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Abstract

PRELIMINARY DRAFT: DO NOT CIRCULATE

This paper uses two different estimation procedures to calculate the incidence of
environmental taxes and compares the results. Both estimation procedures assume non-
separability of leisure and so the labor response is included in estimates of household
behavior. The first method is the Almost Ideal Demand System (AIDS) model of Deaton
and Muellbauer. The AIDS model assumes linear Engel curves and if this assumption
is violated then welfare estimates are biased. The Quadratic Almost Ideal Demand
System (QUAIDS) model of Banks, Blundell and Lewbel extends the AIDS model by
allowing for non-linear Engel curves. Households consume three goods - a composite
clean good, a composite energy good and leisure. Data on household consumption is
from the Consumer Expenditure Survey.

JEL classification:
Keywords: Equivalent variation, welfare cost, QUAIDS



1 Introduction

Growing concern about the environmental costs of household energy consumption has

led to increasing support for higher environmental taxes. Environmental taxes, such as

the gasoline tax, are regressive and if one is also concerned about equity then the optimal

environmental tax rate should be calculated within an optimal income tax framework.

A complete optimal tax model includes the cross-price elasticity for leisure, yet many

previous empirical articles assume either the separability of leisure or that labor is

constant. The Almost Ideal Demand System (AIDS) model of Deaton and Muellbauer

(1980) allows for non-separability of leisure so that the cross-price elasticities for leisure

are calculated. The AIDS model assumes Engel curves are linear which could bias

welfare estimates if the assumption is violated. Therefore Banks, Blundell and Lewbel

(1997) extend the AIDS model by assuming non-linear Engel curves. They name their

extension the Quadratic Almost Ideal Demand System (QUAIDS). The objective of this

paper is to estimate household demand using both the AIDS model and the QUAIDS

model, and compare the corresponding environmental tax incidence calculations.

Household consumption is separated into three goods - a composite clean good, a

composite energy good and leisure. The composite energy good consists of gasoline

consumption and household energy consumption - electricity, natural gas or home heat-

ing fuels and oils. The composite clean good consists of the difference between total

consumption and energy consumption. Leisure consumption is based on a time endow-

ment of 14 hours per day per working spouse. Household consumption data is from

the 1996–1999 Consumer Expenditure Survey while the price for the clean and energy

goods comes from the Bureau of Labor Statistics.

This is the procedure used by West and Williams (2007), who estimate a similar

model on a similar data set. Their model differs in the definition of the energy good,

West and Williams consider gasoline consumption only. West and Williams use the

1996–1998 CEX data set and the same AIDS estimation procedure to estimate the
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cross-price elasticity of leisure with respect to gasoline. In addition, their data set is of

a smaller size, 20,759 households.

The sample is separated into three subsamples based on marital status and the num-

ber of working adults – single households, married one worker households and married

two worker households. The QUAIDS specification is estimated for all three subsam-

ples and is found to be appropriate for the single household and married two worker

sample. In general the cross-price elasticities under the QUAIDS model are relatively

more inelastic. Moreover assuming linear Engel curves biases the welfare estimates. We

calculate the equivalent variation under both the AIDS specification and the QUAIDS

specification. Relative to QUAIDS, the AIDS specification underestimates the welfare

loss for low income households and overestimates for high income households. Lastly,

the importance of assuming a non-separable demand model is seen in the compensated

and uncompensated cross-price elasticities of both the clean good and energy good w.r.t.

labor supply, which are found to be significant.

2 The model

The economy is populated with households who have identical tastes but different in-

come levels. Households have either one or two working adults. In the case of households

with one working adult, these are single households or married households where only

one spouse works. The two working adults case is for married households where both

spouses work.1 We distinguish between the two working adults by referring to them as

the “primary” and the “secondary” workers. We also apply the “primary” label to the

worker in the single households and the married one worker households. Each working

adult has one unit of time which he divides between working in the market or “leisure”.2

1West and Williams separate their sample into two-subsamples, households with one working adult
and households with two working adults. However given that there is most likely a joint labor-leisure
decision in married households it seems prudent to further sub-divide the one worker household sample.

2Time not working outside the house does not constitute leisure. To arrive at leisure, we subtract
time customarily spent sleeping and doing household chores from time not working outside the house.
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Denote the labor supply by L, leisure consumption by l, and the net-of-tax wage by w.

Distinguish between variables pertaining to the primary and secondary workers through

subscripts p and s. To economize on notation, let L = Lp, l = lp,w = wp when there

is one worker in the household and L = (Lp, Ls) , l = (lp, ls) , w = (wp, ws) when there

are two workers in the household. In a similar fashion, denote households’ non-labor

income by m = mp and m = mp +ms depending on whether there is one or there are

two workers in the household. Observe that m includes the “virtual income” required

for linearizing the household’s budget constraint

Households consume two categories of goods: One is “energy” comprised of house-

hold expenditures on electricity, natural gas, home heating fuels and oils, and gasoline.

The other, called “non-energy” or “clean good”, comprises all other household expendi-

tures. All consumer goods are produced by a linear technology subject to constant re-

turns to scale in a competitive environment. Denote consumption goods by x = (x1, x2)

and their corresponding consumer prices by p = (p1, p2) . The household’s linearized

budget constraint is given by

px = wL + m,

which one can rewrite as3

px + wl = w1 + m ≡ I. (1)

Observe that I = wp + mp when there is one worker in the household and I = wp +

mp + ws +ms when there are two workers. We shall refer to I as “potential income”.

Households have preferences over (x, l) and E, the total level of emissions generated

by consuming energy goods. We assume that preferences are separable in (x, l) and E

so that the non-emission component of preferences can be represented by the indirect

utility function v = v (w,p, I).4 We further assume that this component subscribe to

the Quadratic Almost Ideal Demand System (QUAIDS) introduced by Banks et al.

3l = (1, 1) with two workers and l =1 with one worker.
4To avoid cluttered notation, references to households are suppressed. However, it is clear that

v,w, I, etc. differ across households, h.
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(1997). The advantage of this formulation is that it allows Engel curves to vary with

ln I linearly for some goods and nonlinearly for others—a property often displayed by

empirical Engel curves.5

Thus

ln v =

{[
ln I− ln a(w,p)

b(w,p)

]−1

+ λ(w,p)

}−1

, (2)

where, with a two-worker household,

ln a(w,p) ≡ α0 + αp lnwp + αs lnws +

2∑
i=1

αi ln pi (3)

+ lnwp

2∑
i=1

γip ln pi + lnws

2∑
i=1

γis ln pi

+

[
1

2
γpp (lnwp)

2 + 2γps (lnwp) (lnws) + γss (lnws)
2

+
2∑
i=1

2∑
j=1

γij ln pi ln pj

]
,

b(w,p) ≡ (wp)
βp (ws)

βs
n∏
i=1

pβii , (4)

λ(w,p) ≡ λp lnwp + λs lnws +

n∑
i=1

λi ln pi, (5)

with α0, αp, αs, αi, βp, βs, βi, λp, λs, λi, γip, γis, γpp, γps, γss, and γij (i, j = 1, 2) being con-

stants. In the case of one-worker households, equations (3)–(5) continue to apply as

well with the further stipulation that αs = βs = λs = γis = γps = γss = 0. Let n + 1

stand for subscript p and n + 2 for s. Imposing restrictions
∑n+2

i=1 γij =
∑n+2

j=1 γij = 0,∑n+2
i=1 βi =

∑n+2
i=1 λi = 0 on the parameters of (3)–(5) ensures the demand system’s

homogeneity of degree zero in income and prices of the demand system, and imposing∑n+2
i=1 αi = 1 its adding up property. The symmetry restriction, of the Slutsky matrix,

5If λi = 0, for all i = 1, 2, . . . , n+ 2, the indirect utility function (2) will be reduced to Deaton and
Muellbauer’s (1980) Almost Ideal Demand System. In this case, Engel curves will be linear in ln I.
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requires γij = γji, for all i 6= j = 1, 2, ..., n + 2, and is also imposed on the estimated

parameters.

It will be simpler, however, to estimate the goods’ expenditure shares rather than

their quantity demanded. We have, from Roy’s identity, for consumption good i and

leisure of primary and secondary workers k = p, s,

ωi ≡
pixi
I

=
pi
I

(
−∂v/∂pi
∂v/∂I

)
= −pi

I

∂ ln v/∂pi
∂ ln v/∂I

, (6)

ωk ≡
wklk
I

=
wk
I

(
1− ∂v/∂wk

∂v/∂I

)
=
wk
I

(
1− ∂ ln v/∂wk

∂ ln v/∂I

)
. (7)

where ωi denotes the expenditure share for good i = 1, 2 and ωk, k = p, s, denotes the

share of the primary and secondary workers’ leisure in a households budget. Partially

differentiate ln v with respect to pi, I, wk, and simplify through equations (3)–(5); then

substitute the resulting partial derivatives in equations (6)–(7) and simplify. One arrives

at, for i = 1, 2, and e 6= k = p, s,

ωi = αi + γip lnwp + γis lnws +

2∑
j=1

γij ln pj (8)

+βi ln
I

a(w,p)
+

λi
b(w,p)

[
ln

I

a(w,p)

]2

,

ωk = αk + γkk lnwk + γke lnwe +

2∑
j=1

γkj ln pj (9)

+βk ln
I

a(w,p)
+

λk
b(w,p)

[
ln

I

a(w,p)

]2

.

