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Abstract

Rare disasters have been shown to explain several asset pricing puzzles, such as the

equity risk premium and credit spread puzzles. Existing analysis ignores the impact of

corporate financing decisions on asset prices by taking them as exogenous. The aim of this

paper is to investigate how rare disasters affect endogenous default and capital structure

decisions by firms and how, in turn, these corporate financial decisions affect the way in

which rare disasters impact credit spreads, leverage and the equity risk premium. We

find that the possibility of rare disasters makes firms more conservative in their financial

policy, leading to higher interest coverage, but lower leverage ratios, together with larger

credit spreads and equity risk premia.

JEL Classification Numbers: E44, G12, G32, G33

Keywords: corporate bond credit spread, leverage, rare disasters, jumps, capital structure,

default

1



I Introduction

Research studying the impact of rare and adverse economic events, commonly referred to as ‘disasters’,

‘tail risk’ or ‘peso problems’, shows that when agents believe such rare disasters are possible, many

asset pricing puzzles, including the equity risk premium and credit spread puzzles, can be resolved.1

Asset prices also have important implications for firms’ corporate financial policies and vice versa.

This can be seen clearly in structural models of corporate finance, such as Leland (1994) and more

recently Chen (2010), where explicit first order conditions link default policies and capital structure to

asset prices. Despite this, the existing literature on rare disasters focuses almost exclusively on asset

prices, taking corporate financial policies as exogenous or ignoring them entirely.

In structural models, default occurs when the present value of bondholders’ coupons exceeds the

present value of future dividends. With an exogenous capital structure, it is clear that the possibility

of rare disasters reduces the present value of future dividend payments, leading to earlier default.

However, capital structure is not exogenous: debt is issued so that the present value of tax benefits

equals the present value of bankruptcy costs. It not so clear which of the two present values will

be reduced more by the possibility of rare disasters. The effect of rare disasters on optimal capital

structure and hence default policies is therefore not obvious. Since corporate financial policies affect

asset prices, it is no longer obvious how rare disasters impact asset prices. In this paper, we explore

how rare disasters impact the joint determination of corporate financial policies and asset prices.

We provide a tractable model of consumption - based asset prices with endogenous corporate

financial policies. Aggregate consumption is exogenous as are firms’ earnings. Both are subject to

rare disasters, which occur once in a hundred years and lead to large contemporaneous drops in

consumption and earnings. A firm’s earnings are shared between bondholders and equityholders as

coupons and dividends, respectively. Valuation is carried out using the state - price density of a

representative agent with Epstein - Zin - Weil utility. Optimal default and capital structure decisions

are as described above. In addition, firms have an option to restructure their debt if earnings are

high, as in Goldstein et al. (2001). The decision to call outstanding debt and issue new debt with

a new coupon is made by trading off the benefits of issuing the new debt against the issuance costs

1Notable contributions include Rietz (1988), and more recently Barro (2006), Gabaix (2008), and Wachter

(2011).



combined with the present value of the associated bankruptcy costs. Consequently, capital structure is

dynamic. Within our framework, we study the long - run implications of rare disasters on aggregate,

i.e. economy - wide leverage, interest coverage, credit spreads and equity risk premia.

Our paper makes three contributions. First we can explain the term structure of credit spreads,

while generating a realistic term structure of default probabilities, and a reasonable equity risk pre-

mium with realistic leverage levels.

Second, we derive new testable implications concerning the impact of rare disasters on credit risk.

We find that while rare disasters increase the riskiness of corporate debt as measured by credit spreads,

interest coverage improves. To see the intuition, observe that rare disasters decrease the present value

of tax benefits from debt more than the present value of bankruptcy costs, leading to a lower coupon

and hence higher interest coverage. However, the increase in risk premia induced by rare disasters

leads to a fall in asset values. This latter effect dominates the fall in the optimal coupon leading to

higher spreads.

Third, to the best of our knowledge, ours is the first paper to have both jumps of random size

in firms’ earnings levels and dynamic capital structure. This enables us to study the long – run

implications of rare disasters for the joint determination of corporate financial policies and asset

prices. With static capital structure, such a long - run analysis would be impossible.

Related literature

Our paper lies at the focal point of two literatures.

Firstly our paper contributes to the literature on rare disasters. Rietz (1988) is the first paper

arguing that allowing for rare disasters may explain the equity risk premium. This idea has been

investigated in detail by Barro (2006). In particular, Barro studies a levered equity risk premium

with exogenous leverage, in a consumption-based representative-agent framework. Gabaix (2008)

investigates the impact of rare disasters on credit spreads when capital structure and default are

exogenously specified. Naik and Lee (1990) is the first paper to model jumps in consumption and

consider the implications for option pricing. Liu et al. (2005) also model jumps in consumption to

investigate option smirks and smiles. The above papers either ignore corporate financing decisions or

2



take them as exogenous. In our paper corporate financial policies are endogenous and co - dependent

on asset prices.

Secondly, our paper is part of the literature on structural models of credit risk, for example, Merton

(1974), Fischer et al. (1989), and Leland (1994)). More recent contributions include Hackbarth et al.

(2006), Chen et al. (2008), Chen and Kou (2009), Bhamra et al. (2010), Chen (2010), Carlson and

Lazrak (2010), and He and Xiong (2011). Our paper contributes to this literature by allowing for

jumps in earnings levels, random in both timing and size together with a dynamic capital structure.

The paper closest to ours is Gourio (2011), who studies the impact of rare disasters on credit

spreads in a general equilibrium model, where firms issue one period debt and can readjust leverage

each period without incurring any costs. While our approach is partial equilibrium, firms issue long

term debt, and it is costly to adjust leverage.

The paper is organized as follows. Section II describes aggregate consumption, firms’ earnings, and

the representative agent. Section III describes asset valuation with static capital structure. Section

IV describes asset valuation with dynamic capital structure. Section V discusses the quantitative

implications of the model. Section VI concludes.

II Model

In this section we introduce a structural-equilibrium model with rare disasters. By using a structural-

equilibrium model, as opposed to a pure structural model, such as Hackbarth et al. (2006), credit

spreads, optimal default decisions and leverage will depend on the representative agent’s preferences

and aggregate consumption, as in Bhamra et al. (2010) and Bhamra et al. (2008) . However, our

emphasis on rare disasters entails a different modeling approach. In particular, we assume that eco-

nomic catastrophes can occur, but with very small probability. During a catastrophe, the level of

consumption and firms’ earnings jump downwards. The exact timing of catastrophes is unknown, i.e.

they occur randomly.

II.A The effect of disasters on consumption and firm earnings

In this section, we describe our assumptions about how disasters effect aggregate consumption and

firms’ earnings cash flows.

3



The are K firms in the economy. The output of firm k, Ok, is divided between earnings, Yk,

and wages and other human capital income, Wk, paid to workers. Aggregate consumption, C, is

equal to aggregate output. Therefore, C =
∑K

k=1Ok =
∑K

k=1 Yk +
∑K

k=1Wk. We model aggregate

consumption and individual firm earnings directly, and thus aggregate wages are just the difference

between aggregate consumption and aggregate earnings.2

Aggregate consumption is given by

dCt
Ct−

= gdt+ σCdBC,t + (ezC,t − 1)dNt, (1)

where g is the constant drift of consumption growth, σC is the constant volatility of consumption

growth due to small shocks, which we model via a standard Brownian motion, BC,t. There is small

probability of a crisis occurring in the economy. This crisis occurs with probability per unit time of λ.

The aggregate impact of the crisis is characterized by a downward jump in the level of consumption.

We model the random nature of the timing of the crisis via a Poisson process, Nt, with intensity equal

to the probability per unit time of the crisis occurring. We model the jump in consumption by ezC,t−1,

where zC,t is a random variable, independent of BC,t and Nt. The percentage jump size is given by

ezC,t − 1. We assume that zC,t < 0 to ensure that the jump is an undesirable event. In particular, zC,t,

is exponentially distributed with mean −1/εC < 0 and variance (1/εC)2. To understand the role of εC ,

note that if the mean decrease in consumption arising from a rare disaster is JC , then εC = (1/JC)−1.

For example, if the mean decrease in consumption is 10%, then JC = 0.1 and εC = 9.

The earnings process for firm k is given by Xk,t, where

dXk,t

Xk,t
= θk,tdt+ σsY,k,tdB

s
Y,t + σidY,k,tdB

id
Y,k,t + (ezk,t − 1)dNt (2)

where θk is the expected earnings growth rate of firm k, and σidY,k and σsY,k are, respectively, the

idiosyncratic and systematic volatilities of the firm’s earnings growth rate. Total risk from Brownian

shocks, σX,k, is given by σX,k =
√

(σidX,k)
2 + (σsX,k)

2. The standard Brownian motion Bs
Y,t is the

systematic shock to the firm’s earnings growth, which is correlated with aggregate consumption growth:

dBs
X,tdBC,t = ρXCdt, (3)

2In assuming so, we follow such papers as Kandel and Stambaugh (1991), Cecchetti, Lam, and Mark (1993),

Campbell and Cochrane (1999), and Bansal and Yaron (2004).
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where ρXC is the correlation coefficient. The standard Brownian motion Bid
X,k,t is the idiosyncratic

shock to firm k’s earnings, which is correlated with neither Bs
X,t, BC,t, nor with other firms’ idiosyn-

cratic shocks. The earnings level of firm n suffers from a rare disaster at the time as consumption. The

percentage change in earnings for firm k is given by ezk,t−1, where zk,t is random variable which is in-

dependent across firms and independent from zC,t. To ensure that earnings declines during a disaster,

we assume zk,t < 0. In particular, zk,t, is exponentially distributed with mean −1/εk < 0 and variance

(1/εk)
2. The mean decrease in earnings arising from a rare disaster is Jk, where εk = (1/Jk)− 1. For

ease of notation, we omit the subscript k wherever possible.

II.B Disasters and Risk Prices

We assume the representative agent has the continuous-time analog of Epstein-Zin-Weil preferences,

i.e. the representative agent’s value function is given by

Jt = max
C

Et

∫ ∞
t

f (Ct, Jt) dt, (4)

where f is the normalized Kreps-Porteus aggregator:

f(c, v) = β(1− γ)v u
(
c/h−1(v)

)
, (5)

for

u (x) =
x1− 1

ψ − 1

1− 1
ψ

, ψ > 0,

h (x) =


x1−γ

1−γ , γ ≥ 0, γ 6= 1,

lnx, γ = 1,

where β is the rate of time preference, γ is the coefficient of relative risk aversion (RRA), and ψ is the

elasticity of intertemporal substitution under certainty (EIS).3

3The continuous-time version of the recursive preferences introduced by Epstein and Zin (1989) and Weil

(1990) is known as stochastic differential utility (SDU), and is derived in Duffie and Epstein (1992). Schroder

and Skiadas (1999) provide a proof of existence and uniqueness. Kraft and Seifried (2008) show the version of
SDU we use is well defined under a mixed Brownian-Poisson filtration. We shall need to assume that γ < J−1

C −1

to ensure asset prices are well defined.
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We start from the fundamental observation that asset prices depend on risk-neutral probabilities

and not actual probabilities. Therefore, we begin our analysis with the following proposition that

relates the risk-neutral probability of a disaster occuring to its actual probability.

Proposition 1 The risk-neutral probability per unit time of a disaster occuring is given by

λ̂ = λω, (6)

where the risk distortion factor, ω, given by

ω = Et−[e−γzt ] =
1− JC

1− JC(1 + γ)
, (7)

is greater than one and increasing in γ, if γ < J−1
C − 1.

