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Abstract

This paper studies belief heterogeneity in a benchmark competitive asset market: a
market for Arrow-Debreu securities. We show that differences in agents’ beliefs lead to a
systematic pricing pattern, the favorite longshot bias (FLB): securities with a low payout
probability are overpriced while securities with high probability payout are underpriced.
We apply demand estimation techniques to betting market data, and find that the ob-
served FLB is explained by a two-type population consisting of canonical traders, who
hold virtually correct beliefs and are the majority type in the population (70%); and
noise traders exhibiting significant belief dispersion. Furthermore, using formal model
comparisons and also exploiting variation in public information across markets in our
dataset, we show that our belief heterogeneity model empirically outperforms existing
preference-based explanations of the FLB, such as risk-loving or prospect theory.

JEL Classification: C13, C51, D40, G13, L00.
Keywords: heterogeneity, prospect theory, favorite-longshot, rational expectations,
demand estimation, random utility, noise traders, risk preferences.

1 Introduction

There are two important issues that have gained prominence in the study of financial
markets. First, there is a growing consensus that the sheer trading volume we observe
cannot be explained without resorting to information-driven trade (Cochrane, 2007), i.e.,
belief heterogeneity is likely a major source of gains from trade in financial markets. Second,
there is also a growing body of evidence that documents “anomalies” in prices (see e.g.,
Keim, 2008), i.e., systematic patterns where prices do not accurately reflect the underlying
fundamentals of securities.
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In this paper we show these two issues are closely related: belief heterogeneity can serve
as a natural foundation for pricing patterns that depart from the predictions of standard
neoclassical theory. We focus on a particular pricing ‘anomaly’, known as the favorite-
longshot bias (FLB), which has been found in a number of market settings, particularly in
betting markets.1 Betting markets are important for several reasons. Chief among them is
that they represent real world Arrow-Debreu security markets, which play a foundational
role in the theoretical study of financial markets. In addition, unlike in other markets, we
observe ex-post security returns which, combined with the availability of large datasets,
allows tracing prices to fundamentals.2 There is a long empirical literature that widely
documents the existence of the FLB in these markets – securities with a large probabil-
ity of payout (favorites) yield higher average returns than securities with a small payout
probability (longshots), with observed disparities in returns as high as 200%.3 Because of
this, the FLB is often viewed as evidence against the standard notion of agents being risk
averse, expected utility maximizers with correct beliefs (or rational expectations) about the
underlying fundamentals (Thaler and Ziemba, 1988). This has led to two main alternative
approaches to explain the observed pattern of returns, both of them based on departures
from standard preferences: the first one introduces risk loving (Quandt, 1986); while the
second departs from expected utility by assuming rank dependent utility or cumulative
prospect theory preferences (Jullien and Salanié, 2000; Snowberg and Wolfers, 2010).

The purpose of this paper is to study, both theoretically and empirically, the relation-
ship between belief heterogeneity and pricing in competitive asset markets. We use the
standard Arrow-Debreu (A-D) security market setting and explore whether belief hetero-
geneity, apart from explaining trade, can also explain the existence of the FLB. In addition,
we investigate whether belief heterogeneity empirically outperforms existing preference-
based explanations of the FLB, both in terms of explaining the overall variation of prices
in betting data, and in terms of predicting the reaction of prices to changes in the avail-
ability of information in the market. Our main findings can be summarized as follows:

• We theoretically show that belief heterogeneity among risk neutral traders naturally
leads to the FLB in competitive A-D security markets: as long as the correct beliefs
about the true payout probabilities lie in the support of the population belief distri-
bution, we should expect favorites to be underpriced and longshots to be overpriced.

1There is evidence of the FLB in betting and prediction markets (see e.g., Griffith (1949); Sauer (1998);
Jullien and Salanié (2000); Snowberg and Wolfers (2010) for a review), option markets (where the FLB is
associated to the “volatility smile”), and in some derivative markets (Tompkins et al., 2008).

2An additional key feature of betting markets is the absence of differences in liquidity or transaction
cost across securities. This is in contrast with other markets where pricing patterns are closely associated
to differences in liquidity and trading costs (see e.g. Sadka and Scherbina (2007) and references therein).

3See, for instance, Jullien and Salanié (2008) for a review of the literature.
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• We present a framework for estimating heterogeneous agent models in A-D markets
using aggregate data on prices and ex-post returns. In particular, we adapt demand
estimation techniques for random utility models (e.g. Berry et al., 1995) to financial
markets, which allow us to accommodate heterogeneity in both risk preferences and
beliefs. Using betting market data (horse racing data), we estimate a model of
(idiosyncratic) belief heterogeneity. We find that a two-type population of risk-
neutral traders, in which the prevalent type (about 70% of agents) holds virtually
correct beliefs with minimal belief dispersion and the other type exhibits higher belief
dispersion, explains the observed pricing pattern remarkably well. This provides
suggestive evidence of the existence of two types of agents in these markets, informed
and noise traders.

• We compare our model to the two leading preference-based approaches to explaining
the FLB: risk loving and non-expected utility. In order to do so, we estimate a model
with a population of traders exhibiting heterogeneous risk attitudes (which includes
risk loving as a special case), and also a representative agent model with preferences
that follow cumulative prospect theory (which also nests rank-dependent utility). We
find that the application of these alternative theories to our data yields parameter
estimates that are similar to existing results in the literature (most notably Jullien
and Salanié (2000) and Snowberg and Wolfers, 2010). However, we also find that
our heterogeneous beliefs model explains the price variation in the data substantially
better than these preference-based approaches.4

• In order to further understand the role of belief heterogeneity in the data, we exploit
a source of variation in the availability of information at races. Specifically, races
that are run at the same track on the same day take two different forms, maiden or
non-maiden. Because only experienced horses can participate in non-maiden races
and new horses (without any racing history) participate in maiden races, traders
in non-maiden races have access to richer information about the underlying value
of the A-D securities associated to each horse. We find that this difference in the
information structure across race types is reflected very distinctly in the asset prices:
maiden races exhibit a much more pronounced FLB as compared to non-maiden
races. We estimate our heterogeneous beliefs model on each of these subsamples of
races and show that the model explains this pricing difference in a natural way: the
same proportions of informed and noise traders are present in both types of races, but

4We also find support for our risk neutral assumption: we estimate a belief heterogeneity model with
CARA agents and find that the CARA coefficient is not significantly different from zero. This is consistent
with agents being essentially risk neutral when stakes are low (Bombardini and Trebbi, 2010).
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traders simply have more dispersed beliefs in the low information races. Preference
based theories, on the other hand, cannot easily account for this change in the pattern
of returns across information environments.

What is the intuition for why belief heterogeneity empirically explains the FLB so
readily? Belief heterogeneity can generate a dramatic disparity in returns even when beliefs
are heavily concentrated around the correct beliefs because the FLB, like many pricing
puzzles observed in financial markets, is fundamentally driven by behavior at the tails of the
underlying value distribution. Most of the mispricing in the data is associated to extreme
longshots: disparity in expected returns becomes most apparent for securities with payout
probabilities less than 1%. Accordingly, a little dispersion in beliefs suffices to induce
enough demand on those longshots to generate substantial overpricing in equilibrium. For
example, in our data, the average security in the data has over twice as high an expected
return as compared to extreme longshots that payout with less than 1 percent probability.
In our estimated model, only roughly 5 percent of agents would be willing to invest in
these longshot assets relative to the average security. But this small demand is sufficient
to generate the degree of observed overpricing found in the data.

Finally, our findings highlight the potentially misleading inferences that can be drawn
from representative agent models. Although a representative agent that rationalizes the
aggregate demand of a population of heterogeneous agents may exist, this representative
agent’s preferences need not reflect the preferences in the population in any meaningful
sense.5 For example, in our estimated model of belief heterogeneity, the modal behavior is
well captured by the textbook homogeneous beliefs and risk neutrality model. In contrast,
a representative agent model would require highly non-standard preferences or beliefs to
explain the same data.

Related Literature Our theoretical model is related to existing models linking belief
heterogeneity to the FLB, notably the competitive model of Ali (1977) and the asymmetric
information approach of Ottaviani and Sorensen (2006, 2010b).6 Unlike the latter papers,
our goal is not to provide an informational foundation to heterogeneous posterior beliefs
in asset markets, but rather find general conditions on the distribution of such beliefs
that lead to the FLB. In terms of theoretical predictions, the main difference between our
approach and the existing literature is our focus on price behavior at the tails of the value

5The theoretical analysis of Ottaviani and Sorensen (2010a) also stresses the potential divergence be-
tween representative and heterogeneous agent interpretations of prices. In particular, they show that a
population of perfectly Bayesian traders with heterogeneous beliefs leads to equilibrium prices that can
only be generated by a non-Bayesian representative agent.

6See also the work of Shin (1991, 1992) and Potters and Wit (1996).
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distribution, which is where the FLB empirically arises. In contrast, existing research
typically defines the FLB for the whole range of values, e.g., by predicting returns to
be strictly increasing in payout probabilities.7 Accordingly, we are able to substantially
weaken the conditions under which the FLB arises.

Our estimation strategy builds on the work of Jullien and Salanié (2000), who propose a
maximum likelihood framework to estimate representative agent preferences using data on
prices and ex-post returns. Our insight is that we can add heterogeneity to this framework
by combining it with the approach of Berry et al. (1995), originally developed to estimate
demand for differentiated products from aggregate data on prices and product market
shares. The particular random utility model we propose for belief heterogeneity is also new,
however, to the demand estimation literature. Finally, this paper adds a novel dimension
to the empirical literature on the FLB, which, to date, has emphasized preference-based
explanations of the observed pricing patterns (Jullien and Salanié, 2000; Snowberg and
Wolfers, 2010; Golec and Tamarkin, 1998). Belief based trade has not yet been explored
as an empirical alternative, which is an important gap we fill. Relatedly, our finding
that the magnitude of the FLB changes across races characterized by different information
structures, which is a prediction of our belief heterogeneity model, appears to be a new
contribution to the empirical literature on betting and financial markets.

The plan of the paper is as follows. In Section 2, we describe the market and characterize
the demand of a risk neutral agent. In Section 3, we introduce belief heterogeneity and
show that it produces the FLB in equilibrium. In Section 4, we describe the dataset
and illustrate the observed price pattern. We show in Section 5 how to move from the
theory to an empirical framework for measuring heterogeneity. In Section 6, we describe
our estimation results, while we compare our approach to the leading preference-based
alternatives in Section 7. Section 8 concludes.

2 The Market

We consider a competitive market for n Arrow-Debreu securities. Security i pays $1 if out-
come i takes place. Before the market opens, nature determines the state p = (p1, . . . , pn) ∈
int∆n−1, where int∆n−1 is the interior of the (n − 1) dimensional simplex and pi is the
probability that outcome i is realized. That is, ∆n−1 is the set of all possible probability
distributions and the state p� 0 is a particular probability distribution over the n possible
outcomes associated to the A-D securities.

7Monotonicity of returns is predicted by Quandt (1986). In a market with two A-D securities Ali
(1977) and Ottaviani and Sorensen (2006, 2010b) provide conditions for the security with the higher
(lower) probability to be underpriced (overpriced).
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Let ρi denote the price of security i. We allow for the possibility of positive transaction
costs represented by a fraction τ ≥ 0 of each dollar invested in the market that the
institution keeps for its own profit. In this context, the expected gross return of investing
$1 in security i = 1, . . . n is given by

ERi = (1− τ)
pi
ρi
, (1)

and the expected net return is ERi−1. Accordingly, securities that are underpriced relative
to their true chance of yielding returns have a higher expected return as compared to
securities that are overpriced.