3 Data and the Engel curves

The data come from the Interview Survey component of the Consumer Expenditure

Survey (CEX) covering the period 1996–1999. This is a quarterly data set that tracks

the same households in any given year. However, since four quarters is not a long enough

time frame to create a panel, we treat each quarter as an independent sample and the
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sixteen quarters form a pooled cross-sectional data set.6 The unit of analysis in the

survey is the household. Given our interest in the labor-leisure choice, we restrict the

data to households with at least one employed worker. To work with a homogeneous

population in terms of labor-leisure decision, we also restrict the data to households

between the ages 18–65. Nor do we include, for the same reason, households whose

occupation codes appear as armed forces, self-employed, farming, forestry, or fishing.

This yields a sample size of 27,906 households.

Household composition falls into three categories: single, married two worker and

married one worker. Of the 27,906 households in our data, 12,611 are single households,

11,013 are married two worker households and 4,282 are married one worker households.

This last group, though not negligible in size, is far smaller than the other two groups.

Estimating the demand equations for this group also poses difficulties not encountered

when estimating the demand equations for the other two groups. The question is what is

the appropriate amount of leisure hours for the non-working spouse. There is of course

an extensive literature on labor participation decision which one can use to model the

behavior of these households. In the context of our study, it is crucial to know the leisure

consumption of both working and non-working adults. Yet it is difficult to identify these

based on the time endowments of both adults but the working hours of the sole adult

who works. One may be tempted to assume that the non-working adult’s leisure is equal

to that adult’s entire time endowment. However it is more likely that the non-working

spouse will take over some of the household chores that, had he/she been employed,

the primary earner would have done. It is most likely inappropriate to assign the non-

working spouse the full time endowment. We therefore assign no time endowment to

the non-working spouse. We assume there is no “secondary” worker and the QUAIDS

model for married one worker households follows the single household specification. 7

6http://www.bls.gov/opub/hom/pdf/homch16.pdf
7A second approach is to assign a time endowment to the non-working spouse and use the Heckman

selection model for the purpose of imputing a net wage rate. This procedure, used also by West
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The CEX reports both total household expenditures and detailed expenditures on

certain specific categories such as food, apparel, entertainment, housing and trans-

portation. It also reports detailed information on the actual items that comprise each

category. We used these to create two broad categories of energy and clean goods. The

first comprises all household expenditures on electricity, natural gas, home heating fuels

and oils, and gasoline. The other is found as the difference between total household

expenditures and energy good expenditures. We used week as our unit of time, but

the CEX reports are quarterly expenditures. We thus converted the CEX figures to a

weekly basis by assuming thirteen weeks in a quarter.8

The expenditure on leisure is the product of leisure consumption and the net wage.

To compute leisure hours, we assign a time endowment of 14 hours per day and 5 days

per week for a total of 70 hours to every working adult in a household.9 Subtracting

the working hours, which the CEX also reports, from the time endowment yields leisure

hours per week. 10

and Williams (2004, 2007), estimates both a selection and a wage equation based on demographic
characteristics. The male and female net wages are estimated separately. The selection equation includes
exclusion restrictions that consist of the demographic characteristics – number of children, clean and
energy good prices, state unemployment rates and spouse’s salary. In this scenario, the QUAIDS model
follows the married two wage earner specification. However, the results were “unsatisfactory” in that
the signs of the compensated own-price elasticities were incorrect. Given that the non-working spouse
will spend part of their time on non-market work, i.e. household chores, the non-working spouse was
assigned various time endowments ranging from 12 hours to 6 hours. Only the 8 hour time endowment
provided “satisfactory” results with the correct compensated own-price elasticity signs.

8A small number of households, 552, reported zero energy expenditures. This cannot be correct.
With only 2.54% of these households owning a home, the most likely explanation for this reporting
is that their rent included utilities. Not knowing their actual energy expenditures, we drop these
households from our data.

9An individual’s time can be separated into four different components: taxable work or labor, non-
taxable work, leisure and sleep. Non-taxable work consists of commuting to work, household chores and
other tasks such as grocery shopping etc. (Household chores are considered labor only if one is paid for
them, such as working as a maid.) It is likely that one does not have much flexibility with adjusting the
time one spends on sleeping, commuting to work, and household chores. The 14 hours a day allotment
assumes that one spends 10 hours a day on these activities. This being somewhat uncertain, we used
several different time endowments (12 hours to 18). There was no significant change in the results due
to time endowment variations.

10A total of 97 single households, 75 married one wage earner households and 198 married two wage
earner households were found to have zero or negative leisure hours because their weekly hours of work
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Turning to the calculation of the net wage, we first calculate a gross hourly wage

for each spouse based on the annual salary information, the hours worked per week,

and weeks worked per year; all reported by CEX. To translate this into a net wage,

one requires the household’s marginal income tax rate. We use the NBER TaxSim

program to calculate the household’s effective federal and state marginal income tax

rates.11 This effective marginal tax rate is used to calculate an hourly net wage for

each working spouse. For single households and married one worker households this

is straightforward since the household’s effective marginal tax rate is the worker’s tax

rate. For married two worker households, we assume they file a joint tax return and

therefore the household effective marginal tax rate is applied to each of the spouses. 12

Data on prices comes from the Bureau of Labor Statistics (BLS). The BLS has a

price index for “all items less energy,” which we use for the clean good price, and the

“energy” price index which we use for the energy good price.13 The indices are divided

by 100 so they can be used as a dollar price. Both price indices are national indices

reported on a monthly basis. We calculate their three month averages to correspond to

the household’s three-month reporting period in the CEX.

Table 1 reports sample statistics for the single household and married one worker

sample, while Table 2 reports sample statistics for the married two worker sample. For

single households and married one worker households, over half of potential income

is spent on consumption of clean goods, 58.56% for single households and 53.03% for

exceeded their time endowment. These households violate the time endowment constraint. Given their
tiny size, we also drop them from the sample. Dropping these 370 households, and the 552 households
with zero energy expenditures, results in our final sample size of 27,906.

11www.nber.og/taxsim
12Denote the marginal income tax rates household h faces by θhp for the primary worker and by θhs

for the secondary worker. Denoting their corresponding gross-of-tax wage rates by wghp and wghs , we
have wh

p ≡ wghp (1− θhp ) and wh
s = wghs (1− θhs ). In conformity with our notation, θh = θhp ,wgh = wghp

for single households and married one worker households, and θh = θhp = θhs , wgh =
(
wghp , wg

h
s

)
for

two-worker married households.
13Appendix 3, Chapter 17 of the BLS Handbook of Methods lists the components of various aggregate

price indices. The “energy” price index is comprised of gasoline, electricity, natural gas, and home
heating fuels and oils.
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married one worker households as reported in Table 1. Leisure consumption is also a

sizable expenditure, 36.81% for single households and 42.03% for married one worker

households. For married two worker households, expenditure on leisure consumption

represents half of potential income, 25.64% for the male spouse and 24.61% for the female

spouse (Table 2). 14 For all three household types, expenditure on the household energy

good never exceeds 5%. Married one worker households spend 4.94% of potential income

(Table 1), while married two worker households spend 3.50% of potential income (Table

2).

The effective marginal tax rate reported in the tables combines the federal, state

and FICA tax rates. For single households the average marginal tax rate is 34.93%

(Table 1). This consists of an average federal income tax rate of 16.25%l, an average

state income tax rate of 3.87% and FICA tax rate of 14.80%. The hourly after-tax wage

rate for single households is $8.12, for married one worker households it is $10.91, for

married two worker households it is $10.22 for the male earner and $7.88 for the female

earner.

