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Abstract

This paper studies equilibrium behavior in a class of games that models asymmetric

multiprize competitions in which players’ costs are not necessarily strictly decreasing. Such

costs accommodate head starts, which capture incumbency advantages, prior investments,

and technological differences. I provide an algorithm that constructs the unique equilib-

rium in which players do not choose weakly-dominated strategies, and apply it to study

multiprize all-pay auctions with head starts. A comparison to the standard all-pay auction

shows that the strategic effects of head starts differ substantially from those of differing

valuations.
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1 Introduction

A head start is an advantage a competitor has at the outset of a competition, which must be

overcome by other competitors if they are to have any chance of winning. For example, in a

competition for promotions in which a worker’s tenure plays a role, workers who have worked

longer for the firm enjoy a head start. In a political campaign, the incumbent may have a

head start in the form of a constituency advantage over an entrant. In a lobbying scenario,

some lobbyists may have a reputational advantage. In a research and development (R&D)

setting, some firms may start out with more advanced technologies than other firms. In a

sports competition, some competitors may enjoy a head start in the form of a “handicap.” But

despite the prevalence of head starts in real-world competitions, their effects on the outcome

of a competition are not well understood, because the relevant existing models typically do not

allow for head starts.

This paper investigates equilibrium behavior in a single-prize and multiprize contest model

that allows for a wide range of asymmetries among players, including head starts. In a contest,

each player chooses a non-negative “score” and pays the associated cost, and the players with

the highest scores obtain one prize each. Each player is characterized by his valuation for a prize

and a continuous cost function, which specifies the cost associated with each score. Valuations

and cost functions may differ across players, which allows for a high degree of heterogeneity

among them. The primitives of the model are commonly known, capturing players’ knowledge

of the asymmetries among them. 1 Contests are defined in Section 2

In contrast to most existing models, players’ costs need not be strictly, or even weakly,

increasing in score. This accommodates head starts, subsidies that are contingent on a minimal

level of performance, and non-monotonic mappings between a player’s performance and the cost

he incurs. A head start is modeled as an interval with lower bound 0 on which the player’s

costs are 0. A subsidy is modeled as an interval on which the player’s costs are constant, where

the lower bound of the interval corresponds to the minimal level of performance required to

obtain the subsidy, and the length of the interval corresponds to the increase in performance

resulting from the subsidy. Non-monotonic costs model situations in which better performance

is not necessarily associated with higher costs. For example, competing researchers often enjoy

1Models of competition with incomplete information were studied by Erwin Amann and Wolfgang Leininger

(1996), Benny Moldovanu and Aner Sela (2001, 2006), Todd Kaplan et al. (2003), Sergio Parreiras and Anna

Rubinchik (2009), and Siegel (2011) among others. When not restricted to two or ex-ante symmetric players, these

models do not fully characterize equilibrium behavior. In contrast, the contest model presented here postulates

complete information and provides a full characterization of equilibrium. Other models of competition postulate

a probabilistic relation between competitors’ efforts and prize allocation. See Gordon Tullock (1980) and Edward

Lazear and Sherwin Rosen (1981). For a comprehensive treatment of the literature on competitions with sunk

investments, see Shmuel Nitzan (1994) and Kai A. Konrad (2007).
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certain parts of the research process (such as proving a conjecture), but dislike other parts of the

process (such as writing a transparent proof). In the context of a competition for promotions,

many professionals are intrinsically motivated and derive utility from working reasonably hard

(but not too hard) even in the absence of compensation.

Costs that are not strictly increasing introduce a modeling subtlety, which is easily seen by

considering head starts. Suppose, for example, that in a competition for promotions a worker’s

overall performance is determined by adding his tenure t to some non-negative function of the

quality of his work. This implies that the worker has a head start of t, which is a lower bound

on his performance in the competition. But in the contest in which the player’s costs are 0 up

to t, the player can choose scores lower than t. These scores are, of course, weakly dominated

by t. To avoid this modeling mismatch, I restrict attention to equilibria in which players do

not choose weakly dominated scores. To characterize such equilibria, it suffices to consider a

restricted class of contests, in which players’ costs are weakly increasing. This is because, for

any contest, a simple mapping identifies a contest with weakly increasing costs whose equilibria

coincide with those of the original contest when players do not choose weakly dominated scores.

Section 2.1 describes this mapping.

Section 3 presents, for a large class of contests with weakly increasing costs, a constructive

characterization of the unique mixed-strategy equilibrium in which players do not choose weakly

dominated scores. This class includes contests with m + 1 players and m prizes, as well as

many contests with more than m+ 1 players. The construction relies on knowledge of players’

equilibrium payoffs, which is provided by Ron Siegel’s (2009) payoff result, and generalizes the

equilibrium uniqueness results of Siegel (2010), which apply to contests with strictly increasing

costs.2

Section 4 applies the equilibrium construction results to study multiprize all-pay auctions

with head starts, in which all players have the same commonly known valuation for a prize.3

Each player is characterized by a non-negative head start, all players pay their bids, and a

player’s score equals the sum of his bid and his head start. There is a unique equilibrium, which

depends qualitatively on the relative sizes of players’ head starts. A Matlab procedure that

constructs the equilibrium is available on my website.4 Figure 1 depicts the equilibrium when

there are three players and two prizes.5 Player i’s head start is ai, with a1 > a2 > a3 = 0, and

the value of each of the two prizes is V > a1. In equilibrium, each player has an “atom” at his

2The beginning of Section 3 explains why Siegel’s (2010) results cannot in general be applied to contests with

weakly increasing costs, and also why applying these results to approximating contests with strictly increasing

costs is not very useful.

3One setting in which players have the same valuations is when prizes are monetary.

4http://faculty.wcas.northwestern.edu/~rsi665/.

5Players’ strategies are described in Section 4.1.
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head start (that is, chooses his head start with positive probability), and with the remaining

probability chooses scores from one or two intervals.
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Figure 1: The supports of players’ strategies (dots represent atoms) in the unique equilibrium

of a three-player, two-prize all-pay auction with head starts when a2 is relatively large (left)

and when a2 is relatively small (right)

When a2 is relatively small (the right-hand side of Figure 1), the equilibrium can be thought

of as including two “competition zones:” a “minor league” and a “major league.” Players 2 and

3 choose whether to invest and, conditional on investing, in which league to compete. Player

1 competes only in the major league when he invests. In the major league, players compete

for both prizes. In the minor league, players compete for only one prize (player 1 always beats

any player who competes in the minor league). Conditional on competing within a league,

all players are equally aggressive.6 When a2 is relatively large (the left-hand side of Figure

1), the equilibrium includes only one competition zone, the major league. And conditional on

competing, player 3 is more aggressive than the other, stronger players. Thus, when facing two

strong opponents, player 3 displays an “all-or-nothing” behavior. The two different equilibrium

configurations generated by varying players’ head starts contrast with the single equilibrium

configuration, depicted in Figure 5 below, that arises when there are two players and one prize.

Two-player all-pay auctions with head starts have been studied by Kai A. Konrad (2002, 2004)

and Todd Kaplan et al. (2003).7 All-pay auctions with two prizes have also been studied,

independently from this paper, by Casas-Arce and Martínez-Jerez (2010).8

6Aggressive is formalized in Sections 4.1 and 4.2 as conditional first-order stochastic dominance of players’

strategies.

7They considered potentially different valuations for the different players, which the equilibrium construc-

tion results in this paper also accommodate. René Kirkegaard (2009) analyzed head starts in an incomplete-

information all-pay auction with two-players and one prize.

8In contrast to this paper, Casas-Arce and Martínez-Jerez (2010) did not solve the all-pay auction with more

than two prizes, and their analysis and results do not extend to contests with non-linear costs.
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Section 4.2 characterizes, for any number of prizes, all the equilibrium configurations that can

be generated by varying players’ head starts. The number of such configurations is exponential

in the number of prizes, and coincides with a well-known combinatorial object, the Catalan

number.9 This contrasts with the single equilibrium configuration that arises in standard all-pay

auctions, in which every player’s score equals his bid and players differ only in their valuations for

a prize. Standard all-pay auctions have been used to model rent-seeking and lobbying activities

(Arye L. Hillman and Dov Samet (1987), Hillman and John G. Riley (1989), Michael R. Baye,

Dan Kovenock, and Casper de Vries (1993, 1996)), competitions for a monopoly position (Tore

Ellingsen (1991)), competitions for multiple prizes (Derek J. Clark and Christian Riis (1998)),

sales (Hal Varian (1980)), and R&D races (Partha Dasgupta (1986)).10 Figure 2 depicts the

unique equilibrium of a standard all-pay auction with three players and two prizes, in which

V1 > V2 > V3.

P l 3

P l 2

P l 1

0 V 3

P l 3

P l 2

P l 1

0 V 3

Figure 2: The supports of players’ strategies (dots represent atoms) in the unique equilibrium

of a three-player, two-prize standard all-pay auction with V1 > V2 > V3

Section 4.3 compares the equilibrium predictions of standard all-pay auctions to those of all-

pay auctions with head starts. In both contests, stronger players (those with higher valuations or

larger head starts) win a prize with higher probability. But whereas in a standard all-pay auction

stronger players expend more, the ranking of expenditures is reversed in an all-pay auction with

head starts, regardless of the equilibrium configuration. In addition, the two contests differ

in their predictions of a natural measure of players’ aggressiveness. Section 4.4 concludes the

analysis of all-pay auctions with head starts by considering some contest design issues.

9The Catalan number arises in many combinatorial contexts. To the best of my knowledge, however, this is

the first time it appears in a game-theoretic setting.

10Variants of the all-pay auction have been used to investigate the effect of lobbying caps (Che & Gale (1998,

2006) and Kaplan & Wettstein (2006)), R&D races with endogenous prizes (Che & Gale (2003)), non-linear,

ordered costs with one prize (Julio González-Díaz (2009)), and the effects of conditional investments (Siegel

(2010)).
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Appendix A contains the proofs of Proposition 1 and of results from Section 3. Appendix B

applies the equilibrium construction results to derive the equilibrium of a three-player, two-prize

all-pay auction with head starts. Appendix C contains proofs of results from Section 4. The

Online Appendix contains two examples.

2 Model and Existing Results

In a contest, n players compete for m homogeneous prizes, 0 < m < n. The set of players

{1, . . . , n} is denoted by N . Players compete by each choosing a score from [0,∞), simultane-
ously and independently. Each of the m players with the highest scores wins one prize. In case

of a relevant tie, any procedure may be used to allocate the tie-related prizes among the tied

players.

Each player i is characterized by his valuation for a prize, Vi > 0, and his cost function,

ci : [0,∞)→ R. Given s = (s1, . . . , sn), where si is player i’s chosen score, player i’s payoff is

ui (s) = Pi (s)Vi − ci (si) ,

where Pi : [0,∞)n → [0, 1] is player i’s probability of winning, which satisfies

Pi (s) =

⎧⎨⎩ 0 if sj > si for m or more players j 6= i,

1 if sj < si for n−m or more players j 6= i,

and
P

j∈N Pj (s) = m. Differences among players are captured by their different valuations for

a prize and by differences in their cost functions. The primitives of the contest are commonly

known.

I make the following assumptions.

C1 ci is continuous and piecewise analytic.11

Assumption C1 allows for non-monotonic costs. Such costs are useful in modeling com-

petitions in which better performance is not necessarily more costly, such as competitions for

promotions between intrinsically motivated workers. Head starts are accommodated by having

costs equal to 0 on some interval of scores with lower bound 0.

Let li = infsi≥0 ci (si).

11A function is piecewise analytic on [0, T ] if [0, T ] can be partitioned into a finite number of closed intervals

such that the restriction of the function to each interval is analytic. Analytic functions include polynomials, the

exponent function, trigonometric functions, and power functions. Sums, products, compositions, reciprocals, and

derivatives of analytic functions are analytic (see, for example, Charles P. Chapman (2002)).
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C2 ci (si) = li for some si ≥ 0, and limsi→∞ ci (si) > Vi + li.

The second part of Assumption C2 means that sufficiently high scores are prohibitively costly.

Assumption C3 below is a genericity condition, which completes the description of a contest. It

uses the following definition.

Definition 1 (i) Player i’s reach ri is the highest score whose cost does not exceed his highest

possible payoff from losing by more than his valuation for a prize. That is, ri = max {si : ci (si) = Vi + li}.
Re-index players in (any) decreasing order of their reach, so that r1 ≥ r2 ≥ . . . ≥ rn.

(ii) Player m+ 1 is the marginal player.

(iii) The threshold T of the contest is the reach of the marginal player: T = rm+1.

(iv) Let cLi (si) = minx≥si ci (x). The power wi of player i is his payoff if he chooses the least

costly score no lower than the threshold and wins: wi = Vi−cLi (T ). By definition, wm+1 = −lm+1.

Note that cLi ≡ ci when costs are weakly increasing. For example, in a standard all-pay

auction (Hillman and Samet (1987), Hillman and Riley (1989), Clark and Riis (1998)) all costs

are linear, a player’s reach is equal to his valuation for a prize (because li = 0), and a player’s

power is equal to his valuation for a prize minus the marginal player’s valuation for a prize.

C3 (i) The marginal player is the only player i with power −li. (ii) The marginal player’s
cost function is increasing immediately below the threshold, i.e., for some ε > 0 and every x in

(T − ε, T ) we have cm+1 (x) < cm+1 (T ).

For example, a standard all-pay auction satisfies part (ii) of Assumptions C3 because players’

costs are strictly increasing. If the valuation of the marginal player is different from those of the

other players, then part (i) of Assumption C3 is satisfied as well.

2.1 Equilibrium and Weakly Dominated Scores

A player’s (mixed) strategy is a probability distribution over [0,∞), typically described as a
cumulative distribution function (CDF), which for every score x specifies the probability that

the player chooses a score lower than or equal to x. I say that player i does not choose weakly

dominated scores if his CDF assigns probability 0 to the set of scores

{x : ci (x) ≥ ci (y) for a score y > x} .

Otherwise, I say that player i chooses weakly dominated scores. An equilibrium is a profile

of strategies, one for each player, such that each player’s strategy assigns probability 1 to the

player’s set of best responses given the other players’ strategies.

6



As discussed in the introduction, this paper focuses on equilibria in which players do not

choose weakly dominated scores. To investigate such equilibria it suffices to study a restricted

class of contests, in which players’ cost functions are non-decreasing and equal 0 at 0. To see why,

given a contest C consider the modified contest Ĉ in which player i’s costs are ĉi (·) = cLi (·)− li

and his valuation is Vi.

Proposition 1 The set of equilibria in C in which players do not choose weakly dominated

scores is the same as the set of equilibria in Ĉ in which players do not choose weakly dominated

scores. Moreover, in any such equilibrium player i’s payoff in C is precisely li lower than his

payoff in Ĉ.

The proof of Proposition 1 is in Appendix A. It is straightforward to verify that Ĉ is a

contest in which players’ costs are weakly increasing and equal 0 at 0 (so l̂i = 0 for every player

i). For such contests, Assumptions C1-C3 are equivalent to the following Assumptions M1-M3.

M1 ci is continuous, piecewise analytic, and weakly increasing.

M2 ci (0) = 0, and limsi→∞ ci (si) > Vi.

M3 (i) The marginal player is the only player with power 0. (ii) The marginal player’s cost

function is strictly increasing immediately below the threshold.

By Proposition 1, to characterize equilibria in which players do not use weakly dominated

scores it suffices to do so for contests that satisfy Assumptions M1-M3. Therefore, for the rest

of the paper I restrict attention to contests that satisfy Assumptions M1-M3, and the terms “con-

test” and “contests” refer to such contests. Definition 1 simplifies to ri = max {si : ci (si) = Vi} , T =
rm+1, and wi = Vi − ci (T ).

2.2 Existing Results

The contests considered here are a special case of Siegel’s (2009) all-pay contest model.12 The

following two results, which I use in solving for equilibrium, are immediate corollaries of results

in Siegel (2009).13 The first result characterizes players’ equilibrium payoffs (without solving for

equilibrium).

12In particular, a contest here is a generic separable contest of Siegel (2009). But it is not a special case of

Siegel’s (2010) contest model, since Siegel (2010) requires strictly increasing costs (which, in particular, preclude

head starts).

13The results follow, respectively, from Theorem 1 and Theorem 2 in Siegel (2009).
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Theorem 1 In any equilibrium of a contest, the expected payoff of every player equals the max-
imum of his power and 0.

In addition to giving a closed-form formula for players’ equilibrium payoffs, Theorem 1 shows

that players 1, . . . ,m have positive expected payoffs (because of part (i) of Assumption M3), and

players m+ 1, . . . , n have expected payoffs of 0.

A player participates in an equilibrium of a contest if with positive probability he chooses

scores whose cost is positive. The second result provides a sufficient condition for players m +

2, . . . , n not to participate in any equilibrium.