The above proposition is fundamental to understanding our results. It tells us that even though

the actual (P – measure) intensity of a disaster is very small, the risk – neutral (Q – measure) will be

much larger if the risk distortion factor ω is large. For the sake of clarity, suppose that the expected

consumption drop from a disaster is 10%, i.e. JC = 0.1 and relative risk aversion is 8. Then the

risk distortion factor is 9, implying that a real world disaster intensity of 0.015 (equivalent to a 1.5%

probability of a disaster occurring in a given year) becomes a risk – neutral world intensity of 0.135

(equivalent to a 13% probability of a disaster occurring in a given year). We can see that even though

disasters may be rare under the physical measure, for plausible values of risk aversion, disasters can

occur much more frequently under the risk – neutral measure. Since asset prices are driven by risk –

neutral probabilities, it follows that asset prices can be strongly impacted by rare disasters. The novel

theme of this paper is the study of how rare disasters impact the interplay between asset prices and

corporate financial policies.

Observe also, that a necessary, but not sufficient condition for asset prices to be well defined is that

γ < J−1
C − 1, which ensures that the risk – neutral disaster intensity is strictly positive. Intuitively we

can interpret this condition as saying that sufficiently risk averse agent suffers infinite pain from the

possibility of a rare disaster – she would still be alive, but her consumption would drop substantially

if the disaster occurred.
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Proposition 2 The state-price density of a representative agent with the continuous-time version of

Epstein-Zin-Weil preferences is given by

πt =


(
βe−βt

) 1−γ
1− 1

ψ C−γt

(
pCe

p−1
C t
)− γ− 1

ψ

1− 1
ψ , ψ 6= 1

βe−β
∫ t
0

[1+(γ−1) ln(V −1)]dsC−γt V −(γ−1), ψ = 1

. (8)

When ψ 6= 1, the price-consumption ratio, pC , is given by:

pC =
1

r + γσ2
C − g + λ

1− 1

ψ

γ−1

(
ω 1

1+ω
JC

1−JC

− 1

) . (9)

where

r = β +
1

ψ
g − 1

2
γ

(
1 +

1

ψ

)
σ2
C . (10)

When ψ = 1, define V via

J = ln(CV ). (11)

Then V is given by:

β lnV = g − γ

2
σ2
C − λ

ω 1
1+ω

JC
1−JC

− 1

γ − 1
. (12)

The locally risk-free rate is given by

r = r + λ
γ − 1

ψ

γ − 1

(
ω

1 + ω JC
1−JC

− 1

)
− λ(ω − 1). (13)

and the risk premium on the claim to aggregate consumption is given by

µRC ,t− − rt− = γσ2
C + λEt−[(e−γzt − 1)(ezt − 1)]. (14)

The price of consumption risk is given by

Θ =
√
γ2σ2

C + λEt−[(e−γzC,t − 1)2]. (15)

When substitution (discount rate) effects dominate income (cash flow) effects, increasing the disas-

ter intensity makes the claim to consumption less attractive, leading to a fall in the price - consumption

ratio. To this effect, observe that relative to the no disaster case, the price consumption ratio contains
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one additional term, which is the last term of the denominator of (9), i.e. λ
1− 1

ψ

γ−1

(
ω 1

1+ω
JC

1−JC

− 1

)
.

This term is increasing in λ if ψ > 1 & γ > 1 or if ψ < 1 & γ < 1.

Relative to the no disaster case, the risk - free rate contains two additional terms. The simplest

additional term is −λ(ω − 1), the difference between the actual and risk - neutral disaster intensities,

which is negative, since the possibility of rare consumption disasters increases demand for precaution-

ary savings. The second additional term is λ
γ− 1

ψ

γ−1

(
ω

1+ω
JC

1−JC

− 1

)
, whose sign depends on whether the

representative agent prefers earlier (γ > 1/ψ) or later (γ < 1/ψ) resolution of uncertainty and whether

or not her relative risk aversion is greater than unity. Intuitively, an agent who is more risk averse

and prefers earlier resolution of uncertainty will avoid saving as the disaster intensity increases, since

she would rather consume today while consumption is high instead of postponing consumption only

to be faced with a consumption disaster.

The price of consumption risk, Θ, contains two components, a standard component, γσC , stemming

from small, but frequent (Brownian) shocks to consumption growth and a disaster risk component,√
λEt−[(e−γzC,t − 1)2.

III Asset valuation with static capital structure

While our main goal is to explore the behavior of the economy in a dynamic financing equilibrium,

to provide clearer intuition, in this section we derive the prices of all assets in the economy assuming

that capital structure is static. As we shall see the valuation principles are identical in both cases.

III.A Arrow-Debreu Default Claims

We introduce two Arrow-Debreu default claims. The first Arrow-Debreu default claim, denoted by

qD,t, is the time-t value of a unit of consumption paid upon default. In other words, if earnings either

reaches the boundary XD from above for the first time or jumps below the boundary XD from above

for the first time, one unit of consumption is paid that instant, i.e.

qD,t = EQ
t [e−r(τD−t)], (16)

where

τD = inf
t>0
{Xt ≤ XD} . (17)
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The second Arrow-Debreu default claim, denoted by qXD,t, is the time-t value of a the random cash

flow X, paid at default, i.e.

qXD,t = EQ
t [e−r(τD−t)XτD ]. (18)

When there are no rare disasters, X does not jump. Hence, XτD = XD, and qXD,t = XDqD,t. The

possibility of a rare disaster implies that earnings can jump below the default boundary, and so it is

possible that XτD < XD. Furthermore, the possibility of a rare disaster increases the probability of

default and so the price of the first Arrow-Debreu default claim is higher that in the no-disaster case.

Also, since

In the proposition below, we provide exact closed-form expressions for the two Arrow-Debreu

default claims.

Proposition 3 The prices of the Arrow-Debreu default claims are given by

qD,t =
ε− θ1

ε

θ2

θ2 − θ1

(
XD

Xt

)θ1
+
θ2 − ε
ε

θ1

θ2 − θ1

(
XD

Xt

)θ2
, (19)

and

qXD,t = Xt

[
ε− θ1

θ2 − θ1

1 + θ2

1 + ε

(
XD

Xt

)1+θ1

+
θ2 − ε
θ2 − θ1

1 + θ1

1 + ε

(
XD

Xt

)1+θ2
]
, (20)

where θ1 < θ2 are the positive roots of the cubic g(θ)− r = 0, where

g(θ) = −
(
µ̂X −

1

2
σ2
X

)
θ +

1

2
σ2
Xθ

2 + λω

(
ε

ε− θ
− 1

)
. (21)

III.B Abandonment value

The firms liquidation, or abandonment value, denoted by A(Xt) , is the after-tax value of the unlevered

firms future earnings:

A(Xt) = (1− η)XtEt

[∫ ∞
t

πsXs

πtXt
ds

]
. (22)

The liquidation value in (22) is a function of the current earnings level and is time-independent. The

next proposition derives the value of A(Xt) in terms of fundamentals of the economy.

Proposition 4 The liquidation value is given by

A(Xt) =
(1− η)Xt

rA
, (23)
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where

rA = µ− µX + λ̂J, (24)

and

µ = r + γρXCσ
s
XσC , (25)

is the discount rate in the Gordon growth model.

III.C Credit spreads and the levered equity risk premium

The generic value of debt at time t, denoted by Bt, is given by

Bt = Et

[∫ τD

t

πs
πt
cds

]
+ Et

[
πτD
πt

αAτD

]
. (26)

The above expression can be simplified to give

Bt =
c

r
(1− EQ

t [e−r(τD−t)]) + αEQ
t [e−r(τD−t)A(XτD)], (27)

which can then rewritten in terms of fundamental Arrow-Debreu default claims:

Bt =
c

r
(1− qD,t) + α(1− η)

1

rA
qXD,t. (28)

We can also rewrite the bond price as

Bt =
c

r
(1− lDqD,t), (29)

where

lD =

c
r − α(1− η) 1

rA

qXD,t
qD,t

c
r

(30)

is the loss ratio at default.

The next proposition gives the corporate bond spread in terms of the risk-free rate, loss ratio, and

the Arrow-Debreu default claim, qD. Note that we define the credit spread as the yield on corporate

debt less the yield on an equivalent risk-free security of the same maturity.

Proposition 5 The credit spread at time t, st, is given by

st =
c

Bt
− r = r

lDqD,t
1− lDqD,t

. (31)
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Current levered equity value is given by the expected present value of future cash flows less coupon

payments up until bankruptcy:

St = (1− η)Et

[∫ τD

t

πs
πt

(Xs − c)
]
.

We can show that the above equation simplifies to give

St = A(Xt)− (1− η)
c

r
+ qD,t(1− η)

c

r
− qXD,t(1− η)

1

rA
. (32)

In the next proposition we derive the levered equity risk premium and levered stock return volatility

of an individual firm.

Proposition 6 The conditional levered equity risk premium is

µR − r = γρXCσ
s
RσC + Π, (33)

where σsR is the systematic volatility of stock returns given by

σsR =
∂ lnSt
∂ lnXt

σsX . (34)

and Π is a jump risk premium given in the Appendix. Conditional levered stock return volatility is

σR =

√(
σB,idR

)2
+
(
σB,sR

)2
+ λ

(
σPR
)2
, (35)

where

σB,idR =
∂ lnSt
∂ lnXt

σidX , (36)

is the idiosyncratic volatility of stock returns and σPR is from the jump component in stock returns.

III.D Optimal default boundary and optimal static capital structure

Equityholders maximize the value of their default option by choosing when to default and also optimal

capital structure. Intuitively, the endogenous default boundary XD, depends on the extent to which

the rare disaster impacts consumption, firm level earnings and of course the probability of the disaster

occurring. The default boundary satisfies the following standard smooth-pasting condition:

∂S

∂X

∣∣∣∣
X=XD

= 0, (37)

the solution of which leads to the following proposition.

11



Proposition 7 For a given coupon level, the optimal default boundary, XD is given by

XD = rA
c

r

θ1θ2

(1 + θ2)(1 + θ1)

1 + ε

ε
. (38)

Equityholders choose the optimal coupon to maximize firm value at date 0 by balancing marginal

tax benefits from debt against marginal expected distress costs. As is standard in the capital structure

literature (e.g., see Leland (1994)), by maximizing firm value equityholders internalize debtholders’

value at date 0. However, in choosing default times they ignore the considerations of debtholders. This

feature creates the usual conflict of interest between equity and debtholders. We assume a proportion

ι of the bond’s value is lost due to issuance costs.4 Therefore equityholders choose the coupon to

maximize date-0 firm value net of issuance costs, F0 = B0(1− ι) + S0, i.e.

c0 = argmaxF0(c).

Optimal default boundaries depend on the coupon.

IV Asset valuation with dynamic capital structure

In this section, we extend our model to incorporate dynamic capital structure by allowing equityholders

to restructure firm’s financial obligations over time. This extension is necessary for two reasons. First,

empirical evidence suggests that firms follow a target leverage ratio even though they restructure

infrequently. Second, to correctly compare the implications of our model with the data for credit

spreads and the risk premium, we must compute the credit spread and equity risk premium as cross-

sectional averages over individual firm values. The cross-sectional distribution of firms used to compute

these averages should be the one implied by our model.5 Since this exercise is impossible with static

capital (in this case, leverage attenuates in the long-run), we introduce dynamic capital structure.

The pricing of unlevered assets, such as the firm’s abandonment value, is the same under static and

dynamic capital structure, and so in the following sections we explain how dynamic capital structure

is modeled and how debt and equity are priced.

4We introduce issuance costs to make the static capital structure results more comparable with the dynamic

capital structure results.
5A growing literature highlights the importance of doing this, as opposed to simply averaging over equilibrium

credit spreads and risk premia, where every firm has the same earnings level (see e.g., Berk et al. (1999) and

Strebulaev (2007)).