3.1 Engel curves

As a first step to examining whether or not a linear specification for Engel curves

is appropriate, we estimate simple quadratic polynomial regressions. Each of the three

goods is first regressed on ln of potential income (linear specification), and then regressed

on ln of potential income and its square (quadratic specification). These results are

reported in Table 3. The top frame gives results for the single households, the middle

frame gives results for the married one worker households, and the bottom frame gives

results for the married two worker households. For single households the potential

14Our theoretical model for married two worker households distinguishes between a “primary” worker
and a “secondary” worker, where the primary worker is the higher earner. The empirical labor supply
literature has traditionally distinguished between male labor supply and female labor supply. Therefore
we calculate labor supply elasticities for the male spouse and the female spouse rather than identifying
the higher wage earner and labeling he/she the “primary” worker.
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Table 1: Summary Statistics
Single Households Married One Worker

Variable Mean Std. Dev. Mean Std. Dev

Clean Good Exp ($) 409.03 309.44 373.64 286.83
Energy Good Exp ($) 27.20 17.96 29.01 15.58
Leisure Exp ($) 235.24 154.98 285.20 195.02
Total Expenditures ($) 671.47 376.76 687.86 393.58
Clean Good Share (%) 58.56 15.77 53.03 15.26
Energy Good Share (%) 4.63 3.11 4.94 2.99
Leisure Share (%) 36.81 15.94 42.03 15.66
Clean Good Price ($) 1.69 0.04 1.69 0.04
Energy Good Price ($) 1.07 0.04 1.07 0.04
Hourly Gross Wage ($) 13.44 8.01 17.10 9.97
Marginal Tax Rate (%) 34.93 17.20 33.19 15.59
Hourly Net Wage ($) 8.12 4.45 10.91 6.12
Hours Worked (Wkly) 40.50 10.11 43.31 9.00
Hours Leisure (Wkly) 29.50 10.11 26.69 9.00
Ln(Clean Price) ($) 0.52 0.03 0.52 0.03
Ln(Energy Price) ($) 0.07 0.04 0.07 0.04
Ln(Net Wage) ($) 1.93 0.65 2.20 0.70
Age 37.52 11.58 42.41 11.56
No HS Diploma (%) 8.05 – 17.91 –
HS Diploma (%) 24.74 – 29.71 –
Some College (%) 35.52 – 24.45 –
Bachelor’s Degree (%) 22.45 – 17.05 –
Graduate Degree (%) 9.25 – 10.88 –
Male (%) 42.11 – 82.46 –
White (%) 79.41 – 87.48 –
Black (%) 16.18 – 6.33 –
Asian (%) 3.74 – 5.42 –
Other (%) 0.67 – 0.77 –
No Children (%) 76.27 – 35.22 –
One Child (%) 12.12 – 19.52 –
Two Children (%) 8.02 – 26.20 –
Three or More (%) 3.59 – 19.06 –
Own Home (%) 37.27 – 69.34 –
No Cars (%) 32.27 – 19.99 –
One Car (%) 56.11 – 47.41 –
Two Cars (%) 9.46 – 25.34 –
Three or More (%) 2.16 – 7.26 –
# of Observations 12,611 – 4,282 –

*Data is from the 1996 – 1999 CEX. The energy good is gasoline,
electricity, natural gas and home heating fuels and oils. The clean
good is remaining household expenditures.
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Table 2: Summary Statistics
Married Two Worker Households

Variable Male Std. Dev. Female Std. Dev

Clean Good Exp ($) 500.61 328.18 – –
Energy Good Exp ($) 32.88 15.69 – –
Leisure Exp ($) 263.99 161.62 256.32 181.60
Total Expenditures ($) 1,053.81 476.35 – –
Clean Good Share (%) 46.24 13.72 – –
Energy Good Share (%) 3.50 1.87 – –
Leisure Share (%) 25.64 11.55 24.61 11.54
Clean Good Price ($) 1.69 0.04 – –
Energy Good Price ($) 1.07 0.04 – –
Hourly Gross Wage ($) 17.53 9.15 13.60 7.96
Marginal Tax Rate (%) 40.17 9.33 – –
Hourly Net Wage ($) 10.22 5.17 7.88 4.34
Hours Worked (Wkly) 44.14 8.35 37.36 10.37
Hours Leisure (Wkly) 25.86 8.35 32.64 10.37
Ln(Clean Price) ($) 0.52 0.03 – –
Ln(Energy Price) ($) 0.07 0.04 – –
Ln(Net Wage) ($) 2.18 0.63 1.90 0.66
Age 40.01 9.86 38.17 9.50
No HS Diploma (%) 8.39 – 6.96 –
HS Diploma (%) 27.59 – 27.45 –
Some College (%) 29.17 – 32.75 –
Bachelor’s Degree (%) 22.95 – 22.78 –
Graduate Degree (%) 11.90 – 10.06 –
White (%) 86.82 – 86.87 –
Black (%) 8.18 – 7.60 –
Asian (%) 4.27 – 4.98 –
Other (%) 0.73 – 0.55 –
No Children (%) 40.45 – – –
One Child (%) 23.48 – – –
Two Children (%) 24.95 – – –
Three or More (%) 11.11 – – –
Own Home (%) 77.25 – – –
No Cars (%) 15.28 – – –
One Car (%) 45.11 – – –
Two Cars (%) 30.50 – – –
Three or More (%) 9.11 – – –
# of Observations 11,013 – – –

*Data is from the 1996 – 1999 CEX. The energy good is gasoline,
electricity, natural gas and home heating fuels and oils. The clean
good is remaining household expenditures.
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Table 3: Quadratic Polynomial Regression Results
Single Households

Clean Good Energy Good Leisure
Linear Quadratic Linear Quadratic Linear Quadratic

lnM 0.0760‡ –0.4910‡ –0.0221‡ –0.0327‡ –0.0539‡ 0.5237‡
(0.0027) (0.0453) (0.0005) (0.0086) (0.0028) (0.0465)

lnM2 – 0.0443‡ – 0.0008 – –0.0451‡
– (0.0035) – (0.0007) – (0.0036)

Married One Worker Households
Clean Good Energy Good Leisure

Linear Quadratic Linear Quadratic Linear Quadratic
lnM 0.0284‡ –0.7726‡ –0.0259‡ –0.0503‡ –0.0025 0.8230‡

(0.0044) (0.0754) (0.0008) (0.0133) (0.0045) (0.0777)
lnM2 – 0.0626‡ – 0.0019 – –0.0645‡

– (0.0059) – (0.0010) – (0.0061)

Married Two Worker Households
Clean Good Energy Good Leisure (M) Leisure (F)

Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic
lnM 0.0525‡ –0.8664‡ –0.0209‡ –0.0681‡ –0.0208‡ 0.6724‡ –0.0108‡ 0.2621‡

(0.0029) (0.0614) (0.0003) (0.0074) (0.0025) (0.0523) (0.0025) (0.0528)
lnM2 – 0.0672‡ – 0.0034‡ – –0.0507‡ – –0.0200‡

– (0.0045) – (0.0005) – (0.0038) – (0.0038)

*Regression results test the Working-Leser Engel curve specification versus a quadratic log income
specification. † significance at 5% level. ‡ significance at 1% level.

income term is significant for all three goods in the linear specification. However the

squared term is insignificant for the energy good under the quadratic specification. For

married one worker households the potential income term is significant for the clean and

energy goods in the linear specification, but not for the leisure good. Again the squared

term is insignificant for the energy good under the quadratic specification. For married

two worker households both potential income and its squared term are significatn for all

four goods under both specifications. These estimates provide prima facie evidence for

using the QUAIDS specification rather than the original AIDS specification of Deaton

and Muellbauer.
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4 Estimation

Expenditure shares ωi, i = 1, 2, and ωk, k = p, s, given by (8)–(9) constitute our esti-

mating equations. A particular difficulty with estimating these equations is their being

nonlinear in parameters. However, they are conditionally linear if the value of the price

indices a(w,p) and b(w,p) are known the equations become linear in parameters. We

thus follow the Iterated Linear Least Squares Estimator (ILLE) procedure of Blundell

and Robin (1999).15 A three-stage least squares procedure is then used to estimate the

model. The process is repeated until the parameter estimates converge.

The three-stage least squares procedure is needed because the net wage rate is en-

dogenous. The marginal tax rate, which is used to calculate the net wage rate, is based

on household income. The net wage rate is instrumented using a sample average net

wage rate based on occupation–, state– and gender- specific sample cells. In addition er-

ror terms are potentially correlated across equations since the right-hand side variables

are identical.

The three-stage least squares procedure combines a two-stage least squares model

with a seemingly unrelated regression model. This latter model controls for the endoge-

nous error term by taking into account the correlated error structure and also allows

the imposition of the cross-equation restrictions. The two-stage least squares compo-

nent allows for the use of instruments in controlling for endogeneity. The demographic

variables included are age, age squared, education dummy variables, ethnicity dummy

variables, dummy variables for the number of children, a dummy variable for home

ownership, dummy variables for the number of cars owned and state and month fixed

effects. A dummy variable for gender is included in the single household estimation,

while demographic characteristics for both the male and female spouses are included in

the married household estimation.

15The price indices are calculated using an initial parameter guess. The initial guess is provided by
the AIDS specification while approximating ln a(w,p) with Stone’s Index.
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The energy good is a combination of home energy consumption and gasoline con-

sumption. Dummy variables for home ownership and the number of cars are included to

control for energy consumption differences based on owning versus renting and whether

one drives. State fixed effects are included to control for differences in energy consump-

tion across states.16 Weather also differs by region. Month fixed effects are included to

control for seasonal variation in energy consumption.17 Cross-sectional wage variation,

within each state, is used to estimate the cross-price elasticity of labor supply; and

variation in prices over time is used to estimate the cross-price elasticity of the energy

good.