The market consists of a population T = [0, 1] with a continuum of risk neutral agents
with finite endowments. Assume for the moment that there are no transaction costs (τ = 0)
and that the outside option yields zero net returns given agent’s beliefs. The demand of
agent t ∈ T is a bundle (x1, · · · , xn) such that

∑
xi ≤ wt, where xi ≥ 0 is the amount

invested on security i, and wt > 0 is the dollar endowment of the agent.
Due to risk neutrality, the demand for security i of any agent t with well-defined

posterior beliefs, denoted by (π1t, · · · , πnt), is determined by the relative comparisons of
subjective expected returns, given by πit/ρi, i = 1, · · · , n. That is, agent t will invest on
the security i if it yields the highest subjective return, i.e., if πit/ρi > πjt/ρj for all j 6= i.

Let rit = pi/πit, which reflects agent t’s relative deviation from correct beliefs about
security i. The next lemma shows that the demand of agent t for security i can be char-
acterized instead in terms of the objective expected returns and a vector of indifference
ratios, given by rit/rjt for j 6= i: the agent is indifferent between security i and j whenever
the ratio of expected returns ERi/ERj is equal to the indifference ratio rit/rjt.

Lemma 1. There exist a vector rt = (r1t, ..., rnt) > 0 with rit = pi/πit such that, for all
(ρ1, . . . , ρn)� 0 and all i = 1, . . . , n, the demand of a risk neutral agent t satisfies

qit(ER1, . . . , ERn) =


wt

ERi
ERj

> rit
rjt
∀j 6= i

{x : x ≤ wt} ERi
ERj
≥ rit

rjt
∀j, ERiERj

= rit
rjt

some j 6= i

0 ERi
ERj

< rit
rjt

some j 6= i,

and ∑
i

qit(ER1, . . . , ERn) ≤ wt,

which holds with equality if ERi
ERj
6= rit

rjt
for some i, j.

Proof. In the Appendix.
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Notice that an agent with correct beliefs has indifference ratios equal to one for all i, j.
Likewise, if an agent has an indifference ratio r1t/r2t = 2, then asset 1 would have to pay
twice as high objective expected returns as asset 2 for the agent to be indifferent between
the two (thus the agent either seriously overestimates the probability of asset two paying
off, or underestimates asset 1).

There are two advantages of working with objective returns and indifference ratios
rather than dealing directly with prices and subjective beliefs. First, the fact that indif-
ference ratios reflect relative differences with respect to the true underlying payout proba-
bilities allows us to define (idiosyncratic) belief heterogeneity in terms of deviations from
correct beliefs (see Assumption 1 below). Second, the indifference conditions in Lemma 1
readily lead to the random utility model we use later in our empirical analysis.

Remark. We assume risk neutrality for two reasons. First, unlike risk aversion, it ratio-
nalizes the discrete choice of investing all the endowment in one of the securities, rather
than hedging or investing only a fraction of it.8 Second, empirical studies have shown that
people tend be risk-neutral when stakes are low (e.g. Bombardini and Trebbi, 2010), as it
is often the case for most traders in betting markets. Nonetheless, we allow for alterna-
tive risk attitudes in our empirical estimation and find support for risk neutrality in the
presence of belief heterogeneity (see Section 6).

Finally, let si be security i’s market share, i.e., the amount invested on security i relative
to the total (finite) amount invested in the market. Market clearing implies that prices
equal market shares, as long as agents, when indifferent between investing or not, choose to
invest either all their endowment or nothing.9 It is worth noting that, by definition, prices
are equal to shares in parimutuel markets, as are the markets comprising our dataset.

3 Belief Heterogeneity and Prices

In a standard representative agent model, traders are homogeneous in terms of beliefs
and preferences. In particular, they hold correct posterior beliefs about the state of the
world. We call such (risk-neutral) agents canonical traders, and their individual demand

8Since endowments are not observed, most empirical studies of the FLB take a discrete choice approach.
See for instance Jullien and Salanié (2000); Snowberg and Wolfers (2010).

9Market clearing means the supply of dollars equals the demand of dollars in each of the possible n
outcomes. This happens if and only if

qi
ρi

= (q1 + · · ·+ qn) ⇐⇒ ρi = si =
qi

q1 + · · ·+ qn
(∀i),

where qi represents the aggregate investment in dollars on security i. If a mass of agents is indifferent
between investing in some securities and staying out of the market, and they invest only a fraction of their
endowment then the supply of dollars may be higher than the total investment in the market, in which
case some agents are short-selling some of the securities.

7



is characterized by rt = (1, . . . , 1). In this context, the only trading equilibrium outcome is
ERi = ERj for all i, j, since otherwise the market does not clear.10 That is, there do not
exist any gains from trade in this economy and agents are indifferent between investing in
any of the securities or staying out of the market and thus such equilibrium is not robust
to the introduction of transaction costs.

Now consider introducing gains from trade in this baseline model by letting agents
exhibit differences in posterior beliefs, i.e., heterogeneity in indifference ratios. Let the
mass function of rt be given by the conditional probability measure P [· | p, θ], which
depends both on the state of the world p and possibly on other characteristics of the
market θ ∈ Θ. We only require that there is always a positive mass to “both” sides of the
canonical trader —this avoids the no-trade trap discussed above. To capture this condition,
given z ∈ Rn−1+ , let

Li[z | p, θ] = P

[(
rit
r1t
, . . . ,

rit
ri−1t

,
rit
ri+1t

, . . . ,
rit
rnt

)
� z | p, θ

]
, for i = 2, · · · , n− 1,

and define L1 and Ln in a similar fashion.11 Li[z | p, θ] represents the mass of agents
with indifference ratios associated to security i lower than z, i.e., ri/rj < zj for j 6= i.

For instance, Li[(1, · · · , 1) | p, θ] is the mass of agents that strictly prefer i over any other
security when expected returns are equal across securities. In this context, we assume that
there is enough heterogeneity so that demand for security i is bounded away from 0 and 1
when τ = 0 and ERi = 1 for all i = 1, · · · , n. That is, there is minimal “liquidity” at fair
prices regardless of the market characteristics (p, θ).

Assumption 1. [Idiosyncratic belief heterogeneity] Li[(1, . . . , 1) | p, θ] is bounded away
from zero for i = 1, . . . , n.

It is worth emphasizing that this assumption allows for the support of Li to converge
to a single point as pi → 0, as long as all the mass is not concentrated at (1, · · · , 1) when
pi > 0.12 In other words, it allows for subjective beliefs to be absolutely continuous with
respect to true probabilities, and it does not implicitly require the distribution of subjective
beliefs to exhibit “fat tails.” In addition, as we show in the Appendix, Assumption 1 can
be weakened when endowments and beliefs are independently distributed, by letting the
distribution of beliefs exhibit “vanishing tails,” and our results would still go through.13

10If ERi > maxj 6=iERj for some i then all traders invest in security j, leading to ρi = 1 and ρj = 0 for
all j 6= i, implying ERj > ERi, a contradiction.

11L1[z | p, θ] = P
[(

r1t
r2t
, . . . , r1t

rnt

)
� z | p, θ

]
, and Ln[z | p, θ] = P

[(
rnt
r1t
, . . . , rnt

rn−1t

)
� z | p, θ

]
.

12For instance, Li could have full support in [1− ε, 1 + ε]n−1 with ε→ 0 as pi → 0.
13Independence of beliefs and endowments guarantees that heterogeneity in investment decisions does

not vanish faster than heterogeneity in beliefs.
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The next result shows that heterogeneity induces the FLB, even in the presence of
transaction costs. In particular, any security i with a sufficiently high value (pi) is under-
priced in equilibrium, while the remaining (low value) securities are overpriced on average.

Theorem 1. [FLB] If Assumption 1 holds, there exists τ̄ > 0 such that for all τ < τ̄ a
necessary consequence of equilibrium is that there exists q̄ < 1 such that, for all i = 1, . . . , n,
if pi > q̄ then security i is underpriced while securities j 6= i are overpriced on average.

Proof. In the Appendix

Why does the FLB arise when agents are heterogeneous? Three key features in our
model help explain it. On the institutional side, the underlying value of an Arrow-Debreu
security is bounded, since it is given by its payout probability.14 On the agent side, we
assume that agents have finite endowments and are risk neutral. Hence, they focus on rela-
tive comparisons of (subjective) expected returns across securities, choosing to invest their
endowment on the highest return security. Finally, we assume that belief heterogeneity is
idiosyncratic, i.e. represented by some dispersion of subjective expected returns around
the true underlying expected returns. In this context, risk neutrality ensures that demand
for each security does not vanish when true expected returns are equal across securities,
regardless of payout probabilities. As a consequence, the presence of this minimal demand
pushes the price of a security above its payout probability whenever the latter is very small,
causing the security to be overpriced.15

We provide some intuition by focusing on the case of two securities, unit endowments
(wt = 1 for all t ∈ T = [0, 1]) and zero transaction costs. Note that, in this context, if the
returns across the securities are (ER1, ER2), then the share s1 of investment in security 1

is bounded above and below by

L1[ER1/ER2 | p, θ] ≤ s1 ≤ 1− L2[ER2/ER1 | p, θ].

These bounds are tight because agents with r1t/r2t = ER1/ER2 are indifferent towards
any investment (x1, x2) with 0 ≤ x1 + x2 ≤ 1.

In this market idiosyncratic heterogeneity implies the existence of a positive lower
bound of demand for security 1 when ER1 = ER2, given by q = inf{L1[1 | p, θ] : (p, θ) ∈
int∆×Θ}. But then, when p1 is sufficiently low, this lower bound q on demand prevents
the share of security i and thus its price to fall below p1, leading to overpricing of security

14This a common feature of many asset markets. Many derivative contracts, such as the now notorious
credit default swaps, are in essence contingent claims specifying a predetermined payout triggered by the
occurrence of some event.

15The underpricing of securities with a high payout probability follows the same argument by noting
that prices in the market add up to one.
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1 (ER1 < 1) and underpricing of security 2 (ER2 > 1 since p2 = 1 − p1 < 1 − s1 = s2).
More formally, let p1 < q and suppose the theorem does not hold, i.e., ER1 ≥ ER2. Then,
by the above bounds we must have s1 ≥ L1[1 | p, θ] ≥ q > p1. But this is a contradiction
since s1 > p1 implies that ER1 < ER2.

16 A similar intuition applies when p1 is sufficiently
high, given the upper bound 1− L2.

Remark. It is worthwhile to note the generality of our condition. Idiosyncratic hetero-
geneity only requires that there is some dispersion of beliefs around the correct beliefs,
i.e. that there are minimal gains from trade in each security at fair prices. The result is
thus a considerable generalization of existing models relating heterogeneity in beliefs to
the longshot bias, such as Ali (1977).17

Example. Suppose there are two assets in the market with probability of paying out a dollar
being .9% and 99.1%, respectively, and there are 99 risk neutral agents with accurate beliefs
and only one risk neutral agent who believes that the probability of payout on the longshot is
anything better than 1%. If all agents have unit endowments, then the trading equilibrium
involves this single agent investing in the longshot while all the remaining agents invest in
the favorite.18 Thus a very small departure in beliefs of one percent of the population creates
a sizable disparity in returns: the expected return on the longshot in the heterogeneous agent
economy is -10 percent whereas the favorite has a positive expected return.