12



IV.A Refinancing

The key difference between dynamic and static capital structure lies in the possibility to restructure

a firm’s debt obligations. In the static model, debt is issued only at time 0. In the dynamic model,

firms may restructure at the time of their choice. They prefer to refinance infrequently, since each

refinancing is costly (Fischer et al. (1989)). Intuitively, at each refinancing, equityholders choose a

new coupon to maximize their value. We now explain how we implement this in an economy where

consumption and earning levels can jump downwards.

There are two corporate events in the model: default and refinancing. Since leverage is altered at

refinancing dates it is convenient to divide time into periods. A period is the time interval between

two consecutive refinancing dates. It is convenient to denote the beginnings of such periods by date

0. Within each period, default occurs when a firm’s cash flow level reaches a lower boundary, XD.

Restructuring occurs when earnings reach an upper boundary, XU .

IV.B Homogeneity property

In the dynamic capital structure model specification that we consider below, a homogeneity property

holds, as in Fischer et al. (1989) and Goldstein et al. (2001)). Denote ξ to be scaling factor defined as:

ξ =
XU

X0
. (39)

The homogeneity property holds when ξ is time-invariant and level-invariant.

Using the homogeneity property, we can relate optimal coupons and boundaries between two

consecutive periods. In particular,

c′ = ξc (40)

and

X ′D = ξXD, (41)

where ′ denotes a variable for a new period.
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IV.C Debt and equity valuation

Denote by Bt(Xt, c0) the value of debt where c0 is the current coupon. We can write the value of debt

in terms of fundamental Arrow-Debreu securities as

Bt(Xt, c0) =
c0

r
+ α(1− η)

qXD (Xt)

rA
− c

r
qD(Xt) + qU (Xt)

(
R− c0

r

)
. (42)

The Arrow-Debreu restructuring claim qU (Xt) pays out a unit of consumption at restructuring if the

firm has not yet defaulted. The key difference between the default claims, qD and qXD in the static

and dynamic cases is that in the dynamic case qD and qXD pay off provided that restructuring has not

already occurred in the current period.

In (42), c0/r is the value of a risk-free consol bond paying coupon c0. The net two terms represent

the recovery value of the firm received by bondholders if default takes place less the value of the

coupon payments lost due to default, multiplied by an Arrow-Debreu default claim, qD. Observe that

the recovery value of the firm received by bondholders if default takes place is given by

αEQ
t [e−r(τD−t)At(XτD)] = α(1− η)

EQ
t [e−r(τD−t)XτD ]

rA
= α(1− η)

qXD (Xt)

rA
.

The final term is the payment made to bondholders at refinancing, denoted by R, less the value

of the coupons lost, multiplied by an Arrow-Debreu default restructuring claim, qU .

Observe that (42) holds for a general refinancing payment, R. The exact form of the refinancing

payment depends on the bond indenture provisions such as callability and seniority. For example, if

debt is callable at its book value, then R is the original par value of debt. If debt is non-callable, R

is the continuation value of debt. For simplicity, we assume that debt is non-callable and issued pari

passu, i.e. all outstanding debt issues have equal seniority. Dilution is on a per-coupon basis, so that

if the coupon at the previous refinancing is c0, and at restructuring the new coupon is c1(c0), then the

continuation value of the original debt issued at the previous refinancing date is6

R0,1 =
c0

c1(c0)
Bt(X

0
U , c1(c0)). (43)

Based on the above structure of the refinancing payment, we can derive bond prices at refinancing

dates and hence at all dates, as shown in the following proposition.

6Other definitions of R can be incorporated in the model but with a loss of the homogeneity property.
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Proposition 8 Suppose that the refinancing payment R is given by (43). Then the homogeneity

property (see (39)) holds, the date-t debt value is given by

B(Xt, c
0) =

c0

r
(1− lDqD,t − lUqU,t), (44)

and the credit spread, st(Xt, c
0), is given by

st(Xt, c
0) = r

qD(Xt, X
0
D)lD,t + qU,t(Xt, X

0
U )lU,t

1− qD,t(Xt, X0
D)lD,t − qU,t(Xt, X0

U )lU,t
, (45)

where loss ratios conditional on default and restructuring are given, respectively, by (30) and where

lU =
c0

r −B(X0
0 , c

0)
c0

r

. (46)

and B(X0
0 , c0) is the bond value at restructuring, given by

B(X0
0 , c

0) =
c0

r + (1− η)αq
X
D (X0

0 )
rA

− qD(X0
0 ) c

0

r − qU (X0
0 ) c

0

r

1− qU (X0
0 )

. (47)

.

To value equity, we must distinguish between equity value just after refinancing, S0, and equity

value just prior to refinancing, E0. The value of equity just after refinancing is

Sνt(Xt, c
0) = Divt(Xt, c

0) + qU,t(Xt)E0, (48)

where Divt is the present value of dividends paid to equityholders during the current refinancing period

and can be written as

Divt(Xt, c
0) = At(Xt)− (1− η)

c0

r
+ (1− η)

[
qD,t(Xt)

c0

r
−
qXD,t(Xt)

rA

]

+qU,t(Xt)

[
(1− η)

c0

r
−At(X0

U )

]
. (49)

The third term in (49) shows that, if default occurs, equityholders no longer pay coupons but lose the

right to future dividends. The third term shows a similar adjustment for the effect of restructuring.
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The final term in (48) is present because, if restructuring occurs, equityholders derive value from

cash flow payments made after restructuring. In the case of the pari passu covenant assumed above

for the valuation of debt, equity value just prior to refinancing can be written as

E0(X0
U ) =

[
(1− ι)B(X0

U , c
1(c0))−R0,1(X0

U , c
0, c1(c0))

]
+ S(X0

U , c
1(c0)), (50)

where a proportion ι of the newly issued bond’s value is lost due to restructuring costs.

Given the above expression for equity value just prior to refinancing, we can derive equity values

at refinancing dates and hence at all dates, as shown in the following proposition.

Proposition 9 Suppose that the bond refinancing payment R is given by (43), so that the homogeneity

property (see (39)) holds and the value of equity just before refinancing is given by (50). Then equity

values are given by

S(Xt, c
0) = Divt(Xt, c

0) + qU (Xt){B(X0
0 )[(1− ι)ξ − 1)] + ξS(X0

0 , c
0)}, (51)

where S(X0, c0) is the equity value at restructuring, given by

S(X0
0 , c

0) =
Divt(Xt, c

0) + qU (Xt){B(X0
0 )[(1− ι)ξ − 1)]}

1− ξqU (Xt)
. (52)

Note that expressions for the equity risk premium and return volatility are the same as in the static

case (see Proposition 6). The only difference is in the functional form of the elasticity, ∂ lnSνt/∂ lnX.

IV.D Optimal default boundary and optimal capital structure

Relative to the static case, equityholders must now also decide on optimal restructuring boundaries

as well as optimal coupons and default boundaries. Equityholders choose 3 variables: X0
U , X0

D, c0.

Given the coupons and restructuring boundaries, the optimal default boundary X0
D is determined

by the following smooth pasting condition

∂S1(Xt, c0)

∂Xt

∣∣∣
Xt=X0

D

= 0. (53)

The optimal coupon c0 and the restructuring boundary X0
U are thn chosen to maximize levered

firm value at restructuring, i.e.

(c0, X0
U ) = argmaxF (c0, X0

U ),

where F = B(X0, c
0)(1− ι) + S(X0, c

0).
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V Model Implications

In this section we study the quantitative implications of the model.

V.A Parameter Estimation

To estimate parameter values we use aggregate US data at quarterly frequency for the period from

1947Q1 to 2005Q4. Consumption is real non-durables plus service consumption expenditures from

the Bureau of Economic Analysis. Earnings data are from S&P and provided on Robert J. Shiller’s

website. We delete monthly interpolated values and obtain a time-series at quarterly frequency. The

personal consumption expenditure chain-type price index is used to deflate the earnings time-series.

Unconditional parameter estimates are summarized in Table I. We now discuss the estimation exercise

in more detail.

Unsurprisingly, given the difficulty of estimating the frequency and size of rare disasters, values for

λ, JC , and J vary in the literature.7 For example, Longstaff and Piazzesi (2004) use λ = 1/100, and

take constant jump sizes of JC = 0.1 and J = 0.9, assuming that a Great Depression like scenario,

where US consumption dropped by 10% and corporate earnings decreased by more than 90% is a once

in a hundred years event. Barro (2006) assumes λ = 1.7/100 and JC = 0.36, whereas Barro and Ursua

(2008) use λ = 3.6/100 and JC = 0.4. Using a cross section of international data, Nakamura et al.

(2011) estimate that consumption disasters lead to long-run declines in consumption of about 15%.

Given, that our model assumes disasters are instantaneous downward jumps in consumption and that

there are no upward jumps, we choose the relatively conservative values for parameters governing the

distribution of jump sizes JC = 0.1, J = 0.25 and set λ = 1.5/100. Our estimates of g, θ, σC , σsX , and

ρXC are obtained by maximum likelihood. For simplicity, we assume expected earnings growth and

volatility parameters are identical across firms. We calibrate idiosyncratic earnings volatility so that

the total asset volatility is approximately 25%, the average asset volatility of firms with outstanding

rated corporate debt (see Schaefer and Strebulaev (2008)). This yields an idiosyncratic earnings

volatility of 22.8%. Andrade and Kaplan (1998) report default costs of about 10–25% of asset value

7Weitzman (2007) notes the ‘inherent implausibility of being able to meaningfully calibrate rational – ex-

pectations – equilibria objective frequency distributions of rare disasters because the rarer the event the more

uncertain is our estimate of its probability.’
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and we assume α = 0.2. We assume that the issuance cost, ι, is 2%. The corporate tax rate, η, is set

at 20%.

The annualized rate of time preference, β, is 0.015. For the Disaster Model, relative risk aversion,

γ, equals 8 and the EIS, ψ, equals 1/3.5.8 These values ensure that the price of consumption risk is

close as possible to historical levels for the Sharpe ratio, without making the risk – free rate too large,

and ensuring that the discount rate, rA, is positive. The latter constraint is the problematic, since it

forces the risk – free rate to be almost 1% higher than its historical mean.

V.B Gauging the impact of rare disasters on credit risk and capital

structure

In this section we study the impact of rare disasters on credit risk, capital structure and risk premia,

relative to a model without rare disasters, i.e. where the disaster arrival intensity, λ, is zero.

We consider two comparisons. In the first comparison, we set β = .015, γ = 8, and ψ = 1/3.5

for both disaster and non – disaster models. This somewhat naive approach has the disadvantage

that the risk – free rate in the non – disaster model will be unrealistically high. In fact the risk –

free rate will be an order of magnitude higher than in the disaster model, because of a much reduced

demand for precautionary savings. This decreases asset prices, including corporate debt, leading to

much greater credit spreads. To avoid the model comparison being contaminated by the trivial effect

of a much higher risk – free rate, we carry out a second comparison, where β = .015, γ = 15, and

ψ = 1.66, in the non – disaster model, and β = .015, γ = 8, and ψ = 1/3.5, in the disaster model.

This has the advantage that the risk – free rate and the price of consumption risk are identical in the

non – disaster and disaster models. Consequently any differences in credit risk variables will no longer

be driven by changes in asset prices caused by changes in the risk – free rate or price of consumption

risk. Instead credit risk variables will change purely because of how the possibility of rare disasters

impacts corporate financing decisions.

8Some studies estimate the EIS is less than one, (see, e.g. Hall (1988) and Campbell (1999)), while others

(see, e.g. Hansen and Singleton (1982), Attanasio and Weber (1989), Vissing-Jorgensen (2002), Bansal and

Yaron (2004), and Guvenen (2006)) estimate that the EIS is more than one.
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The chief empirical difficulty facing a structural - equilibrium model is to obtain realistic credit

spreads, leverage ratios, and equity risk prema, while keeping actual default probabilities close to

observed values. Historical credit spreads and actual default rates are summarized in Table II.