We drop the clean goods equation from the set of equations that are directly esti-

mated, computing its parameter estimates for α, β, and λ from the adding up restric-

tions. (It nevertheless leaves undetermined the γ1j j = 1, 2, and γ1k k = p, s, estimates,

referring to clean good as the first good). This procedure ensures that adding up restric-

tion is satisfied. However, the homogeneity conditions
∑n+2

i=1 γij =
∑n+2

j=1 γij = 0 and

symmetry restriction γij = γji will have to be imposed. The three-stage least squares

procedure that we use allows us to incorporate these restrictions. Standard errors are

calculated using a bootstrap procedure consisting of 1,500 replications.

Table 4 reports the estimated parameters for single households, Table 5 for married

one worker households and Table 6 for married two worker households. Initially we ran

all the estimations with no restriction on the ln income squared coefficient, λ, in any

of the equations. In the case of single households, the data supported a statistically

non-zero value for λ for the clean good and leisure only. Table 4 reports the results

when the estimation is re-run according to this specification. For married one worker

households, the data does not suport a non-zero λ value for any of the three goods.

16Public transportation is used regularly in New York City and Washington D.C., while driving is
essential in the West. Cities such as Denver and Seattle have strong bicycling cultures.

17Heating and air-conditioning increase energy consumption in the winter and summer months, while
families may drive more during the summer for family vacations.
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Table 4: Parameter Estimates Single Households
Clean Good Energy Good Leisure

Estimate Std. Error Estimate Std. Error Estimate Std. Error
Constant 0.5435‡ (0.0952) 0.0834‡ (0.0075) 0.3731‡ (0.1007)
Ln(Clean Price) –0.0131 (0.0322) –0.0205‡ (0.0046) 0.0336 (0.0321)
Ln(Energy Price) –0.0205‡ (0.0046) 0.0203‡ (0.0043) 0.0001 (0.0028)
Ln(Net Wage) 0.0336 (0.0321) 0.0001 (0.0028) –0.0337 (0.0321)
Ln(Real Income) –0.2481‡ (0.0835) –0.0280‡ (0.0021) 0.2761‡ (0.0834)
Ln(Real Income2) 0.1011‡ (0.0279) – – –0.1011‡ (0.0279)
*System of 3 demand equations, the clean good equation is dropped. Parameters for the
clean good are calculated based on cross-equation restrictions. λ = 0 for the energy good only.
Standard errors are calculated using a bootstrap procedure (1,500 replications).
‡ significance at 5% level.

Table 5: Parameter Estimates Married One Worker Households
Clean Good Energy Good Leisure

Estimate Std. Error Estimate Std. Error Estimate Std. Error
Constant 0.5412‡ (0.0366) 0.0894‡ (0.0100) 0.3694‡ (0.0395)
Ln(Clean Price) 0.0957‡ (0.0277) –0.0257‡ (0.0072) –0.0700‡ (0.0281)
Ln(Energy Price) –0.0257‡ (0.0072) 0.0262‡ (0.0075) –0.0005 (0.0055)
Ln(Net Wage) –0.0700‡ (0.0281) –0.0005 (0.0055) 0.0705‡ (0.0292)
Ln(Real Income) 0.0732‡ (0.0271) –0.0327‡ (0.0052) –0.0405 (0.0282)
*System of 3 demand equations, the clean good equation is dropped. Parameters for the
clean good are calculated based on cross-equation restrictions. λ = 0 for all three goods.
Standard errors are calculated using a bootstrap procedure (1,500 replications).
‡ significance at 5% level.

Therefore the estimation procedure is re-run for the married one worker sample where

we restrict λ to be zero for all three goods, the AIDS specification. Table 5 reports

these results. The data supports non-zero λ values for all four goods for the married

two earner sample, Table 6.18

5 Elasticities

Denote the income elasticity of demand for good i = 1, 2 and for leisure k = p, s by ηi

and ηk; the own- and cross-price elasticities of demand for good i = 1, 2 with respect to

good j = 1, 2 by εij ; the cross-price elasticity of demand for good i = 1, 2 with respect

to leisure k = p, s by εik; its cross-price elasticity of demand for leisure k = p, s with

18The AIDS specification, where λ = 0 for all goods, is estimated for all three subsamples. Results
are not reported here but are available from the authors upon request, as are the results for the initial
single household specification, where λ is non-zero for all goods.
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Table 6: Parameter Estimates Married Two Worker Households
Clean Good Energy Good

Estimate Std. Error Estimate Std. Error
Constant 0.4827‡ (0.0634) 0.0715‡ (0.0105)
Ln(Clean Price) –0.0009 (0.0311) –0.0292‡ (0.0046)
Ln(Energy Price) –0.0292‡ (0.0046) 0.0194‡ (0.0032)
Ln(Net Wage) (M) 0.0146 (0.0193) 0.0032 (0.0029)
Ln(Net Wage) (F) 0.0155 (0.0160) 0.0065‡ (0.0023)
Ln(Real Income) –0.2469‡ (0.0703) –0.0555‡ (0.0095)
Ln(Real Income2) 0.1471‡ (0.0335) 0.0137‡ (0.0039)

Male Leisure Female Leisure
Estimate Std. Error Estimate Std. Error

Constant 0.1555‡ (0.0429) 0.2903‡ (0.0347)
Ln(Clean Price) 0.0146 (0.0193) 0.0155 (0.0160)
Ln(Energy Price) 0.0032 (0.0029) 0.0065‡ (0.0023)
Ln(Net Wage) (M) 0.0688‡ (0.0144) –0.0865‡ (0.0091)
Ln(Net Wage) (F) –0.0865‡ (0.0091) 0.0645‡ (0.0103)
Ln(Real Income) 0.1658‡ (0.0450) 0.1367‡ (0.0349)
Ln(Real Income2) –0.0951‡ (0.0215) –0.0656‡ (0.0161)
*System of 4 demand equations, the clean good equation is dropped.
Parameters for the clean good are calculated based on cross-equation
restrictions. λ 6= 0 for all goods. Standard errors are calculated using
a bootstrap procedure (1,500 replications). ‡ significance at 5% level.

respect to good j = 1, 2 by εkj ; and the own- and cross-price elasticities of demand for

leisure k = p, s with respect to leisure e = p, s by εke. To relate these elasticity terms

to the estimating equations, one can rewrite them in terms of the budget shares. We

have, for i and j = 1, 2, and for k and e = p, s,

ηi ≡
∂xi
∂I

I

xi
=

1

ωi

∂ωi
∂ ln I

+ 1, (10)

ηk ≡ ∂lk
∂I

I

lk
=

1

ωk

∂ωk
∂ ln I

+ 1, (11)

εij ≡
∂xi
∂pj

pj
xi

=
1

ωi

∂ωi
∂ ln pj

− δij , (12)

εkj ≡
∂lk
∂pj

pj
li

=
1

ωk

∂ωk
∂ ln pj

, (13)

εie ≡
∂xi
∂we

we
xi

=
1

ωi

∂ωi
∂ lnwe

+
we
I
, (14)

εke ≡
∂lk
∂we

we
lk

=
1

ωk

∂ωk
∂ lnwhe

+
we
I
− δke, (15)

where δij and δke denote the Kronecker delta. Then partially differentiate ωi and ωk, as

given by equations (8)–(9), with respect to ln I, ln pj , lnwe and substitute in (10)–(15).
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This yields, for all i and j = 1, 2, and k and e = p, s,

ηi = 1 +
1

ωi

[
βi +

2λi
b(w,p)

ln
I

a(w,p)

]
, (16)

ηk = 1 +
1

ωk

[
βk +

2λk
b(w,p)

ln
I

a(w,p)

]
, (17)

εij = −δij +
γij
ωi
− 1

ωi

[
αj + γjp lnwp + γjs lnws +

2∑
i=1

γij ln pi

]

×
[
βi +

2λi
b(w,p)

ln
I

a(w,p)

]
− λiβj
ωib(w,p)

[
ln

I

a(w,p)

]2

, (18)

εkj =
γkj
ωk
− 1

ωk

[
αj + γjp lnwp + γjs lnws +

2∑
i=1

γij ln pi

]

×
[
βk +

2λk
b(w,p)

ln
I

a(w,p)

]
− λkβj
ωkb(w,p)

[
ln

I

a(w,p)

]2

, (19)

εie =
we
I

+
γie
ωi
− 1

ωi

[
αe + γee lnwe + γek lnwk +

2∑
i=1

γie ln pi

]

×
[
βi +

2λi
b(w,p)

ln
I

a(w,p)

]
− λiβe

ωhi b(w,p)

[
ln

I

a(w,p)

]2

, (20)

εke =
we
I
− δke +

γke

ωhk
− 1

ωk

[
αe + γee lnwe + γek lnwk +

2∑
i=1

γie ln pi

]

×
[
βk +

2λi
b(w,p)

ln
I

a(w,p)

]
− λkβe
ωkb(w,p)

[
ln

I

a(w,p)

]2

. (21)

Observe that if λi = 0, both the income and the cross price elasticity of demand for

good i is independent of potential income.