4 Data

Betting markets, and racetrack betting in particular, are textbook illustrations of Arrow-
Debreu securities markets. We focus our attention on the “win odds” market, which is the
market for bets on which horse will win. This is considered the most competitive market
at the racetrack, given it has the most liquid pool of money. Not surprisingly, it has been
the subject of the most empirical attention.

Prices at the racetrack are quoted in terms of the odds Ri on horse or security i =

1, . . . , n, which are defined as the net return per dollar bet on security i in the event i
wins the race —the gross return is given by Ri + 1. In North American racetracks, the
odds are determined through a “parimutuel” system of wagering in which the losers pay

16Notice that all that we need is L1[1 | p, θ] > αp1 for some α > 1 and all pi small enough. Hence, we
can replace the uniform bound on L1 with this “vanishing bound,” as long as s1 ≥ L1 holds, which is the
case when endowments and beliefs are independent. See Appendix A.1 for details.

17Ali’s model of a betting market considers two securities and assumes that Pr(r1t/r2t ≤ 1 | p, θ) = .5
for any (p, θ), i.e. the canonical belief is the median belief in the population.

18In this case, the agent with optimistic beliefs invests in asset 1, and all other agents invest in asset 2,
then the A-D price is .01 for asset 1 and .99 for asset 2. Hence, the optimistic agent views the longshot as
underpriced and the remaining agents view the favorite as underpriced, i.e., there are gains from trade.
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the winners. This system ensures that there are no differences in liquidity across securities
and is equivalent to the market clearing condition in an Arrow-Debreu securities market
where shares equal prices. Accordingly, market odds satisfy

Ri =
1− τ
si
− 1 i = 1, . . . n. (2)

Given a vector of observed odds (R1, . . . , Rn), we can invert (2) to recover the underlying
A-D prices ρi = si for i = 1, . . . , n.

The FLB is in fact a widely documented empirical pattern of returns across bets at
the racetrack. To illustrate it, consider a large data set consisting of horse starts, i.e, a
sample of horses that competed in some race. Each observation i corresponds to a pair
(wini, Ri + 1), where Ri + 1 is the gross return that A-D security i pays conditional on
horse i winning and wini is an indicator variable for whether horse i won the race or not.
Define Ai as the ex-post gross return on security i, i.e.,

Ai =

Ri + 1 if wini = 1

0 if wini = 0,

and thus the regression

E[Ai | log si] = E[(Ri + 1) pi| log si] = f(log si) (3)

measures the expected gross return among securities that have the same log price (log si).
Using a sample of 176,652 races that were collected from North American tracks over 2003-
2006,19 consisting of 1,456,512 horse starts, we estimate f by non-parametrically regressing
Ai on log si using a locally linear kernel weighted regression.20 Figure 1 shows the estimated
returns —along with their 95% confidence interval, which clearly exhibit the FLB: low value
securities have lower expected returns, where the effect is particularly pronounced when
comparing the extremes. The returns in Figure 1 are net of the track take. Thus, since
the average track take is about 0.19, these returns imply that, roughly, horses with prices
below 0.2 are overpriced and those with prices higher than 0.2 are underpriced.

To understand the argument implicitly put forth by Thaler and Ziemba (1988) as to
why the FLB as found in the data is so puzzling, let us recall Lemma 1 and consider
the indifference ratios of a representative agent that clears the market in equilibrium.
In order to clear the market, the agent must be indifferent across securities to sustain

19The data were collected through the efforts of members at the website paceadvantage.com. This data
set is one of the largest to have been assembled to study betting behavior.

20We use the Epanechnikov kernel and a rule of thumb bandwidth estimator.
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Figure 1: Favorite Longshot Bias
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positive asset demand (a necessary condition for equilibrium). The expected gross return
to an average bet in the data is ERavg = .76. We can thus use Figure 1 to recover the
representative agent’s indifference ratio ( rrρ ), which is the ratio associated to the ‘average’
security (representing a random bet) and a security with price ρ. This ratio represents the
amount that the average security must pay in expected returns relative to the a security
with price ρ in order for the agent to be indifferent, and we can back out this relationship
from the data because the representative agent is indifferent across all securities for the
market to clear. As Figure 2 shows, the representative agent overvalues securities with
prices .01 or less by over 50 percent, and securities with prices .005 or less by approximately
100 percent, compared to the average bet.

5 Estimating Heterogeneity

We now show how to estimate a model of an A-D economy where agents have heterogeneous
beliefs. The goal is to estimate the pattern of belief heterogeneity that is consistent with
both the betting data and the equilibrium constraints of the model. That is, we seek
to understand whether a heterogeneous beliefs model can explain the observed FLB and,
furthermore, what the estimated pattern of heterogeneity looks like. We will contrast this
typical agent with the representative agent that rationalizes the data.

In order to illustrate our empirical strategy we first describe the general maximum
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Figure 2: Representative Agent Indifference Ratios
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likelihood (ML) approach for estimating preferences from aggregate betting data, which
was first introduced by Jullien and Salanié (2000) in the context of a representative agent
framework. We then show how to extend their framework to a population of heterogeneous
agents. Let us recall that the dataset consists of a sample of K markets or races, which
are assumed to be independent of each other. Each market k = 1, · · · ,K is defined by
the number of securities nk, a vector of odds Rk = (Rk1 , · · · , Rknk), and the identity of
the winner ikwin. The data thus identify the empirical relationship between prices and
fundamentals, i.e., for any number of securities n with odds (R1, · · · , Rn) we can identify
the underlying probabilities of winning p(R1, . . . Rn): intuitively, pi(R1, . . . Rn) is identified
by the fraction of times horse i wins in the subset of races characterized by (R1, . . . , Rn).21

A key insight in Jullien and Salanié (2000) (which we shall abbreviate as JS) is to
recognize that an equilibrium model of the betting market, described by parameters θ ∈
Θ, implies a relationship between prices and fundamentals, denoted p(R1, . . . Rn; θ). The
empirical strategy implicitly underlying JS is to find the parameters θ ∈ Θ whose prediction
about the equilibrium relationship between prices and fundamentals best matches the
actual empirical relationship. This strategy is naturally implemented using maximum
likelihood, and can be described by two key steps:

1. Given a choice of model parameters θ ∈ Θ, for each market k, find the vector of
21Formally, this can be identified by the non-parametric regression of the indicator variable that a horse

i wins on the vector of odds in the race
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unobserved payout probabilities pk(θ) = (pk1(θ), · · · , pk
nk

(θ)) that is consistent with
observed odds Rk under equilibrium. That is, we solve

pk(θ) = φ(Rk, θ), k = 1, · · · ,K, (4)

where φ is a model-specific mapping from odds to probabilities.

2. Estimate θ by maximizing the log-likelihood

LL(θ) =

K∑
k=1

log pk
ikwin

(θ). (5)

This ML estimator consistently estimates the value of θ0 ∈ Θ that minimizes the Kullback-
Leibler distance between the model p (R1, . . . , Rn; θ0) and the data p (R1, . . . , Rn) .22

JS formally showed that, in a representative agent framework of market equilibrium,
there exists a unique equilibrium mapping between prices and fundamentals that is required
for Step 1. In particular, the equilibrium mapping is determined by the set of indifference
conditions

U(pk1, R
k
1 ; θ) = U(pk2, R

k
2 ; θ) = · · · = U(pkJ , R

k
J ; θ), (6)

where U(pki , R
k
i ; θ) is the payoff to the agent from investing in a security with payout

probability pki at oddsR
k
i . That is, p

k is solved to make the agent indifferent about investing
across securities at the observed odds.23 Using these conditions, preference parameters θ,
such as risk aversion or cumulative prospect theory (CPT) coefficients, can be estimated.
Using this approach, JS compared different representative agent preferences, and found
evidence in favor of CPT over risk loving as the preferred explanation of the FLB.

A heterogeneous agents model, however, cannot be approached using this represen-
tative agent framework: the set of agents who are indifferent across all securities in a
heterogeneous population typically has measure zero. Thus we can no longer use the
equilibrium conditions (6) to solve for the relationship between prices and probabilities
pk(θ) = φ(Rk, θ) in a heterogeneous agents model (where the parameter θ ∈ Θ determines
the pattern of heterogeneity in the underlying betting population). Instead, the additional
information that we will use to solve for the equilibrium relationship between prices and
fundamentals are the market shares of the securities sk = (sk1, · · · , skn), which are derived
from observed odds using (2). Note that market shares are not needed in the representative

22Standard errors follow from standard likelihood theory, which JS give explicitly for this context in
Section 4.c of their paper.

23Jullien and Salanié (2000) show that, if U is continuous and respects first order stochastic dominance,
the mapping φ from odds to probabilities implied by (6) is well-defined.
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agent approach. However a heterogeneous agents model predicts market shares in a natural
way. In particular, if Ut denotes the payoff function of agent t and we assume that she
invests her endowment on a single security,24 market shares are given by the aggregation
of individual investments:

ski =
1∫

T wtdt

∫
T
wt1

[
Ut(p

k
i , R

k
i ) > Ut(p

k
j , R

k
j ) ∀j 6= i

]
dt, i = 1, · · · , nk, (7)

where 1 [·] is the indicator function. Thus, our goal is to characterize Ut in terms of our
model of belief heterogeneity and show that the system of equations (7) can be uniquely
inverted to recover pk. In order to be consistent with our theoretical model and to ease
exposition, we focus here on the case of a population of risk neutral agents. Nonetheless,
we describe in the Appendix the general identification strategy when the trader population
exhibits heterogeneity in both risk preferences and beliefs.25

To characterize (7) under risk neutrality and heterogeneous beliefs, let us return to
Lemma 1, which allows us to represent agent preferences in terms of their relative deviations
from correct beliefs rt = (r1t, . . . , rnt) > 0 for t ∈ T. Recall that agent t’s subjective
expected returns of security i can be written as ERi

rit
. Because choices are invariant to a

monotonic transformation of preferences, can can express her utility as

Ut(p
k
i , R

k
i ) = logERki + νit. (8)

where we let νt = (ν1t, . . . , νnt) and νit = − log rit, Abusing slightly our earlier notation,
let P (·; θ) be the distribution of νt, which captures the distribution of belief heterogeneity
in the population T and is indexed by an unknown vector of parameters θ ∈ Θ that is
the object of estimation. Assuming that P is continuous and that the distribution of
endowments is independent of P , by Lemma 1 we can express (7) as

ski =

∫
νt∈Rn

1 [δi + νit > δj + νjt ∀j 6= i] dP (ν1t, · · · , νnkt; θ) i = 1, · · · , nk, (9)

where δi = logERki − logERk1 .

It turns out that this system of equations (9) is isomorphic to a differentiated product
market in which each agent chooses among n differentiated products, with δi representing

24We are implicitly modelling the decision of which asset to invest and abstracting from the participation
decision since we do not have data on the number consumers who do not participate in the market. Rather,
our data only gives us demand conditional on participation. In addition, we assume that the probability
of a positive mass of agents being indifferent between two securities is zero. This is the case when the
distribution of beliefs is continuous, as we assume below.

