Y1:T ; v, ω) = H(v0, ω0, v, ω),

with probability 1, under (v0, ω0).

Lemma 7.2. ∀vi, uj, i, j ∈ 1, . . . ,M as weights, the di�erence between M linear combi-

nation of states would lead to

M∑
i=1

vif(y,θθθs(i) , s
(i)) 6=

M∑
j=1

µjf(y,θθθs′(j) , s
′(j)). (26)

Proof. For each s(i), i ∈ 1, . . . ,M associated with dependency parameter θθθs(i) ∈ Rd
+.

So
M∑
i=1

viδs(i) 6=
M∑
j=1

µjδs′(j) , a.e. (27)

implies
M∑
i=1

viδs(i)δθθθs(i) 6=
M∑
j=1

µjδs′(j)δθθθs′(j) , a.e.. (28)

Also if (27), then the corresponding point in the parameter space (v, ω) would lead to

K(v0, ω0; v, ω), and (v, ω) would not be in the equivalent class of (v0, ω0) as long as the

point v and v0 are di�erent as (27) , (the equivalence class of v0 is de�ned in Leroux

(1992)), and the divergence between (v, ω) and (v0, ω0) is de�ned as K(v0, ω0; v, ω)
def
=

H(v0, ω0, v0, ω0) − H(v0, ω0, v, ω). It is connected to the log likelihood ratio process,

and one can prove that if either (27) or (28) holds (A.2), (26) will hold, and it will
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lead to K(v0, ω0; v, ω) > 0. Namely, the divergence can distinguish points from di�erent

equivalent classes.

Next, we study whether plugging in nonparametric estimated margins would a�ect the

consistency results by analyzing the uniform convergence of f̂(y,θθθj, sj).

As f̂(y,θθθ(i), s(i)) = c{F̂m
1 (y1), F̂m

2 (y2), . . . , F̂m
d (yd), θ̂θθ

(i)
, ŝ(i)}f̂m

1 (y1)f̂m
2 (y2) · · · f̂m

d (yd), we have

according to the uniform consistency of copulae density,

sup
u1,...,ud∈[0,1]d

|ĉ(u1, u2, . . . , ud)− c(u1, u2, . . . , ud)| = Op(1) (29)

and according to Bickel and Rosenblatt (1973),

sup
x∈B
|f̂m
i (x)− fm

i (x)| = Op(1) (30)

Therefore,

sup
y∈Bd

|f̂(y, θ̂θθj, ŝj)− f(y,θθθj, sj)| = Op(1),

where B,Bd are compact sets. So the plug in estimation would not contaminate the

consistency results.

To prove the consistency of our estimation of this parameter, we restate the theorems of

consistency in Leroux (1992) for our parameter space. One needs to show that �rst for

the discrete subspace V c which does not contain any point of the equivalence class of v0,

for v ∈ V c and any arbitrary value of ω ∈ Ω, it holds, with probability 1,

lim
T→∞

[
max
v∈V c

log sup
ω∈Ω

pT (Y1:T ; v, ω)− log pT (Y1:T ; v0, ω0)

]
→ −∞. (31)

The fact follows directly from lemma 7.2 (the identi�ability of the states parameters ),

and its consequence K(v0, ω0; v, ω) > 0. Theorem 3.1 is proved.

To prove Theorem 3.2, note that limT→∞mini∈1,...,M P(|θ̂θθ(i) − θθθ∗(i)| > ε|ŝ(i) = s∗(i)) is

conditioning on the event {ŝ(i) = s∗(i)} which asymptotically holds with probability 1.
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Therefore it is su�ce to prove, for any ŝ(i) = s(i)

lim
T→∞

min
i∈1,...,M

P(|θ̂θθ(i) − θθθ∗(i)| > ε) = 0. (32)

