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Abstract

Regulators often use conservation targeting rebate programs to promote energy conserva-
tion. Consumers participating in such programs receive a financial reward if they achieve a
targeted level of conservation. The e↵ectiveness of the programs, however, remains highly
controversial because non-experimental data rarely provide reliable estimates of the treat-
ment e↵ect. This study examines the cost-e↵ectiveness of conservation rebate programs
by using a regression discontinuity design in the California 20/20 rebate program. In
2005, California residents received a 20% discount on their summer electricity bills if they
saved electricity by 20% relative to their consumption in 2004. The program’s enrollment
scheme prevented self-selection and created a discontinuity of treatment status. Using
household-level monthly billing records from the three largest California electric utilities, I
find heterogeneous responses to the rebate incentive. In the areas where summer tempera-
ture is persistently high and income-level is relatively low, the incentive reduced electricity
consumption by 5% to 10%. In the other areas, however, the treatment e↵ect is essentially
zero. I show that the cost-e↵ectiveness is very poor in these areas because many consumers
still received a rebate without conservation e↵orts on their part. To save 1 kWh of elec-
tricity, the program cost 2 cents in inland areas, 91 cents in coastal areas, and 14.8 cents
on average for all service areas in California.
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1 Introduction

Engineering studies often suggest that improving residential energy e�ciency is the least expen-

sive way to abate global greenhouse gas emissions.1 However, policy makers generally believe

that it is di�cult to find a policy that can e↵ectively change households’ electricity consump-

tion behavior. The price elasticity of residential electricity demand is relatively inelastic, and it

is often politically infeasible to introduce an electricity price that is high enough to achieve a

substantial consumption reduction.

A potential solution to this problem is to provide explicit financial incentives to save electric-

ity. As an explicit financial incentive, many electric utilities o↵er rebate programs. Consumers

receive a rebate for purchasing e�cient appliances, or weatherizing homes. Also, electric utilities

often o↵er “conservation rebate programs” that provide a rebate for rewarding a reduction in

consumption achieved during a certain time period. For example, the California state govern-

ment o↵ered “California 20/20 electricity rebate program”, which provided a 20% discount on

electricity bills as a financial reward for reducing electricity consumption by 20% relative to

the previous year. Such conservation rebate programs allow consumers to choose how they will

reduce consumption and is therefore more flexible than other rebate programs that require a

purchase of specific appliances. The cost-e↵ectiveness of these programs, however, remains con-

troversial. There is little evidence that consumers save electricity in response to the economic

incentives created by these rebate programs. Another concern is that households may receive

rebates simply because of the natural year-to-year fluctuation in their electricity consumption

rather than concerted e↵orts to conserve.
1For example the abatement cost curve of greenhouse gas emissions by Naucler and Enkvist (2009) indicates

that the abatement cost in the residential electricity sector can be negative in the sense that improving energy
e�ciency at home would reduce greenhouse gas emissions and household expenditure for electricity.
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This study aims to measure the treatment e↵ect and cost-e↵ectiveness of such conservation

price-rebate programs by applying a regression discontinuity design to the California 20/20

rebate program in 2005. In the summer of 2005, most California households could receive a 20%

discount on their electricity bills if they reduced their electricity consumption by 20% relative

to their consumption in the summer of 2004. Nearly all California residents were enrolled in

the program. However, those who started their electricity service after a certain cuto↵ date

in 2004 were ineligible to participate. The electric utilities that o↵ered this program strictly

enforced this eligibility rule, and therefore, excluded non-eligible households from the program.

Importantly, it was impossible for households to anticipate the program in advance and thus they

could not strategically choose their account open date for the rebate program. Consequently,

the eligibility rule excluded self-selection, and generated essentially random assignment of the

program among households who opened their account near the cuto↵ date. I apply a regression

discontinuity design to this discontinuous eligibility cuto↵ date to estimate the treatment e↵ect

and cost-e↵ectiveness of the rebate program on electricity conservation.

My empirical analysis relies on a panel data set of household-level monthly electricity billing

records for nearly all households in the three largest investor-owned electric utilities in Califor-

nia. This confidential data set was directly provided by the three electric utilities, Pacific Gas

& Electric, Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E). The

data set includes detailed information about each customer’s monthly bills in 2004 and 2005.

Importantly, the data set allows me to identify the exact start and close dates of each household’s

electricity service so that I can conduct regression discontinuity estimation based on these dates.

I combine this billing data set with weather information from the National Oceanic and Atmo-

spheric Administration’s (NOAA’s) National Climate Data Center (NCDC) and demographic
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information from the US Census 2000 to further explore how weather conditions and income

levels a↵ect the treatment e↵ect of the program.

Using these three sets of data, I find the following results for the e↵ect of the 2005 Cali-

fornia 20/20 rebate program on residential electricity consumption. First, estimates from the

regression discontinuity estimation provide evidence that the rebate incentive reduced electricity

consumption by 5% to 10% in the areas where the summer temperature is persistently high and

the income level is relatively low. In contrast, the treatment e↵ects are nearly zero in the areas

where the summer temperature is moderate and the income level is relatively high. Second, to

explore the cause of this heterogeneous treatment e↵ect, I estimate interaction e↵ects between

the treatment variable and climate conditions, and between the treatment variable and income

levels. Results from these regressions suggest that the treatment e↵ect increases by .15 percent

as average temperatures increase by 1 °F and decreases by .027 percent as income levels increase

by 1%. Finally, using the estimates of the program’s treatment e↵ects, I calculate the cost and

benefit of the program. Results from this exercise suggest that the program cost 91 cents to save

1 kWh of electricity in the coastal areas and 2 cents to save 1 kWh of electricity in the inland

areas. In the state level, the cost per kWh reduction was 14.8 cents.

The estimated cost of reducing consumption, 14.8 cents per kWh, is larger than previous

estimates reported by the electric utilities. This is partly because estimates from the electric

utilities usually attribute all of the reduction in consumption by rebated customers to the pres-

ence of the rebate program. In previous studies, Reiss and White (2003) estimate the cost and

benefit of the 2001 rebate program find that the average cost from June to September for San

Diego Gas & Electric was 18 cents per kWh. Inc (2006) uses survey results to estimate the cost

and benefit of the 2005 rebate program. Their estimate ranges from 29 cents per kWh to $1 per
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kWh. An important finding in my study is that I find that the cost-e↵ectiveness is substantially

di↵erent between the coastal and inland areas in California.

The results from this study provide several policy implications for the California 20/20 elec-

tricity rebate program. First, under the current rebating scheme, the expense of natural year-

to-year fluctuations in electricity consumption is substantial. As a result, providing a rebate for

reductions that would have happened in the absence of the program can be very costly unless

the treatment e↵ect is su�ciently large. Second, the estimation results suggest that it is im-

portant to account for heterogeneous treatment e↵ects particularly based on di↵erent weather

conditions and income levels among households. For example, my cost-e↵ectiveness estimates

for the coastal areas are by far larger than previous estimates while my estimates for the inland

areas are far lower than previous estimates. Finally, the heterogeneous treatment e↵ect suggests

that the program’s performance could be improved if the program focused on certain types of

households to minimize rebate expenses for reductions that would have occurred in the absence

of the program.