Theorem 2 If the normalized cost function of the marginal player is strictly lower than that of
player i > m+ 1, that is,

cm+1 (x)

Vm+1
<

ci (x)

Vi
for all x such that ci (x) > 0,

then player i does not participate in any equilibrium. In particular, if this condition holds for

players m+ 2, . . . , n, then in any equilibrium only players 1, . . . ,m+ 1 may participate.

3 Equilibrium Construction

I provide an algorithm that solves for the unique equilibrium of an (m+ 1)-player contest in

which players do not choose weakly dominated scores. The algorithm generalizes the one de-

scribed in Siegel (2010), which applies to contests with strictly increasing costs (in which no

scores are weakly dominated). Siegel’s (2010) algorithm cannot in general be applied to contests

with weakly increasing costs, because it relies on certain equilibrium properties that may not

hold when when costs are weakly increasing.14

An alternative approach to dealing with weakly increasing costs would be to apply Siegel’s

(2010) algorithm to contests with strictly increasing costs that “approximate” the original con-

test, and consider the limit of the corresponding equilibria. This is problematic for three reasons.

First, it is not clear how to derive analytical results by taking this limit, because the process

entails “taking the limit” of an algorithm. Second, even if an equilibrium can be derived in this

way, it may have the undesirable property that players choose weakly dominated scores. This

can be seen by examining the relatively simple case of two players, for which Siegel’s (2010)

Theorem 3 provides a closed-form formula when costs are strictly increasing (instead of an al-

gorithm). In this case, the “limiting equilibrium” corresponds to applying the formula to the

14These properties are that all players’ CDFs reach 1 precisely at the threshold, every positive score up to the

threshold is a best response for at least two players, and players’ equilibrium CDFs are continuous on (0, T ). For

example, the latter two properties do not hold in the equilibria depicted in Figure 1, and the first property does

not hold in the equilibrium depicted in Figure 4 in the Online Appendix.
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original contest with weakly increasing costs. In the context of Figure 4 below, which depicts

a two-player all-pay auction in which player 1 has a head start of a1 > 0, the formula would

specify player 1’s equilibrium strategy to be G1 (x) = x for every x in [0, 1]. In particular, player

1 would choose scores lower than his head start with probability a1. Figure 5 describes another

equilibrium, in which players do not choose weakly dominated scores. This illustrates the third

difficulty with the “limit” approach, namely, that it leaves unaddressed the issue of equilibrium

uniqueness, even within the class of equilibria in which players do not choose weakly dominated

scores.

Section 3.1 describes an equilibrium construction algorithm that applies to contests with

weakly increasing costs, and shows that the resulting profile of CDFs is indeed an equilibrium

in which players do not choose weakly dominated scores.15 Section 3.3 shows that this is the

unique equilibrium in which players do not choose weakly dominated scores, and explains to

what extent the construction applies to n-player contests.

3.1 The Algorithm

The algorithm applies to an (m+ 1)-player contest and has five stages. Stages 1, 2, and 4 parallel

the algorithm of Siegel (2010). Stages 3 and 5 are novel additions that deal with the possibility

that players’ cost functions may be constant on some intervals. I denote byG = (G1, . . . , Gm+1)

the profile of CDFs constructed by the algorithm, where Gi (x) is the probability that player i

chooses a score lower than or equal to x.

The construction of G proceeds from 0 to T by identifying active players and checkpoints.

A player is active on his best response set, and a checkpoint is a score above which the set of

active players may change. Stage 1 identifies a score x0 ≥ 0 and the value G (x0) such that

G (x) = 0 for any x < x0 and the value G (x0) suffices to continue the construction above x0.16

If Gm+1 (x0) = 1, then x0 is the last checkpoint and the algorithm proceeds to Stage 5, which

completes the definition of G. Otherwise, x0 is the first checkpoint and the algorithm proceeds

to Stage 2. Given a checkpoint x that has been reached, Stage 2 determines a set of candidate

players at x, CP (x), which is a superset of the set A+ (x) of players active immediately above x.
If CP (x) contains a player whose cost function is “constant at x,” i.e., constant on some interval
of scores with lower endpoint x, then the algorithm proceeds to Stage 3. Otherwise, the cost

functions of all players in CP (x) are “increasing at x,” i.e. strictly increasing on some interval
with lower bound x, and the algorithm proceeds to Stage 4. Stage 3 sets A+ (x) to be the set

15For a two-player contest, the equilibrium constructed by the algorithm can also be derived from the equi-

librium specified by Siegel’s (2010) Theorem 3 by, for any maximal interval on which a player’s cost function is

constant, transferring all the mass the player places on the interval to an atom at the top of the interval.

16This generalizes Step 1 of Siegel’s (2010) algorithm. In his algorithm, x0 = 0 because all costs are strictly

increasing.
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of all players in CP (x) whose costs are constant at x, and identifies the next checkpoint x̄ as
the upper endpoint of the longest interval with lower endpoint x on which the cost function of

a player in A+ (x) is constant. G is then set to equal G (x) on [x, x̄), and at most one player

has an atom at x̄. The player and the size of the atom are identified. Stage 4 uses CP (x) to
define a function Sx,y with a unique fixed point H (x, y) for scores y immediately above x, and

uses H (x, y) to determine the set A+ (x). G is then extended continuously to [x, x̄] using a

closed-form formula, where x̄ is the next checkpoint. The checkpoint x̄ is also identified. If the

CDF of at least one player reaches 1 at x̄ in Stages 3 or 4, then x̄ is the last checkpoint and

the algorithm proceeds to Stage 5. Otherwise, the algorithm returns to Stage 2 with x̄ as the

current checkpoint. Stage 5 completes the definition of G by identifying, for each player whose

CDF has not reached 1 at the last checkpoint, a score at which he has an atom that brings his

CDF to 1. I show that the algorithm terminates after reaching a finite number of checkpoints,

and that the resulting G is indeed an equilibrium. Whenever possible, I use notation consistent

with that of Siegel (2010).17 The algorithm is illustrated in Figure 3.

17An exception is my usage of checkpoints in contrast to his usage of switching points. A switching point of

Siegel (2010) is a score above which the set of active players does change. Every switching point of a contest

with strictly increasing costs is a checkpoint, but some checkpoints may not be switching points.
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Figure 3: The equilibrium construction algorithm

Stage 1: Let x0 = max {x : cm+1 (x) = 0}. Because scores below x0 are weakly dominated by

x0 for the marginal player, set Gm+1 (x) = 0 for x < x0. The value Gm+1 (x0) is set such that at

least one player other than the marginal player can have best responses immediately above x0,

and no player can obtain more than his power by choosing scores immediately above x0. The

following lemma determines Gm+1 (x0) and Gi (x) for every player i < m + 1 and x ≤ x0. Its

proof and those of other results in this section are in Appendix A.

Lemma 1 In any equilibrium of an (m+ 1)-player contest in which players do not choose weakly

dominated scores, the marginal player has an atom of size mini<m+1
³
ci(x0)+wi

Vi

´
at x0, and the

value of every other player’s CDF at x0 is 0.

In accordance with Lemma 1, set Gm+1 (x0) = mini<m+1
³
ci(x0)+wi

Vi

´
≤ 1 and Gi (x) = 0 for

every player i < m + 1 and x ≤ x0. If Gm+1 (x0) = 1, then set xL = x0 as the last checkpoint

and proceed to Stage 5. Otherwise, set x = x0 as the first checkpoint and proceed to Stage 2.

Stage 2: Suppose G has been defined up to x < T , and Gi (x) < 1 for every player i.

We would like to identify a set of players, the “candidate players at x,” who may be active

immediately above x. Consider a player i who chooses scores immediately above x when other
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players choose scores according to G. Because CDFs are right-continuous and the player loses

only when his score is lower than those of all other players, 1 − Πj 6=i (1−Gj (x)) + ε is the

probability that the player wins a prize, for some small ε ≥ 0. As player i chooses scores closer
to x, ε approaches 0. Therefore, if

(1−Πj 6=i (1−Gj (x)))Vi − ci (x) < wi, (1)

then player i cannot be active immediately above x, because he cannot obtain his equilibrium

payoff there. The candidate players at x are the other players, and for each such player i we

have

(1−Πj 6=i (1−Gj (x)))Vi − ci (x) = wi.18 (2)

Let

CP (x) = {players i for which (2) holds}

denote the set of candidate players at x. The set CP (x) contains at least two players.19 If CP (x)
contains at least one player whose cost function is constant at x, proceed to Stage 3. Otherwise,

proceed to Stage 4.

Stage 3: Suppose that CP (x) contains a player i whose cost function is constant at x.

Constant costs imply that the other players’ CDFs must remain constant immediately above x,

otherwise player i would win a prize with too high a probability and therefore obtain more than

his power immediately above x. And player i’s CDF must also remain constant immediately

above x, because scores immediately above x are weakly dominated by slightly higher scores.

Therefore, all players’ CDFs remain constant immediately above x, so the only players for whom

scores immediately above x are best responses are those players in CP (x) whose cost functions
are constant at x. Therefore, let

A+ (x) = {players in CP (x) whose cost functions are constant at x} .

Let x̄i = max {y : ci (y) = ci (x)} and x̄ = max {x̄i : i ∈ A+ (x)}, and choose a player i in
A+ (x) for whom x̄i = x̄. Based on the previous paragraph, extend G to [x, x̄] as follows. For

every player j 6= i and every score y in [x, x̄] set Gj (y) = Gj (x) < 1, and for every score y in

[x, x̄) set Gi (y) = Gi (x) < 1. Note that CP (x̄) contains player i; set Gi (x̄) to the lowest value

such that CP (x̄) contains at least one other player. From (2) with l instead of i this means that

Gi (x̄) = min
l 6=i

(
1−

1− wl+cl(x̄)
Vl

Πj 6=l,i (1−Gj (x))

)
if m > 1 (3)

and

Gi (x̄) =
wl + cl (x̄)

Vl
for l 6= i if m = 1. (4)

18Lemma 11 in Appendix A shows that > does not hold for any player.

19Lemma 11 in Appendix A shows this.
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This value of Gi (x̄) is the only value consistent with equilibrium. Indeed, setting Gi (x̄) to a

higher value implies that some player other than i can obtain more than his power immediately

above x̄. Setting Gi (x̄) to a lower value implies that players other than i do not have best

responses immediately above x̄ and therefore do not choose scores immediately above x̄ with

positive probability. Because player i’s costs are increasing at x̄, this means that player i too

does not have best responses immediately above x̄, so no player has best responses immediately

above x̄. This violates the following lemma.

Lemma 2 In any equilibrium of an (m+ 1)-player contest, any score at which not all players’

CDFs equal 1 is a best response for at least one player.

Setting Gi (x̄) as specified above implies that (i) Gi (x̄) = Gi (x) if there is another player

j 6= i in A+ (x) for whom x̄j = x̄, and (ii) Gi (x̄) > Gi (x) (so player i has an atom at x̄) if i is

the only player in A+ (x) for whom x̄i = x̄. If Gi (x̄) = 1, then set xL = x̄ as the last checkpoint

and proceed to Stage 5. Otherwise, set x = x̄ as the next checkpoint and proceed to Stage 2.

Stage 4: Suppose that the cost functions of all players in CP (x) are increasing at x. Then
Step 2 part two, Step 3, and Step 4 of Siegel’s (2010) algorithm can be used to uniquely identify

the set A+ (x) of players active immediately above x, extend G up to the first checkpoint x̄

above x, and identify x̄. I describe these steps briefly; a detailed description is given in Section

2.1 of Siegel (2010). For scores y immediately above x, let qi (y) = 1 − wi+ci(y)
Vi

> 0 and

εi (y) = −q0i(y)
qi(y)

=
c0i(y)

Vi−wi−ci(y) > 0 for every player i in CP (x),
20 and let

Sx,y (H) =
X

i∈CP(x)

max {H − εi (y) , 0} .

The function Sx,y (·) is piecewise linear and convex. Since Sx,y (0) = 0, S0x,y (0) = 0, and εi (y) > 0
for every player i in CP (x), which contains at least two players, Sx,y starts below the diagonal
and reaches a slope of at least 2. It therefore has a unique positive fixed point, denoted H (x, y).

Let H (x, x) = limy↓xH (x, y). Siegel (2010) shows that H (x, ·) and εi (·) for every player i in
CP (x) are analytic in a right-neighborhood of x, so have right-derivatives of any order at x. The
lowest-order right-derivatives at x of εi (·) and H (x, ·) that differ (beginning with the zeroth-
order derivative, that is, εi (x) and H (x, x)) determine whether player i in CP (x) is in A+ (x)
(< means the player is in A+ (x), > means the player is not in A+ (x)). (This will “generically”
stop at the first derivatives.) If all derivatives are equal, then player i is in A+ (x). Because
H (x, y) is higher than εi (y) for at least two players i in CP (x) and scores y immediately above
x, A+ (x) contains at least two players.
Once A+ (x) is identified, (2) with y instead of x for every player i in A+ (x) and the fact that

the CDFs of players not in A+ (x) do not increase immediately above x can be used as follows

20The inequalities follow from Lemma 12 in Appendix A.
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to uniquely extend G to scores y in [x, x̄]. For every player i not in A+ (x), set Gi (y) = Gi (x).

For every player i in A+ (x), set

Gi (y) = 1−
Πj∈A+(x)qj (y)

1

|A+(x)|−1

qi (y)D
1

|A+(x)|−1
, (5)

where D = Πj 6∈A+(x) (1−Gj (x)) > 0 (if A+ (x) = N , then D = 1) and |S| is the cardinality of a
set S.21 This continuous extension of G guarantees that immediately above x players in A+ (x)
obtain precisely their power and players not in A+ (x) do not obtain more than their power. The
first checkpoint x̄ above x is the first score above x at which Gi reaches 1 for some player i in

A+ (x), or the cost function of a player in A+ (x) is constant, or the cost functions of all players
in A+ (x) are increasing and one of the following happens: the hazard rate (1−Gi (y))

0 /Gi (y)

of a player i in A+ (x) drops to 0,22 a player not in A+ (x) obtains his power,23 or the score is
a concatenation point of the cost function of a player in A+ (x) (recall that costs are piecewise-
defined functions). If Gi (x̄) = 1 for some player i in A+ (x), then set xL = x̄ as the last

checkpoint and proceed to Stage 5. Otherwise, set x = x̄ as the next checkpoint and proceed to

Stage 2.

Stage 5: Because some player’s CDF reaches 1 at xL, no player i has best responses at scores

y for which ci (y) > ci
¡
xL
¢
. Therefore, for every player i let xmaxi = max

©
y : ci (y) = ci

¡
xL
¢ª
,

set Gi (y) = Gi

¡
xL
¢
for every score y in

¡
xL, xmaxi

¢
, and set Gi (y) = 1 for every score y ≥ xmaxi .

This completes the construction of G.

The following lemma shows that the algorithm always stops.

Lemma 3 The algorithm reaches Stage 5 at a checkpoint xL ≤ T via a finite number of check-

points.

Theorem 3 summarizes the construction and shows that the resulting G is an equilibrium.

Theorem 3 For any (m+ 1)-player contest the algorithm constructs an equilibriumG in which

players do not choose weakly dominated scores. The equilibrium is characterized by a partition

into a finite number of intervals of positive length, on the interior of which the set of active

players remains constant.

3.2 A Simple Example

To gain some intuition for how the algorithm works, consider the contest with two players whose

cost functions are depicted in Figure 4. The common value of the prize is 1, player 1 has zero

21If qi (x̄) = 0, which happens if ci (x̄) = ci (T ), then set Gi (x̄) = limy↑x̄Gi (y).

22Ignoring any player whose hazard rate is identically 0 starting at x.

23That is, (2) holds for some player i not in A+ (x).
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costs up to a1 < 1 and marginal costs 1 starting from a1, and player 2 has marginal costs 1

starting from 0.24 This is a special case of the all-pay auctions with head starts considered in

Section 4.

 
Cost

Score

0 a1 

Pl 2

1 

1

1- a1 
Pl 1

Figure 4: Players’ costs in a two-player contest with valuations and constant marginal costs of

1 and a head start for player 1

The contest’s threshold is 1 (equal to player 2’s reach), player 1’s power is a1, and player 2’s

power is 0. Because player 2’s costs are increasing at 0, Stage 1 specifies that x0 = 0. By Lemma

1, G2 (0) = a1 < 1, and Stage 2 shows that CP (0) = {1, 2}. Because player 1’s costs are constant
at 0, the algorithm proceeds to Stage 3, which specifies that A+ (0) = {1}. Therefore, the first
checkpoint above 0 is x̄ = a1, and no player’s CDF increases in (0, a1). From (4) we have that

G1 (a1) = a1. The algorithm proceeds to Stage 2, and we have that CP (a1) = {1, 2}. Because
both players’ costs are increasing at a1, the algorithm proceeds to Stage 4, and A+ (a1) = {1, 2}.
From (5) we have thatG1 (y) = 1−q1 (y) q2 (y) /q1 (y) = 1−q2 (y) = y andG2 (y) = a1+y−a1 = y

for scores y in [a1, x̄], where x̄ = 1 is the score at which players’ CDFs reach 1. We then have

xL = 1, and Stage 5 specifies that both players’ CDFs equal 1 starting from 1. Players’s atoms

and densities in the equilibrium are depicted in Figure 5.