Using the parameter estimates given in Tables 4–6, we calculate and report the

income and price elasticities of demand for all three subsamples. The AIDS specifica-

tion elasticities for single households are reported in Table 7 while the corresponding

QUAIDS elasticities are reported in Table 8. The married two worker household AIDS

elasticities are reported in Table 9 and the corresponding QUAIDS elasticities are re-

ported in Table 10. Table 11 reports the AIDS specification elasticities for married one
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worker households.

The importance of relaxing the linear Engel curve assumption can be seen by com-

paring Tables 7 and 8. For single households the uncompensated cross-price elasticity

of the energy good w.r.t. the clean good is –0.3056 under the AIDS specification but –

0.0800 under the QUAIDS specification, although this latter value is insignificant. The

pattern of the QUAIDS values generally being more inelastic is again evident when

looking at either the compensated or uncompensated cross-price elasticity of the energy

good w.r.t. labor supply. The compensated value is 0.6800 under the AIDS specification

but 0.3296 under the QUAIDS specification.

Comparing the elasticity results under the AIDS specification with the QUAIDS

spefication results again show the same general pattern. For instance consider either

the cross-price elasticity of the energy good w.r.t. to the clean good or w.r.t. male labor

supply. The QUAIDS result is more inelastic in both the compensated and uncompen-

sated case. The compensated cross-price elasticity of the energy good w.r.t. the clean

good is –0.4418 under AIDS and –0.1793 under QUAIDS. With respect to male labor

supply, the compensated elasticity is 0.3509 under AIDS and 0.1675 under QUAIDS.

Exceptions can occur if one of the estimates is insignificant. The other exception is

the cross-price elasticity between male and female labor supply. In this case the AIDS

estimate is relatively more inelastic but only in the uncompensated case.

Whether the QUAIDS or AIDS specification is appropriate, both results show the

importance of specifying a demand model that does not impose separability and thus

allows for the estimation of the full complement of cross-price elasticities. For single

households the compensated and uncompensated cross-price elasticity w.r.t. labor sup-

ply is significant for both the clean good and the energy good. This is true whether

the AIDS model is specified or the QUAIDS model is specified. Similarly for married

two worker households, only the compensated cross-price elasticity of the energy good

w.r.t. male labor supply is insignificant and only under QUAIDS. In all other cases
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Table 7: AIDS Elasticity Estimates Single Households
Clean Price Energy Price Net Wage

Income Elasticities
Clean Good 1.0404

( 0.9418, 1.1390 )
Energy Good 0.2512

( 0.0197, 0.4827 )
Labor Supply –0.7502

( –0.8700, –0.6305 )

Compensated Elasticities
Clean Good –0.3926 –0.0001 0.3510

(–0.5269, –0.2583 ) ( –0.0216, 0.0215 ) ( 0.2132, 0.4888 )
Energy Good –0.1585 –0.5316 0.6800

( –0.4654, 0.1485 ) ( –0.7360, –0.3272 ) ( 0.3719, 0.9881 )
Labor Supply –0.4695 –0.0488 0.5483

( –0.6206, –0.3184 ) ( –0.0717, –0.0258 ) ( 0.3909, 0.7057 )

Uncompensated Elasticities
Clean Good –1.0019 –0.0482 0.8903

( –1.0805, –0.9233 ) ( –0.0702, –0.0263 ) ( 0.8029, 0.9777 )
Energy Good –0.3056 –0.5432 0.8102

( –0.5316, –0.0796 ) ( –0.7449, –0.3415 ) ( 0.6126, 1.0078 )
Labor Supply –0.0302 –0.0140 0.1594

( –0.1141, 0.0537 ) ( –0.0368, 0.0087 ) ( 0.0626, 0.2563 )

*95% confidence intervals are calculated using a bootstrapping procedure
(1,500 replications). AIDS specification, λ = 0, for all three goods.

the compensated and uncompensated cross-price elasticity w.r.t. either male or female

labor supply is significant for both goods.

6 Welfare

To gauge how a change in the energy tax affects the welfare of different income groups,

one should first specify what the government would do with the additional tax proceeds.

To separate the two aspects, we first look at the welfare effect of the change in energy

taxes while assuming that there is no feedback from the expenditures financed by the

extra revenues (on consumers demands and welfare). Suppose the energy tax increases

from t1 to t′1. Assuming no concomitant changes in other tax instruments, the equivalent
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Table 8: QUAIDS Elasticity Estimates Single Households
Clean Price Energy Price Net Wage

Income Elasticities
Clean Good 1.0121

( 0.9155, 1.1088 )
Energy Good 0.3956

( 0.3047, 0.4866 )
Labor Supply –0.7697

( –0.8822, –0.6572 )

Compensated Elasticities
Clean Good –0.3303 0.0230 0.2668

( –0.4177, –0.2429 ) ( 0.0057, 0.0402 ) ( 0.1766, 0.3569 )
Energy Good 0.1517 –0.4972 0.3296

( –0.0945, 0.3979 ) ( –0.6796, –0.3147 ) ( 0.1252, 0.5341 )
Labor Supply –0.3689 –0.0189 0.4186

( –0.4749, –0.2628 ) ( –0.0334, –0.0044 ) ( 0.3055, 0.5317 )

Uncompensated Elasticities
Clean Good –0.9230 –0.0239 0.7914

( –1.0333, –0.8127 ) ( –0.0437, –0.0041 ) ( 0.6810, 0.9017 )
Energy Good –0.0800 –0.5155 0.5347

( –0.3130, 0.1530 ) ( –0.6974, –0.3336 ) ( 0.3532, 0.7162 )
Labor Supply 0.0819 0.0167 0.0196

( –0.0559, 0.2197 ) ( –0.0019, 0.0353 ) ( –0.1213, 0.1606 )

*95% confidence intervals are calculated using a bootstrapping procedure
(1,500 replications). QUAIDS specification, λ 6= 0, for clean good and leisure.
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Table 9: AIDS Elasticity Estimates Married Two Worker Households
Clean Price Energy Price Net Wage Male Net Wage Female

Income Elasticities
Clean Good 0.9919

( 0.8555, 1.1283 )
Energy Good 0.0400

( –0.2007, 0.2808 )
Labor Supply (M) –0.6049

( –0.6933, –0.5164 )
Labor Supply (F) –0.9769

( –1.0917, –0.8621 )

Compensated Elasticities
Clean Good –0.5484 –0.0294 0.2668 0.2679

( –0.7103, –0.3865 ) ( –0.0486, –0.0101 ) ( 0.1711, 0.3625 ) ( 0.1819, 0.3539 )
Energy Good –0.4418 –0.4069 0.3509 0.4960

( –0.7089, –0.1746 ) ( –0.5876, –0.2262 ) ( 0.1824, 0.5194 ) ( 0.3537, 0.6383 )
Labor Supply (M) –0.3099 –0.0293 0.2965 0.0689

( –0.4133, –0.2065 ) ( –0.0423, –0.0162 ) ( 0.2255, 0.3674 ) ( 0.0180, 0.1199 )
Labor Supply (F) –0.4738 –0.0534 0.1119 0.4577

( –0.5973, –0.3503 ) ( –0.0681, –0.0387 ) ( 0.0441, 0.1796 ) ( 0.3784, 0.5371 )

Uncompensated Elasticities
Clean Good –1.0071 –0.0641 0.7116 0.5607

( –1.1080, –0.9062 ) ( –0.0833, –0.0450 ) ( 0.6654, 0.7578 ) ( 0.5090, 0.6124 )
Energy Good –0.4603 –0.4083 0.3689 0.5078

( -0.6675, –0.2530 ) ( –0.5862, –0.2304 ) ( 0.2698, 0.4679 ) ( 0.4149, 0.6007 )
Labor Supply (M) –0.0302 –0.0080 0.0252 –0.1096

( –0.0944, 0.0340 ) ( –0.0209, 0.0048 ) ( –0.0138, 0.0642 ) ( –0.1420, –0.0772 )
Labor Supply (F) –0.0221 –0.0191 –0.3262 0.1693

( –0.0956, 0.0515 ) ( –0.0335, –0.0048 ) ( –0.3628, –0.2896 ) ( 0.1171, 0.2216 )
*95% confidence intervals are calculated using a bootstrapping procedure (1,500 replications).
AIDS specification, λ = 0, for all four goods.
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Table 10: QUAIDS Elasticity Estimates Married Two Worker Households
Clean Price Energy Price Net Wage Male Net Wage Female