V.B.1 Static capital structure

Table III reports results with static capital structure at date 0, when Xt = X0.

First, we compare the Disaster Model with the the No Disaster Model, Benchmark I (Naive).

We see that the risk – free rate is lower in the Disaster Model, because of increased demand for

precautionary savings, while the price of consumption risk is higher, because of consumption disasters.

The credit spread is slightly lower in the Disaster Model, which is a consequence of the much lower

risk – free rate. The possibility of rare disasters makes firms more conservative when issuing debt,

leading to a lower coupon, a higher interest coverage ratio and lower leverage. Since the possibility of

rare disasters leads to a lower default boundary the actual probability of default for horizons beyond

one year is lower in the disaster model. At the one year horizon, the possibility of a rare disaster

increases the actual probability of default – this impact of downward jumps on short horizon default

probabilities is well known (see, e.g. Lando (2004)).

Second, we compare the Disaster Model with the the No Disaster Model, Benchmark I (Naive).

By construction, the conditional expectation of percentage changes to the state - price density (risk -

free rate) and the conditional standard deviation of changes in the log state - price density (price of

consumption risk) are identical across models. Credit spreads are higher in the Disaster Model, while

leverage and actual default probabilities for horizons greater than one year are larger. This cannot

be caused by a change in the risk - free rate or price of consumption risk. To see the intuition note

that under the physical measure P, disasters occur with an intensity of λ = 0.015, whereas under the

risk – neutral measure Q, disasters occur with an intensity of λ̂ = λω = 0.015× 9 = .135. Hence, the

term structure of cumulative jump probabilities is substantially higher under Q than P, as shown in

Figure 1. Since corporate financing decisions depend on asset prices, and assets are valued under Q,

financing decisions become much more conservative in the Disaster Model, even though disasters are

rare. Hence, the optimal coupon and default boundary are lower. The lower coupon leads to lower

leverage. The lower default boundary leads to smaller actual default probabilities for horizons greater
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than a year. Since disasters under the risk – neutral measure, Q are not rare (the risk – neutral

probability of a disaster occurring within 5 years is 0.5), risk – neutral default probabilities are high

relative to actual default probabilities, leading to a higher credit spread, despite the lower coupon and

default boundary.

V.B.2 Dynamic capital structure at refinancing

Table IV reports results with dynamic capital structure at the time of refinancing, i.e. Xt = X0.

Having seen the limitations of comparing models with widely differing risk - free rates and prices of

consumption risk, we compare the Disaster Model with a No Disaster Model which has the same risk -

free rate and price of consumption risk. We implement this by setting β = .015, γ = 15, and ψ = 1.66,

in the No Disaster model, and β = .015, γ = 8, and ψ = 1/3.5, in the Disaster model.

Qualitatively, the results are the same as under static capital structure. Quantitatively, there are

differences: spreads are larger and leverage is smaller, both well known effects noted in Goldstein et al.

(2001). Equity and debt values are more realistic in the Disaster Model, since risk premia are larger

in this model, as a consequence of disaster risk being priced.

V.C Dynamic capital structure: aggregate dynamics and long - run

behavior of credit risk variables

We now study the long run, aggregate implications of disaster risk for credit spreads, capital structure

and equity risk premia, focusing solely on the Disaster Model. By aggregate implications, we mean that

we study averages of variables taken over a cross - section of firms, as opposed to studying variables

for an individual firm at the time of refinancing. This approach is analogous to Bertola and Caballero

(1994), who study aggregate investment dynamics as opposed to individual firm dynamics. By long

- run, we mean that we study the behaviour of aggregate variables not at date 0, but in the limit as

time goes to infinity.9 This allows is to study whether rare disasters have any long run implications

for firms in the economy.

Specifically, we simulate the earnings processes for 1000 firms in 100 economies over 100 years.

Since the variables we are interested in such as credit spreads, depend on normalized earnings X/X0,

9Since, we cannot compute this limit analytically, we use simulation, as discussed below.
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where X0 is the earnings level at the most recent refinancing, rather than raw earnings X, we confine

earnings to the interval [XD, XU ], defined by default boundary, XD and the restructuring boundary

XU . When default occurs, a firm vanishes and an identical firm immediate enters the economy, with

a cash flow level of X0. When restructuring occurs, default and restructuring boundaries are scaled

up by XU/X0, which for credit risk variables such as spreads, is equivalent to starting the earnings

process again at X0.

We find that computing long -run cross - sectional averages gives a term structure of credit spreads

and default rates, together with leverage, which is close to that observed for BBB firms in the data.

Furthermore, the equity risk premium is realistically large.

Importantly, spreads, leverage, default rates, and the equity risk premium are larger than at

refinancing. This is because these variables are convex functions of X/XD, a measure of the distance

to default. The distribution of X/XD is negatively skewed because of rare disasters. Hence, Jensen’s

inequality implies that rare disasters increase the long - run cross - sectional averages of credit spreads,

default rates, leverage, and the equity risk premium.

The interest coverage ratio is linear in X. Consequently it’s long - run cross - sectional mean is

very close to it’s value at refinancing.

VI Conclusion

We develop a dynamic capital structure model, which jointly prices corporate debt and equity in the

presence of rare disasters which drive down consumption and firms’ earnings.

Since leverage and default decisions are made optimally, we obtain an endogenous term structure

of actual default probabilities and credit spreads. Firms are heterogeneous because their earnings

growth rates are subject to idiosyncratic shocks. We find that in the presence of rare disasters, the

model - implied term structure of credit spreads, actual default probabilities, together with aggregate

leverage and the equity risk premium are close to their empirical counterparts.

Further exploration of our model is warranted. Two dimensions seem important. Firstly, impli-

cations for credit spreads and default probabilities at very short maturities should be explored, since

this is where rare disasters may have quantitatively different implications for credit spreads than long

- run risk. Secondly, we have not fully exploited our model’s potential to capture cross - sectional
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heterogeneity in firms, since we have assumed they all have identical expected growth rates and growth

rate volatilities and that their bonds have identical recovery rates.

Some caveats are also in order. We model disasters as instantaneous downward jumps and we

ignore the possibility of recoveries, which biases our results on credit spreads upwards. Also, the world

can undergo significant structural changes in response to rare disasters. One example of this is the tax

code and changes in tax rates could significantly alter our results. Another example is inflation, which

we have ignored entirely. Both deflation and inflation have occurred during economic disasters, which

is clearly relevant for debt values. Of course, these are just two simple examples, based on historical

observation. However, by their very nature, rare economic disasters can lead to other changes, which

are inherently unpredictable.
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A Appendix: Proofs

Proof of Propositions 1. The risk-neutral probability of a disaster occurring is given by

λ̂ = λEt−

[
πt

πt−

]
. (A1)

From (8) it then follows that

λ̂ = λω, (A2)

where

ω = Et−

[(
Ct

Ct−

)−γ]
(A3)

Since C is given by (1), we obtain

ω = Et−[e−γzC,t ]. (A4)

Note that if z is exponentially distributed with density function εeεy for y ≤ 0 and 0 for y > 0, then

E[eθz ] =

∫ 0

−∞
eθyεeεydy (A5)

=

∫ ∞
0

e−θyεe−εydy (A6)

=
ε

ε+ θ
, if θ + ε > 0. (A7)

Hence, if γ < ε

ω = Et−[e−γzC,t ] =
εC

εC − γ
. (A8)

Since εC = J−1
C − 1, then

ω =
1− JC

1− JC(1 + γ)
. (A9)

Also, if γ < ε+ 1, then

Et−[e−(γ−1)zC,t ] =
εC

εC + 1− γ
=

1− JC
1− JCγ

(A10)

We now express Et−[e−(γ1)zC,t ] in terms of JC and ω.

Et−[e−(γ−1)zC,t ] =
1− JC

1− JCγ
(A11)

=
1− JC

1− JC(γ + 1) + JC
(A12)

=

(
1− JC(γ + 1) + JC

1− JC

)−1

(A13)

=

(
1− JC(γ + 1)

1− JC
+

JC

1− JC

)−1

(A14)

=

(
ω−1 +

JC

1− JC

)−1

(A15)

= ω

(
1 + ω

JC

1− JC

)−1

(A16)

= ω
1

1 + ω JC
1−JC

. (A17)
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Thus, if we define h via

h(x) =
x1−γ − 1

1− γ
, (A18)

then

Et−[h(ezC,t )] =
Et−e

(1−γ)zC,t − 1

1− γ
(A19)

=
1− e

1−JC
1−JCγ

γ − 1
(A20)

=

1− ω 1

1+ω
JC

1−JC

γ − 1
. (A21)

Proof of Proposition 2. Using simple algebra we can write the normalized Kreps-Porteus aggregator in the following compact

form:

f(c, v) = β(h−1(v))1−γ u
(
c/h−1(v)

)
, (A22)

where

u (x) =
x
1− 1

ψ − 1

1− 1
ψ

, ψ > 0,

h (x) =

{
x1−γ

1−γ , γ ≥ 0, γ 6= 1.
lnx, γ = 1.

The representative agent’s value function is given by

Jt = Et

∫ ∞
t

f (Ct, Jt) dt. (A23)

? show that the state-price density for a general normalized aggregator f is given by

πt = e
∫ t
0 fv(Cs,Js)dtfc (Ct, Jt) , (A24)

where fc(·, ·) and fv(·, ·) are the partial derivatives of f with respect to its first and second arguments, respectively, and J is the

value function given in (A23). The Feynman-Kac Theorem implies

f(Ct−, Jt−)dt+ Et−[dJt] = 0.

Using Ito’s Lemma we rewrite the above equation as

0 = f (Ct−, Jt−) + Ct−Jt−,Cg +
1

2
C2
t−Jt−,CCσ

2
C + λ (Et−[Jt]− Jt−) . (A25)

We guess and verify that

Jt = h(CtV ), (A26)

where V is given by

0 = βu(V −1) + g −
1

2
γσ2
C + λEt−[h(ezC,t )], (A27)
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and h(x) = (x1−γ − 1)/(1− γ). Hence,

βV
−
(
1− 1

ψ

)
= k − λ

(
1−

1

ψ

)
Et−[h(ezC,t )], (A28)

where

k = r + γσ2
C − g, (A29)

r = β +
1

ψ
g −

1

2
γ

(
1 +

1

ψ

)
σ2
C . (A30)

From (A20) and (A21) it follows that

βV
−
(
1− 1

ψ

)
= k + λ

(
1−

1

ψ

)
e

1−JC
1−JCγ − 1

γ − 1
, (A31)

and

βV
−
(
1− 1

ψ

)
= k + λ

(
1−

1

ψ

) ω 1

1+ω
JC

1−JC

− 1

γ − 1
, (A32)

respectively.

Substituting (A22) into (A24) and using (A26) gives

πt = βe
−β
[
1+
(
γ− 1

ψ

)
u(V−1)

]
t
C−γt V

−
(
γ− 1

ψ

)
. (A33)

When ψ = 1, the above equation gives the second expression in (8). We rewrite (A27) as

β

[
1 +

(
γ −

1

ψ

)
u

(
1

V

)]
= r −

(
γ −

1

ψ

)
λ
(
Et−[h(ezt )]

)
−
[
γg −

1

2
γ (1 + γ)σ2

C

]
, (A34)

where r is given in (10). Setting ψ = 1 in the above equation gives

β lnV = g −
γ

2
σ2
C + λEt−[h(ezt )], (A35)

which implies that

β lnV = g −
γ

2
σ2
C − λ

e
1−JC
1−JCγ − 1

γ − 1
, (A36)

and (12).