 

0 1

Pl 1

Pl 2
a1

1

1

a1

a1

Figure 5: Players’ atoms and densities in the equilibrium of the contest depicted in Figure 4

24If a1 ≥ 1, then player 2 has an atom of size 1 at 0, and the algorithm proceeds to Stage 5, which specifies

that player 1 has an atom of size 1 at a1.
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The Online Appendix describes the execution of the algorithm for two additional two-player

contests.

3.3 Equilibrium Uniqueness and n-player Contests

The following result shows that the equilibrium G constructed by the algorithm is the unique

equilibrium in which players do not choose weakly dominated scores. The proof uses the property

ofG that every player’s best response set is a finite union of disjoint intervals to show that every

equilibrium in which players do not choose weakly dominated scores coincides with G.

Theorem 4 For any (m+ 1)-player contest the algorithm constructs the unique equilibrium of

the contest in which players do not choose weakly dominated scores.

A contest with more than m + 1 players may have multiple equilibria in which players do

not choose weakly dominated scores.25 Uniqueness is guaranteed, however, if the costs of the

marginal player are lower than those of player m+2, . . . , n. This is the content of the following

result.

Theorem 5 If for every player m + 2, . . . , n the conditions of Theorem 2 hold and the highest

score whose cost is 0 is no higher than x0 (the highest score whose cost is 0 for player m+1), then

the contest has a unique equilibrium in which players do not choose weakly dominated scores. In

this equilibrium, players m + 2, . . . , n choose their respective highest score whose cost is 0 and

players 1, . . . ,m + 1 behave as in the equilibrium constructed by the algorithm for the reduced

contest with players 1, . . . ,m+ 1.

Note that the conditions of Theorem 2 place no restrictions on how the cost functions of

players N\{m+ 1} relate to each other.

4 All-Pay Auctions with Head Starts

In an all-pay auction with head starts, n ≥ 2 risk-neutral players compete for m < n identical

prizes of common and commonly known value V > 0. Each player i makes a non-negative,

irreversible investment, and this investment is added to his head start ai, with a1 ≥ · · · ≥ an ≥ 0.
Each of the m players with the highest sum wins one prize. Relevant ties are decided using any

tie-breaking rule (which is specified in advance).

To model this game as a contest, let Vi = V and

ci (x) =

⎧⎨⎩ 0 if x ≤ ai

x− ai if x > ai
.

25See Example 3 in Siegel (2009).
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For the contest to meet condition M3, assume that am+1 is distinct from the head start of every

other player. Player i’s reach is ai+V , so the contest’s threshold is am+1+V . Theorem 1 shows

that in any equilibrium of the contest the payoff of every player i < m+1 is equal to his power,

i.e., min {ai − am+1, V }, and the payoff of the other players is 0. Not every equilibrium of the

contest, however, is an equilibrium of the original game. This is because in the contest player i

can choose scores lower than ai, which are weakly dominated by ai, whereas in the original game

the lowest investment of 0 leads to the score ai. Nevertheless, it is easy to see that the set of

equilibria of the original game coincides with the set of equilibria of the contest in which players

do not choose weakly dominated scores. We therefore have the following corollary of Theorem

5.

Corollary 1 An all-pay auction with head starts in which am > am+1 > am+2 has a unique

equilibrium. In the equilibrium, players m+2, . . . , n and every player i for whom ai ≥ am+1+V

choose their respective head starts.

Proof. The conditions of Theorem 2 hold for players m+2, . . . , n in the contest corresponding
to the original game. Therefore, by Theorem 5 the contest has a unique equilibrium in which

players do not choose weakly dominated scores, and in this equilibrium players m + 2, . . . , n

choose their respective head starts. The power of a player i for whom ai ≥ am+1 + V equals V ,

so he cannot choose scores higher than ai in the equilibrium, and scores lower than ai are weakly

dominated by ai.

Before deriving additional properties of the equilibrium in Section 4.2, let us consider the

case of two prizes and three players in some detail (Corollary 1 shows that additional players do

not participate).

4.1 Three Players and Two Prizes

If a2 ≥ a3 + V , then every player chooses his head start, and players 1 and 2 each win a prize

with certainty.26 If a2 < a3 + V ≤ a1, then player 1 chooses a1 and wins a prize with certainty,

and players 2 and 3 compete as in the two-player contest of Figure 4.27

If a1 < a3 + V , then players’ behavior is more complicated, and depends on how large a1 is

relative to a2 and a3. Appendix B applies the algorithm to derive the equilibrium. Specifically,

26Stage 1 of the algorithm specifies that x0 = a3 and G3 (a3) = 1, and Stage 5 of the algorithm specifies that

G2 (a2) = G1 (a1) = 1.

27Stage 1 specifies that x0 = a3 and G3 (a3) = (a2 − a3) /V , Stage 3 specifies that both players’ CDFs remain

constant on (a3, a2), Stage 4 specifies that G2 (y) = G3 (y) = (y − a3) /V for every y in [a2, a3 + V ], and both

players’ CDFs reach 1 at a3 + V .
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if a1 > 2a2 − a3 − (a2 − a3)
2 /V , then players’ equilibrium strategies are

G1 (y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if y < a1

1−
q
1− y−a3

V
if a1 ≤ y ≤ a3 + V

1 if a3 + V < y

,

G2 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y < a2
y−a3
V

if a2 ≤ y ≤ a3 + V
³
1−

q
1− a1−a3

V

´
1−

q
1− a1−a3

V
if a3 + V

³
1−

q
1− a1−a3

V

´
< y < a1

1−
q
1− y−a3

V
if a1 ≤ y ≤ a3 + V

1 if a3 + V < y

,

and

G3 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y < a3
a2−a3
V

if a3 ≤ y < a2
y−a3
V

if a2 ≤ y ≤ a3 + V
³
1−

q
1− a1−a3

V

´
1−

q
1− a1−a3

V
if a3 + V

³
1−

q
1− a1−a3

V

´
< y < a1

1−
q
1− y−a3

V
if a1 ≤ y ≤ a3 + V

1 if a3 + V < y

.

The equilibrium is depicted in Figure 6.

a3

Pl 2

Pl 3
1/V

Pl 1

1/V(a 2 -a3)/V

a 2 a1a3+V(1-(1-(a1-a3)/V )½ ) a 3+V

(a2 -a 3)/V

(1-(x-a3)/V )-½/2V
1-(1 -(a1-a3)/V )½

(1 -(x-a3)/V )-½/2V

(1-(x-a3)/V )-½/2V

2a 2-a3-(a2-a3)2/V

a3

Pl 2

Pl 3
1/V

Pl 1

1/V(a 2 -a3)/V

a 2 a1a3+V(1-(1-(a1-a3)/V )½ ) a 3+V

(a2 -a 3)/V

(1-(x-a3)/V )-½/2V
1-(1 -(a1-a3)/V )½

(1 -(x-a3)/V )-½/2V

(1-(x-a3)/V )-½/2V

a3

Pl 2

Pl 3
1/V

Pl 1

1/V(a 2 -a3)/V

a 2 a1a3+V(1-(1-(a1-a3)/V )½ ) a 3+V

(a2 -a 3)/V

(1-(x-a3)/V )-½/2V
1-(1 -(a1-a3)/V )½

(1 -(x-a3)/V )-½/2V

(1-(x-a3)/V )-½/2V

2a 2-a3-(a2-a3)2/V

Figure 6: Players’ equilibrium atoms and densities when a1 > 2a2 − a3 − (a2 − a3)
2 /V

If a1 ≤ 2a2 − a3 − (a2 − a3)
2 /V , then players’ equilibrium strategies are

G1 (y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if y < a1
y−a2

V−a2+a3 if a1 ≤ y < 2a2 − a3 − (a2−a3)2
V

1−
q
1− y−a3

V
if 2a2 − a3 − (a2−a3)2

V
≤ y ≤ V + a3

1 if V + a3 < y

,
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G2 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y < a2
a1−a2

V−a2+a3 if a2 ≤ y < a1
y−a2

V−a2+a3 if a1 ≤ y < 2a2 − a3 − (a2−a3)2
V

1−
q
1− y−a3

V
if 2a2 − a3 − (a2−a3)2

V
≤ y ≤ V + a3

1 if V + a3 < y

,

and

G3 (y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if y < a3

a2−a3
V

if a3 ≤ y < 2a2 − a3 − (a2−a3)2
V

1−
q
1− y−a3

V
if 2a2 − a3 − (a2−a3)2

V
≤ y ≤ V + a3

1 if V + a3 < y

.

The equilibrium is depicted in Figure 7.

Pl 2

Pl 3

Pl 1

(a1-a2)/(a3+V -a2)

a 2 a1

(a1-a2)/(a3+V-a2)

1/(a3+ V-a2)

2a 2-a3-(a2-a3)2/V

(a2 -a 3)/V

(1-(x-a3)/V )-½/2V

(1-(x-a3)/V )-½/2V

(1-(x-a3)/V )-½ /2V

a3+V(1-(1-(a1-a3)/V )½)

a3 a 3+V

Pl 2

Pl 3

Pl 1

(a1-a2)/(a3+V -a2)

a 2 a1

(a1-a2)/(a3+V-a2)

1/(a3+ V-a2)

2a 2-a3-(a2-a3)2/V

(a2 -a 3)/V

(1-(x-a3)/V )-½/2V

(1-(x-a3)/V )-½/2V

(1-(x-a3)/V )-½ /2V

a3+V(1-(1-(a1-a3)/V )½)

a3 a 3+V

Figure 7: Players’ equilibrium atoms and densities when a1 ≤ 2a2 − a3 − (a2 − a3)
2 /V

For example, if V = 1, a3 = 0, and a2 =
1
2
, then Figure 6 describes the equilibrium for a1 > 3

4
,

and Figure 7 describes the equilibrium for a1 ≤ 3
4
. The qualitative difference between the

equilibria is due to the size of player 2’s atom at a2, which (3) specifies to be the minimal size

so that CP (a2) contains a player in addition to player 2. In Figure 6, this additional player is
player 3, whereas in Figure 7 this additional player is player 1.

Players’ behavior can be interpreted as follows. When player 1’s head start is relatively large

(Figure 6), players compete in two disjoint “competition zones.” In the lower zone, (a2, a1), only

players 2 and 3 compete. In the higher zone, (a1, a3 + V ), all three players compete. Within the

lower zone, player 2 and 3 stop competing at a3+V
³
1−

p
1− (a1 − a3) /V

´
< a1. Each player

can be thought of as making a three-stage decision: whether to make an investment (choose a

score whose cost is positive), in which competition zone to compete (player 1 competes only in

the higher zone), and which score to choose within a zone. When player 1’s head start is relatively

small (Figure 7), players compete only in the higher competition zone. Moreover, conditional

on competing in the higher zone, player 3 is more aggressive than the other two players, in
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the sense that his conditional CDF (conditional on choosing a score in (a1, a3 + V )) first-order

stochastically dominates (FOSD) the conditional CDFs of the other two players. Player 3’s

behavior may be interpreted as an “all-or-nothing” response to his facing two strong opponents

who have relatively similar head starts. The next subsection generalizes these observations to

all-pay auctions with head starts and any number of prizes.

Two additional equilibrium properties can be deduced from examining players’ CDFs, re-

gardless of whether the equilibrium is described by Figure 6 or Figure 7. The first property is

that player 1’s CDF FOSD that of player 2, which in turn FOSD that of player 3. This implies

that a player with a higher head start wins a prize with a higher probability than a player with

a lower head start. The second property is that player 1’s (expected) expenditures are lower

than those of player 2, which are in turn lower than those of player 3. In Figure 6 this can easily

be seen by comparing player 1’s strategy to player 2’s strategy and then player 2’s strategy to

player 3’s strategy. In Figure 7 this is less obvious, because players 1 and 2 incur costs when

competing in the lower part of the higher competition zone, whereas with the corresponding

probability player 3 does not invest. Nevertheless, the higher costs incurred by player 3 when

choosing scores in the upper part of the higher competition zone more than offset this difference

in expenditures. The next subsection shows that this ranking of players’ probabilities of winning

and their expenditures holds for any number of prizes.

4.2 Equilibrium Properties

In this subsection, I restrict attention to all-pay auctions with m+ 1 players, whose head starts

are all strictly less than am+1 + V . This is without loss of generality, because Corollary 1 shows

that without this restriction the “real” competition is between players k + 1, . . . ,m + 1, who

compete for m − k prizes, where k is the number of players whose head starts are at least

am+1 + V .28 All statements refer to the unique equilibrium G = (G1, . . . , Gm+1).

The first result shows that players’ strategies can be ranked in terms of FOSD.

Proposition 2 For any two players i < j, Gi FOSD Gj, i.e., Gi (x) ≤ Gj (x) for any score x.

Moreover, if Gi (x) = Gj (x) and x ≥ ai then Gi (y) = Gj (y) for all y ≥ x.

The proof of Proposition 2 is in Appendix C, as are the proofs of the other results in this

section. A corollary of the ranking of players’ strategies is that players’ probabilities of winning

a prize can also be ranked.

28For any n > m + 1, players m + 2, . . . , n choose their head starts and win a prize with probability 0 and

players 1, . . . , k choose their head starts and win a prize with probability 1. All other players compete by choosing

scores in [am+1, am+1 + V ]. It is easy to see that players k+1, . . . ,m+1 behave as in the unique equilibrium of

the reduced contest that includes only players k + 1, . . . ,m+ 1 and m− k prizes.
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Corollary 2 For every two players i < j, the probability that player i wins a prize is at least as

high as that of player j.

To further characterize players’ strategies, note that no player chooses scores in (am+1, am).29

And how players choose scores in (am, am+1 + V ) depends qualitatively on all players’ head

starts, as shown in Section 4.1. Letting a0 = am+1 + V , each interval (ai, ai−1), i ≤ m, can be

thought of as a “competition zone,” in which a subset Ai of the players i, . . . ,m + 1 compete,

that is,

Ai = {j ≥ i : player j has best responses in (ai, ai−1)} .

I refer to the sequence A1, . . . ,Am as the “competitive characteristic.” For example, the compet-

itive characteristic of the equilibrium in Figure 6 is {1, 2, 3} , {2, 3}, and that of the equilibrium
in Figure 7 is {1, 2, 3} , φ. The following theorem enumerates properties of the competitive char-
acteristic, shows that each player’s set of best responses within a competition zone is an interval

in which his CDF strictly increases, and shows that if players k > j compete in the same compe-

tition zone, then player k is more aggressive than player j, conditional on choosing scores within

the competition zone.

Theorem 6 The unique equilibrium G of an all-pay auction with head starts has the following

properties.

(a) A1 = {1, 2, . . . ,m+ 1}. For every i > 1 (i) Ai = φ or Ai = {i, i+ 1, . . . , ki} for some
ki > i, and (ii) for every i0 < i, Ai ∩Ai0 = φ or Ai ⊆ Ai0.

(b) For every j in Ai, player j’s set of best responses in (ai, ai−1) is an interval with lower

bound li,j and upper bound hi, and Gj (x) > Gj (y) for any two scores x > y in (li,j, hi). Moreover,

hi < ai−1 if i > 1, and h1 = am+1 + V . In particular, the upper bound hi is the same for all the

players in Ai, so G does not change in (hi, ai−1). For players k > j in Ai we have (i) li,k ≥ li,j

and (ii) li0,j = li0,k for every i0 < i for which Ai ⊆ Ai0. Also, if Ai 6= φ then li,i = li,i+1 = ai.

(c) If players k > j are in Ai, then Gk (x) = Gj (x) for every x ≥ li,k.

(d) For every player i, lim x→am+1+VG (x) = 1 (no atoms at the threshold).

(e) If players k > j are in Ai, then player k’s conditional CDF FOSD that of player j. That

is, for every x in (ai, ai−1),

Gk (x)−Gk (ai)

Gk (ai−1)−Gk (ai)
≤ Gj (x)−Gj (ai)

Gj (ai−1)−Gj (ai)
.

The competitive characteristics of the equilibria in Figures 6 and 7 satisfy part (a) of Theorem

6. The equilibrium in Figure 6 has

l1,1 = l1,2 = l1,3 = a1, h1 = a3 + V, l2,2 = l2,3 = a2, h2 = a3 + V
³
1−

p
1− (a1 − a3) /V

´
< a1,

29These scores are weakly dominated for players 1, . . . ,m. Consequently, player m+1 wins with probability 0

at these scores, which are costly for him, so he does not choose them.
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the CDFs of players 2 and 3 coincide starting from a2, and the CDFs of all players coincide

starting from a1. The inequality in part (e) of Theorem 6 is an equality for both competition

zones. The equilibrium in Figure 7 has

l1,1 = l1,2 = a1 < l1,3 = 2a2 − a3 −
(a2 − a3)

2

V
, h1 = a3 + V ,

the CDFs of players 1 and 2 coincide starting from a1, and the CDFs of all players coincide

starting from l1,3. The inequality in part (e) of Theorem 6 is an equality for k = 2 and j = 1,

and is a strict inequality for k = 3 and j = 1, 2.