Income Elasticities
Clean Good 1.0044

( 0.8925, 1.1163 )
Energy Good 0.0766

( –0.1460, 0.2993 )
Labor Supply (M) –0.5966

( –0.6697, –0.5234 )
Labor Supply (F) –0.9647

( –1.0643, –0.8651 )

Compensated Elasticities
Clean Good –0.4438 –0.0066 0.1982 0.2086

( –0.5232, –0.3643 ) ( –0.0284, 0.0152 ) ( 0.1475, 0.2489 ) ( 0.1616, 0.2555 )
Energy Good –0.1793 –0.3453 0.1675 0.3537

( –0.5099, 0.1514 ) ( –0.5126, –0.1781 ) ( –0.0345, 0.3696 ) ( 0.1901, 0.5173 )
Labor Supply (M) –0.2377 –0.0126 0.2485 0.0277

( –0.2924, –0.1830 ) ( –0.0265, 0.0012 ) ( 0.2029, 0.2942 ) ( –0.0022, 0.0576 )
Labor Supply (F) –0.3815 –0.0342 0.0509 0.4067

( –0.4588, -0.3043 ) ( –0.0514, –0.0170 ) ( 0.0023, 0.0995 ) ( 0.3487, 0.4648 )

Uncompensated Elasticities
Clean Good –0.9082 –0.0418 0.6486 0.5051

( –0.9842, –0.8323 ) ( –0.0659, –0.0178 ) ( 0.5841, 0.7131 ) ( 0.4575, 0.5526 )
Energy Good –0.2147 –0.3480 0.2019 0.3764

( –0.5374, 0.1079 ) ( –0.5145, –0.1816 ) ( 0.0043, 0.3995 ) ( 0.2194, 0.5333 )
Labor Supply (M) 0.0382 0.0083 –0.0190 –0.1484

( –0.0161, 0.0924 ) ( –0.0071, 0.0236 ) ( –0.0689, 0.0309 ) ( –0.1838, –0.1130 )
Labor Supply (F) 0.0646 –0.0004 –0.3817 0.1219

( –0.0086, 0.1378 ) ( –0.0195, 0.0187 ) ( –0.4453, –0.3181 ) ( 0.0674, 0.1765 )
*95% confidence intervals are calculated using a bootstrapping procedure (1,500 replications).
QUAIDS specification, λ 6= 0, for all four goods.
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Table 11: AIDS Elasticity Estimates Married One Worker Households
Clean Price Energy Price Net Wage

Income Elasticities
Clean Good 1.1381

( 1.0379, 1.2382 )
Energy Good 0.3370

( 0.1316, 0.5424 )
Labor Supply –0.5569

( –0.6386, –0.4751 )

Compensated Elasticities
Clean Good –0.2761 –0.0028 0.2314

( –0.4003, –0.1518 ) ( –0.0301, 0.0244 ) ( 0.1015, 0.3613 )
Energy Good –0.0530 –0.4026 0.4415

( –0.3415, 0.2355 ) ( –0.6885, –0.1166 ) ( 0.2102, 0.6728 )
Labor Supply –0.2185 –0.0314 0.2730

( –0.3114, –0.1256 ) ( –0.0480, –0.0147 ) ( 0.1754, 0.3707 )

Uncompensated Elasticities
Clean Good –0.8796 –0.0590 1.0642

( –0.9552, –0.8039 ) ( –0.0863, –0.0318 ) ( 1.0019, 1.1265 )
Energy Good –0.2317 –0.4192 0.6881

( –0.4996, 0.0362 ) ( –0.7020, –0.1364 ) ( 0.5748, 0.8014 )
Labor Supply 0.0768 –0.0038 –0.1344

( 0.0235, 0.1302 ) ( –0.0203, 0.0126 ) ( –0.1778, –0.0911 )

*95% confidence intervals are calculated using a bootstrapping procedure
(1,500 replications). AIDS specification, λ = 0, for all three goods.
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variation of this tax regime change for household h,EV h, is implicitly defined by19

v
(
wh,p, Ih+EV h

)
= v

(
wh,p′, Ih

)
,

where p′ is the new vector of consumer prices (with the new energy tax t′1).

Table 12 reports welfare calculations for the single household sample assuming that

there is an additional 25c per unit tax levied on the energy good. First we report the

EV under AIDS, next we report the EV under QUAIDS and finally the bias that results

from incorrectly specifying the AIDS model. The population is separated into deciles

and values are calculated for a representative household in each decile. The AIDS model

underestimates the change in welfare for low income households but overestimates for

high income households. The transition occurs at the 3rd decile, for wealthier households

the welfare loss under AIDS is higher.

These calculations are repeated for tax increases of 50c, $1.00 and $1.50. The bias

from using AIDS is reported in Table 13. The pattern remains the same. The AIDS

model underestimates for low income households. However after the 3rd or 4th decile,

the AIDS model overestimates the welfare loss. Tables 14 and 15 repeat the same

calculations for the married two worker households. The end result is the same as for

the single household sample.

19Recall that wh = wh
p , I

h = wh
p +mh

p , θ
h = θhp ,wgh = wghp ,m

h = mh
p when there is one worker in the

household and wh = wh
p+wh

s , I
h = wh

p+mh
p+wh

s +mh
s , θ

h =
(
θhp , θ

h
s

)
,wgh =

(
wghp , wg

h
s

)
,mh = mh

p+mh
s

when there are two workers.

24



Table 12: Equivalent Variation Results Single Households

25c Increase In Energy Price
Income Percentiles AIDS EV ($) QUAIDS EV ($) Bias (%)

Tenth –0.0071 –0.0081 –12.21
Twentieth –0.0065 –0.0068 –4.86
Thirtieth –0.0061 –0.0061 0.64
Fortieth –0.0060 –0.0055 8.12
Fiftieth –0.0057 –0.0050 14.04
Sixtieth –0.0055 –0.0045 22.67
Seventieth –0.0052 –0.0040 31.35
Eightieth –0.0048 –0.0033 44.51
Ninetieth –0.0043 –0.0025 72.04
One Hundredth –0.0025 –0.0004 540.11

Table 13: % Bias When Using AIDS (Single Households)

% Increase in energy prices → $0.25 $0.50 $1.00 $1.50
Income percentiles ↓
Tenth –12.21 –11.87 –11.38 –11.02
Twentieth –4.86 –4.86 –4.85 –4.83
Thirtieth 0.64 0.29 –0.15 –0.44
Fortieth 8.12 7.23 6.06 5.32
Fiftieth 14.04 12.61 10.77 9.60
Sixtieth 22.67 20.39 17.47 15.64
Seventieth 31.35 27.98 23.77 21.18
Eightieth 44.51 39.14 32.66 28.81
Ninetieth 72.04 61.37 49.37 42.67
One Hundredth 540.11 261.73 141.90 103.76
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Table 14: Equivalent Variation Results Married Two Worker Households

Single Households (25c Increase In Energy Price
Income Percentiles AIDS EV ($) QUAIDS EV ($) Bias (%)

Tenth –0.0058 –0.0066 –11.43
Twentieth –0.0057 –0.0056 1.18
Thirtieth –0.0056 –0.0051 9.13
Fortieth –0.0052 –0.0045 15.41
Fiftieth –0.0051 –0.0042 21.74
Sixtieth –0.0047 –0.0037 28.05
Seventieth –0.0045 –0.0033 37.62
Eightieth –0.0042 –0.0028 53.09
Ninetieth –0.0037 –0.0020 83.64
One Hundredth –0.0027 –0.0007 301.84

Table 15: % Bias When Using AIDS (Married Two Worker Households)

% Increase in energy prices → $0.25 $0.50 $1.00 $1.50
Income percentiles ↓
Tenth –11.43 –11.32 –11.18 –11.09
Twentieth 1.18 0.46 –0.52 –1.17
Thirtieth 9.13 7.75 5.92 4.72
Fortieth 15.41 13.34 10.67 8.98
Fiftieth 21.74 18.92 15.35 13.12
Sixtieth 28.05 24.27 19.62 16.78
Seventieth 37.62 32.29 25.92 22.15
Eightieth 53.09 44.84 35.41 30.04
Ninetieth 83.64 67.64 51.03 42.32
One Hundredth 301.84 181.47 108.58 81.44
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Appendix A

Derivation of (8)–(9): Step1. Partially differentiate

ln vh =

{[
ln Ih − ln a(wh,p)

b(wh,p)

]−1

+ λ(wh,p)

}−1

,

with respect to pi, w
h
k , and Ih:

∂ ln vh

∂pi
= Λ

{
∂

∂pi

[
ln Ih − ln a(wh,p)

b(wh,p)

]−1

+
∂

∂pi
λ(wh,p)

}
,

∂ ln vh

∂whk
= Λ

{
∂

∂whk

[
ln Ih − ln a(wh,p)

b(wh,p)

]−1

+
∂

∂whk
λ(wh,p)

}
,

∂ ln vh

∂Ih
= Λ

{
∂

∂Ih

[
ln Ih − ln a(wh,p)

b(wh,p)

]−1

+
∂

∂Ih
λ(wh,p)

}
,

where

Λ ≡ −

{[
ln Ih − ln a(wh,p)

b(wh,p)

]−1

+ λ(wh,p)

}−2

.