The paper proceeds as follows. Section 2 presents the background and research design.

Section 3 describes the data. Section 4 presents the empirical framework. Section 5 presents the

results, and Section 6 provides conclusions and future research avenues.

2 Background and Research Design

This section provides the institutional background and the research design of this study. First, I

describe a brief history of the California 20/20 electricity rebate program. Second, I discuss the

evidence and challenges of existing studies. Finally, I present this study’s regression discontinuity

design.
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2.1 California 20/20 Electricity Rebate Programs

The California 20/20 electricity rebate program originates from the initial rebate program or-

dered by California Governor Gray Davis in 2001 during the California electricity crisis.2 The

California Public Utility Commission (CPUC) expected that a continuous electricity shortage

was likely to cause rolling blackouts. To prevent rolling blackouts in the summer of 2001, the

CPUC ordered the three largest California investor-owned electric utilities, Pacific Gas and Elec-

tric (PG&E), Southern California Edison (SCE) and San Diego Gas & Electric, to provide their

customers financial incentives to reduce electricity consumption. In the summer of 2001 and

2002, customers of the three California investor-owned electric utilities received a 20% discount

for their June, July, August, and September bill if their monthly consumption was at least 20%

lower than the same billing month in 2000. The CPUC ordered the same program in 2005 with

a slight change in the scheme. In 2005, the original monthly-based rule was replaced by the

whole summer-based rule in 2005 where customers received a 20% discount for their bills over

the entire four-month period if they reduced their entire summer consumption by at least 20%

relative to 2004.

This conservation rebate program was the largest in scale compared to similar rebate pro-

grams that pay households for reducing their consumption. Table 1 shows the scale of the 2005

rebate program for PG&E, SCE, and SDG&E. In 2005, 8% to 9% of customers received a re-

bate and the total rebate expense for residential customers in these electric utilities was about

$25 million. More customers received at least one rebate during the 2001 and 2002 programs

because it was not based on consumption over the entire summer but on each billing month.

2By August of 2000, wholesale energy prices had more than tripled from the end of 1999, which caused price
spikes in retail electricity rates, and financial losses to electric utilities in California. Many cost factors and
demand shocks contributed to this rise, but several studies have also found the market power of suppliers to be
significant throughout this period. See Joskow (2001), Borenstein, Bushnell, and Wolak (2002), Bushnell and
Mansur (2005), Puller (2007), and Reiss and White (2008) for more details on the California electricity crisis.
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Reiss and White (2003) report that about 39% of monthly residential bills in SDG&E qualified

for a rebate in June, July, August, and September, 2001. For the same 2001 rebate program,

Goldman, Barbose, and Eto (2002) note that in the three investor-owned electric utilities, about

33% of their residential customers received a rebate.

Although the CPUC aimed for a substantial reduction in electricity consumption,3 the e↵ec-

tiveness of the program was highly controversial. The proponents of the program argued that

the simplicity of the program makes it straightforward for customers to understand the incentive

and will likely encourage energy conservation. The rebate program was also more politically ap-

pealing than alternative pricing policies such as an increase in electricity price or an introduction

of real-time pricing. In contrast to these alternative policies, the rebate program does not make

customers feel a large economic burden even though the program’s expenditure will be paid by

ratepayers as an increase in electricity price.

The opponents, on the other hand, often questioned the fairness and e↵ectiveness of the

program. For example, Faruqui and George (2006) note that the program is politically popular

but is likely to be ine�cient for energy conservation. The first concern is that the program

does not account for weather di↵erences between the base year and target year. Therefore, if

the target year turns to be cooler than the base year, many households may receive a rebate

simply because of the weather di↵erence. The second concern is that even if there turns out to

be no significant weather di↵erence between the two years, many customers will receive a rebate

because of random fluctuations in their electricity consumption. For example, customers that

had a friend visit in the base year or customers that traveled in the target year can reduce their

target year’s consumption by 20% compared to their base year without conservation e↵orts.

3For example, in the executive order, CPUC (2001) estimated that the program would help reduce energy
consumption by up to 3,500 gigawatt hours in total and up to 2,200 megawatt hours during critical summer peak
consumption periods.
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Table 2 shows some evidence for the two concerns by the opponents of the program. I use

household-level electricity consumption data to calculate what fraction of households reduce their

summer electricity consumption more than 20% when there was no rebate programs. I calculate

each household’s change in consumption from 2003 to 2004 and from 1999 to 2000 in Southern

California Edison. Note that the rebate programs were not in e↵ect in any of the four years.

From 2003 to 2004, the median household reduced consumption by 1.7% because the summer of

2004 was cooler than 2003. More importantly, 14.3% of households reduced their consumption

more than 20%. This statistic suggests that 14.3% of households would have received a rebate

without a conservation e↵ort if a rebate program were in e↵ect in 2004. In contrast, the summer

of 2000 was warmer than 1999. As a result, the median household increased consumption by

7.7%. However, even in this case, 6.8% of households reduced consumption by 20% or more.

Thus, random fluctuations in household electricity consumption creates necessary costs for this

rebate program. This issue sometimes leads to a concern for fairness because the program could

induce a simple income transfer from one household to others unrelated to their conservation

e↵orts. Moreover, if the rebate expense for these random fluctuations exceeds the program’s

actual benefit, the cost-e↵ectiveness of the program can be lower than previous estimates.

2.2 Challenges to Estimating the Treatment E↵ect

To examine the cost-e↵ectiveness of the program, we need a reliable estimate of the treatment

e↵ect that is produced solely by the program incentive. The estimation of this treatment e↵ect is,

however, generally challenging with non-experimental data. Obviously, it is misleading to make

a conclusion simply by looking at the total consumption reduction achieved by the customers

that received a rebate. Some of the rebated customers received a rebate not because of their
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conservation e↵ort. On the other hand, some un-rebated customers may have responded to the

program incentive but failed to reach the 20% reduction cuto↵ to receive a rebate. Therefore,

comparing rebated and un-rebated customers does not provide much information about the

program’s treatment e↵ect. The second challenge is how to control for potential di↵erences

between the base and target years that are unrelated to the program but a↵ected electricity

consumption. For instance, di↵erences in weather and economic conditions likely a↵ect electricity

consumption in the two years. Therefore, changes in electricity consumption between the two

years include the program’s treatment e↵ect and other confounding factors that are unrelated

to the program, and these two e↵ects must be disentangled by researchers to find the treatment

e↵ect.

Previous studies acknowledge that it is di�cult to estimate the actual treatment e↵ect of the

program. Goldman, Barbose, and Eto (2002) is the first study that examines the impact of the

original California 20/20 rebate program in 2001. Based on a survey of 400 residential customers,

the study finds that 70% of surveyed customers took some active steps to save electricity in 2001,

40% of surveyed customers knew about the program, and 57% of those who took active steps to

conserve electricity knew about the program. The study concludes that the cost of purchasing

savings through the 20/20 program was about 9 cents per kWh given the assumption that their

estimated load reductions are solely attributable to the 20/20 program.