While part (a) of Theorem 6 provides necessary conditions for a sequence of subsets of

{1, . . . ,m+ 1} to form the competitive characteristic, it leaves open the question of which com-
petitive characteristics can be generated by changing players’ head starts. To address this

question, denote by Am the set of sequences A1, . . . ,Am that satisfy the conditions listed in part

(a) of Theorem 6. For example, A2 consists of the sequences {1, 2, 3} , {2, 3} and {1, 2, 3} , φ.
The following result shows that Am is related to a well-known combinatorial object.

Theorem 7 The cardinality of Am is the Catalan number Cm = (2m)!
(m+1)!m!

.

The Catalan number Cm appears in many combinatorial contexts. For example, it is the

number of different ways in whichm open parentheses andm close parentheses can be sequenced

so that they are correctly matched (for m = 2 there are two such sequences, “(())” and “()()”).

The Catalan number Cm is also the number of complete binary trees with m + 1 leaves.30

The idea underlying Theorem 7 is that each sequence in Am can be mapped to a sequence of

m+1 progressively finer partitions of {1, . . . ,m+ 1}, and each such sequence of partitions can be
mapped to a sequence of correctly matched parentheses. The proof of Theorem 7 describes these

mappings, and immediately after the proof in Appendix C I describe an explicit bijection between

the set of sequences of correctly matched parentheses and Am. As discussed above, the two

sequences {1, 2, 3} , {2, 3} and {1, 2, 3} , φ that comprise A2 are the competitive characteristics
of the equilibria in Figures 6 and 7. Theorem 8 shows that this equivalence holds for any number

of prizes.

Theorem 8 Every sequence in Am is a competitive characteristic for some head starts am+1 <

· · · < a1 < am+1 + V .

Theorems 7 and 8 fully describe the number and type of qualitatively different equilibria that

can be generated by varying players’ head starts, as captured by the competitive characteristic.

This is summarized by the following corollary.

30See Thomas Koshy’s (2009) book for additional applications and a derivation of the formula in Theorem 7.
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Corollary 3 The number of competitive characteristics that can be generated by varying players’
head starts is the Catalan number Cm = (2m)!

(m+1)!m!
. The set of these competitive characteristics is

Am.

Figure 8 depicts the five qualitatively different equilibria that correspond to the competitive

characteristics for m = 3.
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Figure 8: The supports of players’ strategies (dots represent atoms) in the equilibria

corresponding to the five possible competitive characteristics for m = 3: (i) {1, 2, 3, 4} , φ, φ, (ii)
{1, 2, 3, 4} , {2, 3} , φ, (iii) {1, 2, 3, 4} , {2, 3, 4} , φ, (iv) {1, 2, 3, 4} , φ, {3, 4}, and (v)

{1, 2, 3, 4} , {2, 3, 4} , {3, 4}

Some intuition for the connection between the Catalan number and the competitive charac-

teristic can be gained by considering the execution of the algorithm. For every i in 2, . . . ,m+1,

Stage 3 of the algorithm is executed once in [ai, ai−1), at the point at which player i− 1 obtains
his payoff (so no player chooses scores between that point and ai−1). Each of these m executions

of Stage 3 can be thought of as an “open parentheses.” And for every i in 2, . . . ,m + 1, there

is a first execution of Stage 4 of the algorithm in [ai−1, am+1 + V ) in which player i becomes

active (and these are all the executions of Stage 4). Each of these m executions of Stage 4 can

be thought of as a “close parentheses.” Moreover, the open parentheses that corresponds to i is

correctly matched with the close parentheses that corresponds to i, so the sequence of m open

parentheses and m close parentheses obtained by the execution of the algorithm is balanced.

Figure 9 illustrates this for plate (ii) of Figure 8. Varying players’ head starts changes the order

in which the 2m instances of Stages 3 and 4 are executed: decreasing ai−1 causes Stage 3 in

[ai, ai−1) to be executed closer to ai, which reduces the number of instances of Stage 4 executed
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in [ai, ai−1), whereas increasing ai−1 causes Stage 3 in [ai, ai−1) to be executed farther from ai

and allows for more instances of Stage 4 to be executed in [ai, ai−1).

0
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Pl 1

Pl 3

( ( ) ) )(

a1a2a3 l1,4h2

i=4 i=3 i=3 i=2
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( ( ) ) )(

a1a1a2a2a3a3 l1,4l1,4h2h2

i=4 i=3 i=3 i=2
i=2

i=4

a4+V

Figure 9: The sequence of parentheses corresponding to the execution of the algorithm

In Figure 9, the notation h2 and l1,4 is as introduced in Theorem 6. In [a4, a3), Stage 3 is

executed at a4 (open parentheses, i = 4), and Stage 4 is not executed. In [a3, a2), Stage 3 is

executed at a3 (open parentheses, i = 3), and Stage 4 is not executed. In [a2, a1), Stage 4 is

executed once, at a2, and this is the first execution of Stage 4 in [a2, a4 + V ) in which player 3

becomes active (close parentheses, i = 3). Stage 3 is executed at h2 (open parentheses, i = 2).

Finally, in [a1, V ) Stage 4 is executed twice. The first time is at a1, and this is the first execution

of Stage 4 in [a1, V ) in which player 2 becomes active (close parentheses, i = 2). The second

time is at l1,4, and this is the first execution of Stage 4 in [a3, V ) in which player 4 becomes

active (close parentheses, i = 4).

I now turn to players’ equilibrium (expected) expenditures. In the equilibria depicted in

Figure 6 and plate (v) of Figure 8, the best response set of every player i > 1 nests that of

player i−1. In such cases, by using part (c) of Theorem 6, it is straightforward to show that the
expenditures of player i are higher than those of player i− 1. But when players’ best response
sets are not nested, which occurs in other competitive characteristics, some player i− 1 chooses
scores from regions to which player i assigns probability 0. This is what happens in Figure 7 in

the interval
³
a1, 2a2 − a3 − (a2−a3)2

V

´
for i = 3. It is therefore not immediately obvious whether

players’ expenditures can be ranked in general. The following corollary of the previous results

shows that an unambiguous ranking exists regardless of the competitive characteristic.

Proposition 3 For any two players i < j, the expenditures of player j are at least as high as

those of player i.
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4.3 Comparison to Standard All-pay Auctions

In a standard all-pay auction, n ≥ 2 risk-neutral players compete for m < n identical prizes.

Player i’s commonly known valuation for a prize is Vi, with V1 ≥ · · · ≥ Vn > 0. Each player

makes a non-negative investment, and the m players who make the highest investments win one

prize each. Relevant ties are decided using any tie-breaking rule (which is specified in advance).

This game is a contest in which ci (x) = x, so no scores are weakly dominated. For the

contest to meet condition M3, assume that Vm+1 is distinct from the valuation of every other

player. Player i’s reach is Vi, so the contest’s threshold is Vm+1. Theorem 1 shows that in any

equilibrium of the contest the payoff of every player i < m+1 is equal to his power, Vi−Vm+1, and
the payoff of the other players is 0. Theorem 5 shows that the contest has a unique equilibrium,

in which players m+ 2, . . . , n choose 0. Clark and Riis (1998) and Siegel (2010) solved for this

equilibrium (which can also be solved by the algorithm presented in this paper) and described

the CDFs of players 1, . . . ,m + 1 in closed form. Theorem 8, Corollary 5, and (11) in Siegel

(2010) provide the following properties of the equilibrium.

Theorem 9 The unique equilibriumG of a standard all-pay auction has the following properties.

(a) For any two players i < j ≤ m+1, Gi FOSD Gj, so player i’s expenditures and probability

of winning a prize are at least as high as those of player j.

(b) The best response set of player i ≤ m + 1 is an interval with lower bound li and upper

bound Vm+1, and Gi (x) > Gi (y) for any two scores x > y in (li, Vm+1). For any two players

i < j ≤ m+ 1 we have li ≥ lj. Also, lm = lm+1 = 0.

Players’ atoms and best-response sets in the equilibrium are depicted in Figure 10.
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Figure 10: The supports of players’ strategies (dots represent atoms) in the unique equilibrium

of a standard all-pay auction

Certain real-world asymmetries among competitors are naturally modeled by head starts,

whereas other asymmetries are better modeled by differences in valuations for a prize. A com-

parison between the results of Section 4.2 and Theorem 9 elucidates the similarities and dif-

ferences between the equilibrium predictions of the two models. Both models have a unique
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equilibrium, in which players m + 2, . . . , n do not participate. Stronger players choose higher

scores than weaker players, in terms of FOSD and therefore on average, and consequently win

a prize with higher probability. But whereas the expenditures of stronger players are higher

than those of weaker players when players differ in their valuations, the opposite is true with

head starts.31 Another difference is that with head starts players 1, . . . ,m + 1 compete in one

or more competition zones, depending on the relative values of the head starts. Within each

competition zone, all competing players choose scores from an interval, and these intervals all

end at the same score. The intervals are shorter for weaker players, who are more aggressive

than stronger players in terms of conditional FOSD. Varying players’ head starts changes the

competition zones in which different players compete, so that player i may choose scores from

up to min {i,m} disjoint intervals of positive length. The possible qualitatively different equi-
librium configurations are captured by the different competitive characteristics, of which there

are an exponential number in m. In contrast, when players differ in their valuations each player

chooses scores from one interval, and these intervals all end at the threshold and are shorter

for stronger players. The equilibrium can be thought of as consisting of one competition zone,

(0, Vm+1), within which players 1, . . . ,m + 1 compete and stronger players are more aggressive

than weaker players. Changing players’ valuations does not change the qualitative form of the

equilibrium. This difference between the equilibrium predictions of the two models is illustrated

by the difference between Figures 8 and 10.

To conclude the comparison between the models, consider a symmetric standard all-pay

auction with n players and m prizes in which all players’ valuations equal V > 0. This game,

which is a special case of the all-pay auction with heterogeneous prizes analyzed by Yasar Barut

and Kovenock (1998), has a continuum of equilibria. It is easy to verify that one equilibrium

is for m + 1 players to employ the CDF G (x) = 1 − (1− x/V )1/m on [0, V ] and for the other

players to choose 0. This equilibrium is the limit of the equilibria that correspond to a sequence

of standard all-pay auctions in which players have different valuations that approach V (provided

that Vm > Vm+1 > Vm+2 along the sequence).32 The following result shows that this equilibrium

is also the limit of the equilibria that correspond to a sequence of all-pay auctions with head

starts that approach 0.

Proposition 4 Consider a sequence indexed by k of all-pay auctions with head starts ak1 ≥ · · · >
akm+1 > · · · ≥ akn ≥ 0 for which ak1 →

k→∞
0. In the limit of the corresponding equilibria Gk players

1, . . . ,m+1 employ the CDF G (x) = 1−(1− x/V )1/m on [0, V ] and players m+2, . . . , n choose

0.

31Moreover, in a standard all-pay auction the expenditures of players 1, . . . ,m+ 1 are positive and no player

wins a prize with probability 1. In contrast, a player with a sufficiently large head start expends 0 and wins a

prize with probability 1.

32This follows from (2), (3), and (4) in Clark and Riis (1998), and also from (11) and (12) in Siegel (2010).

26



4.4 Contest Design

The payoff and equilibrium characterizations can also be used for contest design. As an example,

consider an (m+ 1)-player all-pay auction with heads starts and m prizes of value V > a1, and

two types of intervention by the contest administrator: handicaps and subsidies.33 A handicap

increases the handicapped player’s score without affecting his output and at no direct cost to the

administrator. A subsidy increases the player’s output (and therefore his score) by allocating

some of the prize money to defray the player’s expenditures. Because of the linearity of players’

costs (above their head starts), the payoff result is sufficient to determine the optimal handicaps

and subsidies when the goal is to maximize aggregate expected expenditures or output.34

Because every player i’s power is ai − am+1, the aggregate expected expenditures are

mV −
mX
i=1

ai +mam+1.

If handicaps h1, . . . , hm+1 are administered, the resulting game is strategically equivalent to an

all-pay auction in which every player i’s head start is ai + hi. This implies that handicaps

hi = a1 − ai lead to aggregate expected expenditures of

mV −
mX
i=1

(ai + hi)+m (am+1 + hm+1) = mV −
mX
i=1

(ai + a1 − ai)+m (am+1 + a1 − am+1) = mV.35

These are the highest possible aggregate expected expenditures, because aggregate expected

expenditures are bounded above by the aggregate value of the prizes. Note that a player’s

output equals his head start plus his expenditures (the handicap is not added to the output),

so maximizing aggregate output is equivalent to maximizing aggregate expected expenditures.

Therefore, the maximal aggregate expected output of mV +
Pm+1

i=1 ai is achieved by setting

hi = a1 − ai. This analysis also implies that adding additional players cannot increase the

aggregate expenditures or output.

If subsidies are administered, then a subsidy of bi increases player i’s output by bi and reduces

the amount of prize money by bi. To maximize aggregate expected output, set bi = a1− ai (just

33Similar interventions have been investigated by Qiang Fu, Jingfeng Lu, and Yuanzhu Lu (2009) in a two-player

stochastic contest.

34The output is the “real” score, excluding handicaps but including subsidies. This could correspond, for

example, to the quality or quantity of what is produced in the course of the competition.

35Although Condition M3 is violated when all players are identical, Corollary 3 in Siegel (2009) shows that in

this case every player’s equilibrium payoff is 0.
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like the handicaps above). This gives the maximal aggregate expected output of

mV −
m+1X
i=1

bi| {z }
prize value

−
Ã

mX
m=1

(ai + bi)−m (am+1 + bm+1)

!
| {z }

expected payoffs| {z }
expected expenditures

+
m+1X
i=1

(ai + bi)| {z }
subsidies and head starts

= mV −
Pm+1

i=2 (a1 − ai) + (m+ 1) a1 = mV +
Pm+1

i=1 ai,

just like with optimal handicaps.

A tradeoff is introduced when subsidies are chosen to maximize aggregate expected expen-

ditures. This is because increasing the marginal player’s output enhances competition, which

increases expenditures, but also decreases the aggregate prize value, which decreases competition

and lowers expenditures. As long as ai + bi ≥ aj + bj for i < j, aggregate expenditures are

mV −
m+1X
i=1

bi −
Ã

mX
m=1

(ai + bi)−m (am+1 + bm+1)

!
,

so subsidizing a player who is not the marginal player lowers expenditures both because it

increases the player’s payoff and because it lowers the prize value. Subsidizing the marginal

player increases expenditures by (m− 1) bm+1, so it is optimal to give the marginal player a
subsidy of am − am+1. At this point, any additional subsidy to player m + 1 requires that the

same additional subsidy be give to player m (otherwise player m would become the marginal

player and expenditures would decrease, as discussed above). Therefore, an additional subsidy

of z increases expenditures by (m− 3) z. If m ≥ 3 then it is optimal to set an additional subsidy
of z = am−1 − am. At this point, any additional subsidy must be given to player m − 1 as
well. Continuing in this way, we see that the optimal subsidy equates the head starts of players

k, k + 1, . . . ,m+ 1 with that of player k − 1, where k ≥ 2 is the lowest integer that satisfies

m ≥ (m+ 1− k) + 1 +m− k + 1 ⇐⇒ m ≥ 2m− 2k + 3 ⇐⇒ k ≥ m+ 3

2
.36

Design questions for which knowledge of players’ equilibrium payoffs is insufficient may be

addressed by applying the equilibrium construction algorithm. I illustrate this by briefly con-

sidering some design questions in a three-player all-pay auction with head starts and two prizes

of value V . Players’ equilibrium strategies are described in Section 4.1. Suppose that we are

interested in increasing player 1’s expenditures (and output) by subsidizing or handicapping

player 2. If a1 > 2a2 − a3 − (a2 − a3)
2 /V , then Figure 6 describes the equilibrium as long as

36It can be shown that in an (m+ 1)-player all-pay auction with head starts players’ payoffs equal their power

and there is a unique equilibrium, given by the algorithm, even when Condition M3 does not hold. This continues

to be true if additional players with head starts lower than am+1 are added. These additional players do not

participate.
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the subsidy/handicap is not too large. Considering player 1’s equilibrium CDF in this case, it is

immediate that a handicap for player 2 has no effect, and a subsidy for player 2 reduces player

1’s expenditures because it lowers the prizes’ value. If Figure 7 describes the equilibrium, then

it can be shown that a handicap for player 2 of up to a1− a2 monotonically increases player 1’s

expenditures. This implies that a handicap of a1−a2 is optimal. It can be shown, however, that
if a1 is small, then any subsidy to player 2 reduces player 1’s expenditures.37 Another object

of possible interest is the first-order statistic of players’ scores (this would correspond to the

quality of the best innovation in an R&D setting). If Figure 6 describes the equilibrium, it can

be shown that the first-order statistic is convex in a1. This implies that the optimal subsidy to

player 1 is either 0 or the maximal subsidy (so that a1 + b1 = V − b1
2
). The former is optimal if

a1 is small, the latter is optimal if a1 is large.