25When we add risk aversion to the heterogeneous beliefs model, we find it does not empirically add
much and does not affect our main findings as will be later discussed.
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the “mean utility” of product i —the mean utility of product 1 is normalized to be zero—
and νt = (ν1t, . . . , νnkt) is a vector of random utility terms that is heterogeneous in the
population. Inverting systems of equations defined by (9) is central to the demand estima-
tion framework put forth by of Berry et al. (1995) (aka BLP), i.e., solving for mean utilities
given the underlying distribution of preferences over a set of differentiated products using
the observed prices and market shares over these products. This connection provides us an
immediately useful result: so long as P is continuous, then Berry (1994) shows that there
exists a vector of mean utilities (δ1, . . . , δn) that solves (9). Furthermore, the more recent
Berry et al. (2011) shows that such solution is unique.

We can now exploit these results to carry out the empirical strategy of JS in a hetero-
geneous agents context. Constructing the likelihood for given choice of parameters θ can
be described by the following steps.

(a) For any market k, we numerically find the unique underlying vector of mean utilities
δk = (δk1 , · · · , δknk) ∈ Rn that solves the system of equations (9).

(b) Given δk = (δk1 , . . . , δ
k
nk

), we can recover the underlying probability distribution over
states of nature pk by using the following facts

(i) δki = logERki − logERk1 ,

(ii) The expected gross return is ERki = (1− τ)
pki
ski
,

(iii) Probabilities (pk1, . . . , p
k
nk

) over the nk possible states of nature sum up to one.

6 Results

The only aspect of the estimation that remains to be discussed is how to parameterize the
distribution P (νt; θ). We wish to introduce belief heterogeneity so that it is idiosyncratic.
To do so, we restrict P to satisfy E[νit] = 0 for all i = 1, . . . , n, and E(νit | ν−i,t) = 0 for any
ν−i,t ∈ Rn−1. That is, there is nothing systematic about the shocks νt. If we further assume
that νit are i.i.d. P (νt; θ) is non-parametrically identified, as we show in the Appendix.

The standard approach in the estimation of discrete choice demand models is to assume
that νit is an i.i.d. “logit” error with common variance across the securities i = 1, . . . , n.

That is, νit ∼ F (· | σ) where F (· | σ) is the CDF of an extreme value random variable with
scale parameter σ. We now introduce a more flexible approach to modelling heterogeneity
that applies to discrete choice models in general, but is particularly useful as a means of
modelling belief heterogeneity. Instead of requiring that νit be a logit error, we let νit be
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a variance mixture of logit errors. That is

P (ν1t, . . . , νnt) =

∫ n∏
i=1

F (νit | σ) dG(σ),

where G(σ) is the mixing distribution. Such a variance mixture retains the above key
properties of idiosyncratic heterogeneity.26 Moreover, as we argue in the Appendix (see
section D), we can identify G given that P is (non-parametrically) identified. Solving for
the inner integral in (9) analytically (see e.g., Train (2003)) yields the well known mixed
logit demand

si =

∫
σ∈R+

exp
(
1
σ δi
)∑n

j=1 exp
(
1
σ δj
) dG(σ) i = 1, . . . n, (10)

where the mixing takes place over the distribution of the variances σ. Although this system
(10) bears a resemblance to the mixed logit demand that was originally estimated by Berry
et al. (1995), there is a critical difference. Because our heterogeneity is governed by a
variance mixture of the logit errors (as opposed to the usual mean mixture), it introduces
a random coefficient 1

σ on the mean utility term δi. This random coefficient does not affect
the existence and uniqueness of a solution to the system, but it does affect our ability to
compute it because the contraction mapping proposed in Berry et al. (1995) is no longer
valid (the mean utilities cannot interact with random coefficients in their setup). Instead,
we minimize the sum of squared errors between observed shares and predicted shares using
a quasi-newton procedure.27

A one component mixture, i.e., a distribution G(σ) with only one point in its support,
corresponds to the standard logit assumption. Adding components to the simple logit
gives rise to a finite mixture. We view this as a natural way to capture heterogeneity in
the population in our context as the different components can be interpreted as trader
“types”. A finite mixture with J components corresponds to a parameter vector θ =

(σ1, · · · , σJ ;P1, · · · , PJ), where σj for j = 1, . . . , J are the support points of the finite
mixture and Pj is the probability mass of component j.28 The parameter estimates for a
one, two and three component mixture are presented in Table 1.

The first thing to note is that the two-component specification provides a much better
26Conditional on σ, F (νt | σ) represents i.i.d. logit errors with common variance σ and thus satisfies

idiosyncratic heterogeneity. Then, by integrating out over σ, idiosyncratic heterogeneity is retained.
27The reason this computational strategy works well is that we have sensible starting values, namely

the vector of zero mean utilities, which corresponds to all horses in the race having same expected return.
Since these starting values are close to the true inverse when payout probabilities are not too extreme, the
quasi-newton procedure is able to deliver a fast solution.

28Any distribution over a compact support can be approximated by a multinomial distribution. See e.g.,
Theorem 10.15 in Aliprantis and Border (2006).

17



Table 1: Parameter Estimates
One Type Two Types Three Types Two Types-CARA
Estimate Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error) (std. error)
σ1 0.067 0.028 0.014 0.034

(0.0035) (0.0033) (0.0058) (0.0074)

σ2 - 0.503 0.690 0.514
(0.0588) (0.1757) (0.0862)

σ3 - - 0.075 -
(0.0306)

P1 1 0.716 0.461 0.706
(0.1237)

P2 - 0.284 0.219 0.294
(0.0184) (0.0390) (0.020)

P3 - - 0.320 -

CARA(γ) - - - 0.003
(0.0031)

Log-likelihood -307,391.5 -307,291.8 -307,291.3 -307,288.0
LR Testa 199.4 - 1.0 7.6
(p-value) (<0.0001) (0.6065) (0.0058)

aThe LR test statistic is given by 2 lnLLa − 2 lnLL0, where LL0 and LLa represent the
log-likelihood of the null and the alternative model, respectively (where the alternative model
nests the null).

fit that the one-component specification. To see this fact, we illustrate in Figure 3 the
pattern of (net) expected returns implied by the one-component and the two-component
specifications, respectively.29 While the one component model does a poor job fitting
the expected returns of longshots, the two component model fits the observed pattern
remarkably well. This improvement is further confirmed by the likelihood ratio test, which
strongly rejects the one-component in favor of the two-component model.

Table 1 also shows that adding a third component does not improve the fit: the log like-
lihood is almost identical to the two-component model —the LR test does not find a signif-
icant difference in the likelihood associated with the two-component and three-component
models. As can be seen, the introduction of a third component roughly reproduces the two

29The x-axis in each figure is drawn on a log-scale. We can produce the model’s analogue of Figure 1 by
regressing the predicted ERki on log ski for all securities i and markets k in the data.
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Figure 3: Predicted and Actual Returns

0.1

0.3

0.5

0.7

0.9

ρi

ERi

0.003 0.01 0.03 0.1 0.3 1

Data

One Type

Two Types

component case, in which the predominant component (P1 = 0.716) exhibits low variance
while the second component exhibits substantial dispersion. Consequently, in what follows,
we focus on the two-type model.

In order to check our assumption of risk neutrality, we also estimate a two-component
model in which agents have (homogeneous) CARA preferences following the general ap-
proach laid out in the Appendix. The last column of Table 1 shows the model estimates.
The estimated CARA coefficient (denoted by γ) yields a tiny degree of risk aversion
(γ = 0.003) albeit not significantly different from zero. That is, we fail to reject risk
neutrality (γ = 0). In addition, the remaining parameters are virtually identical to the
two-component risk neutral version of the model.30

6.1 Economic Interpretation: Informed and Noise Traders

The two component mixture suggests a bimodality in the underlying distribution of agents
in the market. In the context of financial markets, there is a large literature that the-
oretically introduces a bimodal distribution of traders. On the one hand there are the
arbitrageurs who are motivated by revenue maximization and are relatively well informed.
On the other hand there are the noise or liquidity traders (known as recreational gamblers

30Nonetheless, allowing for CARA preferences yields a significant likelihood gain —the LR test rejects
the risk neutral version of the model in favor of the CARA specification at the 1% level. However the
economic implications of these two models are virtually identical.
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in betting markets) who typically have a wider dispersion of beliefs, due to having less
precise information than the arbitrageurs or to not properly updating their beliefs after
observing prices. This two type classification is commonplace in the market microstructure
literature (see e.g. Glosten and Milgrom (1985), Kyle (1985) and the ensuing literature),
which separates traders into “noise” traders and insider speculators, in the ‘limits of arbi-
trage’ literature (De Long et al., 1990; Stein, 2009), and in research related to mispricing in
speculative markets (Shin, 1991, 1992; Serrano-Padial, 2012). In the context of parimutuel
markets, Ottaviani and Sorensen (2006) interpret these types as late (more informed and
neutral in tastes) and early traders (less informed and more idiosyncratic in tastes).31

Our estimates are consistent with this bimodal view of the trading population. If
we interpret the components of the mixture as representing different “types” of economic
agents, then type σ1 represents informed traders, which is also the modal type in the
population (72%), while type σ2 is a noise trader, since it exhibits a higher level of “noise”
in subjective valuations. This is, to our knowledge, the first paper empirically identifying
the existence of informed and noise traders with aggregate data on prices and asset value
realizations.32

To quantify the degree of ‘noise’ exhibited by type-σ2 agents, consider the choice be-
tween investing in a security at random, which yields average returns in expectation, and
an extreme longshot. For example, in our dataset, the average (gross) return among all
assets is 0.76, whereas it is about 0.35 for securities in the bottom percentile of the price
distribution. The probability that a type-σ2 agent in our estimated population prefers a
security with average returns to a security i yielding 0.35 is given by

Pr(0.76/0.35 > rt/rit) = Pr
(
νt − νit < (log 0.76−log 0.35)

0.503

)
≈ 0.82,

where the last equality following from the fact that νt−νit is distributed standard logistic.33

Furthermore, since type σ2 only has a mass of approximately 0.28 in the population, and
type σ1 prefer the favorite approximately virtually 100 percent of the time, the probability
of the random investment being preferred to the longshot in the population as a whole is
approximately 0.82 × 0.28 + 0.72 ≈ 0.95. This is in stark contrast with a representative
agent, who must indifferent between the two bets in order to explain the data.

We further compare the representative agent and traders in our estimated model by
looking at the distribution of indifference ratios r

rρ
in the two-component population. Fig-

31Consistent with this two-type hypothesis, Forsythe et al. (1992) and Cowgill et al. (2009) find empirical
evidence of two types using agent-level data from prediction markets.

32There are several empirical studies that estimate the presence of noise traders using individual trading
data from laboratory markets (Forsythe et al., 1992; Cipriani and Guarino, 2005), or transaction data from
financial markets (Easley et al., 1997).

33The difference of standard Type 1 extreme value random variables is standard logistic.
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ure 4 shows the different quantiles of the distribution, which we compare alongside the
the implied indifference ratios of a representative agent. Agents in the interquartile (IRQ)
range, i.e., the inner 50% of the agents in the population, exhibit very little dispersion
from the canonical agent, i.e., the agent with indifference ratios equal to 1.34 That is, the
modal behavior in the heterogeneous population is closely captured by a risk neutral agent
with correct beliefs. This is driven by the fact that the first component has a very low
variance. Beliefs become more dispersed for agents outside the IRQ, reflecting the fact
that the variance of the second component is much higher (σ2 = 0.503 versus σ1 = 0.028).
It is only at the extreme tails of our estimated distribution of belief heterogeneity that we
approach the extreme beliefs of the representative agent with respect to longshots.