Simplifying yields:

∂ ln vh

∂pi
= Λ

{
−
[

ln Ih − ln a(wh,p)

b(wh,p)

]−2
∂

∂pi

[
ln Ih − ln a(wh,p)

b(wh,p)

]
+

∂

∂pi
λ(wh,p)

}
,

∂ ln vh

∂whk
= Λ

{
−
[

ln Ih − ln a(wh,p)

b(wh,p)

]−2
∂

∂whk

[
ln Ih − ln a(wh,p)

b(wh,p)

]
+

∂

∂whk
λ(wh,p)

}
,

∂ ln vh

∂Ih
= Λ

{
−
[

ln Ih − ln a(wh,p)

b(wh,p)

]−2
∂

∂Ih

[
ln Ih − ln a(wh,p)

b(wh,p)

]
+

∂

∂Ih
λ(wh,p)

}
,

27



Or

∂ ln vh

∂pi
= Λ

∂

∂pi
λ(wh,p)− Λ

[
ln Ih − ln a(wh,p)

b(wh,p)

]−2

(A1)

×

[
−b(wh,p)

(
∂ ln a(wh,p)/∂pi

)
−
(
ln Ih − ln a(wh,p)

) (
∂b(wh,p)/∂pi

)
(b(wh,p))

2

]
,

∂ ln vh

∂whk
= Λ

∂

∂whk
λ(wh,p)− Λ

[
ln Ih − ln a(wh,p)

b(wh,p)

]−2

(A2)

×

[
b(wh,p)

(
1/Ih − ∂ ln a(wh,p)/∂whk

)
−
(
ln Ih − ln a(wh,p)

) (
∂b(wh,p)/∂whk

)
(b(wh,p))

2

]
,

∂ ln vh

∂Ih
= Λ

∂

∂Ih
λ(wh,p)− Λ

[
ln Ih − ln a(wh,p)

b(wh,p)

]−2

(A3)

×

[
b(wh,p)

(
1/Ih − ∂ ln a(wh,p)/∂Ih

)
−
(
ln Ih − ln a(wh,p)

) (
∂b(wh,p)/∂Ih

)
(b(wh,p))

2

]
.

Step 2. Partially differentiate b(wh,p) and λ(wh,p) with respect to pi, w
h
k , and Ih

to get

∂b(wh,p)

∂pi
=

βi
pi
b(wh,p),

∂b(wh,p)

∂whk
=

βk

whk
b(wh,p),

∂b(wh,p)

∂Ih
= 0,

∂λ(wh,p)

∂pi
=

λi
pi
,

∂λ(wh,p)

∂whk
=

λk

whk
,

∂λ(wh,p)

∂Ih
= 0.

Also note that ln a(wh,p) is independent of Ih so that

∂ ln a(wh,p)

∂Ih
= 0.
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Substituting these expressions in (??)–(??),

∂ ln vh

∂pi
= Λ

λi
pi
− Λ

[
ln Ih − ln a(wh,p)

b(wh,p)

]−2

(A4)

×

[
−b(wh,p)

(
∂ ln a(wh,p)/∂pi

)
−
(
ln Ih − ln a(wh,p)

)
βib(w

h,p)/pi

(b(wh,p))
2

]
,

∂ ln vh

∂whk
= Λ

λk

whk
− Λ

[
ln Ih − ln a(wh,p)

b(wh,p)

]−2

(A5)

×

[
b(wh,p)

(
1/Ih − ∂ ln a(wh,p)/∂whk

)
−
(
ln Ih − ln a(wh,p)

)
βkb(w

h,p)/whk

(b(wh,p))
2

]
,

∂ ln vh

∂Ih
= −Λ

[
ln Ih − ln a(wh,p)

b(wh,p)

]−2
[
b(wh,p)

(
1/Ih

)
(b(wh,p))

2

]
. (A6)

Dividing (A4) and (A5) by (A6) then results in

∂ ln vh

∂pi
∂ ln vh

∂Ih

=

λi
pi
−
[

ln Ih−ln a(wh,p)
b(wh,p)

]−2
[
−b(wh,p)(∂ ln a(wh,p)/∂pi)−(ln Ih−ln a(wh,p))βib(wh,p)/pi

(b(wh,p))
2

]
−
[

ln Ih−ln a(wh,p)
b(wh,p)

]−2
[
b(wh,p)(1/Ih)

(b(wh,p))
2

] ,

∂ ln vh

∂wh
k

∂ ln vh

∂Ih

=

λk
wh

k

−
[

ln Ih−ln a(wh,p)
b(wh,p)

]−2
[
b(wh,p)(1/Ih−∂ ln a(wh,p)/∂wh

k)−(ln Ih−ln a(wh,p))βkb(wh,p)/wh
k

(b(wh,p))
2

]
−
[

ln Ih−ln a(wh,p)
b(wh,p)

]−2
[
b(wh,p)(1/Ih)

(b(wh,p))
2

] .

Or

∂ ln vh

∂pi
∂ ln vh

∂Ih

=

[
−b(wh,p)(∂ ln a(wh,p)/∂pi)−(ln Ih−ln a(wh,p))βib(wh,p)/pi

(b(wh,p))
2

]
− λi

pi

[
ln Ih−ln a(wh,p)

b(wh,p)

]2

[
1

Ihb(wh,p)

] ,

∂ ln vh

∂wh
k

∂ ln vh

∂Ih

=

[
b(wh,p)(1/Ih−∂ ln a(wh,p)/∂wh

k)−(ln Ih−ln a(wh,p))βkb(wh,p)/wh
k

(b(wh,p))
2

]
− λk

wh
k

[
ln Ih−ln a(wh,p)

b(wh,p)

]2

[
1

Ihb(wh,p)

] .
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Or

∂ ln vh

∂pi
∂ ln vh

∂Ih

=
Ih

b(wh,p)

[
−b(wh,p)

(
∂ ln a(wh,p)/∂pi

)
−
(

ln Ih − ln a(wh,p)
)
βib(w

h,p)/pi

]
−λi
pi

[
ln Ih − ln a(wh,p)

]2 Ih

b(wh,p)
,

∂ ln vh

∂wh
k

∂ ln vh

∂Ih

=
Ih

b(wh,p)

[
b(wh,p)

(
1/Ih − ∂ ln a(wh,p)/∂whk

)
−
(

ln Ih − ln a(wh,p)
)
βkb(w

h,p)/whk

]
− λk
whk

[
ln Ih − ln a(wh,p)

]2 Ih

b(wh,p)
.

Or

∂ ln vh

∂pi
∂ ln vh

∂Ih

= −
[
∂ ln a(wh,p)

∂pi
+
(

ln Ih − ln a(wh,p)
) βi
pi

]
Ih − λi

pi

Ih

b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

∂ ln vh

∂wh
k

∂ ln vh

∂Ih

= 1−
[
∂ ln a(wh,p)

∂whk
+
(

ln Ih − ln a(wh,p)
) βk
whk

]
Ih − λk

whk

Ih

b(wh,p)

[
ln

Ih

a(wh,p)

]2

.

Step 3. Substitute these expressions in

ωhi = − pi
Ih

∂ ln vh/∂pi
∂ ln vh/∂Ih

,

ωhk =
whk
Ih

(
1−

∂ ln vh/∂whk
∂ ln vh/∂Ih

)
,

to get:

ωhi = pi
∂ ln a(wh,p)

∂pi
+ βi ln

Ih

a(wh,p)
+

λi
b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

ωhk = whk
∂ ln a(wh,p)

∂whk
+ βk ln

Ih

a(wh,p)
+

λk
b(wh,p)

[
ln

Ih

a(wh,p)

]2

.

Step 4. Partially differentiate ln a(wh,p) with respect to pi and whk :

∂ ln a(wh,p)

∂pi
=

1

pi

αi + γip lnwhp + γis lnwhs +
n∑
j=1

γji ln pj

 ,
∂ ln a(wh,p)

∂whk
=

1

whk

[
αk +

n∑
i=1

γik ln pi + γkk lnwhk + γke lnwhe

]
,
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Then substitute these expressions in the expressions for ωhi and ωhk derived in step 3.

This yields

ωhi = αi + γip lnwhp + γis lnwhs +
n∑
j=1

γij ln pj +

βi ln
Ih

a(wh,p)
+

λi
b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

ωhk = αk + γkk lnwhk + γke lnwhe +
n∑
j=1

γkj ln pj +

βk ln
Ih

a(wh,p)
+

λk
b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

which are equations (8)–(9).