5 Conclusion

This paper has examined equilibrium behavior in a single-prize and multiprize contest model

that accommodates various asymmetries, including head starts. Whenm+1 players compete for

m prizes, there is a unique equilibrium in which players do not choose weakly dominated scores.

As long as no additional players participate, which is the case when weaker players’ costs are

everywhere higher than those of the marginal player, uniqueness is maintained. The equilibrium

is constructed by an algorithm, and the construction shows that players may choose scores from

several intervals, have atoms at positive scores, and have aggregate gaps in their best-response

sets.

To study the effects of head starts, I applied the algorithm to all-pay auctions with head starts

and identical valuations. These contests have a unique equilibrium, in which players choose scores

from one or more competition zones separated by gaps. Within each competition zone weaker

players are more aggressive than stronger players. Weaker players’ expected expenditures are

also higher than those of stronger players. The qualitative form of the equilibrium changes with

the relative values of players’ head starts, and is closely related to sequences that consist of m

open parentheses and m close parentheses that are correctly matched, whose cardinality is the

Catalan number. These equilibrium properties contrast with the equilibrium predictions of the

standard all-pay auction, in which players differ in their valuations for a prize.

One direction for future research is to study all-pay auctions that combine head starts and

differing valuations. The algorithm can be applied to these contests as long as the participation

result holds (for example, when ai < am+1 and Vi < Vm+1 for every player i > m + 1). The

37It can also be shown that if Figure 6 describes the equilibrium, then a subsidy to player 1 increases his

output: the decrease in expenditures due to the lower prize value is smaller than the increase in score due to the

subsidy.
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resulting equilibrium would likely combine some features of the standard all-pay auction with

those of the all-pay auction with head starts and identical valuations. Classes of contests with

non-linear costs can also be studied using the tools developed here. Contest design, which

has been touched upon only briefly in this paper, is another direction for future research and

application of the results. Because the equilibrium can be explicitly constructed for a large

class of contests, many target functions are, at least in principle, amenable to analysis. Such

an analysis could help a contest designer optimally employ the tools at his disposal. Finally,

the contest framework can be used to study environments in which competitors’ costs are non-

monotonic, or in which competitors receive bonuses upon reaching certain milestones.
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A Proofs of Proposition 1 and Results from Section 3

I denote by eG= ³ eG1, . . . , eGm+1

´
an equilibrium of an (m+ 1)-player contest, where eGi (x) is

the probability that player i chooses a score lower than or equal to x. I say that player i is

stronger (weaker) than player j if i < j (i > j).

A.1 Proof of Proposition 1

Denote by C̃ the contest in which player i’s costs are cLi and his valuation is Vi. I begin by

proving that the first part of the proposition holds with C̃ instead of Ĉ. By definition of cLi , a

score is weakly dominated for player i in C̃ if and only if it is weakly (or strongly) dominated for

player i in C. And if x is not weakly dominated for player i, then ci (x) = cLi (x). This proves

the following claim.

Claim 1 In any profile of strategies in which players do not choose weakly dominated scores,
every player’s payoff is the same in C and Ĉ.

Consider an equilibrium in C in which players do not choose weakly dominated scores. If

this is not an equilibrium in C̃, then some player i has a profitable deviation x in C̃, which

implies that he has a profitable deviation y ≥ x that is not weakly dominated. By Claim 1, y

is a profitable deviation for for player i in C. The same argument proves the other direction.

Claim 1 also shows that in any such equilibrium every player’s payoff is the same in C and C̃. To

conclude, note that Ĉ is derived from C̃ by adding the constant li to player i’s Bernoulli utility

(adding −li to his costs). This implies that Ĉ and C̃ are strategically equivalent, and also that

for every strategy profile the payoff in C̃ of player i is precisely li lower than his payoff in Ĉ.

A.2 Proof of Lemma 1

The proof relies on the following lemma.

Lemma 4 Suppose that in eG no player chooses weakly dominated scores, and denote by sinf

the infimum of the union of the best response sets of players 1, . . . ,m. Then eGm+1 (sinf) > 0,eGi (sinf) = 0 for every player i < m+ 1, and sinf = x0.

Proof. By definition of sinf , there exists a player i < m + 1 and a set of scores {xk}∞k=1
that are best responses for player i such that x

k
→ sinf . Because player i’s power is positive,

his probability of winning when choosing any score xk in the set is bounded away from 0, so

by right-continuity of players’ CDFs there is a player j 6= i with eGj (sinf) > 0. Suppose in

contradiction that eGm+1 (sinf) = 0. Then j 6= m+ 1, and because eGj (x) = 0 for every x < sinf ,

player j has an atom at sinf . The same argument for player j instead of player i shows that
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there is another player, in addition to player j, with an atom at sinf . Because eGm+1 (sinf) = 0,

not all players with an atom at sinf win a prize with probability 1 when choosing sinf , so by

the Tie Lemma of Siegel (2009) (henceforth: Tie Lemma) they win a prize with probability

0 and have a payoff of 0 when choosing sinf . But players 1, . . . ,m have a positive payoff, a

contradiction. Thus, eGm+1 (sinf) > 0. Because eGm+1 (x) = 0 for x < x0, we have that x0 ≤ sinf .

If x0 = sinf , then the marginal player has an atom at sinf , so by the Tie Lemma eGi (sinf) = 0

for i < m + 1. Therefore, to complete the proof it suffices to rule out x0 < sinf . Suppose in

contradiction that x0 < sinf . By choosing a score x in (x0, sinf) the marginal player wins a prize

with probability 0 and incurs a positive cost, so no score in (x0, sinf) is a best response for him.

Therefore, if eGm+1 (sinf) > eGm+1 (x0) then the marginal player has an atom at sinf , which implies

that sinf is a best reply for him. This means that another player has an atom at sinf (because

cm+1 (sinf) > cm+1 (x0) = 0), which contradicts the Tie Lemma. If eGm+1 (sinf) = eGm+1 (x0) < 1,

consider a player i < m + 1 such that (i) the player has best responses that approach sinf and

(ii) no other player j < m + 1 has an atom at sinf (the Tie Lemma guarantees that such a

player i exists). Then sinf is a best response for player i. But the CDFs of players other than

i do not increase on (x0, sinf ], so all scores in (x0, sinf) are at least as good as sinf for player i,

contradicting the definition of sinf . Finally, if eGm+1 (sinf) = eGm+1 (x0) = 1, then all scores in

(x0, sinf ] are at least as good as sinf for any player i who has best responses that approach sinf ,

contradicting the definition of sinf .

To complete the proof, it remains to show that eGm+1 (x0) = mini<m+1
³
ci(x0)+wi

Vi

´
. IfeGm+1 (x0) were larger, some player i < m + 1 would obtain more than his power at scores

immediately above x0. If eGm+1 (x0) were smaller, then by Lemma 4 and right-continuity ofeG no player i < m + 1 would have best responses in [x0, x0 + ε] for some ε > 0. This would

contradict sinf = x0.

A.3 Proof of Lemma 2

Suppose in contradiction that eGj (y) < 1 for some player j at a score y that is not a best response

for any player. This implies that no player has an atom at y, so by continuity of players’ cost

functions and CDFs at y, no player has best responses in some neighborhood of y. Denote by

BRk
y the set of player k’s best responses above y, and by sinf,y the infimum of ∪m+1k=1 BR

k
y. BecauseeGj (y) < 1, BRj

y is not empty, so sinf,y > y is well defined and no player has best responses in

[y, sinf,y). If sinf,y were not a best response for at least one player, then by the argument above

no player would have best responses in a neighborhood of sinf,y, contradicting the definition of

sinf,y. Consider a player k for whom sinf,y is a best response. Because ck (sinf,y) ≥ ck (y) and y is

not a best response for player k, he must win a prize with higher probability when choosing sinf,y
than when choosing y. This means that some player other than k has an atom at sinf,y, because

no player has best responses in [y, sinf,y). This implies that sinf,y is a best response for that other
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player, which requires another player to have an atom at sinf,y. Therefore, there are at least two

players with an atom at sinf,y. By the Tie Lemma of Siegel (2009), either all the players with an

atom at sinf,y win a prize with probability 0 or all win a prize with probability 1 when choosing

sinf,y. If the former is true, then y is a best response for the players with an atom at sinf,y, a

contradiction. If the latter is true, then denote byN 0 the set of players l for whom eGl (sinf,y) = 1.

This set is non-empty, otherwise no player could win a prize with probability 1 by choosing sinf,y.

Moreover, every player in N 0 has an atom at sinf,y, otherwise eGl (y) = 1 for a player l in N 0,

so scores slightly below sinf,y would be best-responses for every player with an atom at sinf,y, a

contradiction. Now consider the positive-probability event that the (m+ 1)− |N 0| players not in
N 0 choose scores strictly higher than sinf,y and the |N 0| players in N 0 choose sinf,y.38 Conditional

on this event, m−((m+ 1)− |N 0|) = |N 0|−1 prizes are divided among the |N 0| players inN 0, so

the players in N 0 cannot all win a prize with probability 1 when choosing sinf,y, a contradiction.

A.4 Proof of Lemma 3

The proof requires two lemmas.

Lemma 5 Suppose that a checkpoint x < T has been reached with Gi (x) < 1 for every player i,

so Stage 2 is executed. If the algorithm proceeds to Stage 3, then the next checkpoint x̄ satisfies

(i) x̄ < T and (ii) Gi (x) ≤ Gi (x̄) ≤ 1 for every player i.

Proof. By definition of the checkpoint x̄ identified in Stage 3, A+ (x) contains at least one player
i for whom ci (x) = ci (x̄). Because player i is in CP (x), (2) holds. Because Gj (x) < 1 for every

player j, (2) implies that Vi − ci (x) > wi. By definition, wi = Vi − ci (T ), so ci (x) < ci (T ) and

consequently ci (x̄) < ci (T ), which implies that (i) holds. For (ii), recall that Stage 3 specifies

to set Gj (x̄) = Gj (x) for every player j 6= i. To see that Gi (x) ≤ Gi (x̄) ≤ 1, note that x̄ < T

implies Vj − cj (x̄) ≥ wj for every player j. Therefore, the lowest value of Gi (x̄) such that a

player other than i is in CP (x̄) is at most 1. Moreover, because for every player ı̃ either (1)
or (2) holds with ı̃ instead of i, cı̃ (x̄) ≥ cı̃ (x), and Gj (x̄) = Gj (x) for every player j 6= i, the

lowest value of Gi (x̄) such that a player other than i is in CP (x̄) is at least Gi (x).

Lemma 6 Suppose that a checkpoint x < T has been reached with Gi (x) < 1 for every player i,

so Stage 2 is executed. If the algorithm proceeds to Stage 4, then the next checkpoint x̄ satisfies

(i) x̄ ≤ T , (ii) Gi is non-decreasing on [x, x̄] and Gi (x̄) ≤ 1 for every player i, and (iii) if x̄ = T

then Gi (x̄) = 1 for some player i.

Proof. The extension ofG to [x, x̄] in Stage 4 is such that the hazard rate − (1−Gi (y))
0 /Gi (y)

(where the derivative is a right-derivative) of every player i in A+ (x) at scores y immediately

38If |N 0| = m+ 1, then this event is simply the event that all players choose sinf,y.
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above x equals H (x, y)− εi (y) ≥ 0. This shows that G is non-decreasing immediately above x.

The checkpoint x̄ is chosen so that if player i’s hazard rate is non-negative immediately above

x, then his hazard rate remains non-negative up to x̄. Therefore, G is non-decreasing in [x, x̄].

Also, if x̄ ≤ T then Gi (x̄) ≤ 1 for every player i, because x̄ is chosen so that whenG is extended

to [x, x̄] no player can obtain more than his power by choosing a score in [x, x̄]. If x̄ ≥ T , then

the CDF of at least one player is 1 at T when G is extended as specified in Stage 4, because for

a player to obtain his power by choosing T he must win a prize with probability 1, and every

player in CP (x) obtains his power in [x, x̄]. Thus x̄ ≥ T implies x̄ = T .

To prove Lemma 3, first suppose that Gm+1 (x0) = 1. Then Stage 1 is followed by Stage 5.

By part (ii) of Condition M3, cm+1 (T ) > cm+1 (0) = 0, so xL = x0 < T . For the remainder

of the proof, suppose that Gm+1 (x0) < 1, and recall that by definition Gi (x0) = 0 for every

player i 6= m + 1. Lemmas 5 and 6 suggest two possibilities. The first possibility is that

xL ≤ T with Gi

¡
xL
¢
= 1 for some player i is reached after Stages 3 and 4 are executed a

finite number of times. In this case, the statement of the lemma holds. The second possibility

is that Stage 3 or 4 (or both) are executed infinitely many times. To complete the proof, it

suffices to rule out this possibility. That Stage 3 is executed at most a finite number of times

follows because the checkpoint identified in Stage 3 is the endpoint of a maximal interval on

which a player’s cost function in constant, and every player’s cost function is constant on at

most a finite number of such intervals because cost functions are piecewise analytic. If Stage 4

is executed an infinite number of times, then there exists a sequence of consecutive checkpoints

x1 < x2 < . . ., all identified via iterations of Stage 4. By Lemmas 5 and 6, and because Stage 5

is not reached, the value of every player’s CDF at every checkpoint in the sequence is less than

1, and limk→∞ xk ≤ T . The proof of Lemma 7 in Siegel (2010) shows that because cost functions

are piecewise analytic there is only a finite number of checkpoints xk in the sequence for which

A+ (xk) 6= A+ (xk+1). This means that there is an infinite subsequence of consecutive checkpoints
xi1 < xi2 < . . . in some subinterval [a, b] of [0, T ] for which A+ (xi1) = A+ (xi2) = . . . . This,

together with (5) and the fact that the CDFs of players not in A+ (·) do not increase, means that
G is piecewise analytic on [a, b].39 And because players’ cost functions are piecewise analytic,

the criteria specified in Stage 4 for identifying the next checkpoint mean that there can only be

a finite number of checkpoints in [a, b], a contradiction.

A.5 Proof of Theorem 3

To prove that G is an equilibrium, it suffices to show three things: (i) G is a profile of CDFs

(non-decreasing, right-continuous, and limx→∞G (x) = 1), (ii) no player can obtain a payoff

higher than his power by choosing any score when the other players choose scores according to

39A proof similar to that of Lemma 4 in Siegel (2010) shows that G is analytic at b.
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G, and (iii) every player i assigns Gi-measure 1 to scores that give him a payoff equal to his

power when the other players choose scores according to G. (i) follows from the construction

of G, Lemma 3, and part (ii) of Lemmas 5 and 6. For (ii), by construction of G no player

can obtain more than his power by choosing a score in
£
0, xL

¤
, where xL is the last checkpoint

identified by the algorithm. Also, by definition of power no player can obtain more than his

power above T . It therefore suffices to show that no player can obtain more than his power by

choosing a score in
¡
xL, T

¢
. The following lemma shows that if xL < T , then Gm+1

¡
xL
¢
= 1

and cj
¡
xL
¢
= cj (T ) for every player j < m+1. This is enough: by Stage 5, the marginal player

cannot increase his probability of winning a prize by increasing his chosen score from xL to a

score in
¡
xL, T

¢
, and every other player obtains his power by choosing a score in

¡
xL, T

¢
.

Lemma 7 If xL < T , then Gm+1

¡
xL
¢
= 1 and cj

¡
xL
¢
= cj (T ) for every player j < m+ 1.

Proof. By definition, Gi

¡
xL
¢
= 1 for some player i, and xL is identified in Stage 1, 3, or 4. If

xL is identified in Stage 1, then xL = x0 and

1 = Gm+1 (x0) = min
i<m+1

µ
ci (x0) + wi

Vi

¶
= min

i<m+1

µ
1− (ci (T )− ci (x0))

Vi

¶
,

which implies that cj
¡
xL
¢
= cj (T ) for all j < m + 1. If xL is identified in Stage 3 or 4, then

consider a player i for which Gi

¡
xL
¢
= 1. Player i is in A+ (x), where x is the checkpoint

preceding xL, and is therefore in CP
¡
xL
¢
. Suppose i < m + 1. In Stage 3 this means that the

marginal player obtains strictly more than his power immediately above xL (Assumption M3

part (ii)), so Gi

¡
xL
¢
can be set lower so that the marginal player is in CP

¡
xL
¢
. This contradicts

the definition of Gi

¡
xL
¢
in Stage 3 as the lowest value such that CP

¡
xL
¢
contains at least two

players. In Stage 4, i < m + 1 means that the marginal player can obtain strictly more than

his power immediately below xL (by continuity of the extension of G in Stage 4), contradicting

the property of the extension of G in Stage 4 that no player can obtain more than his payoff

in
£
x, xL

¤
. Given that Gm+1

¡
xL
¢
= 1, the same contradictions showed for the marginal player

hold for any player j < m+ 1 with cj
¡
xL
¢
< cj (T ).