Figure 4: Individual vs. Market Behavior
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Figure 4 also provides intuition for why the two-type specification performs better than
the one-type. Consistent with the numerical example in Section 3, to generate the observed
disparity in returns between longshots and the average bet, we need only a small fraction
of traders investing in the longshot. This is because the empirical winning probabilities of
longshots are very small. Accordingly, most of the agents belonging to the first component
exhibit beliefs that induce them to invest on the favorites, while agents in the second
component spread their investment across securities, with a minority of them going for
the extreme longshots. In contrast, the one-type specification faces a trade-off: either it

34The IRQ is a standard measure of dispersion and model behavior. Manski (2004) also uses it to
document dispersion in beliefs.
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exhibits low belief dispersion (as it is the case) thus fitting well the returns on securities
with moderate and high payout probabilities but does not generate enough demand for the
longshots, or it exhibits higher dispersion, hence fitting poorly the returns on favorites.

7 Preferences vs. Belief Heterogeneity

In this section we compare our belief heterogeneity model to the two leading explanations
of the FLB: risk loving and probability overweighting. In particular, we estimate a model of
heterogeneous risk preferences that generalizes the representative agent model of expected
utility employed in JS. We also estimate a representative agent model of CPT preferences
as was employed by JS. The three main empirical questions of interest are the following:

• Do most agents exhibit risk love in the heterogeneous risk preferences model (denoted
HR for short)?

• Does the explanation of the FLB that emerged from JS’s estimation of CPT, namely
the overweighting of loss probabilities, also arise in our data?35

• How do each of these alternatives empirically fare against our belief heterogeneity
model (henceforth BH)? Specifically, can we formally compare these three models
and study whether one of them stands out as the better explanation of the data?

7.1 Heterogeneous Risk Preferences

We start by considering a model with heterogeneous risk preferences (as opposed to het-
erogeneity in beliefs) within an expected utility framework. As in JS, we assume that
agents are expected utility maximizers with correct beliefs, common endowment w and
initial wealth M , and make a discrete choice from the set of available securities. However,
we depart from JS by allowing heterogeneous risk attitudes. Agent t’s expected utility of
investing in security i is given by U(pi, Ri, γt) = piu(M +wRi, γt) + (1− pi)u(M −w, γt),
where u represents utility over final wealth. The term γ is a utility parameter that is dis-
tributed according to a continuous distribution F (·; θ) strictly increasing over the support
of γ, where larger γ indicates more risk aversion. The parameter to be estimated is θ,
which determines the pattern of heterogeneity in the population of agents.

Observe that if we order horses such that p1 < · · · < pn, then we must have R1 > · · · >
Rn in any equilibrium with trade. This is driven by the fact that expected utility respects

35This is of interest because their approach has not been applied beyond the UK betting markets they
originally considered, which follow a fixed-odds wagering system rather than a parimutuel mechanism.
As Ottaviani and Sorensen (2005) show, in the presence of asymmetric information, these differences in
market structure could have significant pricing implications.
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FOSD, i.e., agent t’s expected utility from investing in i is increasing in both Ri and pi.
Thus, if (Rj , pj) > (Ri, pi) for some i, j then all traders, regardless of γt, will prefer j over
i and the market will not clear.

This monotonicity of odds w.r.t. probabilities allows to solve for pk using Rk for any
parameter value θ ∈ Θ and thus conduct step 1 in the above ML estimation. This is
because, given (Rj , pj) and (Ri, pi) with pj > pi, if an agent with risk coefficient γt prefers
j over i then all agents that are more risk averse (γt′ > γt) also prefer j to i. From this
single crossing condition it immediately follows, as the next result states, that the mass of
agents investing on i is given by the agents with γt ∈ [γi−1, γi], where γi corresponds to
the marginal agent indifferent between security i and i+ 1.36

Theorem 2. If p1 < · · · < pn and R1 > · · · > Rn then there exist −∞ = γ0 < γ1 <

· · · < γn−1 < γn = ∞ such that the mass of agents investing in security i is given by
F (γi; θ)− F (γi−1; θ), and

U(R1, p1, γ1) = U(R2, p2, γ1), . . . , U(Rn−1, pn−1, γn−1) = U(Rn, pn, γn−1). (11)

This result implies that for any race k, the system of market shares equations (7) is
given by

ski = F (γki ; θ)− F (γki−1; θ), i = 1, · · · , nk, (12)

where
{
γki
}nk
i=1

satisfy (11). Unlike the BH model, (12) admits a closed form solution. We
describe in the Appendix the steps to analytically recover the underlying probabilities.

Following JS and Snowberg and Wolfers (2010), we estimate a model in which agents
have CARA preferences, given by u(x, γ) = (1− e−γx) /γ. A key feature of CARA utility
is that the initial wealth M drops out of the indifference conditions and the endowment w
gets subsumed in the definition of γ, i.e., γ and w are not separately identified and thus
w is implicitly normalized to 1. We parameterize F as a normal distribution with mean
µγ and standard deviation σγ .37 Our estimates are shown in the first column of Table 2.
As can be seen, virtually all agents in the HR model exhibit risk loving attitudes (98.8%
of the population), with very little dispersion: γ ranges between -0.02 and 0. The risk
attitudes we find are close to the representative agent estimates of Snowberg and Wolfers
(2010) (γ = −0.017) and exhibit slightly less risk loving than in JS (γ = −0.055).

The intuition for why heterogeneous risk preferences do not lead to any fundamentally
36For more details see Chiappori et al. (2009), who provide an overview of the general approach to

identification and estimation of contract choice models under a single crossing condition on heterogeneity.
They also suggest different applications from parimutuel markets to insurance and the statistical value of
life.

37We have tried alternative flexible distributions and the differences in both the estimated distribution
of CARA coefficients and the likelihoods were insignificant.
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Table 2: Preference-Based Models
HR CPT JS (CPT)

Estimate Estimate Estimate
Parameter (std. error) (std. error) (std. error)

CARA (µγ , γ) -0.0086 -0.032 -0.072
(0.0017) (0.0006) (0.021)

Std dev (σγ) 0.0038 - -
(0.0012)

Gains (α) - 1.220 1.162
(0.0003) (0.143)

Losses (β) - 0.280 0.318
(0.0006) (0.272)

Observations 176,466 176,466 4,037
Log-likelihood -307,333.6 -307,301.5 -7,365.3
Vuong Test 370.70 34.92 -
(p-value) (<0.0001) (<0.0001)

new insights beyond the representative agent risk loving explanation is the following: if
returns are increasing in probabilities (or if favorites yield higher returns than the other
securities), as it is the case in the data, risk averse agents will only invest in the favorite.
To see why, observe that if ERi = ERj with pi > pj then security j is a mean preserving
spread of i and a risk averse agent would always prefer i to j. Accordingly, a positive mass
of risk lovers is needed to generate demand for the remaining securities and for the FLB to
emerge in equilibrium. Indeed, all the marginal agents in (11) must be risk lovers. Thus,
allowing for the possibility of risk averters in the population does little to change the tight
link between risk love and the FLB from a pure risk preferences perspective.

7.2 Cumulative Prospect Theory

The CPT model we estimate is the preferred specification in JS: a three-parameter model
consisting of a single CARA utility function with risk aversion coefficient γ to capture utility
over both monetary gains and losses, and two separate probability weighting functions: one
for gains and the other for losses.38 As in JS, we assume that the representative agent has

38Notice that the JS specification is richer than the one-parameter rank-dependent utility model of
Snowberg and Wolfers (2010).
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correct beliefs about p. The value of investing w on security i given odds Ri is given by

U(pi, Ri) = G(pi)u(wRi, γ) +H(1− pi)u(−w, γ),

where u(x, γ) is a CARA utility, G(p) = pα is the weighting function for gains and H(p) =

pβ is the weighting function for losses.39 We estimate the model by maximum likelihood
using indifference conditions (6) —see JS for details.

Our parameter estimates along with the CPT estimates from JS are presented in the
last two columns of Table 2. As can be seen, both estimates are quite close, but because
of the much larger size of our sample our estimates have a much higher precision. We
find that preferences exhibit slight risk loving (γ < 0), a slightly convex weighting of gains
(α > 1) and a highly concave weighting of losses (β � 1). Our estimates reinforce the
major empirical finding from JS: under CPT, the key primitive driving the overpricing of
longshots is the overweighting of loss probabilities (particularly for small probabilities).

7.3 Testing the Models

We have considered three alternative explanations of the FLB and the natural question
becomes whether any one model stands out as a superior explanation of the data. We
now aim to formally compare these various theories, both against each other and also
against the true relationship between prices and fundamentals in the data. To motivate the
econometric foundation for comparing these non-nested models, observe that the likelihood
from our BH model exceeds that of the HR and CPT models. This suggests that our beliefs
approach exceeds the explanatory power of these preference based alternatives. We can
actually formalize this comparison in light of the identification strategy presented in Section
5. Let φ (R) denote the true mapping between prices and fundamentals in the data, i.e.,
p = φ (R), and denote φm(R; θ) the mapping between prices and fundamentals predicted
by model m ∈ {BH,HR,CPT} for θ ∈ Θm. If model m is properly specified, then

φ (R) = φm (R; θm) (13)

for some ‘true value’ of parameters θM ∈ ΘM . A natural question is whether (13) is
actually testable, i.e., whether we can test that model m is consistent with the underlying
data generating process. The likelihood framework naturally allows for such a specification
test, which was first proposed by White (1982). This specification test is derived from the
information matrix equality, which is a fundamental theorem in likelihood theory (see e.g.,

39Observe that a single initial wealth level does not have to be assumed here because the CPT model
considers only the utility of gains and losses relative to existing wealth.
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Cameron and Trivedi, 2005). In our current context, the information equality states that,
if (13) holds, the following must be satisfied:

E

[
∂2

∂θ∂θ′
log φmiwin (R; θm)

]
= −E

[
∂

∂θ
log φmiwin (R; θm)

∂

∂θ
log φmiwin (R; θm)′

]
, (14)

where the expectation is taken with respect to the true data generating process over winners
and odds (iwin,R) in the data. White’s test uses the sample analogues of each side of the
equality to construct a quadratic form that should be sufficiently close to zero if (13) is
true. We use the form of the test given by White (1987). Specifically, for each race k in
the data let lk(θ̂m) = log

(
φm
ikwin

(
Rk; θ̂m

))
, i.e., the log likelihood value associated with

race k at the estimated parameters θ̂m. The test statistic is constructed as

Tm =

{
K−1/2

K∑
k=1

q̂k

}′{
1

K

K∑
k=1

q̂kq̂
′
k

}−1{
K−1/2

K∑
k=1

q̂k

}
,

where

q̂k = vech
{
∂2lk
∂θ∂θ′

(
θ̂m
)

+
∂lk
∂θ

∂lk
∂θ′

(
θ̂m
)}

.40

If (13) holds, Tm is asymptotically distributed χ2 with J(J + 1)/2 degrees of freedom,
where J is the length of the parameter vector θm ∈ Θm. Hence “large” values of the test
statistic Tm indicate a significant difference between the model’s predictions and the data.