To derive the first expression in (8) from (A33) we prove that

V = (βpC)

1

1− 1
ψ , ψ 6= 1. (A37)

We proceed by considering the optimization problem for the representative agent. She chooses her optimal consumption, C∗, and

risky asset portfolio, ϕ, to maximize her expected utility

J∗t = sup
C∗,ϕ

Et

∫ ∞
t

f (C∗t , J
∗
t ) dt.
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Observe that J∗ depends on optimal consumption-portfolio choice, whereas the J defined previously in (11) depends on exogenous

aggregate consumption. The optimization is carried out subject to the dynamic budget constraint, which we now describe. If the

agent consumes at the rate, C∗, invests a proportion, ϕ, of her remaining financial wealth in the claim on aggregate consumption

(the risky asset), and puts the remainder in the locally risk-free asset, then her financial wealth, W , evolves according to the

dynamic budget constraint:

dWt

Wt−
= ϕt−

(
dRC,t − rt−dt

)
+ rt−dt−

C∗t−
Wt−

dt,

where dRC,t is the cumulative return on the claim to aggregate consumption. The compensated version of the Poisson process, Nt,

is the Poisson martingale

NP
t = Nt − λt.

It follows from applying Ito’s Lemma to Pt = pCCt that the cumulative return on the claim to aggregate consumption is

dRC,t =
dPt + Ctdt

Pt−
=
dCt

Ct−
+

1

pC
dt = µRC ,t−dt+ σCdBC,t + (ezt − 1)dNP

t ,

where

µRC ,t− = g + λEt−[ezt − 1] +
1

pC
. (A38)

The total volatility of the return to holding the consumption claim is given by

σRC =
√
σ2
C + λEt− ((ezt − 1))2.

Note that C∗ is the consumption to be chosen by the agent, i.e. it is a control. The Hamilton-Jacobi-Bellman differential equation

for the agent’s optimization problem is

sup
C∗,ϕ

f
(
C∗t−, J

∗
t−
)
dt+ Et− [dJ∗t ] = 0.

Applying Ito’s Lemma to J∗t = J∗ (Wt) allows us to write the above equation as

0 = sup
C∗,ϕ

f
(
C∗t−, J

∗
t−
)

+Wt−J
∗
W,t−

(
ϕi
(
µRC ,t− − λEt−[ezt − 1]− rt−

)
+ rt− −

C∗t−
Wt−

)
+

1

2
W 2
t−J
∗
WW,t−ϕ

2
t−σ

2
C +

+λEt−
(
J∗t − J∗t−

)
.

We guess and verify that J∗t = h (WtF ), where F is given by

0 = sup
C∗,ϕ

βu

(
C∗t−
Wt−F

)
+

(
ϕi
(
µRC ,t− − λEt−[ezt − 1]− rt−

)
+ rt− −

C∗t−
Wt−

)
−

1

2
γϕ2

t−σ
2
C + λEt−[h(1 + ϕ(ezt − 1))].

The first order conditions of the above equation are:

C∗t = βψF−(ψ−1)Wt,

µRC ,t− − λEt−[ezt − 1]− rt− − γσ2
C = −λEt−[(1 + ϕ(ezt − 1))−γ(ezt − 1)].

The market for the consumption good must clear, so ϕ = 1, Wt = Pt, C∗t = Ct (and thus Jt = J∗t ). Note that this forces the

optimal portfolio proportion to be one. Hence

µRC ,t− − rt− = γσ2
C + λEt−[(1− e−γzt )(ezt − 1)], (A39)
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and

pC = β−ψFψ−1. (A40)

The above equation implies that for ψ = 1, pC = 1/β. The equality, J = J∗, implies that CV = WF . Hence, F = p−1
C V . Using

this equation to eliminate F from (A40) gives (A37). Substituting (A37) into (A33) and (A32) gives the expression in (8) for ψ 6= 1

and (9).

From (A38) and (A39) it follows that

rt− = r − λ
(
γ −

1

ψ

)
Et−[h(ezC,t )] + λEt−[1− e−γzt ]. (A41)

Since λ̂ = λω, the risk-free rate can be rewritten as

rt− = r − λ
(
γ −

1

ψ

)
Et−[h(ezC,t )]− λ(ω − 1). (A42)

Using (A21), it then follows that

rt− = r + λ

(
γ −

1

ψ

) ω 1

1+ω
JC

1−JC

− 1

γ − 1
− λ(ω − 1). (A43)

Et−[(1− e−γzC,t )(ezC,t − 1)] = Et−e
zC,t − 1− Et−e−(γ−1)zC,t + Et−e

−γzC,t (A44)

=
εC

εC + 1
− 1−

εC

εC + 1− γ
+

εC

εC − γ
(A45)

Ito’s Lemma implies that the state-price density evolves according to

dπt

πt−
=

1

πt−

∂πt−

∂t
dt+

1

πt−
Ct
∂πt−

∂Ct

dCt

Ct
+

1

2

1

πt−
C2
t

∂2πt−

∂C2
t

(
dCt

Ct

)2

+λ
∆πt

πt−
dt+

∆πt

πt−
dNP

t , (A46)

where dNP
t = dNP − λdt and ∆πt = πt − πt−. Observe that

∆πt

πt−
=

(
Ct

Ct−

)−γ
− 1 (A47)

= e−γzC,t − 1. (A48)

dπt

πt−
= −rtdt−ΘBdBC,t −ΘP dNP

t , (A49)

where

ΘB = γσC (A50)

ΘP = e−γzC,t − 1. (A51)

The price of consumption risk is given by

Θ =
√
γ2σ2

C + λEt−[(e−γzC,t − 1)2]. (A52)
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Proof of Proposition 3. First, define xt = lnXt. It follows from Ito’s Lemma that under Q

dxt =

(
µ̂X −

1

2
σ2
X

)
dt+ σXdB̂X,t + ztdN̂t, (A53)

where N̂ is a Poisson process with intensity λω under Q. Note that

xk,t =

(
µ̂X −

1

2
σ2
X

)
t+ σX B̂X,t +

Nt∑
n=1

zn, (A54)

where (zn)n∈N is an i.i.d. sequence of random variables, exponentially distributed, with a common density, given by

fz(y) = εeεy1{y<0}. (A55)

Note that EQ[zn] = −1/ε and V arQ[zn] = (1/ε)2. The distribution for jump size is identical under P and Q, because jump size is

independent of the Brownian motion and Poisson process, which drive innovations in earnings growth.

To use the results in, define x̃t = −xt. Hence,

dx̃t = µ̃xdt− σXdB̂X,t + z̃tdN̂t, (A56)

and

x̃t = µ̃xt− σX B̂X,t +

Nt∑
n=1

z̃n, (A57)

where

µ̃x = −
(
µ̂X −

1

2
σ2
X

)
, z̃t = −zt. (A58)

The density for z̃ is

f̃z̃(y) = εeεy1{y>0}. (A59)

Note that EQ[z̃n] = 1/ε and V arQ[z̃n] = (1/ε)2. Also,

τD = inf
t>0
{x̃t ≥ x̃D} , (A60)

where x̃D = ln(1/XD).

We now compute the cumulant generating function of x̃t, defined by

g(θ) =
1

t
lnEQ[eθx̃t ]. (A61)

Note that

EQ[eθx̃t ] = eµ̃xtEQe−σX B̂X,t+
∑Nt
n=1 z̃n , (A62)

= eµ̃xtEQ[e−σX B̂X,t ]EQ[e
∑Nt
n=1 z̃n ], (A63)

where the previous line is a consequence of independence. Thus,

EQ[eθxt ] = eµ̃xθt+
1
2
σ2
Xθ

2t2eλωtE
Q[eθzn−1], (A64)

= e
µ̃xθt+

1
2
σ2
Xθ

2t2+λωt
(

ε
ε−θ−1

)
. (A65)
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It follows that

g(θ) = µ̃xθ +
1

2
σ2
Xθ

2 + λω

(
ε

ε− θ
− 1

)
(A66)

The equation

g(θ) = r, (A67)

reduces to a cubic and has three roots, denoted by are denoted by θ1, θ2 and −θ3, where 0 < θ1 < ε < θ2 and θ3 > 0

From, we know that when x̃0 = 0, then

E[e−rτD ] =
ε− θ1
ε

θ2

θ2 − θ1
e−θ1x̃D +

θ2 − ε
ε

θ1

θ2 − θ1
e−θ2x̃D , (A68)

which can be rewritten as

E[e−rτD ] =
ε− θ1
ε

θ2

θ2 − θ1
Xθ1
D +

θ2 − ε
ε

θ1

θ2 − θ1
Xθ2
D . (A69)

Therefore,

qD,t = Et[e
−r(τD−t)] =

ε− θ1
ε

θ2

θ2 − θ1

(
XD

Xt

)θ1
+
θ2 − ε
ε

θ1

θ2 − θ1

(
XD

Xt

)θ2
(A70)

We also know from Chen & Kou (2007) that when x̃0 = 0

E[e−rτD+ax̃τD ] = eax̃D (c1e
−x̃Dθ1 + c2e

−x̃Dθ2 ), (A71)

where

c1(a) =
ε− θ1
θ2 − θ1

θ2 − a
ε− a

, (A72)

c2(a) =
θ2 − ε
θ2 − θ1

θ1 − a
ε− a

. (A73)

Rewriting , we obtain

E[e−rτD+ax̃τD ] = X−aD (c1(a)Xθ1
D + c2(a)Xθ2

D ). (A74)

Hence,

qXD,t = Et[e
−r(τD−t)XτD ] = Et[e

−r(τD−t)−x̃τD ] (A75)

= Xt

[
ε− θ1
θ2 − θ1

1 + θ2

1 + ε

(
XD

Xt

)1+θ1

+
θ2 − ε
θ2 − θ1

1 + θ1

1 + ε

(
XD

Xt

)1+θ2
]
. (A76)

τD inf
t>0

{
e−x

−
t ≤ XD

}
. (A77)

Et[e
−r(τD−t)XτD ] = d1e

−γ1xt + d2e
−γ2xt (A78)

Proof of Proposition 4. To find the abandonment value,

A(Xt) = (1− η)Et

∫ ∞
t

[
πs

πt
Ys

]
ds, (A79)

we note that

A(Xt) = (1− η)Xtp
X , (A80)
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where

pX = Et

∫ ∞
t

[
πs

πt

Xs

Xt

]
ds. (A81)

Under Q, the basic asset pricing equation implies that

EQ
t

[
dA+ (1− η)X

A

]
= 0. (A82)

Now, under Q

dXt

Xt−
= µ̂Xdt+ σXdB̂X + (ezk,t − 1)(dN̂P + λ̂dt), (A83)

where B̂X is a standard Brownian motion under Q, N̂P a Poisson martingale under Q,

µ̂X = µX −ΘBρXCσ
s
X , (A84)

ΘB = γσC , (A85)

and λ̂ is the risk-neutral probability of a disaster occurring. Hence,

1

2
σ2
XAXX(Xt) + µ̂XXAX(Xt) + λωEt−[A(Xt)−A(Xt−)] + (1− η)Xt − rA(Xt). (A86)

Thus,

µ̂XX(1− η)pX + λω(1− η)pXXEt−[ezk,t − 1] + (1− η)X − rpX(1− η)X = 0. (A87)

Hence,

pX =
1

r − µ̂X − λωEt−[ezk,t − 1]
. (A88)

From (A7) it follows that

Et−[ezk,t ] =
εk

1 + εk
. (A89)

Hence,

Et−[ezk,t ] =
J−1
k − 1

J−1
k

(A90)

= 1− Jk, (A91)

and so

pX =
1

r − µ̂X + λ̂Jk
. (A92)

Proof of Proposition 6.