For the same 2001 rebate program, Reiss and White (2008) estimate the treatment e↵ect

by using household-level billing data for 70,000 households in SDG&E. The study explores how

household-level electricity consumption changes from the years before the California electricity

crisis in 2001 to the years after the crisis. Based on the average within-household consumption

changes relative to the same month during pre-crisis years, they conclude that the rebate program
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lowers consumption by approximately 4% to 6%. However, they also note that it is di�cult to

conclude that this estimate solely reflects the program’s treatment e↵ect because there were

other conservation programs and public appeals in this period.

Finally, to my knowledge, Wirtshafter Associates (2006) is only the previous study that

explores the e↵ect of the 2005 California 20/20 program. The study uses some billing data from

the electric utilities and also conduct a survey of 1,177 customers. The study uses the survey

results to make two adjustments for estimation: subtract the reduction achieved by the rebated

customers that was not due to their conservation e↵orts; and add the consumption reduction

achieved by the non-rebated customers who tried but failed to reach the 20% cuto↵. The study

concludes that the cost per kWh savings range from 29 cents to $1 per kWh because a substantial

level of load reductions may or may not be attributable to the program in their estimation.

A fundamental challenge in the previous studies is that researchers usually do not observe

counterfactual groups. Therefore, the previous studies compare consumption between the base

and target years of the program and make adjustments for weather di↵erences between the

two years. Adjusting for weather di↵erences is di�cult without knowing a correct functional

form for the e↵ect of weather on household electricity consumption and having detailed weather

data. Moreover, as noted by Reiss and White (2008) and Goldman, Barbose, and Eto (2002),

it is probably even more challenging to adjust for the e↵ect of other policies such as changes in

electricity price, other conservation programs, and public appeals. The next section describes

how the current study overcomes these challenges by using a regression discontinuity design for

the 2005 rebate program.
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2.3 A Regression Discontinuity Design for the 2005 Rebate Program

This paper exploits a discontinuous eligibility rule in the 2005 California 20/20 rebate program

to estimate how the rebate program changed household electricity consumption. To be eligible

for the 2005 rebate program, customers had to start their electricity service by a certain cuto↵

date in 2004. Figure 1 illustrates how the eligibility rules were applied to customers. In SCE,

for example, the cuto↵ date was June 5, 2004. Therefore, customers that started their electricity

service on or before June 5, 2004 received a notice letter in the spring of 2005 for the 2005 rebate

program, whereas customers that started their service after the cuto↵ date (e.g. June 6, 2004)

were not eligible for the program in 2005.

The rule includes two additional key components. First, it was impossible for customers to

anticipate the 2005 rebate program when they started their electricity service in 2004 because

the program was announced in the spring of 2005. Therefore, it was not possible for customers

to strategically choose their start date across the cuto↵ date of the program. Second, as long

as a customer was eligible for the program, the customer automatically participated in the

program without having to apply. This automatic participation rule excludes self-selection for

the program. The three electric utilities strictly enforced these rules without exception.

This quasi-experimental environment provides the following advantages in estimating the

program’s treatment e↵ect. The discontinuous eligibility rule generated essentially random as-

signment of the program among households who started their account near the cuto↵ date. For

example, customers that started their electricity service right before the cuto↵ date and right

after the cuto↵ date are likely to have similar underlying properties for their electricity consump-

tion, but they were assigned into di↵erent groups in terms of the treatment assignment of the

rebate program. Even if there is a concern that the underlying properties might be correlated
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with their service start date, a regression discontinuity design (RDD) can eliminate the bias as

long as the correlation between unobservable factors of electricity consumption and service start

dates is continuous around the cuto↵ date for the rebate program.

A potential concern is whether this research design can provide enough observations to have

su�cient statistical power to quantify the program treatment e↵ect. In California, about 10,000

customers open an electric account per day. Therefore, there is a large number of observations

even if I limit the samples to households that opened an account close to the cuto↵ date. In

addition, because new accounts are generally opened in a wide range of geographical areas

in California, the geographical variation allows estimating potential heterogeneous treatment

e↵ects in di↵erent regions in California. The next section explains the data sets that I use for

the analysis.

3 Data

The primary data for this study consist of a panel data set of household-level monthly electricity

billing records from 2004 to 2005 in the three largest investor-owned electric utilities in Cali-

fornia. Under a confidentiality agreement, Pacific Gas & Electric (PG&E), Southern California

Edison (SCE) and San Diego Gas & Electric (SDG&E) provided the complete billing history of

essentially all residential customers in their service areas.4 Each monthly record includes a cus-

tomer’s account ID, premise ID, billing start date and end date, monthly consumption, monthly

bill, tari↵ type, climate zone, and nine-digit zip code. The names of customers and their exact

addresses are excluded in the records made available for this study. The billing record also

includes each customer’s tari↵ information. In the following analysis, I focus on customers that

4A very small number of customers are not individually metered in this area. The data sets include only
individually-metered customers.

12



are on a standard tari↵ schedule.5

Figure 2 shows the service areas of California’s electric utilities. PG&E provides gas and

electric service for northern California, SCE serves electric customers in most of the southern

California areas, and SDG&E provides gas and electric service around the greater San Diego

metropolitan area. The 2005 rebate program was applied to customers served by all three

electric utilities.

The key variable for the regression discontinuity design of this study is each customer’s ac-

count open date. The billing records include the exact open and close dates for each customer.

Each day in California, about 10,000 customers open an electric account. For my main esti-

mation, I use customers that open their electricity account within 90 days before and 90 days

after the cuto↵ date. The number of households that are on the standard tari↵ and started their

electricity service during these 180 days is 703,903 households for PG&E, 578,362 households

for SCE, and 239,168 households for SDG&E.

The billing data do not include customers’ exact address or demographic information. To

obtain demographic information, I match each customer’s nine-digit zip code to a census block

group in the 2000 US Census data. The demographic information at the census block group

level include median household income, the number of households, and housing characteristics.

Finally, I use daily weather data from the Cooperative Station Dataset published by the

National Oceanic and Atmospheric Administration’s (NOAA’s) National Climate Data Center

(NCDC).6 The data set includes daily minimum and maximum temperature for 370 weather

stations in California. First, I match a household’s zip code with the nearest weather sta-

5About 80% to 85% of customers in each utility are on the utility’s standard tari↵ schedule. The majority
of the rest of the customers are on the California Alternative Rates for Electricity (CARE) program, which is a
means-tested rate discount program for low income households.

6I thank Anin Aroonruengsawat and Maximilian Au↵hammer for sharing the data.
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tion by following the matching mechanism in Aroonruengsawat and Au↵hammer (2009). Sec-

ond, for each billing cycle, I calculate the cooling degree days (CDD), which is defined as

PE
t=S Max {Average Temperature (t) - 65, 0} where S and E are the start and end date of

the billing cycle. Figure 3 shows the CDD in one of the August billing cycles in 2005. The

coastal areas have small numbers of CDD whereas the inland areas in PG&E and SCE service

areas have large numbers of CDD since the summer temperatures are persistently high.

4 Identification and Estimation

This section describes the econometric models that I use to estimate the treatment e↵ect of

the California 20/20 rebate program on electricity consumption. Let yit denote household i ’s

average daily electricity consumption during billing month t, and 4lnyit = lnyit � lnyi,2004m9 the

change in log of household’s consumption between a billing period t and the September billing

period in 2004.