The results of the test are rather stark. The test statistic fails to reject (13) for the
BH model at standard significance levels (TBH = 8.54 whereas the 10% critical value is
10.64). Hence we cannot reject the null hypothesis that the BH model equals the true data
generating process. In contrast, the test statistic for the CPT model blows up considerably:
TCPT = 1, 139.08, which clearly rejects the null that the CPT model describes the true
DGP. Hence, although the log-likelihood values of the two models are somewhat close (BH
having a higher likelihood than CPT), as far as the information equality test we see a big
difference between these models in terms of their ability to accurately describe the true
data generating process. Not surprisingly, the HR model fares even worse, given that its
likelihood is substantially lower than that of CPT. We don’t interpret this test as literally
telling us that the two-type BH model is entirely properly specified. However, we do
interpret it as saying that the model captures the subtle variation in the data well enough
such that it cannot be distinguished from the true data generating process with nearly
200, 000 races and only 3 parameters!

We reach similar conclusions if instead we implement the pairwise non-nested model
40vech(A) denotes the half-vectorization of symmetric matrix A.
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selection tests proposed by Vuong (1989) between the BH and the HR and CPT models,
which are shown at the bottom of Table 2.41 The Vuong test is somewhat weaker than the
White test since it only tests which model is closer to the true DGP as opposed to testing
whether the proposed model is equal to the true DGP, however it has a somewhat more
transparent interpretation and thus it is useful to nevertheless consider it. Observe that
both the CPT and the BH models have the same number of parameters. As can be seen
there, we reject that either the HR or CPT models are as close to the true DGP as the
BH model, which confirms the insight from the White test.

7.4 Information Differences and the FLB

We have shown that our estimated two-type model of belief heterogeneity better explains
the FLB as compared to the HR and CPT models. Indeed we cannot reject the hypothesis
that the BH model we estimate is the true data generating process underlying the relation-
ship between prices and fundamentals, even with close to 200,000 races in the data. We
now ask whether we can gain further confidence that it is indeed belief heterogeneity what
accounts for the superior empirical performance of the random utility model (10) we esti-
mate. That is, although we derived our random utility on the basis of belief heterogeneity,
and our estimates of the model have a natural interpretation in terms of informed and
noise traders, in principle, the heterogeneity we estimate may have other interpretations.42

To speak to this issue, we exploit a form of variation in the data that allows us to even
further distinguish between a beliefs versus preferences interpretation of the FLB. Specifi-
cally, because beliefs respond to information while preferences do not, an ideal experiment
would be to use differences across races in the amount of information about participating
horses. Unfortunately, our data does not contain any horse specific information. However,
we can instead make use of the fact that horse races on the same day at the same track
come in two different forms: maiden and non-maiden races. Horses in a maiden race are
those that have yet to win a single race, and thus by definition any new horses are entered

41The Vuong test is based on testing the null hypothesis that

H0 : E0

[
log

φiwin (R; θm)

φiwin (R; θm′)

]
= 0,

where the expectation is taken with respect to the true data generating process over (iwin,R) and θm and
θm
′
denotes the pseudo-true value of the parameter vector under models m and m′ respectively (which

is what our MLE estimator can be shown to consistently estimate when the models are potentially mis-
specified as descriptions of the true DGP) . This null hypothesis tests whether both models are equidistant
(in the Kullback-Leibler sense) to the true DGP. Because our model’s are completely non-nested, we can
use the simple one-step implementation of the test described by Vuong that only requires computing the
likelihood value corresponding to each observation. We also avoid the problem of size distortion that arises
under the Vuong test when models are not completely non-nested, recently raised by Shi (2012).

42For example, idiosyncratic tastes (unrelated to risk preferences) that arise from state-dependent utility.
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into maiden races whereas horses must have a racing history to participate in a non-maiden
race. Thus on average, there is much less handicapping information about horses in maiden
races as compared to non-maiden (Camerer, 1998; Mitchell, 1989).

The greater uncertainty surrounding maiden races has testable implications for the
theories we have explored. For a given vector of winning probabilities p, the equilibrium
predictions of a purely preference-based model would be identical for the two types of races
because information has no bearing on demand. In contrast, one should expect less belief
dispersion in non-maiden races since traders can condition their beliefs on richer (public)
information, which in turns affects equilibrium prices —a fact we discuss in more detail
below. Thus, unlike preference-based theories, a belief heterogeneity perspective predicts
a change in the magnitude of the FLB across maiden and non-maiden races.

To compare these predictions, we control for other differences that might exist between
maiden and non-maiden races by restricting our samples to claiming races, in which horses
can be purchased before the races and exhibit horses with similar price tags (thus trying
to ensure a level playing field). This is the most frequent type of races in the US (over 54%
of all races). Furthermore, maiden and non-maiden claiming races take place typically on
the same day at the same track,43 and they exhibit similar track takes.44 Accordingly, we
should expect little differences in the trader population across the two types of races.

Figure 5 shows the relationship between prices and returns across race types. There is
a considerably smaller disparity in returns across assets in non-maiden races as compared
to maiden. That is, the FLB is much more pronounced in maiden races. Specifically, while
expected returns in maiden races go from $0.05 for extreme longshots to $0.96 for heavy
favorites, returns in maiden races are much more compressed, ranging from $0.45 to $0.89.

The substantial differences in the pattern of returns hint at a basic inconsistency of
a preference-based view of the FLB: it can only explain pricing differences across types
of races through differences in preferences. We illustrate this inconsistency by estimating
the HR and CPT models on the separate subsamples. Table 3 presents the HR estimates,
which exhibit significant differences in the distribution of risk attitudes (we reject the
mean γ is equal cross samples at the 1% level). Similarly to the full sample estimates,
the average agent exhibits risk loving in maiden races while being essentially risk neutral
in non-maiden races —the mean γ is actually positive (risk averse) but not significantly
different from zero. Figure 6 shows that the distribution of risk attitudes is slightly shifted
toward risk aversion in non-maiden races while the vast majority of traders are risk lovers in
maiden races. CPT estimates are given in Table 4, which show significant differences across

43In our dataset, 99.5% of maiden races were run in a day where non-maiden races were also run.
44The average track take for maiden claiming races is 0.190 with std.deviation 0.04. For non-maiden

claiming races the average take is 0.192 and the sdt.dev. is 0.04.
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Figure 5: The FLB in Maiden and non-Maiden Races
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samples, in particular on the probability weighting of losses (the difference is significant
at the 1% level): while both the full sample and maiden parameters are very similar, β is
more than twice as high in non-maiden races, resulting in a much less concave weighting
function (see Figure 7). These large swings in preferences across maiden and non-maiden
races are difficult to rationalize.

Table 3: HR Estimates for non-Maiden and Maiden Races
non-Maiden Maiden Full Sample
Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error)
CARA (γ) 0.0032 -0.0089 -0.0086

(0.0025) (0.0039) (0.0017)

Std dev (σγ) 0.0080 0.0057 0.0038
(0.0017) (0.0027) (0.0012)

Observations 87,394 29,003 176,466
Log-likelihood -156,098.7 -50,518.8 -307,333.6

The more pronounced FLB in maiden races, on the other hand, is fairly natural under
a belief heterogeneity view: with less information on the horses, we should expect more
belief dispersion in maiden races, particularly among noise traders, which translates into
a more pronounced FLB. However our beliefs model does still impose a restriction we can
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Figure 6: Risk Heterogeneity in Maiden and non-Maiden Races
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Table 4: CPT Estimates for non-Maiden and Maiden Races
non-Maiden Maiden Full Sample
Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error)
CARA (γ) -0.020 -0.032 -0.032

(0.0029) (0.0041) (0.0006)

Gains (α) 1.12 1.20 1.22
(0.0307) (0.0420) (0.0307)

Losses (β) 0.55 0.25 0.28
(0.0898) (0.0769) (0.0006)

Observations 87,394 29,003 176,466
Log-likelihood -156,101.0 -50,508.8 -307,301.5

test: the change in the FLB across the two race types should be driven by a change in the
belief dispersion of each type and not by a change in the proportion of trader types. If
our model instead were to empirically require a higher prevalence of noise traders in the
population to explain the change in the pattern of returns, it would suffer from the same
parameter instability problem that the above preference theories suffer from. We formulate
this claim as two testable hypotheses.

Hypothesis 1. The fraction of types in the BH model is the same across maiden and
non-maiden races.
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Figure 7: CPT Weighting Function for Losses
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Hypothesis 2. Belief dispersion in the BH model is higher in maiden races compared to
non-maiden races.

The basic insight behind Hypothesis 2 is that, if agents are Bayesian, their beliefs
should get closer as the amount of (public) information about the underlying state of the
world accumulates over time. For instance, in the context of horse racing, if agents observe
the performance of horses over time, they would eventually agree on the (true) winning
probabilities. This notion of belief convergence is formally treated in the literature on
merging of opinions (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994; Lehrer and
Smorodinsky, 1996; Gossner and Tomala, 2008).45,46 But, if beliefs get closer as more
information becomes available, we should also expect a smaller FLB in non-maiden races.
We theoretically show in the Appendix that this is the case in a model where the same
A-D security market is repeated over time.47

Table 5 presents the BH estimates for the two samples, which confirm Hypothesis 1 and
45A related literature deals with learning in competitive markets and convergence to rational expectations

equilibria. Examples are Townsend (1978); Feldman (1987); Easley and Blume (1982) and Vives (1993).
46Although the mentioned research on merging concerns the evolution of beliefs in the long run, Sandroni

and Smorodinsky (1999) show that the speed of convergence can be quite fast. In addition, Gossner and
Tomala (2008) provide bounds on average prediction errors.

47Specifically, we show that, for given p, the FLB gets mitigated overtime when agents can observe the
history of ex-post returns and agree on the direction of the belief updating. The latter means that, if state
i is realized in some period, all agents increase their subjective belief about pi for the next period. The
notion of belief consistency we employ is ordinal, in contrast to the stronger notion of concordant beliefs
common in the literature (e.g. Ottaviani and Sorensen, 2010a; Milgrom and Stokey, 1982).
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Table 5: BH Estimates for Claim and non-Claim Races
non-Maiden Maiden Full Sample
Estimate Estimate Estimate

Parameter (std. error) (std. error) (std. error)
σ1 0.0001 0.0366 0.028

(<0.0001) (0.0079) (0.0033)

σ2 0.340 0.6599 0.503
(0.0180) (0.1403) (0.0588)

P1 0.700 0.727 0.716

P2 0.300 0.273 0.284
(0.0104) (0.0321) (0.0184)

Observations 87,394 29,003 176,466
Log-likelihood -156,090.0 -50,505.8 -307,291.8

2. The fraction of type one is very stable around 70-73% —we fail to reject Hypothesis 1
at any standard significance level. In contrast, belief dispersion estimates are significantly
smaller (at the 1% level) in non-maiden races: σ1 is virtually zero and σ2 is about half its
value in maiden races. Thus, remarkably, our heterogeneous beliefs approach explains the
change in prices across information structures in the theoretically predicted way.