The value of levered equity is given by

St = (1− η)EQ
t

[∫ τD

t
e−r(s−t)(Xs − c)

]
= (1− η)EQ

t

[∫ ∞
t

e−r(s−t)(Xs − c)
]
− (1− η)EQ

t

[∫ ∞
τD

e−r(s−t)(Xs − c)
]

(A93)

= (1− η)EQ
t

[∫ ∞
t

e−r(s−t)(Xs − c)
]
− (1− η)EQ

t

[∫ ∞
τD

e−r(τD−t)e−r(s−τD)(Xs − c)
]

(A94)

= (1− η)EQ
t

[∫ ∞
t

e−r(s−t)(Xs − c)
]
− (1− η)EQ

t

{
e−r(τD−t)EQ

τD

[∫ ∞
τD

e−r(s−τD)(Xs − c)
]}

.(A95)
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Now note that

EQ
t

[∫ ∞
t

e−r(s−t)(Xs − c)
]

= pXXt −
c

r
. (A96)

Hence,

St = (1− η)
(
pXXt −

c

r
− Et

[
e−r(τD−t)

(
pXXτD −

c

r

)])
(A97)

= (1− η)
[
pXXt −

c

r
−
(
qXD,tp

X − qD,t
c

r

)]
(A98)

= (1− η)
[
pX(Xt − qXD,t)−

c

r
(1− qD,t)

]
(A99)

= A(Xt)− (1− η)
c

r
+ qD,t(1− η)

c

r
− qXD,t(1− η)

1

rA
. (A100)

Applying Ito’s Lemma gives

dSt = dA(Xt) + dqD,t(1− η)
c

r
− dqXD,t(1− η)

1

rA
(A101)

= (1− η)
1

rA
dXt +

∂qD,t

∂X
dXt(1− η)

c

r
+

1

2

∂2qD,t

∂X2
dXt.dXt(1− η)

c

r
−
∂qXD,t

∂X
dXt(1− η)

1

rA
(A102)

−
1

2

∂2qXD,t

∂X2
dXt.dXt(1− η)

1

rA
(A103)

=

[
(1− η)

1

rA
+
∂qD,t

∂X
(1− η)

c

r
−
∂qXD,t

∂X
(1− η)

1

rA

]
dXt +

1

2
dXt.dXt(1− η)

[
∂2qD,t

∂X2

c

r
−
∂2qXD,t

∂X2

1

rA

]
(A104)

Proof of Proposition 7. We use the smooth pasting condition

∂S

∂X

∣∣∣∣
X=XD

= 0 (A105)

to derive the optimal default boundary, XD, for a given coupon c. From (), it follows that

∂S

∂X
= (1− η)

1

rA
+
∂qD

∂X
(1− η)

c

r
−
∂qXD
∂X

(1− η)
1

rA
. (A106)

∂qD

∂X

∣∣∣∣
X=XD

= −
1

XD

[
ε− θ1
ε

θ2

θ2 − θ1
θ1 +

θ2 − ε
ε

θ1

θ2 − θ1
θ2

]
(A107)

= −
1

XD

θ1θ2

ε(θ2 − θ1)
(θ2 − θ1) (A108)

= −
1

XD

θ1θ2

ε
(A109)
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∂qXD
∂X

∣∣∣∣∣
X=XD

=

[
ε− θ1
θ2 − θ1

1 + θ2

1 + ε
+

θ2 − ε
θ2 − θ1

1 + θ1

1 + ε

]
(A110)

−
[
ε− θ1
θ2 − θ1

(1 + θ2)(1 + θ1)

1 + ε
+

θ2 − ε
θ2 − θ1

(1 + θ1)(1 + θ2)

1 + ε

]
(A111)

=
(ε− θ1)(1 + θ2) + (θ2 − ε)(1 + θ1)

(θ2 − θ1)(1 + ε)
−

(1 + θ2)(1 + θ1)

1 + ε
(A112)

=
1

1 + ε

[
(ε− θ1)(1 + θ2) + (θ2 − ε)(1 + θ1)

(θ2 − θ1)
− (1 + θ2)(1 + θ1)

]
(A113)

=
1

1 + ε

[
ε(1 + θ2)− θ1(1 + θ2) + θ2(1 + θ1)− ε(1 + θ1)

(θ2 − θ1)
− (1 + θ2)(1 + θ1)

]
(A114)

=
1

1 + ε

[
ε(θ2 − θ1) + θ2 − θ1

(θ2 − θ1)
− (1 + θ2)(1 + θ1)

]
(A115)

= 1−
(1 + θ2)(1 + θ1)

1 + ε
(A116)

Hence,

∂S

∂X

∣∣∣∣
X=XD

= (1− η)
1

rA
+ (1− η)

c

r

∂qD

∂X

∣∣∣∣
X=XD

− (1− η)
1

rA

∂qXD
∂X

∣∣∣∣∣
X=XD

(A117)

= (1− η)
1

rA
− (1− η)

c

r

1

XD

θ1θ2

ε
− (1− η)

1

rA

(
1−

(1 + θ2)(1 + θ1)

1 + ε

)
(A118)

= −(1− η)
c

r

1

XD

θ1θ2

ε
+ (1− η)

1

rA

(1 + θ2)(1 + θ1)

1 + ε
(A119)

It then follows from the smooth pasting condition that

−
c

r

1

XD

θ1θ2

ε
+

1

rA

(1 + θ2)(1 + θ1)

1 + ε
= 0 (A120)

XD =
c
r
θ1θ2
ε

1
rA

(1+θ2)(1+θ1)
1+ε

(A121)

XD = rA
c

r

θ1θ2

(1 + θ2)(1 + θ1)

1 + ε

ε
(A122)

XD = Kc, (A123)

where

K =
rA

r

θ1θ2

(1 + θ2)(1 + θ1)

1 + ε

ε
(A124)

Proof. The value of the levered firm is given by

F = S +B, (A125)
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i.e.

F = A(Xt)− (1− η)
c

r
+ qD,t(1− η)

c

r
− qXD,t(1− η)

1

rA
+
c

r
(1− qD,t) + α(1− η)

1

rA
qXD,t (A126)

= A(Xt)− (1− η)(1− qD,t)
c

r
− qXD,t(1− η)

1

rA
+
c

r
(1− qD,t) + α(1− η)

1

rA
qXD,t (A127)

= A(Xt) + η(1− qD,t)
c

r
− qXD,t(1− η)

1

rA
+ α(1− η)

1

rA
qXD,t (A128)

= A(Xt) + η
c

r
− qD,tη

c

r
− qXD,t(1− α)(1− η)

1

rA
(A129)

∂F

∂c
= η

1

r
−
∂qD,t

∂XD
Kη

c

r
− qD,tη

1

r
−
∂qXD,t

∂XD
K(1− α)(1− η)

1

rA
(A130)

∂qD,t

∂XD
=

1

XD

[
ε− θ1
ε

θ2θ1

θ2 − θ1

(
XD

Xt

)θ1
+
θ2 − ε
ε

θ1θ2

θ2 − θ1

(
XD

Xt

)θ2]
(A131)

=
1

XD

θ2θ1

ε(θ2 − θ1)

[
(ε− θ1)

(
XD

Xt

)θ1
+ (θ2 − ε)

(
XD

Xt

)θ2]
(A132)

=
1

Kc

θ2θ1

ε(θ2 − θ1)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (θ2 − ε)

(
Kc

Xt

)θ2]
(A133)

∂qXD,t

∂XD
=

[
ε− θ1
θ2 − θ1

(1 + θ2)(1 + θ1)

1 + ε

(
XD

Xt

)θ1
+

θ2 − ε
θ2 − θ1

(1 + θ1)(1 + θ2)

1 + ε

(
XD

Xt

)θ2]
(A134)

=
(1 + θ1)(1 + θ2)

(θ2 − θ1)(1 + ε)

[
(ε− θ1)

(
XD

Xt

)θ1
+ (ε− θ1)

(
XD

Xt

)θ2]
(A135)

=
(1 + θ1)(1 + θ2)

(θ2 − θ1)(1 + ε)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (ε− θ1)

(
Kc

Xt

)θ2]
(A136)

qD,t =
ε− θ1
ε

θ2

θ2 − θ1

(
XD

Xt

)θ1
+
θ2 − ε
ε

θ1

θ2 − θ1

(
XD

Xt

)θ2
(A137)

=
1

ε(θ2 − θ1)

[
(ε− θ1)θ2

(
XD

Xt

)θ1
+ (ε− θ2)θ1

(
XD

Xt

)θ2]
(A138)

=
1

ε(θ2 − θ1)

[
(ε− θ1)θ2

(
Kc

Xt

)θ1
+ (ε− θ2)θ1

(
Kc

Xt

)θ2]
(A139)

∂F

∂c
= η

1

r
−
∂qD,t

∂XD
Kη

c

r
− qD,tη

1

r
−
∂qXD,t

∂XD
K(1− α)(1− η)

1

rA
(A140)

= η
1

r
−

1

Kc

θ2θ1

ε(θ2 − θ1)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (θ2 − ε)

(
Kc

Xt

)θ2]
Kη

c

r
(A141)

−
1

ε(θ2 − θ1)

[
(ε− θ1)θ2

(
Kc

Xt

)θ1
+ (ε− θ2)θ1

(
Kc

Xt

)θ2]
η

1

r
(A142)

−
(1 + θ1)(1 + θ2)

(θ2 − θ1)(1 + ε)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (ε− θ1)

(
Kc

Xt

)θ2]
K(1− α)(1− η)

1

rA
(A143)
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0 = η
1

r
−

1

Kc

θ2θ1

ε(θ2 − θ1)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (θ2 − ε)

(
Kc

Xt

)θ2]
Kη

c

r
(A144)

−
1

ε(θ2 − θ1)

[
(ε− θ1)θ2

(
Kc

Xt

)θ1
+ (ε− θ2)θ1

(
Kc

Xt

)θ2]
η

1

r
(A145)

−
(1 + θ1)(1 + θ2)

(θ2 − θ1)(1 + ε)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (ε− θ1)

(
Kc

Xt

)θ2]
K(1− α)(1− η)

1

rA
(A146)

0 = η
1

r
−

θ2θ1

ε(θ2 − θ1)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (θ2 − ε)

(
Kc

Xt

)θ2]
η

1

r
(A147)

−
1

ε(θ2 − θ1)

[
(ε− θ1)θ2

(
Kc

Xt

)θ1
+ (ε− θ2)θ1

(
Kc

Xt

)θ2]
η

1

r
(A148)

−
(1 + θ1)(1 + θ2)

(θ2 − θ1)(1 + ε)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (ε− θ1)

(
Kc

Xt

)θ2]
K(1− α)(1− η)

1

rA
(A149)

0 = 1−
θ2θ1

ε(θ2 − θ1)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (θ2 − ε)

(
Kc

Xt

)θ2]
(A150)

−
1

ε(θ2 − θ1)

[
(ε− θ1)θ2

(
Kc

Xt

)θ1
+ (ε− θ2)θ1

(
Kc

Xt

)θ2]
(A151)

−
(1 + θ1)(1 + θ2)

(θ2 − θ1)(1 + ε)

[
(ε− θ1)

(
Kc

Xt

)θ1
+ (ε− θ1)

(
Kc

Xt

)θ2]
K(1− α)

1− η
η

r

rA
(A152)

0 = 1−
ε− θ1
θ2 − θ1

[
θ1θ2

ε
+
θ2

ε
+K(1− α)

1− η
η

r

rA

(1 + θ1)(1 + θ2)

1 + ε

](
Kc

X0

)θ1
(A153)

−
θ2 − ε
θ2 − θ1

[
θ1θ2

ε
+
θ1

ε
+K(1− α)

1− η
η

r

rA

(1 + θ1)(1 + θ2)