Suppose that the program enrollment is randomly assigned among households. Then, the

ordinary least squares (OLS) estimation of,

4lnyit = ↵ + � · Treati + "it, (1)

produces a consistent estimate of the average treatment e↵ect (ATE) of the rebate incentive

because a random assignment assures that the error term "it is uncorrelated with the treatment

dummy variable, Treati. In the California 20/20 program, however, the treatment was not

randomly assigned. Instead, the treatment was determined by the following rule.
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Treati = 1 {Xi  c} where

8
>>><

>>>:

Xi = account open date

c = cuto↵ date

(2)

Because the treatment assignment is a function of Xi, the OLS estimate of equation (1) is biased

if E["it|Xi] 6= 0. For example, for the first few months after move-in, households gradually

increase their electricity consumption. This tendency is found in the billing data at any time

period. As a result, 4lnyit always has a slight positive trend in Xi, which is unrelated to the

rebate program. Therefore, if this trend is ignored, the condition, E["it|Xi] 6= 0 will be violated.

This trend in 4lnyit is quantitatively small and it disappears in a few month after the customer’s

move-in. A failure to control for this trend, however, would produce an upward bias in estimates

of �, because the positive trend of 4lnyit in Xi means that customers without the treatment are

likely to have systematically higher 4lnyit compared to customers with the treatment.

The main idea of regression discontinuity designs is that a potential bias from this trend

can be eliminated as long as the relationship between the confounding trend and the error term

"it is smooth and continuous in Xi. Given the condition, it is possible to consistently estimate

the local average treatment e↵ect (LATE) by including flexible parametric or nonparametric

controls for Xi. Including a smooth function of Xi does not destroy the identification because

the treatment variable, Treati is a discontinuous function of Xi.

Imbens and Lemieux (2008) describe two approaches to specifying a smooth control function

of Xi. The first approach is to include a flexible parametric function of Xi where the slope

coe�cients are allowed to be di↵erent on the left and right of the cuto↵ date:

4lnyit = ↵ + � · Treati +
SX

s=1

(�s ·Xs
i + ✓

s · Treati ·Xs
i ) + �zip + �cycle + "i,t, (3)
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The equation includes a polynomial function of s order that is allowed to have di↵erent slopes

across the cuto↵ point. Each of Xs
i is allowed to have di↵erent coe�cients for the left and

right side of the cuto↵ date. To control for other factors that influence electricity consumption

(e.g. weather di↵erences), I also include dummy variables at the zip code level, �zip and dummy

variables at the billing cycle level, �cycle. These variables control for an unobservable shock

between the two years at the zip code and billing cycle levels. Imbens and Lemieux (2008)

note that this parametric approach could have a disadvantage in its parametric assumptions

on the function of Xi. This concern motivates them to suggest the second approach that uses

non-parametric controls for Xi by employing a local linear regression:

4lnyit = K

✓
Xi � c

h

◆
· (↵ + � · Treati + � ·Xi + ✓ · Treati ·Xi + �zip + �cycle + "i,t) . (4)

The local linear regression is equivalent to a simple OLS regression but with higher weights

on samples that are closer to the cuto↵ date. K(.) is a kernel function for weights and h is a

bandwidth. Similar to the previous equation, this regression also allows di↵erent slope coe�cients

on the left and right side of the cuto↵ date. Previous studies suggest that a triangular kernel is

the most robust for discontinuous data points (Hahn, Todd, and der Klaauw 2001, Imbens and

Lemieux 2008). There is, however, no rule of thumb for choosing a right bandwidth for local

linear regressions. Therefore, I provide estimation results with di↵erent bandwidth choices for

robustness checks.

The parametric and non-parametric approaches have advantages and disadvantages and there

is still no convincing evidence for which approach works better in regression discontinuity esti-

mation. Therefore, I estimate both equation (3) and (4) to explore how estimates will be a↵ected
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by the choice between the parametric and non-parametric approaches.

5 Results

5.1 Validity Checks of the Regression Discontinuity Design

When customers opened their electricity account in 2004, nobody knew that there was going to

be the 20/20 rebate program in 2005. It is therefore hard to imagine that customers strategically

selected their account open date around the cuto↵ date of the program eligibility. Still, it can

be a concern if there is a non-random discontinuous di↵erence between customers around the

cuto↵ date and the di↵erence may a↵ect the outcome variable of interest.

To assess the validity of the regression discontinuity design, I first plot the number of new

accounts opened per day in Figure 4. The horizontal axis shows the account open date relative

to the cuto↵ date of the program eligibility. For SCE, for example the horizontal axis shows

a customer’s account open date relative to June 5, 2004. Each dot shows the mean number

of new accounts per day in SCE over the 15-day bandwidth. Everyday, about 1500 customers

opened their account. The solid line shows local linear fit and the dashed lines present the 95%

confidence intervals. Over the 90-day bandwidth, there is slight upward trend in the number

of new accounts, although the slope is not statistically significant from zero and there is no

discontinuous jump at the cuto↵ date.

In the second to fourth graphs in Figure 4, I plot household characteristics over the account

open date relative to the cuto↵ date. Because the variables are from the U.S. Census 2000 at

the census block group level, I cluster the standard errors of the local linear fit at the census

block group level. All the three variables do not show a statistically significant discrete jump at
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the cuto↵ date.

5.2 Main Results

This section provides estimation results of the regression discontinuity estimation described in

equation (3) and (4). The estimates of � can be interpreted as the program’s local average

treatment e↵ect. Because the treatment e↵ect can be di↵erent between households in di↵erent

climate conditions, I present results by climate zones. The 2005 rebate program started in June

and ended in September. To receive a rebate at the end of the summer, customers needed to

reduce their overall electricity consumption in the four months by at least 20%. To examine

whether the treatment e↵ect is quantitatively di↵erent among the four months, I present results

for each billing month separately. The results in this section suggest evidence of heterogeneous

treatment e↵ects between di↵erent climate zones. In the next section, I pool the data sets

from di↵erent climate zones and estimate interaction e↵ects of the treatment e↵ect with other

variables to examine what might explain the heterogeneous treatment e↵ects.

In regression discontinuity estimation, graphical analyses are an important part of quantifying

the magnitudes of treatment e↵ects as well as checking the validity of identification strategy. The

nature of regression discontinuity designs suggests that the e↵ect of the treatment of interest

can be measured by the value of the discontinuity in the expected value of the outcome at a

particular point (Imbens and Lemieux 2008). Therefore, inspecting the estimated version of this

conditional expectation is a simple yet powerful way to visualize the identification strategy.

Figure 5 shows regression discontinuity estimates for the September billing month in SCE by

its climates zones. The horizontal axis is a household’s account open date relative to the cuto↵

date for the program’s eligibility, Xc
i = Xi � c.7 Households on the left side of the cuto↵ date

7For example, if customer i in SCE started electricity service on June 25 in 2004, then Xc
i = 20, because
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are the treatment group and households on the right side of the cuto↵ are the control group. I

include only households that started their electricity service between 90 days before or 90 days

after the cuto↵ date in 2004. In other words, the bandwidth is 90 days for each side of the

cuto↵ date. The vertical axis shows g4lnyit = 4lnyit � �̂zip � �̂cycle, the log change in average

daily electricity consumption from the September billing month in 2004 to the September billing

month in 2005. To control for weather and economic shocks, I subtract the zip code level mean

and billing cycle level mean from the log change.