8 Conclusion

We have shown in this paper that allowing for belief heterogeneity in asset markets can
reconcile model predictions with observed aggregate patterns without compromising the
validity of standard behavioral assumptions such as weak risk aversion and expected utility.
We have used Arrow-Debreu security markets as a general setting in which to illustrate
these points. We have also showed that a belief-based model of trade in financial markets
outperforms existing preference based explanations of the FLB on several dimensions. We
think heterogeneous beliefs have the potential to play an important role in empirical work
in other institutional settings, such as insurance and credit markets, and we hope this
paper encourages future research in this area.
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Appendix

A Omitted Proofs

Proof. [Proof of Lemma 1] Consider the maximization problem of agent t with endowment
wt > 0 and beliefs (π1t, . . . , πnt)� 0. Given the state of the world (p1, . . . , pn) and market
prices (ρ1, . . . , ρn)� 0, the agent solves

max
(x1,...,xn)∈Rn+

n∑
i=1

xi

(
πit
ρi
− 1

)
+ wt

s.t.

n∑
i=1

xi ≤ wt.

The ratio πit/ρi represents the subjective (expected) returns of security i, i.e. the return
given agent’s beliefs. If there is a security i such that

πit/ρi
πjt/ρj

> 1, ∀j 6= i, (15)

then the solution to the agent’s problem implies investing all the endowment wt in security
i. This is because (i) security i yields the strictly highest subjective returns among all
securities; and (ii) security i’s subjective returns are strictly greater than one. Property
(ii) comes from the fact that, since

∑
i πi = 1 and

∑
i si = 1, we must have max

h

πht
sh

> 1

whenever πht
sh
6= πkt

sk
for some h, k. This also means that, if the latter is true, the agent will

invest all her endowment in the securities yielding max
h

πht/sh, being indifferent about how

much to invest on each of them. Finally, if πht
sh

= πkt
sk

for all h, k, then subjective returns
are all equal to one, making the agent indifferent between investing any amount in [0, wt].

To finish this case, notice that, by letting rit = pi/πit, expression (15) becomes

ERi
ERj

>
rit
rjt
, ∀j 6= i.

Proof. [Proof of Theorem 1] We consider first the case of a market with zero transaction
costs τ = 0. Let qi(ER1, . . . , ERn;p, θ) represent the aggregate investment on asset i and
denote rit =

(
rit
r1t
, . . . , rit

ri−1t
, rit
ri+1t

, . . . , ritrnt

)
. Given Lemma 1, qi at fair prices satisfies, for
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all (p, θ),∫
T
wt1[rit < (1, . . . , 1)]dt ≤ qi(1, . . . , 1;p, θ) ≤

∫
T
wt1[rit ≤ (1, . . . , 1)]dt.

By Assumption 1, the lower bound on qi in this expression is bounded away from zero while
the upper bound is bounded below

∫
T wtdt. In addition, aggregate investment is bounded

by the aggregate endowment in the market:

∑
j

qj(ER1, . . . , ERn;p, θ) ≤
∫
T
wtdt.

This implies that, the market share of security i at fair prices, which is given by

si(1, . . . , 1;p, θ) =
qi(1, . . . , 1;p, θ)∑
j qj(1, . . . , 1;p, θ)

,

must be bounded above zero and below one. Define

s := min
i

inf{si(1, . . . , 1;p, θ) : (p, θ) ∈ (0, 1)×Θ} > 0.

To prove part (i) of the theorem, let pi > q̄ := 1 − s and suppose the theorem does not
hold, i.e., pi ≤ ρi = si. Then, since

∑
j 6=i sj = 1 − si and

∑
j 6=i pj = 1 − pi there must be

at least a security h with ERh ≥ 1. Pick the one with the highest expected returns. For
this security we must have ERh

ERj
≥ 1 for all j, and thus it must be that sh ≥ s. But then,

since si ≥ pi > 1 − s by assumption, we have that sh ≤
∑

j 6=i sj < s, a contradiction.
Obviously if security i is strictly underpriced, we must have that the remaining securities
are overpriced on average:

∑
j 6=i ρj >

∑
j 6=i pj .

Now consider the introduction of transaction costs. If, before introducing them, trader
t was indifferent between investing on any security i or not investing,48 we must have

ERi
ERj

=
rit
rjt

∀j 6= i. (16)

In this context, let ERi = p
s∗i
, where s∗i is the market share associated with zero transaction

costs. After introducing positive transaction costs, for the agent to be indifferent between
investing in security i and not investing in the market, expected returns need to satisfy

ERi = (1− τ)
pi
s′i

=
p

s∗i
,

48Recall from the proof of Lemma 1 that for an agent to be indifferent between investing or not she must
also be indifferent between investing among any two securities.
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where s′i is the new market share for security i, implying that s′i < s∗i . But this means that
(i) the agent does not longer invest in the market at the old prices (ρi = s∗i for all i), and
(ii) if the agent is indifferent between investing in i or not at the new prices, she has strict
incentives not to invest in some of the other securities. This is because s′i < s∗i implies that
s′j > s∗j for some security j, given that market shares add up to one. Therefore, the above
indifference condition translates into

ERi
ERj

≥ rit
rjt

∀j 6= i, (17)

with strict inequality for some j.
Summing up, the introduction of positive transaction costs can potentially reduce the

demand for any given asset. If this reduction is big enough the equilibrium market share
for some security may not be bounded above zero, also implying that the other securities’
shares may not be bounded below one, so that the FLB may not hold. Thus, in order to
show that the FLB holds in equilibrium we need to show that this does not happen for low
enough τ.

The first thing to note is that, since Li[z|p, θ] = Pr[rit � z|p, θ] and Li[1|p, θ] is
bounded away from zero, we can always find z = (z1, . . . , zn)� (1, . . . , 1) close enough to
(1, . . . , 1) such that Li[z|p, θ] is also bounded above from zero for all i.

Second, notice that the smaller the track take τ , the closer the market share s′i gets to
s∗i with s′i → s∗i as τ → 0 for all i, and thus the closer the indifference condition (17) gets
to condition (16). Hence, if we fix ERi/ERj = 1 for all i, j, given z � (1, . . . , 1) we can
always find a low enough τ > 0 such that, for all τ < τ , the marginal traders indifferent
between investing in i or not have indifference ratios satisfying z < rit < 1.

Therefore, combining these two facts we can show that market shares when ERi/ERj =

1 for all i, j are bounded away from zero for all τ < τ given some small τ > 0 and apply the
same reasoning as in the case of τ = 0 to show that the FLB must hold in equilibrium.

A.1 Weakening Assumption 1

As we mention in Section 3, when endowmnets and beliefs are independent, the FLB could
obtain even when the mass of agents strictly preferring security i over the alternatives
dwindles to zero as pi → 0. The next assumption and theorem formalize this intuition.

Assumption 2. There exist p > 0 and α > 1 such that Li[(1, · · · , 1) | p, θ] > αpi for all
pi < p and all i = 1, . . . , n.

Theorem 3. If Assumption 2 holds and endowments are independent of P , there exists
τ̄ > 0 such that for all τ < τ̄ a necessary consequence of equilibrium is that there exists
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q̄ < 1 such that, for all i = 1, . . . , n, if pi > q̄ then security i is underpriced while securities
j 6= i are overpriced on average.

Proof. The same argument as the one used in the proof of Theorem 1 follows through by
noticing that the orthogonality of endowments and beliefs implies that si is bounded below
by Li. To see why, focus on the case of τ = 0 and notice that

si ≥
1∫

T wtdt

∫
T
wt1{rit/rjt < ERi/ERj ∀j 6= i}dt

=
1∫

T wtdt

(∫
T
wtdt

)
Li [(· · · , ERi/ERj , · · · ) | p, θ] ,

where the last inequality follows from the independence of endowments and indifference
ratios. But then, the above assumption guarantees that, at fair prices, si ≥ Li[(1, . . . , 1) |
p, θ] > pi for all p with pi < p. Given this, the same argument by contradiction used in
the proof of Theorem 1 immediately applies.

B Public Information and the FLB

In this section we illustrate how the FLB is mitigated by the arrival of information, which
is consistent with the above findings regarding maiden and non-maiden races.

Consider the following scenario. There is going to be a sequence of two A-D security
markets involving the same securities —the same result readily generalizes to having more
than two markets. True payout probabilities p are independent and the same across
markets. We assume that the first time the market is run, agents have heterogeneous
posterior beliefs. We also assume that the distribution of those beliefs is continuous with
full support in int∆n−1 and that τ = 0. Markets are identical, except in the amount of
public information available: before trading in the second market, all agents observe the
realized outcome in the first market, i.e., which security paid positive returns. Let Hi
denote the event that security i pays out in the first market. Given agent t’s beliefs, let
Ltij(Hi) denote the likelihood ratio associated to outcome Hi. That is, Ltij(Hi) = Prt(Hi|i)

Prt(Hi|j) ,
where Prt(Hi|j) is agent t’s probability assessment of observing Hi conditional on security
j paying out in the second market. According to Bayes’ rule, the ratio of agent t’s subjective
probabilities conditional on observing Hi satisfies49

π′it
π′jt

= Ltij(Hi)
πit
πjt

, i, j = 1, · · · , n, (18)

49We are implicitly assuming that, in the absence of public information, agents’ inferences and equilib-
rium prices in both markets would be the same.
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where π and π′ represent beliefs before and after observing Hi, respectively. Our next
result shows that, whenever agents agree on the ‘direction’ of the updating, the release
of public information about past outcomes decreases the underpricing of favorites and the
average overpricing of longshots, that is, the FLB is mitigated. First, we provide the formal
notions of agreement and unbiased interpretation of information we use in the result.

Definition 1. Agents ordinally agree on the interpretation of Hi if Ltij(Hi) < (>) 1 for
some t implies Lkij(Hi) < (>) 1 for all k and all i, j. Agents ordinally agree if they agree
on the interpretation of Hi for all i = 1, · · · , n.

Notice that ordinal agreement is weaker than requiring beliefs to be concordant (Mil-
grom and Stokey, 1982; Ottaviani and Sorensen, 2010a), which would imply ‘cardinal’
agreement, i.e. Ltij = Lkij for all i, j, t and k.

Definition 2. Agent t is unbiased if Ltij(Hi) > 1 for all j 6= i and all i = 1, · · · , n.

The notion of unbiased beliefs implies that after observing security i pay out a trader
revises upwards her beliefs about i paying out in the second market relative to all other
securities. In the presence of the FLB, this leads to both less underpricing of heavy favorites
and less overpricing on average of longshots. That is, public information mitigates the FLB,
as it is the case in Figure 5.

Proposition 1. If agents are unbiased and ordinally agree then there exists p̄ such that
for all pi > p̄ the expected price of security i in the second market is higher than in the first
market, and the prices of securities j 6= i are lower on average.

This result implies that when Theorem 1 holds, the release of information mitigates
the FLB: heavy favorites are less underpriced and longshots exhibit less overpricing on
average.

Proof. Fix the state of the world p = (p1, p2, · · · , pn). For simplicity, we assume that, when
indifferent between investing or not in the market, all agents decide to invest.50 Given (18),
market shares (i.e. prices) in the second market after observing Hi are given by

si =
1∫

T wtdt

∫
T
wt1

[(
π′it
π′1t

, · · · , π
′
it

π′nt

)
<

(
si
s1
, . . . ,

si
sn

)]
dt

=
1∫

T wtdt

∫
T
wt1

[(
πit
π1t

, · · · , πit
πnt

)
<

(
Lt1i(Hi)

si
s1
, . . . ,Ltni(Hi)

si
sn

)]
dt.