For (iii), note that a player’s CDF increases continuously only in Stage 4, and G is extended

in Stage 4 in such a way that all players whose CDFs increase obtain their power (because they

are all in A+ (x)). It remains to show that a player obtains precisely his power whenever he
has an atom. By construction, a player can be assigned an atom in Stage 1, 3, or 5. Stage 1

assigns an atom only to the marginal player, at x0, and the marginal player obtains a payoff of

0 (equal to his power) when choosing x0. Each execution of Stage 3 identifies a checkpoint x̄

and assigns an atom to at most one player, at x̄. That player obtain his power at x̄, because

he is in CP (x̄) and there is no tie at x̄ (because no other player has an atom there). For Stage

5, consider two cases. If xL < T , then Lemma 7 shows that Stage 5 assigns atoms to a subset

of players 1, . . . ,m at scores at which they win with probability 1 and whose cost equals their
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cost of choosing the threshold, so they obtain their power by choosing these scores. If xL = T ,

then xL is identified in Stage 4 (part (i) of Lemma 5). Because the extension of G in Stage 4 is

continuous, the players whose CDF reaches 1 in Stage 4 at xL do not have an atom at xL = T .

Thus, any player j with an atom at xmaxj ≥ T wins a prize with probability 1 by choosing xmaxj .

And by Stage 5, cj
¡
xmaxj

¢
= cj

¡
xL
¢
= cj (T ). Therefore player j obtains his power by choosing

xmaxj .

It remains to show that in G players do not choose weakly dominated scores. Recall that

a score x is weakly dominated for player i if ci (x) = ci (y) for a score y > x. Consider the

stages of the algorithm in which a player’s CDF may increase. If a player’s CDF increases in

Stage 4, then his cost function is increasing (the cost functions of all candidate players in Stage

4 are increasing). If a player’s CDF increases in Stages 1, 3, or 5, then he has an atom, and by

construction that atom is at the upper endpoint of a maximal interval in which the player’s cost

function is constant. In both cases the player does not choose weakly dominated scores.

A.6 Proof of Theorem 4

Suppose that in eG no player chooses weakly dominated scores. I will show that G =eG. The
following lemma shows that if G and eG differ, they differ at scores lower than xL, the last

checkpoint in G.

Lemma 8 If G
¡
xL
¢
=eG¡xL¢, then G (y)=eG(y) for all y > xL.

Proof. Because Gi

¡
xL
¢
= eGi

¡
xL
¢
= 1 for some player i (which also implies Gi (y) = eGi (y) = 1

for all y > xL), no other player j has best responses in G or eG at scores y for which cj (y) >

cj
¡
xL
¢
. Therefore, eGj (y) = 1 for every score y ≥ xmaxj , where xmaxj is defined as in Stage 5.

And because in eG no player chooses weakly dominated scores, eGj (y) = eGj

¡
xL
¢
for every score

y in
¡
xL, xmaxj

¢
. Consequently, G (y)=eG(y) for all y > xL.

For the next step, divide the checkpoints in G, excluding xL, into “constant checkpoints”

and “increasing checkpoints.” A constant checkpoint leads to Stage 3, i.e., it is a checkpoint at

which at least one active player’s cost function is constant. An increasing checkpoint leads to

Stage 4, i.e., it is a checkpoint at which all active players’ cost functions are increasing. The

next lemma shows that if G and eG coincide at a constant checkpoint, then they coincide at all

scores up to the following checkpoint. Denote by xk and xk+1 two consecutive checkpoints.

Lemma 9 If xk is a constant checkpoint and G (xk) =eG(xk), then G (y) =eG(y) for all y in
[xk, xk+1].

Proof. By construction, because xk is a constant checkpoint, there is a player i in CP (xk)
for which ci (xk) = ci (xk+1). This means that eGj (y) = eGj (xk) for every other player j and
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y in [xk, xk+1], otherwise player i would obtain more than his power in eG. Now, because no
player chooses weakly dominated scores in eG, eGi (y) = eGi (xk) = Gi (xk) = Gi (y) for every y

in [xk, xk+1). It remains to show that Gi (xk+1) = eGi (xk+1). This is true because Gi (xk+1) <eGi (xk+1) implies that some player other than i obtains more than his power immediately above

xk+1, and Gi (xk+1) > eGi (xk+1) implies that Lemma 2 is violated immediately above xk+1, as

explained in the paragraph preceding the statement of Lemma 2.

Denote by fCP (x) the set of players i for which (2) holds with eGi instead of Gi (the players

for whom x is a best response in eG).
Lemma 10 Suppose that xk < xL is an increasing checkpoint. If eG(xk) = G (xk) and fCP (x) =
CP (x) for every x in (xk, xk+1), then eG(x) = G (x) for every x ∈ [xk, xk+1].
Proof. By construction, CP (x) = A+ (xk) for every x in (xk, xk+1). This implies that for every
player i not in A+ (xk) and every x in (xk, xk+1) we have eGi (x) = eGi (xk) = Gi (xk) = Gi (x),

because player i does not have best responses in (xk, xk+1) so his CDF does not increase (in both

equilibria). For every player i in A+ (xk) and every x in (xk, xk+1) (2) holds with eGi instead

of Gi, so eGi is given by (5). This shows that eG(x) = G (x) for every x ∈ [xk, xk+1). To see
that eG(xk+1) = G (xk+1), suppose first that xk+1 < xL. In this case, by construction G is

continuous at xk+1, so the same must be true for eG, otherwise a player in A+ (xk) would get
in eG more than his power. Therefore, eG(xk+1) = G (xk+1). Now suppose that xk+1 = xL. By

construction, Gi

¡
xL
¢
= 1 and Gi is continuous at xL for some player i, so the same is true for eG.

Consider another player j. Because in both eG and G players do not choose weakly dominated

scores, if player j’s cost function is constant at xL, then he does not have an atom at xL, soeGj

¡
xL
¢
= limx→xL

eGj (x) = limx→xL Gj (x) = Gj

¡
xL
¢
. If player j’s cost function is increasing at

xL, then in both eG and G he does not have best responses above xL (he wins with probability

1 by choosing xL), so eGj

¡
xL
¢
= Gj (x) = 1.

Suppose that G 6=eG, and denote by xk the highest checkpoint such that G (y) =eG(y) for
every y in [0, xk] (Lemmas 1 and 8 show that xk is well defined and xk < xL). Lemma 9 shows that

xk is an increasing checkpoint. Lemma 10 shows that fCP (x) 6= CP (x) for some x in (xk, xk+1).
I conclude the proof by showing that fCP (x) 6= CP (x) is impossible. That fCP (x) ⊆ CP (x)
follows from Lemma 9 in Siegel (2010), which applies here.40 This inclusion means that in both

equilibria only the CDFs of players in A+ (xk) = CP (x) increase on (xk, xk+1). Because xk is an
increasing checkpoint, the costs of all players in A+ (xk) are increasing at every x in (xk, xk+1).
Therefore, in both equilibria the CDFs of these players are continuous on (xk, xk+1).41 Lemmas

10 and 11 in Siegel (2010) now imply that CP (x) ⊆ fCP (x). Therefore, G =eG.
40In the proof of the lemma, replace vi (x) with Vi − ci (x) for every player i, and note that here we have

Ḡ(xk) = G (xk) by definition of xk.

41If a player had an atom in (xk, xk+1), then because no player’s CDF reaches 1 before xk+1, no other player

would choose scores immediately below xk. But then the player would be better off by shifting the mass of his
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A.7 Proof of Theorem 5

Suppose that all players behave as specified in the statement of the theorem. Then, players

1, . . . ,m+1 do not have profitable deviations, because their probability of winning at any score

higher than x0 coincides with their probability of winning at that score in the reduced contest

with players 1, . . . ,m + 1, and their probability of winning at any score lower than or equal to

x0 is at most their probability of winning at that score in the reduced contest. This is because,

by assumption, players m+ 2, . . . , n do not choose scores higher than x0. Players m+ 2, . . . , n

do not have profitable deviations, because the proof of Theorem 2 in Siegel (2009) shows that if

a player i > m+1 could obtain a positive payoff when players 1, . . . ,m+1 play according to the

equilibrium constructed by the algorithm, then the marginal player could do the same, and this

deviation in the reduced contest would contradict Theorem 1 applied to the reduced contest.

This shows that the behavior specified in the statement of the theorem is an equilibrium. For

uniqueness, consider an equilibrium in which players do not choose weakly dominated scores.

Because players m + 2, . . . , n do not participate and do not choose weakly dominated scores,

they behave as in the statement of the theorem. In particular, they do not choose scores above

x0. But now the same arguments used to describe the algorithm show that the only behavior of

players 1, . . . ,m + 1 consistent with equilibrium is the one specified by the algorithm (Lemma

1 holds, and above x0 a player in {1, . . . ,m+ 1} wins a prize if and only if his score is higher
than at least one other player in {1, . . . ,m+ 1}).

A.8 Lemmas 11 and 12

Lemma 11 At every checkpoint x that has been reached, CP (x) contains at least two players,
and (1) holds for every player i not in CP (x).

Proof. The proof is by induction on the number of checkpoints that have been reached. The
first checkpoint is x0, andG (x0) is set to the lowest value such that CP (x0) contains playerm+1
and at least one other player, so for every player i not in CP (x0) (1) holds. For the induction
step, consider two consecutive checkpoints x < x̄. By the induction hypothesis, CP (x) contains
at least two players, and for every player i not in CP (x) (1) holds. The first possibility is that
CP (x) contains at least one player i whose cost function is constant at x. Then x̄ is identified

in Stage 3, and G (x̄) is set to the lowest value such that CP (x̄) contains player i and at least
one other player, so for every player i not in CP (x̄) (1) holds with x̄ instead of x. The second

possibility is that the cost functions of all players in CP (x) are increasing at x. Then x̄ is

identified in Stage 4, and G is defined on [x, x̄] so that A+ (x) ⊆ CP (x̄), and by definition of x̄
for every player i not in CP (x̄) (1) holds with x̄ instead of x. Because A+ (x) identified in Stage
4 contains at least two players, we are done.

atom to a lower score. The proof of Lemma 1 in Siegel (2009) provides a more detailed argument.
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Lemma 12 If ci is increasing at x < T , then qi (y) > 0 and εi (y) > 0 for every y in some open

right-neighborhood of x.

Proof. Because qi (y) = 1−wi+ci(y)
Vi

, for the first inequality it suffices to show that wi+ci (y) < Vi,

or ci (y) < ci (T ). Because ci is increasing at x, ci (x) < ci (T ), so by continuity the same is true

for scores y immediately above x. For the second inequality, because εi (y) =
c0i(y)

Vi−wi−ci(y) and we

have seen that wi + ci (y) < Vi, it suffices to show that c0i (y) > 0. If this were not true in some

right-neighborhood of x, then by analyticity ci would be constant on some right-neighborhood

of x, contradicting the fact that ci is increasing at x.

B Derivation of the Equilibrium for the Three-Player,

Two-Prize All-Pay Auction with Head Starts

Players’ powers are w1 = a1 − a3, w2 = a2 − a3, and w3 = 0. Stage 1 specifies that x0 = a3

and G3 (a3) = (a2 − a3) /V . Stage 2 shows that CP (a3) = {2, 3}. Because player 2’s costs are
constant at a3, the algorithm proceeds to Stage 3, which gives A+ (a3) = {2}. Therefore, the
first checkpoint above a3 is a2, and no player’s CDF increases in (a3, a2). From (3) we have

G2 (a2) = min

(
1−

1− w1+c1(a2)
V

1−G3 (a3)
, 1−

1− w3+c3(a2)
V

1−G1 (a3)

)

= min

½
a1 − a2

a3 + V − a2
,
a2 − a3

V

¾
=

⎧⎨⎩ a2−a3
V

if a1 ≥ 2a2 − a3 − (a2−a3)2
V

a1−a2
a3+V−a2 if a1 < 2a2 − a3 − (a2−a3)2

V

.

This implies that

CP (a2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{2, 3} if a1 > 2a2 − a3 − (a2−a3)2

V

{1, 2, 3} if a1 = 2a2 − a3 − (a2−a3)2
V

{1, 2} if a1 < 2a2 − a3 − (a2−a3)2
V

.

Case 1, a1 > 2a2 − a3 − (a2 − a3)
2 /V : Because the cost functions of players 2 and 3 are

increasing at a2, the algorithm proceeds to Stage 4. Because A+ (a2) = CP (a2) = {2, 3}, from
(5) we have that G2 (y) = 1 − q3 (y) = (y − a3) /V and G3 (y) = 1 − q2 (y) = (y − a3) /V for

scores y in [a2, x̄], where the checkpoint x̄ is the first score at which player 1 obtains his power:Ã
1−

µ
1− x̄− a3

V

¶2!
V = a1 − a3 ⇒ x̄ = a3 + V

Ã
1−

r
1− a1 − a3

V

!
> a2.42

Proceeding to Stage 2, we have that CP (x̄) = {1, 2, 3}, and because the cost function of player
1 is constant at x̄, the algorithm proceeds to Stage 3, which gives A+ (x̄) = {1}. Therefore, the
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next checkpoint above a3 + V
³
1−

p
1− (a1 − a3) /V

´
is a1 and no player’s CDF increases in³

a3 + V
³
1−

p
1− (a1 − a3) /V

´
, a1
´
. From (3) we have

G1 (a1) = min

⎧⎪⎨⎪⎩1− 1− w2+c2(a1)
V

1−G3

³
a3 + V

³
1−

q
1− a1−a3

V

´´ , 1− 1− w3+c3(a1)
V

1−G2

³
a3 + V

³
1−

q
1− a1−a3

V

´´
⎫⎪⎬⎪⎭

= min

(
1−

r
1− a1 − a3

V
, 1−

r
1− a1 − a3

V

)
= 1−

r
1− a1 − a3

V
.

Proceeding to Stage 2, we have that CP (a1) = {1, 2, 3}, and because all players’ costs are
increasing at a1 the algorithm proceeds to Stage 4. Because A+ (a1) = CP (a1) = {1, 2, 3}, from
(5) we have

Gi (y) = 1−
Πj∈{1,2,3}qj (y)

1
|{1,2,3}|−1

qi (y)
= 1−

¡
V+a3−y

V

¢ 3
2

V+a3−y
V

= 1−
r
1− y − a3

V
(6)

for every player i and score y in [a1, x̄], where the checkpoint x̄ = a3 + V is the score at which

players’ CDFs reach 1.

Case 2, a1 = 2a2 − a3 − (a2 − a3)
2 /V : Because the cost function of player 1 is constant at

a2, the algorithm proceeds to stage 3, which gives A+ (a2) = {1}. Therefore, the next checkpoint
above a2 is a1 and no player’s CDF increases in (a2, a1). The equilibrium starting from a1 is

as in Case 1: Gi (y) = 1 −
p
1− (y − a3) /V for every player i and score y in [a1, a3 + V ]. All

players’ CDF reach 1 at a3 + V .

Case 3, a1 < 2a2 − a3 − (a2 − a3)
2 /V : Because the cost function of player 1 is constant at

a2, the algorithm proceeds to stage 3, which gives A+ (a2) = {1}. Therefore, the next checkpoint
above a2 is a1, and no player’s CDF increases in (a2, a1). From (3) we have

G1 (a1) = min

(
1−

1− w2+c2(a1)
V

1−G3 (a2)
, 1−

1− w3+c3(a1)
V

1−G2 (a2)

)
= min

½
a1 − a2

a3 + V − a2
,
a2 − a3

V

¾
=

a1 − a2
a3 + V − a2

.

Proceeding to Stage 2, we have that CP (a1) = {1, 2}, and because both players’ costs are
increasing at a1 the algorithm proceeds to Stage 4. Because A+ (a1) = CP (a1) = {1, 2}, from
(5) we have

G1 (y) = 1−
q1 (y) q2 (y)

q1 (y) (1−G3 (a1))
=

y − a2
a3 + V − a2

= 1− q1 (y) q2 (y)

q2 (y) (1−G3 (a1))
= G2 (y)

for scores y in [a1, x̄], where the checkpoint x̄ is the first score at which player 3 obtains his

power: Ã
1−

µ
1− x̄− a2

a3 + V − a2

¶2!
V − (x̄− a3) = 0⇒ x̄ = 2a2 − a3 −

(a2 − a3)
2

V
> a1.
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Proceeding to Stage 2, we have that CP (x̄) = {1, 2, 3}, and because all players’ costs are
increasing at x̄ the algorithm proceeds to Stage 4. Because A+ (x̄) = CP (x̄) = {1, 2, 3}, (6) tells
us that Gi (y) = 1−

p
1− (y − a3) /V for every player i and score y in [x̄, a3 + V ]. All players’

CDFs reach 1 at a3 + V .