If the rebate program has a significant treatment e↵ect on electricity consumption, the change

in consumption from 2004 to 2005 should be lower for the treatment group relative to the control

group. In that case, the conditional expectation of the outcome variable g4lnyit conditional on

the running variable Xi should have a discontinuous jump across the cuto↵ date c. To see

whether the expected value of the outcome variable has the discontinuous jump, I plot the local

average value of g4lnyit over Xc
i . Each dot in Figure 5 shows the local average value of g4lnyit

using fifteen days bandwidth of Xc
i . For the eight bins in each side of the cuto↵, I take a simple

local average for each bin, and plot them on the diagrams. The local averages are the estimated

counterparts to the conditional mean of the outcome E[4lnyit|Xc
i , �zip, �cycle].

The top two figures show results for climate zone 10 and 17 in SCE. These climate zones

include coastal areas, which have a relatively moderate summer climate condition relative to

inland areas. For example, the cities of Santa Barbara, Long Beach, and Irvine are included in

these climate zones. The figures suggest evidence that the program did not significantly change

electricity consumption for the treatment group in these climate zones. The change in electricity

consumption has a moderate positive trend in the account open date as discussed in the previous

section, but it does not have a discontinuous jump at the cuto↵ date.

SCE’s cuto↵ date was June 5, 2004.
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In contrast, the bottom two figures indicate evidence that the rebate program had a significant

e↵ect on electricity consumption in climate zones 15 and 16. These climate zones are located

in inland areas of southern California, where the summer temperature is persistently high and

households typically use an air conditioner throughout the summer. The next section explores

in more detail how higher temperature a↵ects the treatment e↵ect.

To statistically estimate the magnitude of the treatment e↵ects, I estimate the parametric

regression in equation (3) using quadratic functions and the nonparametric local linear regression

in equation (4) using a triangular kernel function for the sample weight. The dashed lines

show fitted value for the parametric regression and the solid lines show the fitted lines for the

nonparametric local linear regression. Essentially, both econometric equations estimate � as

the magnitude of the jump in the outcome variable at the cuto↵ date by fitting parametric

or nonparametric functions of Xc
i . As it is visually clear in Figure 5, the estimates are not

statistically di↵erent between the two estimation methods. Following Imbens and Lemieux

(2008), I focus on the estimates from the nonparametric local linear regression in the following,

but none of the estimates are sensitive to the selection of the two estimation methods.

Each diagram in Figure 5 includes the point estimate from the local linear regression and

the robust standard errors in the parentheses. In climate zone 10 and 17, the point estimates

are close to zero and they are statistically insignificant from zero. In climate zone 15 and 16,

the point estimates are -.093 and -.101 with standard errors .04 and .032, respectively. That is,

households with the rebate incentive reduced their consumption by about 9% in climate zone 15

and 16 relative to households without the rebate incentive.

I find similar results in other utility territories. For example, Figure 6 shows the regression

discontinuity estimates for the September billing cycle in the two most populated coastal areas
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in SDG&E. The graphical evidence suggest that, similar to coastal climate zones in SCE, the

rebate program did not significantly change electricity consumption for the two areas in SDG&E.

Table 3 summarizes the results for all billing months and all of the three utilities. Following

Lee and Card (2008), I cluster standard errors by the discrete assignment variable of treatment

status Xi, a customer’s account start date, to account for specification errors in the continuous

function f(Xi). The table shows that there are two findings that are consistent among the three

electric utilities. First, in the coastal areas, the treatment e↵ects are not statistically di↵erent

from zero in all of the four summer months. However, in the inland areas, the rebate incentive

lowered household consumption by 5 to 9%. Second, in the inland areas, the treatment e↵ect is

largest in the last month and is monotonically increasing from the first month. There are two

possible reasons for this di↵erences in treatment e↵ects between the months. The first potential

reason is that some households may have gradually become aware of the program when they

looked at the information about the rebate program on their monthly bills. The second possible

reason is that the program’s design may have created a larger incentive for customers to reduce

consumption at the end of the four-month period than at the beginning. Once customers have

already achieved a certain amount of reduction in the first couple of months, the possibility of

receiving a rebate in return for their e↵orts is more certain in the later months.

Lee and Lemieux (2010) note that if a regression discontinuity design produces an essentially

random assignment of treatment, including covariates in the estimation should not change the

consistency of the estimate for the same reason that adding covariates in randomized controlled

experiments does not change the consistency. Table 4 shows results with alternative specification

for the inland climate zone in SCE in September. The main specification includes zip code and

billing cycle dummy variables. Column 1, 2, and 3 show that excluding these dummy variables
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do not change the point estimates. There is a slight chance that including micro climate variables

might reduce standard errors because the billing cycle dummy captures only the overall weather

condition for each billing cycle8. Using daily temperature data for 4 km by 4 km cells, I calculate

cooling degree days and heating degree days for each bill. Column 5 shows that including these

micro climate controls still do not change the estimate but slightly reduce standard errors.

5.3 Interaction with Weather and Income

The previous section finds that the estimated treatment e↵ects are larger in inland areas com-

pared to coastal areas. This section explores what drives the heterogeneous treatment e↵ect

of the 2005 rebate program. In particular, I examine whether climate conditions or income

di↵erences can explain the heterogeneous treatment e↵ects.

One of the significant di↵erences between inland and coastal California is the summer climate

conditions. For example, Figure 3 illustrates cooling degree days (CDD) in California in August

2005 by five-digit zip code areas. Generally, summer temperature is persistently high in the

inland areas but quite moderate in the coastal areas. As a result, inland households typically

use air conditioners throughout the summer while coastal households either use air conditioners

very little or do not own them at all. For households that do not use an air conditioner, a

20% reduction in summer electricity consumption is challenging for typical residential electricity

consumers. In contrast, for households that constantly use an air conditioner during the summer

season, a 20% consumption reduction can be achieved by slightly changing the temperature

settings or the length of usage.

Another significant di↵erence between inland and coastal California is their demographic

8For example, even in the same climate zone and within the same billing cycle, micro climate conditions might
be slightly di↵erent especially when the climate zone includes considerably di↵erent micro climate areas.
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characteristics. For instance, income levels tend to be higher in coastal areas than inland areas.

In previous studies on residential electricity demand, many studies find slightly larger price

elasticity estimates for low income households (e.g. Reiss and White 2005 and Ito 2010). Because

the 20/20 rebate program is essentially a price-discount rebate program, households with lower

income may be more likely to respond to the incentive if their price elasticity is larger than

households with higher income.

To examine how climate conditions and income levels a↵ect the program’s treatment e↵ects,

I focus on the September billing month from all climate zones and conduct two statistical tests.

First, I focus on households in SCE’s climate zone 10 and explore whether within-climate-zone

variation can provide any evidence of heterogeneous treatment e↵ects. I split households in

this climate zone by the quartiles of cooling degree days and the quartiles of household income.

Then, for each of the quartile, I estimate the local linear regression in equation (5). Table 5

shows the evidence that even in this coastal climate zone I find evidence that households with a

large numbers of high temperature days show an economically small but statistically significant

treatment e↵ect. Similarly, the treatment e↵ect is statistically significant for households with

lower income.