To show (32), one needs to show that for (V c,Ωc) which does not contain any point of

the equivalence class of (v0, ω0), we have, with probability 1,

lim
T→∞
{log sup

ω∈Ωc

pT (Y1:T ; v0, ω)− log pT (Y1:T ; v0, ω0)} → −∞, (33)

which is implied from the following statement: for any closed subset C of Ωc, there exists

a sequence of open subsets of Oωh
with h = 1, . . . , H with C ⊆ ∪Hh=1Oωh

, such that

lim
T→∞
{max

h
log sup

ω∈Oωh

pT (Y1:T ; v0, ω)− log pT (Y1:T ; v0, ω0)} → −∞. (34)

To prove (34), we have the modi�ed de�nition:

H(v0, ω0, v0, ω;Oωh
)

def
= lim

T
log sup

ω′∈ω0

qT (Y1:T , v
0, ω′)/T. (35)

It can be derived that

H(v0, ω0, v0, ω) < H(v0, ω0, v0, ω0), (36)

for (v0, ω) and (v0, ω0) does not lie in the same equivalence class. Then (36) is a con-

sequence of the identi�ability condition A.2, and this leads to: ∃ε > 0, Tε and Oω such

that

E log sup
ω′∈Oω

qTε(v
0, ω′)/Tε < E log qTε(v

0, ω)/Tε + ε < H(v0, ω0, v0, ω0)− ε.

Also because log supω′∈Oω
pT (Y1:T , v

0, ω′)/T and log supω′∈Oω
qT (Y1:T , v

0, ω′)/T have the
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same limit value, there exists a constant ε > 0,

lim
T→∞

log sup
ω′∈Oωh

pT (y1:T , v
0, ω′)/T = H(v0, ω0, v0, ω;Oωh

) ≤ H(v0, ω0, v0, ω0)− ε.

Now (34) follows.
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(a) the simulated rainfall time series.

(b) the original rainfall time series.

Figure 14: Autocorrelations and cross-correlations of the simulated rainfall and original
time series
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Figure 1: Fully and partially nested copulae of dimension d = 4 with structures s =

(((12)3)4) on the left and s = ((12)(34)) on the right

copulae. For example, the special case of HAC fully nested copula can be given by

C(u1, . . . , ud) = C1{C2(u1, . . . , ud−1), ud} = Á1{Á−1
1 ∘ C2(u1, . . . , ud−1) + Á−1

1 (ud)}

= Á1{Á−1
1 ∘ Á2(Á

−1
2 (C3(u1, . . . , ud−2)) + Á−1

2 (ud−1)) + Á−1
1 (ud)}. (2)

The composition can be applied recursively using different segmentations of variables

leading to more complex HACs. For notational convenience let the expression s =

{(. . . (i1 . . . ij1) . . . (. . . ) . . . )} denote the structure of a HAC, where iℓ ∈ {1, . . . , d} is

a reordering of the indices of the variables. sj denotes the structure of subcopulae with

sd = s. Further let the d-dimensional hierarchical Archimedean copula be denoted by

C(u1, . . . , ud; s,µµµ), where µµµ the set of copula parameters. For example the fully nested

HAC (2) can be expressed as

C(u1, . . . , ud; s = sd, µµµ) = C{u1, . . . , ud; ((sd−1)d), (µ1, . . . , µd−1)
⊤}

= Ád−1,µd−1
(Á−1

d−1,µd−1
∘ C{u1, . . . , ud−1; ((sd−2)(d− 1)), (µ1, . . . , µd−2)

⊤}

+ Á−1
d−1,µd−1

(ud)),

where s = {(. . . (12)3) . . . )d)}. In Figure 1 we present the fully nested HAC with structure

s = (((12)3)4) and partially nested with s = ((12)(34)) in dimension d = 4.

HAC are thoroughly analysed in Joe (1997), Whelan (2004), Savu and Trede (2006),

Embrechts, Lindskog and McNeil (2003).

Note that generators Ái within a HAC can come either from a single generator family or

from different generator families. If Ái’s belong to the same family, then the complete

monotonicity of Ái ∘ Ái+1 imposes some constraints on the parameters µ1, . . . , µd−1. The-

orem 4.4 of McNeil (2008) provides sufficient conditions on the generator functions to

5

Figure 15: Fully and partially nested copulae of dimension d = 4 with structures s =
(((12)3)4) on the left and s = ((12)(34)) on the right
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