C Proofs of Results from Section 4

To simplify the exposition, I assume that am+1 = 0 and V = 1, and that all the ais are distinct.

Relaxing these assumptions does not change the results or the logic of the proofs, but complicates

the notation and exposition. One implication of these assumptions is that every player i’s power

is ai.

The following lemmas describe properties of G used in the proofs below.

Lemma 13 If i is in CP (x) for some x in [ai, 1), then for all k such that x ≥ ak we have

Gi (x) ≤ Gk (x), and if Gi (x) = Gk (x), then k is in CP (x). Therefore, (i) if players j > i are

in CP (x) for some x in [ai, 1), then Gi (x) = Gj (x), and (ii) if Gi (x) = Gj (x) for players j > i

and x is in [ai, 1), then i is in CP (x) if and only if j is in CP (x).

Proof. Because x < 1, Gl (x) < 1 for every player l (otherwise every other player would obtain

more than his power by choosing scores slightly above x). From (2) we have

(1−Πl 6=i (1−Gl (x)))− (x− ai) = ai ⇒ (1−Πl 6=i (1−Gl (x))) = x.

If Gi (x) > Gk (x), then

(1−Πl 6=k (1−Gl (x))) > x and (1−Πl 6=k (1−Gl (x)))− (x− ak) > ak,

so if x ≥ ak player k can obtain more than his power immediately above x. And if Gi (x) =

Gk (x), then (1−Πl 6=k (1−Gl (x)))− (x− ak) = ak so k is in CP (x).

Lemma 14 If the algorithm proceeds to Stage 4 at a checkpoint x, then A+ (x) = CP (x).

Proof. Proceeding to Stage 4 means that for every player i in CP (x) the costs are increasing
at x so x ≥ ai. And for every player i and every score y ≥ ai, we have that

εi (y) =
c0i (y)

Vi − wi − ci (y)
=

1

1− ai − (y − ai)
=

1

1− y
.

That εi for every player i in CP (x) does not depend on i implies that either all players in CP (x)
are in A+ (x) or none of them are. Because A+ (x) ⊆ CP (x) and A+ (x) contains at least two
players, A+ (x) = CP (x).
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C.1 Proof of Proposition 2

I first show by reverse induction on k = m, . . . , 1 that for every two players j > i and every

two scores y > x in [ak+1, ak] (a) Gi (x) ≤ Gj (x), (b) if Gi (x) = Gj (x) and x ≥ ai then

Gi (y) = Gj (y), and (c) every player k0 ≤ k does not have best responses in [0, ak+1), and there

is some hk+1 in [ak+1, ak) such that every score in (hk+1, ak) is a best response only for player k.

By Stage 1 and Stage 3 (of the algorithm), for every x in [0, am) we have Gm+1 (x) = am and

Gi (x) = 0 for every player i < m + 1. Therefore, (a) and (b) hold for k = m. Every score in

(0, am) is a best response only for player m, so (c) holds.

Suppose that the claim holds for k, . . . ,m. By (c), some x in (ak+1, ak) is a best response

for player k, so k is in CP (x). Because player k’s costs are 0 up to ak, at x Stage 3 is executed.
Because no player k0 < k has best responses below ak (by (c)) and the costs of every player k0 >

k are increasing at every score above x, the checkpoint following x is ak and k is in CP (ak). By
Stage 3, Gi (ak) = Gi (x) for every player i 6= k. Also by Stage 3, Gk (ak) is set so that at least

one player other than k is in CP (ak).
Suppose first that CP (ak) contains a player k0 < k. Then k0 = k − 1, because for every

i < k−1 we have wk−1 < wi and ci (ak) = ck−1 (ak) = 0. Now, because player k−1 has constant
costs at ak, Stage 3 is executed at ak and no player’s CDF increases in (ak, ak−1). This implies

(b) (at ak−1 no player l > k − 1 has an atom) and (c) for hk = ak. To complete the induction

step in this case, it remains to show that Gk (ak) ≤ Gi (ak) for every player i > k. But this is

immediate from Lemma 13, because k is in CP (ak).
Now suppose that CP (ak) does not contain any player k0 < k. Then, by Lemma 13 the

CDFs at ak of all players in CP (ak) coincide, and are lower than the CDF of any player k0 > k

not in CP (ak). Because CP (ak) does not contain players k0 < k, Stage 4 is executed at ak, and

by Lemma 14 we have A+ (ak) = CP (ak). Because CP (z) = A+ (z) = A+ (ak) for every z in

(ak, y), where y is the checkpoint following ak, Lemma 13 shows that the CDFs of all players in

A+ (ak) coincide on (ak, y]. It cannot be that y ≥ ak−1, otherwise an argument similar to the

one used in the proof of Lemma 13 applied to scores slightly below ak−1 would show that player

k− 1 can obtain more than his power by choosing ak−1. Because y < ak−1 and the hazard rates

at y of all players in A+ (ak) are identical, and therefore positive,43 at y another player l becomes
active (l is in CP (y) \A+ (ak)). If l > k, by Lemma 13 the CDFs of the players in A+ (ak) at
y coincide with Gl (y), and y is the first score above ak at which the CDFs of the players in

A+ (ak) coincide with the CDF of any player k0 > k. Therefore, Gl (y) is strictly lower than the

CDF at y of every player k0 > k not in CP (y). Stage 4 is then executed at y, A+ (y) = CP (y),
and the CDFs of all players in A+ (y) coincide up to the checkpoint following y. Continuing in
this way, it cannot be that only players k0 > k become active before ak−1 is reached, otherwise

player k − 1 could obtain more than his power by choosing ak−1. At the first checkpoint above

43The hazard rate of player i at y is H (ak, y)− εi (y).
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ak at which a player k0 < k becomes active, player k − 1 becomes active (because for every
i < k − 1 we have wk−1 < wi and ci (ak) = ck−1 (ak) = 0). Denote this checkpoint by hk < ak−1.

No score in [ak, hk] is a best response for any player k0 < k − 1, otherwise such a player would
have become active earlier. At hk player k − 1 has constant costs, so Stage 3 is executed and
no player’s CDF increases up to ak−1 (and at ak−1 no player l > k− 1 has an atom). Therefore,
(a), (b), and (c) hold. This completes the induction step.

To complete the proof it suffices to show that for every two players j > i and every two

scores y > x in [a1, 1) (a) and (b) hold. This can be done by following the analysis above of the

case in which CP (ak) does not contain any player k0 < k, and noting that at every checkpoint

up to 1 additional players become active.

Corollary 4 If i is in CP (x) for some x in [ai, 1), then for all k < i such that x ≥ ak we have

that (a) k is in CP (x) and (b) Gi (y) = Gk (y) for every y ≥ x.

Proof. Lemma 13 shows that Gi (x) ≤ Gk (x), and Proposition 2 shows that Gk (x) ≤ Gi (x).

Lemma 13 then shows (a), and Proposition 2 shows (b).

C.2 Proof of Corollary 2

Denote by Pk (x) the probability that player k wins a prize when he chooses x and the other

players choose scores according to G, and by Pk the probability that player k wins a prize

when all players choose scores according to G. To show that Pi ≥ Pj, note that if player i

chooses x 6= aj, then player j chooses a lower score with probability Gj (x), and if j chooses

x 6= ai, then i chooses a lower score with probability Gi (x). Therefore, because by Proposition 2

Gi (x) ≤ Gj (x), for any x 6= ai, aj we have Pi (x) ≥ Pj (x). Moreover, because Gi (ai) ≤ Gj (ai)

and players other than i do not have an atom at ai, we have Pi (ai) ≥ Pj (ai) regardless of

the tie-breaking rule. Together with the fact that i chooses aj with probability 0, this implies

that Pi =
R
Pi (x) dGi ≥

R
Pj (x) dGi, and because Pj (·) is non-decreasing, by FOSD we haveR

Pj (x) dGi ≥
R
Pj (x) dGj = Pj.

C.3 Proof of Theorem 6

Part (a): Part (a) of Corollary 4 shows that if l > i is in Ai, then so are i, . . . , l− 1. Therefore,
if m + 1 is in A1, then A1 = {1, 2, . . . ,m+ 1}. Suppose m + 1 is not in A1, so Gm+1 does

not increase on [a1, 1). Because Gm+1 (a1) < 1 (otherwise player 1 would obtain more than his

power by choosing scores slightly above a1) and at every score up to 1 at least one player is active

(Lemma 2), limy→1Gi (y) = 1 for some player i (otherwise no player would obtain his power at

scores immediately below 1). But this contradicts Proposition 2. To complete the proof of (i) it

remains to show that Ai = {i} is impossible. This impossibility obtains because player i’s costs

43



are strictly increasing in (ai, ai−1), so for a score x in (ai, ai−1) to be a best-response for player

i, his probability of winning when choosing x must be higher than his probability of winning

when choosing a lower score, for example ai+(x− ai) /2. This requires at least one other player

to choose scores in [ai + (x− ai) /2, x) ⊆ (ai, ai−1) with positive probability. But if Ai = {i},
then no player i+1, . . . ,m+1 chooses scores in (ai, ai−1) with positive probability. And players

1, . . . , i − 1 do not choose scores in (ai, ai−1) with positive probability, because such scores are
weakly dominated by their respective head starts. For (ii), suppose that Ai ∩Ai0 6= φ. To show

that Ai ⊆ Ai0, by (i) it suffices to show that ki is in Ai0. Consider some j in Ai ∩Ai0. Because

ki is in Ai and j ≤ ki, part (b) of Corollary 4 shows that there is a score x in (ai, ai−1) such that

Gj (y) = Gki (y) for every y > x. But then Lemma 13 shows that player ki is active at any score

y in (ah, ah−1) at which player j is active, so ki is in Ai0 because j is in Ai0.

Part (b): Take a player j in Ai, and consider the induction step for k = i in the proof of

Proposition 2. Because player j ≥ i has best responses in (ai, ai−1) (where a0 = 1), the induction

step shows that CP (ai) does not contain any player i0 < i (otherwise only player i − 1 would
have best responses in (ai, ai−1)). And if CP (ai) does not contain any player i0 < i, then the

induction step identifies a score hi ≤ ai−1 such that if a player is active at a score in [ai, hi) then

the player remains active until hi, and no player i0 ≥ i has best responses in (hi, ai−1). Moreover,

hi < ai−1 if i > 1 (hi is the score at which player i− 1 becomes active), and h1 = 1. Therefore,

the set of best responses in (ai, ai−1) of every player j in Ai is an interval with upper bound hi.

That Gj (x) > Gj (y) for any two scores x > y in (li,j, hi) follows from the fact that Gj, given by

(5), strictly increases in some right-neighborhood of y (where A+ does not change). For players
k > j in Ai, part (a) of Corollary 4 implies that li,k ≥ li,j, and part (a) of Theorem 6, part (b)

of Corollary 4, and part (ii) of Lemma 13 together imply that li0,j = li0,k for every i0 < i for

which Ai ∩Ai0 6= φ. To show that li,i = li,i+1 = ai if Ai 6= φ, recall that Stage 3 at hi+1 (where

hm+1 = am+1) shows that CP (ai) contains a player j other than i, and the induction step in the
proof of Proposition 2 shows that j > i. This implies, by Corollary 4, that i and i + 1 are in

CP (ai).
Part (c): Immediate from part (b) of Corollary 4 and right-continuity of CDFs at li,k.

Part (d): By part (a), m + 1 is in A1. Therefore, part (b) of Corollary 4 shows that the
CDFs of players 1, . . . ,m+1 coincide on [x, 1] for some x in (a1, 1). Because at least one player

is active at every score up to 1 (Lemma 2), limx→1Gi (x) = 1 for every player i, otherwise no

player 1, . . . ,m+ 1 could obtain his power at scores immediately below 1.

Part (e): For every x in (ai, li,k) we have Gk (x) = Gk (ai), so it remains to show that the

claimed inequality holds for every x in (li,k, ai−1). For every x in [li,k, ai−1], part (c) shows that

Gk (x) = Gj (x), which means that the inequality is equivalent to

Gk (x)−Gk (ai)

Gk (ai−1)−Gk (ai)
≤ Gk (x)−Gj (ai)

Gk (ai−1)−Gj (ai)
=

Gk (x)−Gk (ai) + ε

Gk (ai−1)−Gk (ai) + ε
,

for some ε ≥ 0 (Gk (ai) ≥ Gj (ai) by Proposition 2). But for any y ≤ z and ε ≥ 0, y
z
≤ y+ε

z+ε
, so
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the inequality holds.

C.4 Proof of Proposition 3

Choose a player i ≤ m, and let xinf = inf {x ≥ ai : Gi (x) = Gi+1 (x)} ≥ ai and P inf = Gi+1

¡
xinf
¢
.

Part (a) of Theorem 6 shows that i + 1 is in A1, so Proposition 2 and Corollary 4 show that
xinf < 1 and Gi (y) = Gi+1 (y) for every y ≥ xinf . Therefore, the difference between the expen-

ditures of player i+ 1 and player i at scores higher than xinf isZ
x>xinf

(x− ai+1) dGi+1 (x)−
Z
x>xinf

(x− ai) dGi (x) = (ai − ai+1)
¡
1− P inf

¢
.

The expenditures of player i on [0, ai] are 0, and his expenditures on
£
ai, x

inf
¤
are clearly at most

(1− ai)P
inf . Therefore, to complete the proof it suffices to show that

(ai − ai+1)
¡
1− P inf

¢
− (1− ai)P

inf ≥ 0.

For this, let us obtain a useful expression for P inf . First, note that if player i+ 1 is active at a

score y in
£
ai, x

inf
¢
, then by Corollary 4 we have Gi (y) = Gi+1 (y), contradicting the definition

of xinf . This means that Gi+1 (ai) = Gi+1

¡
xinf
¢
, because player i+1 does not have atoms above

ai+1. Now, let b =
Q

k>i+1 (1−Gk (ai)) > 0 (b = 1 for i = m). As shown in the proof of

Proposition 2, i is in CP (ai). Therefore, (2) and the fact that Gk (ai) = 0 for k < i show that

1− b
¡
1− P inf

¢
= ai, or P inf = 1− 1− ai

b
.

Therefore,

(ai − ai+1)
¡
1− P inf

¢
− (1− ai)P

inf = (ai − ai+1)
1− ai
b
− (1− ai)

µ
b− (1− ai)

b

¶
is non-negative if and only if

(ai − ai+1) (1− ai)− (1− ai) (b− (1− ai)) = (1− ai) (1− b− ai+1) ≥ 0.

Because ai < 1, it remains to show that 1 − b ≥ ai+1. That i + 1 is in CP (ai+1) implies that
1−

Q
k>i+1 (1−Gk (ai+1)) = ai+1, and because CDFs are non-decreasing we have 1− b ≥ ai+1.

C.5 Proof of Theorem 7

To show that the cardinality of Am is Cm, I first define Bm, a set of sequences that correspond to

all the balanced expressions with m open parentheses and m close parentheses. Each sequence

in Bm “mirrors” a different balanced expression.
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Lemma 15 Let

Bm =

⎧⎨⎩m−
mX
i=2

bi, b2, . . . , bm :
for every i > 1, bi is a non-negative integer andPm

i=k bi ≤ m+ 1− k for every k > 1

⎫⎬⎭ .

The cardinality of Bm is Cm.

Proof. Consider a sequence of parentheses consisting of m open parentheses and m close

parentheses. It is immediate that the parentheses are correctly matched if and only if, when

the sequence is read from left to right, at every point the number of close parentheses that

have been read is no higher than the number of open parentheses that have been read. Now,

interpret bi as the number of close parentheses placed immediately after the (m+ 1− i)th open

parentheses in the sequence. Then the vectors in Bm correspond to precisely to all the ways

in which m open parentheses and m close parentheses can be sequenced so they are correctly

matched. For example, B2 consists of the two sequences 2, 0 and 1, 1, which correspond to the
balanced expressions (()) and ()(), and B3 consists of the five sequences 3, 0, 0, 2, 1, 0, 1, 2, 0,
2, 0, 1, and 1, 1, 1, which correspond to the balanced expressions ((())), (()()), (())(), ()(()), and

()()().

Because the cardinality of Bm is Cm, the following lemma shows that the cardinality of Am

is Cm.

Lemma 16 Am and Bm have the same cardinality.