As a second approach, I pool data from all climate zones and include interaction terms be-

tween the treatment variable and average temperature in each customer’s billing cycle, and the

treatment variable and household income to equation (4). This model estimates the di↵erences

in the treatment e↵ect for di↵erent temperature values and income levels assuming that the

interaction terms linearly a↵ect the treatment e↵ect. Column 1 of Table 6 shows estimation

results with the interaction term between the treatment and average temperature. It indicates

that the treatment e↵ect increases by .15 percentage point when the average temperature in-
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creases 1 degree Fahrenheit. Column 2 includes the treatment e↵ect and the interaction variable

between the treatment e↵ect and log of income. The estimates suggest that the treatment e↵ect

increases by .027 percent with an 1% increase in household income. These two interaction e↵ects

remain the same when both terms are included in the regression as Column 3 of the table shows.

Therefore, results from the two estimation methods indicate that both climate conditions and

income levels have a statistically significant e↵ect on the magnitude of the program’s treatment

e↵ect.

5.4 Cost-E↵ectiveness of the Program

The cost-e↵ectiveness of the program is a central policy question for conservation rebate programs

such as the California 20/20 electricity rebate program. Policy makers often argue that the

simplicity of the programs makes it easy for consumers to understand the incentive and therefore

encourage their conservation. On the other hand, many people doubt its cost-e↵ectiveness

because a considerable number of customers may receive rebates in the absence of extra e↵orts

for conservation. In the past, the utility companies reported the cost-e↵ectiveness by calculating

the total rebate paid to customers who achieved a 20% consumption reduction. However, it is

misleading to use the measurement as the cost-e↵ectiveness because 1) some of these rebated

customers reduced their consumption for reasons unrelated to the rebate incentive and 2) some

customers reduced their consumption but cannot reached the 20% target level.

In this section, I define the cost-e↵ectiveness of the program as how much money is spent

to save 1 kWh of electricity consumption.9 To obtain an estimate of the consumption reduc-

9Note that this cost-e↵ectiveness does not provide a welfare measure such as the e�ciency cost of the program.
Because the rebate expense is simply a transfer between customers, one can see that the rebate program produces
an implicit increase in electricity price. If the ex-ante price is set at the e�cient level, the rebate program creates
e�ciency cost. If the ex-ante price is too low because it does not include environmental externalities for example,
the rebate program may increase welfare. However, the existence of five-tier increasing block pricing makes it
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tion (kWh) produced by the program incentive, I use the treatment e↵ect estimated from the

regression discontinuity design in the previous section. Then, I divide the estimate by the to-

tal rebate expense that was paid to customers. This exercise implicitly assumes the external

validity of the RD estimate. That is, this calculation assumes that the treatment e↵ect is the

same between customers in the RD samples, who opened their account around the cuto↵ date

in 2004, and other customers, which include customers opened their account before 2004. If the

true treatment e↵ects are di↵erent between the two types of customers, the cost-e↵ectiveness

estimates are biased. The direction of the bias is ambiguous. The treatment e↵ect may be larger

for customers who have been in the same premise long time because they are likely to have a

larger incentive to invest some money on energy e�cient devices. However, if these customers

have already invested on such devices, their consumption in the base year is already low, which

makes it harder for these customers to achieve an additional reduction in consumption in the

target year. Given this assumption, I calculate the cost-e↵ectiveness of the 20/20 rebate program

in 2005. I focus on Southern California Edison’s territory in this section. The result for other

electric utilities are similar to the results presented in this section.

In Table 7, I calculate total electricity consumption in the summer of 2004 and 2005, the

amount of rebate expenses in 2005, and the estimated consumption reduction that is produced

by the program’s incentive. Column 1 shows the number of households who maintained their

electricity account in the summer of 2004 and 2005. Column 2 presents the total electricity

consumption of these households during the four summer months in 2005 and column 3 shows

how much money was spent to pay rebates to households that reduced their consumption at

harder to conclude whether the rebate program improves welfare. Even with the environmental externalities, the
higher tiers of the increasing block pricing (20 cents to 35 cents per kWh) are well above the social marginal
cost. However, the lower tiers (10 cents per kWh) can be lower than the social marginal cost. Therefore, the
total welfare e↵ect depends on 1) the distribution of customers in the increasing block pricing and 2) the price
elasticity of electricity for these customers.
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least by 20% relative to 2004.

To obtain an estimate of how much of electricity consumption was saved by the rebate

program, I calculate an estimated kWh reduction Kj for each climate zone j based on the

estimated treatment e↵ect �̂j
m in Table 3,

Kj =
9X

m=6

 
��̂

j
m

1 + �̂

j
m

· Cj
m

!
, (5)

wherem is a billing month and C

j
m is aggregate consumption.10 Then, I calculate the cost-benefit

ratio of the program as the total rebates divided by Kj. An important assumption here is that

the estimated treatment e↵ect �̂j
m, which is estimated from the regression discontinuity design,

can be applied to all households in the climate zone regardless of their service start date.

Column 4 shows the estimated reduction Kj and column 5 presents the aggregate rebate

expense divided byKj. In the coastal areas, the program cost 90.7 cents to save 1 kWh electricity.

On the other hand, in the inland areas, the program spent 2 cents to save 1 kWh consumption.

The average cost per kWh reduction is 14.8 cents.

Note that this average estimate of the cost and benefit does not necessarily give a fully

accurate evaluation of the program’s cost and benefit. Ideally, we want to know how much of

the reduction happened in the on-peak and o↵-peak periods of the electricity load. For example,

if most of the reduction occurred in the on-peak load, in which the marginal cost of electricity is

relatively high, the benefit of the consumption reduction is large. However, because the monthly

consumption data do not give the exact timing of consumption reductions, I discuss the costs

and benefits of the program based on this average number.

10Let Aj
m denote the aggregate consumption in the absence of the treatment e↵ect. Then, (1 + ˆ�j

m)Aj
m = Cj

m.

Hence, Aj
m = Cj

m

1+�̂j
m

and Kj
m = Aj

m � Cj
m =

ˆ��j
m

1+�̂j
m

· Cj
m.
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The estimated cost, 14.8 cents per kWh consumption reduction, is larger than the numbers

that were given by the electric utilities because the utilities usually attribute all of the consump-

tion reductions by the rebated customers to the presence of the rebate program. In previous

studies, Reiss and White (2003) estimate the 2001 rebate program’s costs and benefits and find

that the overall cost (June to September in 2001) for SDG&E was 18 cents per kWh.

A potential reference point for discussing the program’s cost is the average cost of electricity

production, which was 13.37 cents per kWh in 2005 in SCE. Compared to this number, the

average cost estimate, 14.8 cents per kWh, is still higher than the average cost of supplying

electricity.

An important finding in the current study is that the cost-e↵ectiveness is substantially di↵er-

ent between the coastal and inland areas in California. Previous studies provide only aggregate

cost-benefit estimates for all of California. Results in Table 3 suggest that the 2005 20/20 re-

bate program was fairly cost-e↵ective in the inland areas but quite cost-ine↵ective in the coastal

areas. This is because in the coastal areas, a large number of households received a rebate, but

the treatment e↵ect in these areas were nearly zero. Finally, note that these cost estimates do

not include the administrative costs and advertisement fees that were associated with the rebate

program. Therefore, the actual cost is likely to be higher than the cost estimates in this section

when we account for these additional program expenses.