50The proof logic would be the same as long as the arrival of public information does not alter agents’
decision to participate when indifferent.
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It is straightforward to check that, when the distribution of prior beliefs is continuous and
has full support, the release of public information leads to a higher si when Ltij(Hi) > 1

for all j and all t: at any given price, the mass of agents that would consider security i the
optimal investment has gone up after observing the information.

Next, notice that we must have Pr(Hi)→ 1 as pi → 1. Thus, if agents ordinally agree
and are unbiased then Pr(Ltij(Hi) > 1 ∀j 6= i)→ 1 as pi → 1, implying that the probability
that ρi (= si) is higher in the second market is close to one for pi close to one. That is,
for pi sufficiently high the expected price of security i is higher in the second market than
in the first market. This, in turn, implies that

∑
j 6=i ρj goes down in expectation.

C General Approach to Estimating Heterogeneity

In this section we describe how to conduct step 1 in the ML estimation of an heterogeneous
population model laid out in Section 5, which involves solving the system of market share
equations (7):

ski =
1∫

T wtdt

∫
T
wt1

[
Ut(p

k
i , R

k
i ) > Ut(p

k
j , R

k
j ) ∀j 6= i

]
dt, i = 1, · · · , nk.

Accordingly, the goal is to characterize Ut so that we can estimate the heterogeneous
population model by inverting the system of equations (7) to recover pk. To do so, we
assume agents have expected utility preferences and exhibit heterogeneity in beliefs and in
risk attitudes. Accordingly, agent t’s payoff from investing in security i is given by

Ut(pi, Ri) = πitu(wtRi, γt) + (1− πit)u(−wt, γt), (19)

where πit is agent t’s belief about security i and u is utility over wealth with risk attitudes
governed by the one-dimensional parameter γt —e.g. the coefficient of absolute risk aver-
sion in CARA utility. The cardinality of expected utility allows to normalize the utility
from losing wt to be zero, i.e., u(−wt, γt) = 0. In addition, since agent preferences over
securities in a given market are invariant to a monotonic transformation of utility, we can
take the log of the RHS of (19) and subtract log p1 to write Ut as

Ut(pi, Ri) = log u(wtRi, γt) + ξi + νit,

where ξi = log pi− log p1 and νit = − log rit. If we assume that risk parameters and beliefs
are independently distributed and that agents have equal endowments (normalized to 1),51

51Alternatively, we could assume wt = a > 0 for all t ∈ T.Generally, without information on endowments,
the risk parameter is not separately identified from a.
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we can write (7) as

ski =

∫
γt∈R

∫
νt∈Rn

1
[
log u(Rki , γt) + ξi + νit > log u(Rkj , γt) + ξj + νjt ∀j 6= i

]
dP (νt; θ)dH(γt),

for all i = 1, · · · , nk, where P (·; θ) is the (continuous) distribution of νt = (ν1t, · · · , νnkt)
and H represents the distribution of risk parameter γt. Thus, as long as this system of
market shares has a unique solution in terms of the vector (ξ1, · · · , ξnk), we can recover
the underlying probabilities pk from observed odds Rk.

One way to ensure the existence of a unique solution is to assume, as we do in our esti-
mation, that νt is a variance mixture of independent logit errors with mixing distribution
G(σ). Accordingly, market shares are given by

ski =

∫
γt∈R

∫
σ∈R+

exp
(
1
σ log u(Rki , γt) + 1

σ ξi
)∑nk

j=1 exp
(

1
σ log u(Rkj , γt) + 1

σ ξj

) dG(σ)dH(γ), i = 1, . . . nk. (20)

This system has a solution, given that it satisfies the sufficient conditions in Berry (1994),
and it is unique as shown by Berry et al. (2011).

D Non-parametric Identification of the Belief Heterogeneity
Model

In this section we formally show how the identification of the distribution of beliefs,
which is the key primitive we estimate in our model, is obtained from the market level
data we observe. The key source for identification, which our empirical strategy for esti-
mating heterogeneous beliefs directly exploits, stems from variation in the fundamentals
p = (p1, . . . , pn) ∈ int∆n−1, i.e., the state probabilities of the underlying Arrow-Debreu se-
curities, across different markets. The present appendix contributes to the paper by making
precise how variation in the fundamentals p across markets can identify the distribution
of beliefs that operates within markets.

In order to focus our attention on the logic of identification, we consider here a simplified
setting with two horses and track take τ = 0. Our discussion however easily generalizes
to the n-horse context. Indeed, the additional variation made possible by n-horses rather
than two horses only aids identification rather than complicating it (observe, for example,
that an n-horse can always replicate a two horse race by letting n−1 horses have arbitrarily
similar state probabilities but not vice versa) and thus the two horse problem is the essential
setting to study.
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In each race (i.e. market) we have two horses labeled i = 1, 2 and can in principle
observe the market share s of horse 1 (the share of horse 2 being simply s2 = 1 − s) as
well as the vector of expected returns (ER1, ER2).52 Letting δ = logER1 − logER2, the
model of belief heterogeneity we estimate in the paper relates these market observables via
the random utility model

ui = δ + εi

where εi corresponds to the belief disturbance associated with agent i. Agent i in the
market bets on horse 1 if ui > 0. Assuming a continuum of agents in the market and εi is
distributed independently of (ER1, ER2) with distribution function H, we thus have that

s = H (δ) . (21)

If δ varies across markets such that its support covers all of R, i.e., for each c ∈ R
there exists a market (sc, δc) such that δc = c, then it is clear that H is non-parametrically
identified. In particular for any c ∈ R, we have that sc = H (c). Thus δ plays the role
of the well known “special regressor” that is a key device used in the literature to non-
parametrically identify discrete choice models (see e.g., Lewbel (2000); Matzkin (2007)).

However the variation in δ in the data is constrained by the equilibrium of the model
and thus δ differs from the standard “special regressor”, which is assumed to vary freely
without such an equilibrium constraint. In our case, the primitive that varies exogenously
across markets is p ∈ (0, 1), which is the probability of horse 1 winning (where p2 = 1−p is
thus the probability of horse 2 winning). Recalling that ERi = pi

si
, we have that equilibrium

prices and quantities are determined by the solution to the fixed point condition

s = H

(
log

p

s
− log

1− p
1− s

)
. (22)

Assuming that H ∈ H, where H denote the set of distribution functions that are continuous
and have full support on R, then it is straightforward to see that a unique solution to (22)
exists with s ∈ (0, 1) for a given p ∈ (0, 1).53 Thus the equilibrium manifold can be
expressed as a function s (p;H) for p ∈ (0, 1), where the manifold as a whole depends on
the underlying distribution of beliefs H. We now show that for any distribution function
H ∈ H, the equilibrium manifold it generates induces variation in δ (p; δ) that satisfies the
full support requirement of a special regressor. That is, for any H ∈ H, it is indeed the

52Recall the discussion at the start of Section 5 concerning how returns are identified in the data in
addition to market shares.

53Observe that the LHS is continuous and strictly increasing in s while the RHS is continuous and
decreasing. Furthermore, at s = 0 (or s = 1), the LHS is 0 (or 1) while the RHS is 1 (or 0). Thus, the
LHS and the RHS intersect exactly once, with the fixed point lying in (0,1).
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case that δ(p;H) sweeps over R as p sweeps over (0, 1). As a consequence, for any H ∈ H,
H can be recovered from the manifold it induces through the relationship (21).

The key lemma we use to establish this result is the following.

Lemma 2. For any H ∈ H, the set {δ (p;H) | p ∈ (0, 1)} is not bounded from above or
below.

Proof. For simplicity let us suppress the dependence of the manifold on H as it is being
held fixed throughout the argument. Assume there exists δ̄ such that δ (p) ≤ δ̄ for all
p ∈ (0, 1). Then for all p ∈ (0, 1) we have that s2 (p) = 1 − s (p) ≥ 1 − H

(
δ̄
)
> 0.

Hence p2
s2(p)

→ 0, or likewise logER2 (p) → −∞ as p → 1 (because p2 = 1 − p goes to
zero while s2 stays bounded away from zero). Moreover because shares sum to 1 we must
have logER1 (p) > 0 for all p sufficiently close to 1. Hence δ (p) → ∞ as p → 1, which
contradicts the presence of an upper bound. The proof of the non-existence of a lower
bound follows similarly.

Hence δ(p) is not bounded above or below as p ∈ (0, 1). Furthermore, δ(p) is continuous
as it is the outcome of the unique fixed point of (22) where the fixed point problem varies
continuously in p. Thus, by the intermediate value theorem, for any c ∈ R there exists
a pc such that δ(pc) = c. Hence δ(p) has full support over R and H is identified non-
parametrically.

In the model we estimate in the paper, we restrict H further to be a variance mixture
of logistic distributions. That is for any t ∈ R we model

H (t) =

∫
σ>0

F (t | σ) dG (σ) .

where F (· | σ) is a standard logistic distribution with scale parameter σ. The object we es-
timate is G, i.e., the distribution of “types” in the population where each type corresponds
to a certain level of variance in beliefs, where G is assumed to have finite support. Let G
denote the set of all distribution functions with finite support (which is a non-parametric
class of distributions as it is infinite dimensional). Using standard results from the identi-
fiability of mixture models (see e.g., Shi et al. (2012)), we can recover our structural object
of interest G from H.

E Closed Form Identification of the HR Model

In this section we describe the steps needed to back out payout probabilities p = (p1, · · · , pn)

from observed odds R = (R1, · · · , Rn). Two steps are needed. In the first one we compute
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the utility parameters of the marginal bettors {γi}ni=1 using the market shares associated
to R. In the second step we use the indifference conditions of marginal bettors to recover
the probabilities.

Step 1: Identifying Marginal Bettors Using (2) we obtain the market shares s =

(s1, · · · , sn). Recall that market shares satisfy (12), i.e.,

s1 = F (γ1; θ)

s2 = F (γ2; θ)− F (γ1; θ)

...

sn = 1− F (γn−1; θ).

Since F (·|θ) is strictly increasing in its support we can invert this system of equations and
obtain the utility parameters:

γ1 = F−1(s1; θ)

γ2 = F−1(s1 + s2; θ)

...

γn = F−1(s1 + · · ·+ sn−1; theta).

Step 2: Recovering the Probabilities From (11) we know that pi satisfies

U(pi, Ri, γi) = U(pi+1, Ri+1, γi)

⇒ piu(Ri, γi) + (1− pi)u(−1, γi) = pi+1u(Ri+1, γi) + (1− pi)u(−1, γi)

⇒ pi+1 =

(
u(Ri, γi)− u(−1, γi)

u(Ri+1, γi)− u(−1, γi)

)
pi.

For i = 1, . . . , (n− 1), define

ci =

i∏
j=1

u(Ri, γi)− u(−1, γi)

u(Ri+1, γi)− u(−1, γi)
.

That is, we have that pi+1 = cipi. Thus, if we recover p1 we can compute the remaining
probabilities recursively. Since probabilities add up to one, we must have that

p1 + c1p1 + · · ·+ cn−1p1 = 1 ⇒ p1 =
1

1 + c1 + · · ·+ cn−1
.
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Thus for a given family of expected utility preferences U(·, ·, γ), and a given cdf F (·; θ)
over γ, and a given market with R1 > · · · > Rn, we can analytically solve for the underlying
state of nature (p1, . . . , pn) ∈ int∆n−1.
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