1 + ε

](
Kc

X0

)θ2
(A154)

Therefore, the optimal coupon satisfies the following nonlinear algebraic equation

1− a1
(
Kc

X0

)θ1
− a2

(
Kc

X0

)θ2
= 0, (A155)

where

a1 =
ε− θ1
θ2 − θ1

[
θ1θ2

ε
+
θ2

ε
+K(1− α)

1− η
η

r

rA

(1 + θ1)(1 + θ2)

1 + ε

]
(A156)

a2 =
θ2 − ε
θ2 − θ1

[
θ1θ2

ε
+
θ1

ε
+K(1− α)

1− η
η

r

rA

(1 + θ1)(1 + θ2)

1 + ε

]
. (A157)

To solve the above equation, define x = a1
(
Kc
X0

)θ1
. Then

1− x = a2a
− θ2
θ1

1 x
θ2
θ1 , (A158)

qD,t =
ε− θ1
ε

θ2

θ2 − θ1

(
XD

Xt

)θ1
+
θ2 − ε
ε

θ1

θ2 − θ1

(
XD

Xt

)θ2
, (A159)
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and

qXD,t = Xt

[
ε− θ1
θ2 − θ1

1 + θ2

1 + ε

(
XD

Xt

)1+θ1

+
θ2 − ε
θ2 − θ1

1 + θ1

1 + ε

(
XD

Xt

)1+θ2
]
, (A160)

Proof. The Arrow-Debreu default claim, which pays off a unit of consumption at default has price, qD(Xt), given by

qD(Xt) = EQ
t [e−r(τD−t)IτD≤τU ], (A161)

and the Arrow-Debreu refinancing claim, which pays off a unit of consumption at refinancing has price, qU (Xt), given by

qU (Xt) = EQ
t [e−r(τU−t)IτU≤τD ]. (A162)

From Proposition B1, we know that

qD(Xt) = Z(r)(xt − xD)−W (r)(xt − xD)
Z(r)(xU − xD)

W (r)(xU − xD)
, (A163)

and

qU (Xt) =
W (r)(xt − xD)

W (r)(xU − xD)
, (A164)

where xt = lnXt, xU = lnXU , xD = lnXD, and gx(θ) is the cumulant of x, which is given by

gx(θ) = µxθ +
1

2
σ2
xθ

2 + λω

(
ε

ε+ θ
− 1

)
, (A165)

where

µx = µ̂X −
1

2
σ2
X , (A166)

σx = σX . (A167)

From Definition, it follows that

∫ ∞
0

e−θyW (r)(y)dy =
ε+ θ(

µxθ + 1
2
σ2
xθ

2 − (λω + r)
)

(ε+ θ)− λωε
, θ ≥ Φ(r), (A168)

where Φ(r) is the largest root of gx(θ)− r = 0. To find W (r)(y) in closed-form we must find the inverse Laplace transform of

J(θ) =
ε+ θ(

µxθ + 1
2
σ2
xθ

2 − (λω + r)
)

(ε+ θ)− λωε
. (A169)

We rewrite the denominator of the above expression as

(
µxθ +

1

2
σ2
xθ

2 − (λω + r)

)
(ε+ θ)− λωε =

1

2
σ2
x

{[
2µx

σ2
x

θ + θ2 − (λω + r)
2

σ2
x

]
(ε+ θ)−

2

σ2
x

λωε

}
. (A170)

Since,
[
2µx
σ2
x
θ + θ2 − (λω + r) 2

σ2
x

]
(ε+ θ)− 2

σ2
x
λωε, is a cubic expression in θ, we can rewrite it as (θ − α1)(θ − α2)(θ − α3), where

α1, α2, and α3 are its roots. Thus,

J(θ) =
2

σ2
x

ε+ θ

(θ − α1)(θ − α2)(θ − α3)
. (A171)
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To find the inverse Laplace transform of J(θ), we rewrite it using partial fractions to obtain

J(θ) =
2

σ2
x

[
ε+ α1

(θ − α1)(α1 − α2)(α1 − α3)
−

ε+ α2

(θ − α2)(α1 − α2)(α2 − α3)
+

ε+ α3

(θ − α3)(α1 − α3)(α2 − α3)

]
. (A172)

By taking the inverse Laplace transform of the above expression, it follows that

W (r)(x) =
2

σ2
x

[
ε+ α1

(α1 − α2)(α1 − α3)
eα1x −

ε+ α2

(α1 − α2)(α2 − α3)
eα2x +

ε+ α3

(α1 − α3)(α2 − α3)
eα3x

]
. (A173)

Hence,

Z(r)(x) = 1 +
2r

σ2
x

[
ε+ α1

(α1 − α2)(α1 − α3)

eα1x − 1

α1
−

ε+ α2

(α1 − α2)(α2 − α3)

eα2x − 1

α2
+

ε+ α3

(α1 − α3)(α2 − α3)

eα3x − 1

α3

]
. (A174)

Hence,

qD(Xt) = Z
(r)
X (Xt/XD)−W (r)

X (Xt/XD)
Z

(r)
X (XU/XD)

W
(r)
X (XU/XD)

, (A175)

and

qU (Xt) =
W (r)(Xt/XD)

W (r)(XU/XD)
, (A176)

where

W
(r)
X (X) =

2

σ2
X

[
ε+ α1

(α1 − α2)(α1 − α3)
Xα1 −

ε+ α2

(α1 − α2)(α2 − α3)
Xα2 +

ε+ α3

(α1 − α3)(α2 − α3)
Xα3

]
, (A177)

and

Z
(r)
X (X) = 1 +

2r

σ2
X

[
ε+ α1

(α1 − α2)(α1 − α3)

Xα1 − 1

α1
−

ε+ α2

(α1 − α2)(α2 − α3)

Xα2 − 1

α2
+

ε+ α3

(α1 − α3)(α2 − α3)

Xα3 − 1

α3

]
. (A178)

The second Arrow-Debreu default claim, denoted by qXD (Xt), is the time-t value of a the random cash flow X, paid at default, i.e.

qXD (Xt) = Et[e
−r(τD−t)XτD IτD≤τU ]. (A179)

Earnings can jump below the default boundary, and so it is possible that XτD < XD. To find a closed-form expression for

qXD,t = qXD (Xt), we start by noting that

qXD,t = Et[e
−r(τD−t)+xτD I{τD≤τU}] (A180)

= Et[e
−r(τD−t)+xτD I{τD≤τU & xτD=xD}] + Et[e

−r(τD−t)+xτD I{τD≤τU & xτD<xD}
] (A181)

= exDEt[e
−r(τD−t)+(xτD−xD)I{τD≤τU & xτD=xD}] + exDEt[e

−r(τD−t)+xτD−xD I{τD≤τU & xτD<xD}
] (A182)

= exDEt[e
−r(τD−t)I{τD≤τU}] + exDEt[e

−r(τD−t)+xτD−xD I{τD≤τU & xτD<xD}
] (A183)

= exD qD,t + exDEt[e
−r(τD−t)+xτD−xD I{τD≤τU & xτD<xD}

]. (A184)

Therefore, it remains to find closed-form expression for Et[e
−r(τD−t)+xτD−xD I{τD≤τU & xτD<xD}

]. To do this, we exploit the

conditional memoryless property (a consequence of assuming that jumps are exponentially distributed), which implies that

Et[e
−r(τD−t)+xτD−xD I{τD≤τU & xτD<xD}

] =
ε

ε+ 1
Et[e

−r(τD−t)I{τD≤τU & xτD<xD}
]. (A185)
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Now we define

d(x) = Et[e
−r(τD−t)I{τD≤τU & xτD<xD−y}

|xt = x] (A186)

We know that

d(x) =

{
0, xU ≤ x
0, xD − x ≤ x ≤ xD
1, x < xD − y

, (A187)

and that for xD < x < xU , we have

1

2
σ2
xd
′′ + µxd

′ − rd+ λ̂

∫ ∞
−∞

(d(x+ w)− d(x)) fz(w)dw = 0, (A188)

together with the boundary conditions d(xU ) = 0 and d(xD) = 0. We seek a trial solution of the form

d(x) =

3∑
k=1

Ake
(x−xD)βk , (A189)

with constants Ak, k ∈ {1, 2, 3}, such that the differential–integral equation in (A188) is satisfied together with its boundary

conditions. Note that

∫ ∞
−∞

d(x+ w)fZ(w) =

∫ 0

−∞
d(x+ w)εeεwdw (A190)

= ε

∫ xD−x−y

−∞
eεwdw + ε

3∑
k=1

∫ 0

xD−x
Ake

(x+w−xD)βkeεwdw (A191)

= eε(xD−x−y) + ε

3∑
k=1

Ake
(x−xD)βk

∫ 0

xD−x
e(βk+ε)wdw (A192)

= eε(xD−x−y) + ε

3∑
k=1

Ak

βk + ε
e(x−xD)βk

(
1− e(βk+ε)(xD−x)

)
(A193)

= eε(xD−x−y) + ε

3∑
k=1

Ak

βk + ε

(
eβk(x−xD) − eε(xD−x)

)
. (A194)

Thus, substituting (A189) into (A188) gives

1

2
σ2
x

3∑
k=1

β2
kAke

(x−xD)βk+µx

3∑
k=1

βkAke
(x−xD)βk−(r+λ̂)

3∑
k=1

Ake
(x−xD)βk+λ̂ε

3∑
k=1

Ak

βk + ε
eβk(x−xD)+λ̂eε(xD−x)

(
e−εy − ε

3∑
k=1

Ak

βk + ε

)
.

(A195)

Thus, βk, k ∈ {1, 2, 3} are the roots of

1

2
σ2
xβ

2 + µxβ − (r + λ̂) + λ̂
ε

β + ε
= 0, (A196)

and Ak, k ∈ {1, 2, 3} are determined by

e−εy = ε

3∑
k=1

Ak

βk + ε
, (A197)

and two boundary conditions, i.e.

A1 +A2 +A3 = 0 (A198)

3∑
k=1

Ake
(xU−xD)βk = 0. (A199)
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Hence,

A1 =
e−εy

ε

(β1 + ε)(β2 + ε)(β3 + ε)
(
eβ2(xU−xD) − eβ3(xU−xD)

)
(β2 − β3)(β1 + ε)eβ1(xU−xD) + (β1 − β2)(β3 + ε)eβ3(xU−xD) − (β1 − β3)(β2 + ε)eβ2(xU−xD)

, (A200)

A2 = −
e−εy

ε

(β1 + ε)(β2 + ε)(β3 + ε)(eβ1(xU−xD) − eβ3(xU−xD))

(β2 − β3)(β1 + ε)eβ1(xU−xD) + (β1 − β2)(β3 + ε)eβ3(xU−xD) − (β1 − β3)(β2 + ε)eβ2(xU−xD)
, (A201)

A3 =
e−εy

ε

(β1 + ε)(β2 + ε)(β3 + ε)
(
eβ1(xU−xD) − eβ2(xU−xD)

)
(β2 − β3)(β1 + ε)eβ1(xU−xD) + (β1 − β2)(β3 + ε)eβ3(xU−xD) − (β1 − β3)(β2 + ε)eβ2(xU−xD)

(A202)

Proof of Proposition 8.

At restructuring existing debt is diluted on a per coupon basis, so that (43) holds. Note that

R =
c0

c1
B(X0

U , c
1) =

1

ξ
B(ξX0

0 , ξc
0) =

1

ξ
ξB(X0

0 , c
0) = B(X0

0 , c
0).