6 Conclusion and Future Work

This paper examines the treatment e↵ect and cost-e↵ectiveness of conservation rebate programs

that are often used by electric, natural gas, and water utilities. To deal with identification

problems, I apply a regression discontinuity design to the 2005 California 20/20 electricity rebate
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program. The discontinuous eligibility rule of the program enables me to estimate the treatment

e↵ect by controlling for confounding factors such as weather and economic conditions.

This study provides several empirical findings based on a panel data set of household-level

monthly electricity billing records from the three largest electric utilities in California. First, the

regression discontinuity estimates provide evidence that the rebate incentive made consumers

reduce their electricity consumption by 5% to 10% in the areas where the summer temperature

is persistently high and the income level is relatively low. In contrast, the treatment e↵ects

are nearly zero in the areas where the summer temperature is moderate and the income level

is relatively high. Second, to explore which variables explain this heterogeneous treatment

e↵ect, I estimate interaction e↵ects between the treatment variable and climate conditions, and

between the treatment variable and income levels. Results from these regressions suggest that the

treatment e↵ect increases by .15 percent as average temperatures increase by 1 °F and decreases

by .027 percent as income levels increase by 1%. Finally, using the estimates of the treatment

e↵ect, I calculate the cost-e↵ectiveness of the program. The results from this exercise show that

the program cost 90.7 cents in the coastal areas and 2 cents in the inland areas to save 1 kWh

of electricity consumption. The overall cost per kWh reduction was 14.8 cents per kWh.

The results from this study provide several policy implications for the California 20/20 elec-

tricity rebate program. First, under the current rebating scheme, the expense of natural year-

to-year fluctuations in electricity consumption is substantial. As a result, providing a rebate for

reductions that would have happened in the absence of the program can be very costly unless

the treatment e↵ect is su�ciently large. Second, the estimation results suggest that it is im-

portant to account for heterogeneous treatment e↵ects particularly based on di↵erent weather

conditions and income levels among households. For example, my cost-e↵ectiveness estimates
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for the coastal areas are by far larger than previous estimates while my estimates for the inland

areas are far lower than previous estimates. Finally, the heterogeneous treatment e↵ect suggests

that the program’s performance could be improved if the program focused on certain types of

households to minimize rebate expenses for reductions that would have occurred in the absence

of the program.

The paper leaves at least two important research questions for future work. First, because the

rebate program required households to reduce their overall electricity consumption by 20% over

the four summer billing months in 2005, there could be a dynamic response to their incentive

throughout the four month period. For example, households that achieved a large reduction in

the first three months do not have to reduce much of their last month’s consumption to reach an

overall 20% reduction. On the other hand, households that consumed too much in the first three

months have no way to get a rebate regardless of their e↵ort in the last month. Second, in this

paper, I do not fully specify a consumer’s electricity demand model with their rebate incentive.

Instead, I estimate the average treatment e↵ect of the program. If I model a consumer’s decision

more precisely in a demand model, consumers could get two di↵erent incentives from the rebate

program. This is because the rebate program may a↵ect consumption in two di↵erent ways.

In one hand, the program provides an incentive to reduce consumption because households can

receive a rebate only if they reduce their consumption by 20%. On the other hand, once a

household receives a rebate, the rebate works as a price discount for total consumption. The

household, therefore, may increase consumption in response to the price discount. For example,

in an extreme case where a household is sure to use much less electricity in 2005 relative to

2004, the household has almost no incentive to reduce consumption and is likely to increase

consumption in response to the expected discount for electricity price. My future work would
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incorporate this behavior to provide more comprehensive understanding of the program’s e↵ect

on electricity demand.
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Figure 1: Program Eligibility Rule for the 2005 California 20/20 Electricity Rebate Program

Cuto↵ Date
PG&E June 1, 2004
SCE June 5, 2004

SDG&E June 30, 2004

Time
Summer 2005June 5, 2004

Treatment

Control

Start Electricity Service
on or before June 5, 2004

Notice Letter

Start Electricity Service
after June 5, 2004

Note: Households who opened their account on or before the cuto↵ date in 2004 received a notice

letter around April, 2005 and were automatically enrolled in the 2005 California 20/20 electricity

rebate program program. These households were eligible for a 20% discount on their summer

electricity bills if they reduced their electricity consumption by 20% relative to their consumption in

2004. Households who opened their account after the cuto↵ date were excluded from the program.

The three electric utilities have slightly di↵erent cuto↵ dates.
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Figure 2: Electric Utility Service Areas in California

IID

MID

Lodi

Roseville

Healdsburg
SMUD

Ukiah

Biggs

Gridley

Lassen

Surprise Valley

PacifiCorp

Trinity Shasta Lake
Redding

PG&E

Area served by both
Surprise Valley & PacificCorp

LADWP 

SDG&E

SCE

PG&E

TID

Merced

Valley Electric

Lompoc

Needles

Anza Electric
Morongo

Banning
Bear Valley Electric

Colton

Rancho Cucamonga

Victorville

Moreno Valley
Riverside

Corona
Anaheim

Cerritos
Industry

Vernon

Aha MacavAzusa
Pasadena

Glendale
Burbank

C.C.S.F.
Palo Alto

Silicon Valley 
Power

Oakland

Alameda
Municipal
Power

Hercules
Stockton

Mountain Utilities

Sierra Pacific

Truckee-Donner

Plumas - Sierra

Area served by both 
Lassen & Plumas-Sierra

Pittsburg

LADWP - 
Owens Valley

Area is served by both 
MID & PG&E

Shelter
Cove

California
 Electric Utility Service Areas

Note: This figure shows the service areas of electric utilities in California. The original source file is
available at the California Energy Commission’s website. Three investor owned electric utilities,
Pacific Gas & Electric, Southern California Edison, and San Diego Gas & Electric, participated in the
2005 California 20/20 electricity rebate program program.
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Figure 3: Cooling Degree Days in August 2005 in California

Note: This figure shows the cooling degree days (CDD) in August 2005 in California by zip code
boundaries.
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Figure 4: Validity Checks of the Regression Discontinuity Design
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Note: The horizontal axis shows the account open date relative to the cuto↵ date of the program

eligibility. For SCE, for example the holizontal axis shows a customer’s account open date relative to

June 5, 2004. Each dot shows the local mean using the 15-day bandwidth. The solid line shows local

linear fit and the dashed lines present the 95% confidence intervals. I obtain each customer’s account

open date from the electricity billing data. Other three variables are from the U.S. Census 2000. The

confidence intervals for the fitted lines for the three variables are adjusted for clustering at the census

block group level.
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Figure 5: Regression Discontinuity Estimates: SCE September Billing Month
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Note: This figure presents the regression discontinuity estimates for the September billing month in

SCE by its climate zones. The horizontal axis shows households’ account open date relative to the cuto↵

date for the program eligibility. The vertical axis shows the log change in September consumption from

2004 to 2005 where zip code level mean and billing cycle level mean are subtracted. Each dot presents

the local mean using fifteen days window and the solid and dashed lines are the fitted lines by equation

(3) and (4), respectively. I also include representative cities for each climate zone in parentheses.