Proof. I will show that Am and Bm each have the same cardinality as Dm, where Dm is

the set of sequences D1, . . . ,Dm+1 of successively (weakly) finer partitions of {1, 2, . . . ,m+ 1}
that satisfy (i) D1 = {{1, 2, . . . ,m+ 1}} and Dm+1 = {{1} , {2} , . . . , {m+ 1}}, and (ii) for
every i > 1, if Di−1 6= Di, then Di−1 is obtained from Di by merging {i− 1} with one or
more “consecutive” partition elements in Di, so that the partition element in Di−1 containing

i − 1 is {i− 1, i, . . . , k} for some k > i − 1. (This implies that if j < i then {j} ∈ Di, and

every partition element of every partition Di consists of consecutive integers.) For example,

D2 consists of the two sequences of partitions {{1, 2, 3}} , {{1} , {2} , {3}} , {{1} , {2} , {3}} and
{{1, 2, 3}} , {{1} , {2, 3}} , {{1} , {2} , {3}}, and D3 consists of the five sequences of partitions

{{1, 2, 3, 4}} , {{1} , {2} , {3} , {4}} , {{1} , {2} , {3} , {4}} , {{1} , {2} , {3} , {4}} , (7)

{{1, 2, 3, 4}} , {{1} , {2, 3} , {4}} , {{1} , {2} , {3} , {4}} , {{1} , {2} , {3} , {4}} , (8)

{{1, 2, 3, 4}} , {{1} , {2, 3, 4}} , {{1} , {2} , {3} , {4}} , {{1} , {2} , {3} , {4}} , (9)

{{1, 2, 3, 4}} , {{1} , {2} , {3, 4}} , {{1} , {2} , {3, 4}} , {{1} , {2} , {3} , {4}} , (10)

and

{{1, 2, 3, 4}} , {{1} , {2, 3, 4}} , {{1} , {2} , {3, 4}} , {{1} , {2} , {3} , {4}} . (11)
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Now, for every sequenceD1, . . . ,Dm+1 inDm, letMDA (D1, . . . ,Dm+1) be the sequenceA1, . . . ,Am

defined by Ai = Di\Di+1. The function MDA maps the partition Di to the partition element

in Di that contains i, unless that element is a singleton, in which case Di is mapped to the

empty set. For example, MDA maps (7) to {1, 2, 3, 4} , φ, φ, (8) to {1, 2, 3, 4} , {2, 3} , φ, (9) to
{1, 2, 3, 4} , {2, 3, 4} , φ, (10) to {1, 2, 3, 4} , φ, {3, 4}, and (11) to {1, 2, 3, 4} , {2, 3, 4} , {3, 4}. Sim-
ilarly, for every sequenceD1, . . . ,Dm+1 inDm, letMDB (D1, . . . ,Dm+1) be the sequence b1, . . . , bm
defined by bi = |Di+1|− |Di|. The function MDB maps partition Di to the number of partition

elements in Di+1 that were merged with {i} to obtain Di. For example,MDB maps (7) to 3, 0, 0,

(8) to 2, 1, 0, (9) to 1, 2, 0, (10) to 2, 0, 1, and (11) to 1, 1, 1. Using the definitions of Am, Bm, and

Dm, it is straightforward to show thatMDA andMDB are well-defined, one-to-one, and onto.

The one-to-one and onto function MDA ◦MDB−1, which maps every sequence in Bm to a

sequence in Am, leads to the following procedure for mapping a balanced expression with m

open parentheses and m close parentheses to a sequence in Am. Given such an expression,

define the sequence A1, . . . ,Am recursively from Am to A1 as follows. Let Am+1 = φ. For

i ≤ m, denote by ji the number of close parentheses placed immediately after the (m+ 1− i)th

open parentheses. If ji = 0, then Ai = φ. Otherwise, Ai = ∪jik=0Fk
i , where F0i = {i} and

Fk
i = A1+maxFk−1

i
∪
©
1 +maxFk−1

i

ª
for k > 0.

For example, for m = 2, the expression (()) leads to the sequence {1, 2, 3} , φ, and the ex-
pression ()() leads to the sequence {1, 2, 3} , {2, 3}. For m = 3, the expression ((())) leads to the

sequence {1, 2, 3, 4} , φ, φ, the expression (()()) leads to the sequence {1, 2, 3, 4} , {2, 3} , φ, the ex-
pression (())() leads to the sequence {1, 2, 3, 4} , {2, 3, 4} , φ, the expression ()(()) leads to the se-
quence {1, 2, 3, 4} , φ, {3, 4}, and the expression ()()() leads to the sequence {1, 2, 3, 4} , {2, 3, 4} , {3, 4}.

C.6 Proof of Theorem 8

Figure 5 shows that the statement of the theorem holds for m = 1.

For every sequence A1, . . . ,Am in Am, let D1, . . . ,Dm+1 be the corresponding sequence of

partitions given by MDA from Lemma 16.44 I will prove by induction on m ≥ 2 that for every
sequenceA1, . . . ,Am inAm there exists an (m+ 1)-player all-pay auction form prizes of common

value 1 with head starts 0 < am < · · · < a1 < 1 such that in the unique equilibriumG (i) among

players i, . . . ,m+1 precisely the players in Ai compete (have best responses) in (ai, ai−1) (where

a0 = 1) and (ii) for every partition element in D2\ {1} there is a distinct score x in [a1, 1) such

44Dm+1 = {{1} , . . . , {m+ 1}}, and for i < m + 1 Di = (Di+1 ∪ {Ai}) \Bi, where Bi is the set of partition
elements in Di+1 whose intersection with Ai is non-empty (and are therefore subsets of Ai), that is,

Bi = {F ∈ Di+1 : F ∩Ai 6= φ} = {F ∈ Di+1 : F ⊆ Ai} .
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that for every player i in the partition element the set of scores in [a1, 1) at which (2) holds is

[x, 1).

For m = 2, A2 consists of the two sequences {1, 2, 3} , {2, 3} and {1, 2, 3} , φ. Figure 6 corre-
sponds to the sequence {1, 2, 3} , {2, 3}: in (a1, 1) all three players compete, and in (a2, a1) only
players 2 and 3 compete. Also, D2\ {1} = {{2, 3}}, and the set of scores in [a1, 1) at which (2)
holds for players i = 2, 3 is [a1, 1). Figure 7 corresponds to the sequence {1, 2, 3} , φ: in (a1, 1)
all three players compete, and in (a2, a1) no player competes. Also, D2\ {1} = {{2} , {3}}, the
set of scores in [a1, 1) at which (2) holds for player i = 2 is [a1, 1), the set of scores in [a1, 1) at

which (2) holds for player i = 3 is [2a2 − a22, 1), and a1 < 2a2 − a22.

For the induction step, suppose that (i) and (ii) hold for m, and consider a sequence

A1, . . . ,Am+1 in Am+1 and its corresponding sequence of partitions D1, . . . ,Dm+2. Define the

sequence eA1, . . . , eAm by eA1 = {1, . . . ,m} and eAi = {j > 0 : j + 1 is in Ai+1} for i > 1. It is

easy to verify that eA1, . . . , eAm is in Am. Let eD1, . . . , eDm+1 be the sequence of partitions cor-

responding to eA1, . . . , eAm. By the induction hypothesis, there exists an (m+ 1)-player all-pay

auction for m prizes of common value 1 with head starts 0 < ãm < · · · < ã1 < 1 such that

in its unique equilibrium eG= ³ eG1, . . . , eGm+1

´
both (i) and (ii) hold with eAi instead of Ai andeD2\ {1} instead of D2\ {1}.

Now modify the contest by adding another prize of value 1 and another player with a head

start a1 in (ã1, 1). The modified contest has m + 2 players, m + 1 prizes of value 1, and head

starts 0 < am+1 < · · · < a1 < 1, with ai = ãi−1 for i > 1. Denote by G =(G1, . . . , Gm+2) the

equilibrium of this contest. It is easy to see that the execution of the algorithm on [0, ã1) = [0, a2)

is the same for both contests, so Gi (x) = eGi−1 (x) for every i > 1 and x < a2 = ã1. This

immediately implies that in G, among players i, . . . ,m+ 2, precisely the players in Ai compete

in (ai, ai−1), for i > 2. Moreover, part (a) of Theorem 6 shows that all players compete in (a1, 1).

I will show that a1 can be chosen so that in G, among players 2, . . . ,m+2, precisely the players

in A2 compete in (a2, a1) and (ii) holds.
If A2 = φ, set a1 to any value in

³
ã1, 1−Πm+1

i=1

³
1− eGi (ã1)

´´
. This interval is non-empty,

because eG1 (ã1) > 0 and in eG player 1 is active at ã1 so 1 − Πm+1
i=2

³
1− eGi (ã1)

´
= ã1 (as

shown in the proof of Proposition 2). Choosing a1 in the specified interval guarantees that

G2 (a2) < eG1 (ã1) (otherwise in G player 1 would obtain at least 1 − Πm+1
i=1

³
1− eGi (ã1)

´
> a1

by choosing scores immediately above a2). And G2 (a2) < eG1 (ã1) implies that CP (a2) = {1, 2}
in the modified contest, since eG1 (ã1) was minimal atom size at ã1 such that in eG some player

i > 1 would be active immediately above ã1 = a2. Therefore, at a2 the algorithm proceeds to

Stage 3, G does not change in (a2, a1), and players 2, . . . ,m+ 2 do not compete in (a2, a1).

If A2 6= φ, then A2 = {2, 3, . . . , j} for some 3 ≤ j ≤ m + 2. Denote by x̃k ≥ ã1 the

score identified in (ii) (applied to eG) that corresponds to the partition element in eD2\ {1}
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that contains k. If j = m + 2, then set a1 to any value in
³
1−Πm+1

i=1

³
1− eGi (x̃m+1)

´
, 1
´
.

(Note that 1− Πm+1
i=2

³
1− eGi (x̃m+1)

´
= x̃m+1, because every score in (ã1, 1) is a best response

in eG for player 1, as shown in the proof of Proposition 2, so a1 > x̃m+1.) If j < m + 2,

then, by part (b) of Theorem 6, x̃j−1 ≤ x̃j. To see that the inequality is strict, note that

j and j + 1 belong to different partition elements in D2 (since A2 = D2\D3), and therefore
in D3 (D2 is a coarsening of D3), so j − 1 and j belong to different partition elements ineD2\ {1}. So (ii) (applied to eG) shows that x̃j−1 < x̃j. In this case, set a1 to any value in³
1−Πm+1

i=1

³
1− eGi (x̃j−1)

´
, 1−Πm+1

i=1

³
1− eGi (x̃j)

´´
(part (b) of Theorem 6 shows that this

interval is non-empty).

This value of a1 guarantees that player 1 obtains his power for the first time at a score

y < a1 in (x̃j−1, x̃j), so Gi (x) = eGi−1 (x) for every i > 1 and x ≤ y. As a result, every score

in (x̃j−1, y) ⊆ (a2, a1) is a best response in G for players 2, 3, . . . , j (because, by definition of

x̃j−1, every score in (x̃j−1, y) is a best response in eG for player j − 1, and, by Corollary 4, for
every player i < j − 1). Because in G players j + 1, j + 2, . . . ,m+ 2 do not have best responses

in (a2, y) ⊆ (ã1, x̃j) (by definition of x̃k, for k ≥ j, because x̃j ≤ x̃k), and at y the algorithm

proceeds to Stage 3 and no player’s CDF increases until a1, in G players j + 1, j + 2, . . . ,m+ 2

do not compete in (a2, a1). This shows that in G, among players 2, . . . ,m + 2, precisely the

players in A2 compete in (a2, a1).
To see that (ii) holds inG, consider any two players in the same partition element in D2\ {1}.

There is a maximal k < m+ 2 for which both players are in the same partition element in Dk,

which implies that both players are in Ak = Dk\Dk+1. Since k ≥ 2, Corollary 4 shows that the
CDFs of the two players coincide at some score x < a1, and remain equal for all higher scores.

Part (ii) of Lemma 13 then shows that the players’ best response sets in (x, 1) are the same,

which suffices because of part (b) of Theorem 6.

Now consider two players i < j that belong to different partition elements in D2\ {1}. To
complete the proof, we must show that the players’ sets of best responses in (a1, 1) are two

distinct intervals with upper bound 1. By part (b) of Theorem 6, it suffices to show that the

players’ sets of best responses in (a1, 1) are distinct. There are two cases to consider. The first

case is i = 2 and {2} is in D2. That {2} is in D2 implies that A2 = φ (because A2 = D2\D3,
{2} is in D3, and if A2 6= φ, then A2 includes 2 and at least one other player k > 2). As

described above, the choice of a1 when A2 = φ is such that in G we have CP (a2) = {1, 2},
which implies that CP (a1) = {1, 2}.45 This, together with the observation that Stage 4 is

executed at a1, means that scores immediately above a1 are best responses for player 2 and are

not best responses for any player j > 2. The second case to consider is i > 2 or {2} is not in
D2. If i = 2, choose another player i other than 2 from the partition element in D2\ {1} that

45If i > 2 is in CP (a1), then by Corollary 4 Gi (a1) = G2 (a1), which implies that Gi (a2) = G2 (a2) (because

Stage 3 is executed at a2). But then part (ii) of Lemma 13 shows that i is in CP (a2).
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contains 2 (we already know that players in the same partition element in D2\ {1} have the same
best responses in (a1, 1)). Because i and j are in separate partition elements in D2, they are in
separate partition elements in D3 (D2 is a coarsening of D3), and therefore i− 1 and j − 1 are
in separate partition elements of eD2\ {1}. Therefore, in eG their best response sets in (ã1, 1) are,

respectively, [x̃i−1, 1) \ {ã1} and [x̃j−1, 1) for some x̃i−1 < x̃j−1. Because j is not in A2 (otherwise
i < j would also be in A2, and therefore both would belong to the same partition element in
D2\ {1}), as described above the choice of a1 is such that the score y in [a2, a1) at which player
1 first becomes active in G (and Stage 3 is executed) satisfies y < x̃j−1,46 and Gk (x) = eGk−1 (x)

for every k > 1 and x ≤ y. Now, because eGi−1 (x̃j−1) = eGj−1 (x̃j−1) (by Corollary 4) and eGi−1

strictly increases in (x̃i−1, x̃j−1), we have eGi−1 (y) < eGj−1 (y), so Gi (y) < Gj (y). Since G does

not change on [y, a1) (Stage 3 is executed), and neither player i nor j has an atom at ai, we

have Gi (ai) < Gj (ai). Suppose that in G [x, 1) \ {a1} is the set of best responses in (a1, 1) for
players i and j. Then Gi and Gj do not increase on [a1, x], so Gi (x) < Gj (x), but Corollary

4 shows that Gi (x) = Gj (x). Therefore, in G the sets of best responses in (a1, 1) for players i

and j differ.

C.7 Proof of Proposition 4

Because of the nature of the proposition, I relax the assumption that akm+1 = 0 and V = 1,

which implies that the power of every player i ≤ m+ 1 in the kth contest is aki − akm+1.

Consider first the sequence of reduced contests that involve only players ak1, . . . , a
k
m+1. Choose

some x in (0, V ) and some M so that for all k ≥ M we have ak1 < x and ak1 − akm+1 < 1 −¡
1−

¡
x− akm+1

¢
/V
¢1/m

. Because the cost function of player m + 1 is strictly increasing above

akm+1 < x, if x is a best response for player m + 1, then it is also a best response for another

player i < m + 1. Therefore, Lemma 2 implies that
¡
1−Πj 6=i

¡
1−Gk

j (x)
¢¢

V = x − akm+1 for

some i < m + 1. This implies that maxj 6=iGk
j (x) ≥ 1 −

¡
1−

¡
x− akm+1

¢
/V
¢1/m

. Proposition

2 shows that maxj 6=iGk
j (x) = Gk

m+1 (x), so Gk
m+1 (x) ≥ 1 −

¡
1−

¡
x− akm+1

¢
/V
¢1/m

. Also,

Gk
m+1

¡
ak1
¢
≤ ak1 − akm+1, otherwise player 1 could get more than his power by choosing ak1.

Because aki − akm+1 < 1 −
¡
1−

¡
x− akm+1

¢
/V
¢1/m

, we have that Gk
m+1

¡
ak1
¢
< Gk

m+1 (x). This

implies that Gk
m+1 increases in

¡
ak1, x

¢
, so players 1, . . . ,m + 1 are active immediately above x

(by part (b) of Theorem 6). Therefore, for every player j ≤ m+ 1 (5) shows that

Gk
j (x) = 1−

µ
1− x− am+1

V

¶ 1
m

→
k→∞

1−
³
1− x

V

´ 1
m
.

Returning to the original sequence of contests, by Corollary 1 no player j > m+1 participates

in any contest in the sequence, so for every k we have Gk
j (x) =

⎧⎨⎩ 0 if x < akj

1 if x ≥ akj

, which implies

46If A2 = φ, then y = a2. If A2 = φ, then y is in (a2, a1).
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that Gk
j converges weakly to 1[0,∞).
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