Hence

B(Xt, c
0) =

c0

r
+ (1− η)

αqXD (Xt)

rA
− qD(Xt)

c0

r
+ qU (Xt)

(
B(X0

0 , c
0)−

c0

r

)
. (A203)

Setting Xt = X0
0 in the right-hand side of the above expression and solving for B(X0

0 , c
0) gives

B(X0
0 , c

0) =

c0

r
+ (1− η)

αqXD (X0
0 )

rA
− qD(X0

0 ) c
0

r
− qU (X0

0 ) c
0

r

1− qU (X0
0 )

. (A204)

From (A203) it follows that

B(Xt, c
0) =

c0

r
(1− lDqD,t − lU qU,t), (A205)

where

lU =
c0

r
−B(X0

0 , c
0)

c0

r

. (A206)

The homogeneity property implies that

S(X0
U , c

1(c0)) = S(ξX0
0 , ξc

0) = ξS(X0
0 , c

0). (A207)

Hence

E(X0
U ) = [(1− ι)B(X0

U , c
1)−R0,1] + S(X0

U , c
1) (A208)

can be rewritten as

E(X0
U ) = B(X0

0 , c
0)[(1− ι)ξ − 1)] + ξS(X0

0 , c
0), (A209)

which implies that

S(Xt, c
0) = Divt(Xt, c

0) + qU (Xt){B(X0
0 )[(1− ι)ξ − 1)] + ξS(X0

0 , c
0)}. (A210)

Setting Xt = X0
0 in the above equation and solving for S(X0

0 , c
0) gives

S(X0
0 , c

0) =
Divt(Xt, c0) + qU (Xt){B(X0

0 )[(1− ι)ξ − 1)]}
1− ξqU (Xt)

. (A211)
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B Supplemental Appendix

In this Supplemental Appendix, we summarize results on the first passage times of spectrally negative Levy processes, i.e. Levy

processes with no positive jumps. We use these results to derive the price of Arrow-Debreu default and refinancing claims under

dynamic capital structure.

We assume that Y = {Yt, t ≥ 0} is a real-valued Levy process defined on a filtered probability space,
(
Ω,F ,F = {Ft}t≥0,P

)
.

We assume further that Y may be represented as

Yt = µt+ σBt + J−t , (B1)

where B = {Bt, t ≥ 0} is a standard Brownian motion and J− = {J−t , t ≥ 0} is a non-Gaussian spectrally negative Levy process.

Both processes are independent. Since the jumps of J− are all non positive, the moment generating function E[eθYt ] exists for all

θ ≥ 0. It is a standard result, stemming from the independence and stationarity of their increments that for any Levy process, if

the the moment generating function at time t exists, then it satisfies

E[eθYt ] = etgY (θ), (B2)

for some function gY (θ), which is defined for θ ∈ C, such that <(θ) ≥ 0. The function g(θ) is known variously as the Levy exponent,

Laplace exponent or cumulant of Y .

We use the following definitions, taken from Pistorius (2003), the first two of which are modified versions of definitions in

Chapter VII of Bertoin (1996).

Definition 1 Let q ≥ 0 and the define Φ(q) as the largest root of

gY (θ) = q. (B3)

Definition 2 For q ≥, we define the first scale function, W (q) : (−∞,∞) → [0,∞], as the unique function whose restriction to

(0,∞) is continuous and has Laplace transform∫ ∞
0

e−θyW (q)(y)dy =
1

gY (θ)− q
, θ ≥ Φ(q), (B4)

and is equal to zero for y ≤ 0.

Definition 3 For q ≥ 0, we define the second scale function, Z(q) : R→ [1,∞] by

Z(q)(x) = 1 + q

∫ y

0
W (q)(z)dz. (B5)

Definition 4 We define the first passage time from above to the barrier a by

τ−a = inf {t ≥ 0 : Yt ≤ a} , (B6)

and the first passage time from below to the barrier b by

τ+b = inf {t ≥ 0 : Yt ≥ b} . (B7)

The following proposition gives the Laplace transforms of the two-sided exit time min(τ−a , τ
+
b ) when Y starts at y ∈ (a, b).

Proposition B1 For q ≥ 0, we have

E[e−qτ
+
b I{τ+

b
<τ−a }

] =
W (q)(y − a)

W (q)(b− a)
, (B8)

E[e−qτ
+
b I{τ+

b
≥τ−a }

] = Z(q)(y − a)−W (q)(x− a)
Z(q)(b− a)

W (q)(b− a)
. (B9)

The proof of (B8) is in Bertoin (1996) and (B9) follows by combining (B8) with Corollary 1 of Bertoin (1996).
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Table I : Parameter estimates

This table reports model parameters. To calibrate the model to the ag-
gregate US economy, quarterly real non-durable plus service consumption
expenditure from the Bureau of Economic Analysis and quarterly earn-
ings data from Standard and Poor’s, provided by Robert J. Shiller, are
used. The personal consumption expenditure chain-type price index is
used to deflate nominal earnings. The estimates of consumption growth
rate and volatility, earnings growth rate and volatility, and correlation be-
tween earnings and consumption growth are based on quarterly log growth
rates for the period from 1947 to 2005. All variables are given per annum
and in per cent (0.01 means 1% p.a.)

Parameter Symbol
Consumption growth rate g 0.03
Consumption growth volatility σC 0.01
Earnings growth rate µX 0.03
Earnings growth volatility σsX 0.15
Idiosyncratic earnings growth volatility σidX 0.2258
Correlation ρXC 0.1998
Probability per unit time of a rare disaster λ 0.015
Mean consumption jump size JC 0.1
Mean earnings jump size J 0.25
Annual discount rate β 0.015
Tax rate η 0.15
Bankruptcy costs 1− α 0.20
Debt issuance cost ι 0.02
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Table II : Empirical default rates and credit spreads

Panel A reports average cumulative issuer-weighted annualized default rates for BBB
debt over 5, 10, and 15 year horizons for US firms as reported by Cantor et al. (2008).
The first row shows mean historical default rates for the period 1920–2007 and the
second row for 1970–2007. Panel B reports the difference between average spreads
for BBB and AAA corporate debt, sorted by maturity. Data from Duffee (1998)
are for bonds with no option-like features, taken from the Fixed Income Dataset,
University of Houston, for the period Jan 1973 to March 1995, where maturities
from 2 to 7 years are short, 7 to 15 are medium, and 15 to 30 are long. For Huang
and Huang (2003), short denotes a maturity of 4 years and medium of 10 years. The
data used in David (2008) are taken from Moody’s and medium denotes a maturity
of 10 years. For Davydenko and Strebulaev (2007), the data are taken from the
National Association of Insurance Companies; short denotes a maturity from 1 to 7
years, medium – 7 to 15 years, and long – 15 to 30 years.

Panel A: Historical BBB Default Probabilities
Rating Units Year 5 Year 10 Year 15
1920 – 2007 % 3.142 7.061 10.444
1970 – 2007 % 1.835 4.353 7.601

Panel B: BBB/AAA Spreads
Rating Units Short Medium Long
Duffee (1998) b.p. 75 70 105
Huang and Huang (2003) b.p. 103 131 –
David (2008) b.p – 96 –
Davydenko and Strebulaev (2007) b.p 77 72 82
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Figure 1: Cumulative disaster probabilities

The dashed (solid) line shows the cumulative disaster probability under

P, (Q) as a function of time, i.e. 1− e−λt, (1− e−λ̂t), where λ = 0.015

and λ̂ = .135.
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Table III : Credit risk under static capital structure

This table reports the credit risk implications of the static capital structure
model for an individual firm at date 0, i.e. when X/X0 = 1. For the No
Disaster Model, Benchmark I (Naive), and the Disaster Model, β = .015,
γ = 8, and ψ = 1/3.5, but the risk-free rate and price of consumption risk
are differ across models. For No Disaster Model, Benchmark II, β = .015,
γ = 15, and ψ = 1.66, yielding the same risk - free rate and price of
consumption risk as in the Disaster Model. Credit spreads are given in
basis points, interest coverage is a pure ratio, debt and equity are price
values, and all other variables in per cent.

No Disaster Model Disaster Model
Benchmark I (Naive) Benchmark II

Risk - free rate, r, % 11.82 3.19 3.19
Price of consumption risk, Θ, % 8.00 15.44 15.44
Credit spread, s, b.p. 60.43 22.01 53.85
Leverage, B/(B + S), % 54.09 47.74 31.45
Interest coverage ratio, X/c 1.41 0.11 3.27
Normalized default boundary, XD/X0 0.39 0.32 0.17
1 yr Actual default probability, pD,1, % 0.03 0.00 0.00
5 yr Actual default probability pD,5, % 10.78 5.13 0.28
10 yr Actual default probability pD,10, % 25.56 16.83 3.44
1 yr Risk - neutral default probability, p̂D,1, % 0.03 0.00 0.00
5 yr Risk - neutral default probability p̂D,5, % 11.10 5.48 0.29
10 yr Risk - neutral default probability p̂D,10, % 26.31 17.97 3.63
1 yr Risk - neutral default probability, p̂D,1, % 0.03 0.00 0.05
5 yr Risk - neutral default probability p̂D,5, % 11.10 5.48 11.29
10 yr Risk - neutral default probability p̂D,10, % 26.31 17.97 26.63
Arrow-Debreu default claim, qD 5.58 7.33 15.74
Debt 5.71 273.28 8.19
Equity 4.85 299.14 17.86
Equity risk premium, µR − r, % 0.00 0.00 0.00
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Table IV : Credit risk implications at refinancing

This table reports the credit risk implications of the dynamic capital struc-
ture model for an individual firm at refinancing, i.e. when X/X0 = 1, for
No Disaster and Disaster models with identical risk - free rates and prices
of consumption risk. Credit spreads are given in basis points and com-
puted for ‘shadow’ finite maturity debt. Interest coverage is a pure ratio,
debt and equity are price values, and all other variables in per cent.

No Disasters Disasters

Normalized earnings level, X/X0 1.00 1.00
Risk - free rate, r, % 0.03 0.03
Price of consumption risk, Θ, % 0.15 0.15
Credit spread (10 yr), s, b.p. 70.16 95.97
Credit spread (5 yr), s, b.p. 59.64 83.18
Leverage, B/(B + S), % 28.44 26.11
Interest coverage ratio, X/c 0.04 3.82
Normalized default boundary, XD/X0 0.15 0.17
1 yr Actual default probability, pD,1, % 0.00 0.01
5 yr Actual default probability pD,5, % 0.12 0.30
10 yr Actual default probability pD,10, % 2.22 3.81
1 yr Risk - neutral default probability, p̂D,1, % 0.00 0.00
5 yr Risk - neutral default probability p̂D,5, % 0.14 0.76
10 yr Risk - neutral default probability p̂D,10, % 2.48 9.07
Arrow-Debreu default claim, qD 14.84 36.76
Normalized restructuring boundary, XU/X0 2.55 2.63
Arrow-Debreu restructuring claim, qU 37.20 22.12
Debt 482.09 5.06
Equity 1212.88 14.32
Equity risk premium, µR − r, % 0.08 6.13
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Table V : Long - run aggregate credit risk implications

This table reports long - run cross – sectional averages of credit risk vari-
ables in the dynamic capital structure model with disasters, obtained by
simulating 100 economies with 1000 firms each for 100 years. Credit
spreads are given in basis points, interest coverage is a pure ratio, debt
and equity are price values, and all other variables in per cent.

Disasters

Risk - free rate, r, % 0.03
Price of consumption risk, Θ, % 0.15
Credit spread (10 yr), s, b.p. 101.67
Credit spread (5 yr), s, b.p. 90.11
Leverage, B/(B + S), % 31.11
Interest coverage ratio, X/c 3.72
1 yr Actual default probability, pD,1 (mean) , % 0.02
5 yr Actual default probability pD,5 (mean) , % 1.30
10 yr Actual default probability pD,10 (mean), % 6.81
Equity risk premium, µR − r, % 7.01
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