Finally, the figure includes the point estimate of the treatment e↵ect with the robust standard errors

in parentheses.
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Figure 6: Regression Discontinuity Estimates: SDG&E September Billing Month
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Note: This figure presents the regression discontinuity estimates for the September billing month in

SDG&E by its climate zones. The horizontal axis shows households’ account open date relative to the

cuto↵ date for the program eligibility. The vertical axis shows the log change in September consumption

from 2004 to 2005 where zip code level mean and billing cycle level mean are subtracted. Each dot

presents the local mean using fifteen days window and the solid and dashed lines are the fitted lines

by equation (3) and (4), respectively. I also include representative cities for each climate zone in

parentheses. Finally, the figure includes the point estimate of the treatment e↵ect with the robust

standard errors in parentheses.
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Table 1: Aggregate Consumption and Rebates in the Summer Billing Months in 2005

Utility Consumption Revenue Rebated Rebate
(kWh) ($) Households ($)

PG&E 10,065,216,512 1,320,995,584 8.24% 10,786,594
SCE 9,401,883,648 1,257,056,768 7.91% 10,609,540

SDG&E 2,284,046,848 363,180,320 9.07% 4,325,000

Note: This table reports the statistics based on the actual residential billing data in the June, July,

August, and September billing months in 2005. I include customers who maintained their account both

in the summer of 2004 and 2005. The rebate expenditure does not include the administrative and

advertising costs of the program. All expenditures are in nominal 2005 dollars.

Table 2: Changes in Summer Electricity Consumption in SCE

Year Changes in Median of % Changes % Households with 20%
Summer Weather in Consumption or More Reduction

From 2003 to 2004 Cooler in 2004 -1.7% 14.3%
From 1999 to 2000 Hotter in 2000 7.7% 6.8%

Note: This table reports statistics of within-household changes in summer electricity consumption

in Southern California Edison (SCE). I first calculate the change in consumption for each household

between the two years. I then calculate the median value of the change and the percentage of households

who reduced their consumption more than 20%. Note that SCE customers did not encounter a price

spike during the California electricity crisis in 2000 because their retail rates are capped.
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Table 3: Treatment E↵ects in Each Billing Months by Climate Zones

Billing Month 6 7 8 9
PG&E

Coastal Areas -.002 -.001 .003 -.002
(.004) (.003) (.004) (.005)

Inland Areas -0.01 -.016* -.032*** -.059***
(.013) (.011) (.011) (.012)

SCE
Coastal Areas .001 -.001 -.001 -.002

(.009) (.010) (.009) (.008)
Inland Areas -.019* -.032** -.056*** -.092***

(.015) (.016) (.016) (.015)
SDG&E

Coastal Areas .005 -.001 -.002 .008
(.009) (.010) (.009) (.011)

Mid-Inland Areas -.002 -.001 .002 .003
(.011) (.012) (.011) (.013)

Note: This table presents the regression discontinuity estimates of the local linear regression of equation

(5) with the triangular kernel and 90 days bandwidth. Each estimate comes from separate regressions

for each billing month and climate zones. The number of observations is 535,741 (Coastal, PG&E),

168,162 (Inland, PG&E), 492,244 (Coastal, SCE), 86,118 (Inland, SCE), 138,718 (Coastal, SDG&E),

and 100,450 (Mid-inland, SDG&E). Standard errors clustered by the assignment variable (account open

date) are in parentheses. ***, **, and * show 1%, 5%, and 10% statistical significance respectively.
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Table 4: Alternative Specification with Di↵erent Covariates

(1) (2) (3) (4) (5)

Baseline
model

No zip
dummy

No bill cycle
dummy

No zip and
bill cycle
dummy

Add detail
weather
controls

Treat -.092*** -.091*** -.091*** -.090*** -.093***
 (.015)  (.017)  (.017)  (.017)  (.014)

Cooling degree days .037
(.001)

Heating degree days .003
(.001)

Zip code dummy Yes No Yes No Yes
Billing cycle dummy Yes Yes No No Yes

Observations 86,118 86,118 86,118 86,118 86,118

Note: This table presents the regression discontinuity estimates of the local linear regression of equation

(5) with the triangular kernel and 90 days bandwidth for SCE’s inland climate zone in September.

Standard errors clustered by the assignment variable (account open date) are in parentheses. ***, **,

and * show 1%, 5%, and 10% statistical significance respectively.

Table 5: Treatment E↵ect by Di↵erent Weather and Income Quartiles

Quartile 1 2 3 4
Average Temperature

Treat .013 -.005 -.019 -.030***
(.012) (.009) (.011) (.012)

Observations 380,355 380,361 380,358 380,359
Income
Treat -0.017** -.011 -.005 -.0003

(.009) (.008) (.007) (.0009)
Observations 380,335 380,363 380,397 380,338

Note: This table presents the regression discontinuity estimates of the local linear regression of equation

(5) with the triangular kernel and 90 days bandwidth for September 2005. The number of observations

is 231,318. The dependent variables is the log change in household daily electricity consumption from

September 2004 to 2005. For the first row, I divide the samples into quartiles based on the cooling

degree days (CDD) in September 2005 and run separate regressions for each quartile. Similarly for the

second row, I divide the samples into income quartiles and run separate regressions for each quartile.

Standard errors clustered by the assignment variable (account open date) are in parentheses. ***, **,

and * show 1%, 5%, and 10% statistical significance respectively.
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Table 6: Treatment E↵ect Interacted with Temperature and Income

(1) (2) (3)
Treat .095** -.297*** -.199***

(.051) (.055) (.077)
Treat*Ave.Temp. -.0015** -.0016**

(.0007) (.0008)
Treat*ln(Income) .027*** .027***

(.005) (.005)
Observations 1,521,433 1,521,433 1,521,433

Note: This table presents the regression discontinuity estimates of the local linear regression of equa-

tion (4) with the triangular kernel and 90 days bandwidth for September 2005. The sample includes

households in all climate zones in each of the electric utilities. The number of observation is 1,521,433.

The dependent variables is the log change in household daily electricity consumption from September

2004 to 2005. I calculate average temperature for each billing cycle by taking mean of the average tem-

perature during the billing days. Standard errors clustered by the assignment variable (account open

date) are in parentheses. ***, **, and * show 1%, 5%, and 10% statistical significance respectively.

Table 7: Cost-Benefit Analysis for SCE

Customers Consumption Rebate Estimated Rebate/
(kWh) ($) Reduction Reduction

(kWh) ($/kWh)
Coastal 3,190,027 8,247,457,920 9,358,919 10,323,778 0.907
Inland 299,178 1,154,292,248 1,250,621 61,486,108 0.020
Total 3,489,205 9,401,750,168 10,609,540 71,809,886 0.148

Note: This table reports the cost-benefit analysis of the 20/20 program for SCE’s coastal areas, inland

areas, and all service areas. Column 1 shows the number of residential customers that maintained their

account in the summer of 2004 and 2005. Column 2 presents the aggregate consumption in the four

summer months. Column 3 reports the aggregate amount of rebates. Column 4 shows the estimated

kWh reduction by the program and the last column presents the rebate expenditure per kWh reduction.
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