Derivation of (10)–(15): Step 1. From the definition of budget shares, ωhi ≡ pixhi /Ih

and ωhk ≡ whk lhk/Ih. Rearranging yields

xhi =
Ihωhi
pi

,

lhk =
Ihωhk
whk

.
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Partially differentiating these two relationships with respect to Ih, pj , and whe yields,

∂xhi
∂Ih

=
ωhi
pi

+
Ih

pi

∂ωhi
∂Ih

=
1

pi

[
ωhi +

∂ωhi
∂ ln Ih

]
,

∂lhk
∂Ih

=
ωhk
whk

+
Ih

whk

∂ωhk
∂Ih

=
1

whk

[
ωhk +

∂ωhk
∂ ln Ih

]
∂xhi
∂pj

= Ih

[(
∂ωhi /∂pj

)
pi − (∂pi/∂pj)ω

h
i

(pi)
2

]
= Ih

[
1

pi

∂ωhi
∂pj
− ωhi

(pi)
2

∂pi
∂pj

]
=

Ih

pi

[
1

pj

∂ωhi
∂ ln pj

− ωhi
pi

∂pi
∂pj

]
=
Ih

pi

[
1

pj

∂ωhi
∂ ln pj

− ωhi
pi
δij

]
∂lhk
∂pj

=
Ih

whk

∂ωhk
∂pj

=
Ih

pjwhk

∂ωhk
∂ ln pj

∂xhi
∂whe

=
Ih

pi

∂ωhi
∂whe

+
ωhi
pi

=
Ih

whe pi

∂ωhi
∂ lnwhe

+
ωhi
pi

∂lhk
∂whe

= Ih

[(
∂ωhk/∂w

h
e

)
whk −

(
∂whk/∂w

h
e

)
ωhk(

whk
)2

]
+
ωhk
whk

= Ih

[
1

whk

∂ωhk
∂whe

−
ωhk(
whk
)2 ∂whk∂whe

]
+
ωhk
whk

=
Ih

whk

[
1

whe

∂ωhk
∂ lnwhe

−
ωhk
whk

∂whk
∂whe

]
+
ωhk
whk

=
Ih

whk

(
1

whe

∂ωhk
∂ lnwhe

−
ωhk
whk

δke

)
+
ωhk
whk

Step 2. Substituting these derivatives in the various definition of elasticity terms results

in

ηhi ≡ ∂xhi
∂Ih

Ih

xhi
=
Ih

xhi

1

pi

[
ωhi +

∂ωhi
∂ ln Ih

]
= 1 +

1

ωhi

∂ωhi
∂ ln Ih

,

ηhk ≡
∂lhk
∂Ih

Ih

lhk
=
Ih

lhk

1

whk

[
ωhk +

∂ωhk
∂ ln Ih

]
= 1 +

1

ωhk

∂ωhk
∂ ln Ih

,

εhij ≡
∂xhi
∂pj

pj

xhi
=
pj

xhi

Ih

pi

[
1

pj

∂ωhi
∂ ln pj

− ωhi
pi
δij

]
=

1

ωhi

∂ωhi
∂ ln pj

− δij ,

εhkj ≡
∂lhk
∂pj

pj

lhk
=
pj

lhk

Ih

pjwhk

∂ωhk
∂ ln pj

=
1

ωhk

∂ωhk
∂ ln pj

,

εhie ≡
∂xhi
∂whe

whe
xhi

=

[
Ih

whe pi

∂ωhi
∂ lnwhe

+
ωhi
pi

]
whe
xhi

=
1

ωhi

∂ωhi
∂ lnwhe

+
whe
Ih
,

εhke ≡
∂lhk
∂whe

whe
lhk

=
whe
lhk

[
Ih

whk

(
1

whe

∂ωhk
∂ lnwhe

−
ωhk
whk

δke

)
+
ωhk
whk

]
=

1

ωhk

∂ωhk
∂ lnwhe

+
whe
Ih
− δke.

Derivation of (16)–(21): Step 1. Partially differentiate equations (8)–(9) with respect
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to Ih, pj , and whe . We have:

∂ωhi
∂ ln Ih

= βi +
2λi

b(wh,p)
ln

Ih

a(wh,p)
,

∂ωhk
∂ ln Ih

= βk +
2λk

b(wh,p)
ln

Ih

a(wh,p)
,

∂ωhi
∂ ln pj

= γij − βi
∂ ln a(wh,p)

∂ ln pj
− 2λi
b(wh,p)

ln
Ih

a(wh,p)

∂ ln a(wh,p)

∂ ln pj

− λi

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ ln pj

∂ωhk
∂ ln pj

= γkj − βk
∂ ln a(wh,p)

∂ ln pj
− 2λk
b(wh,p)

ln
Ih

a(wh,p)

∂ ln a(wh,p)

∂ ln pj

− λk

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ ln pj
,

∂ωhi
∂ lnwhe

= γie − βi
∂ ln a(wh,p)

∂ lnwhe
− 2λi
b(wh,p)

ln
Ih

a(wh,p)

∂ ln a(wh,p)

∂ lnwhe

− λi

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ lnwhe
,

∂ωhk
∂ lnwhe

= γke − βk
∂ ln a(wh,p)

∂ lnwhe
− 2λk
b(wh,p)

ln
Ih

a(wh,p)

∂ ln a(wh,p)

∂ lnwhe

− λk

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ lnwhe
.
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Simplifying yields

∂ωhi
∂ ln Ih

= βi +
2λi

b(wh,p)
ln

Ih

a(wh,p)
, (A7)

∂ωhk
∂ ln Ih

= βk +
2λk

b(wh,p)
ln

Ih

a(wh,p)
, (A8)

∂ωhi
∂ ln pj

= γij −
[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
∂ ln a(wh,p)

∂ ln pj

− λi

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ ln pj
(A9)

∂ωhk
∂ ln pj

= γkj −
[
βk +

2λk
b(wh,p)

ln
Ih

a(wh,p)

]
∂ ln a(wh,p)

∂ ln pj

− λk

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ ln pj
, (A10)

∂ωhi
∂ lnwhe

= γie −
[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
∂ ln a(wh,p)

∂ lnwhe

− λi

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ lnwhe
, (A11)

∂ωhk
∂ lnwhe

= γke −
[
βk +

2λk
b(wh,p)

ln
Ih

a(wh,p)

]
∂ ln a(wh,p)

∂ lnwhe

− λk

(b(wh,p))
2

[
ln

Ih

a(wh,p)

]2
∂b(wh,p)

∂ lnwhe
. (A12)

Step 2. Partially differentiate equations (3)–(4) with respect to pj and whe . We have

∂ ln a(wh,p)

∂ ln pj
= αj + γjp lnwhp + γjs lnwhs +

n∑
i=1

γij ln pi,

∂ ln a(wh,p)

∂ lnwhe
= αe + γee lnwhe + γek lnwhk +

n∑
i=1

γie ln pi,

∂b(wh,p)

∂ ln pj
= pj

∂b(wh,p)

∂pj
= pj

βj
pj
b(wh,p),

∂b(wh,p)

∂ lnwhe
= whe

∂b(wh,p)

∂whe
= whe

βe
whe

b(wh,p).

34



Substituting in equations (A7)–(A12) yields,

∂ωhi
∂ ln Ih

= βi +
2λi

b(wh,p)
ln

Ih

a(wh,p)
,

∂ωhk
∂ ln Ih

= βk +
2λk

b(wh,p)
ln

Ih

a(wh,p)
,

∂ωhi
∂ ln pj

= γij −
[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αj + γjp lnwhp + γjs lnwhs +

n∑
i=1

γij ln pi

]
− λiβj
b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

∂ωhk
∂ ln pj

= γkj −
[
βk +

2λk
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αj + γjp lnwhp + γjs lnwhs +

n∑
i=1

γij ln pi

]
− λkβj
b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

∂ωhi
∂ lnwhe

= γie −
[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αe + γee lnwhe + γek lnwhk +

n∑
i=1

γie ln pi

]
− λiβe
b(wh,p)

[
ln

Ih

a(wh,p)

]2

,

∂ωhk
∂ lnwhe

= γke −
[
βk +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αe + γee lnwhe + γek lnwhk +
n∑
i=1

γie ln pi

]
− λkβe
b(wh,p)

[
ln

Ih

a(wh,p)

]2

.
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Step 3. Substituting these relationships in (10)–(15) leads to,

ηhi = 1 +
1

ωhi

[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
,

ηhk = 1 +
1

ωhk

[
βk +

2λk
b(wh,p)

ln
Ih

a(wh,p)

]
,

εhij = −δij +
γij

ωhi
− 1

ωhi

[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αj + γjp lnwhp + γjs lnwhs +

n∑
i=1

γij ln pi

]
− λiβj

ωhi b(w
h,p)

[
ln

Ih

a(wh,p)

]2

,

εhkj =
γkj

ωhk
− 1

ωhk

[
βk +

2λk
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αj + γjp lnwhp + γjs lnwhs +

n∑
i=1

γij ln pi

]
− λkβj

ωhkb(w
h,p)

[
ln

Ih

a(wh,p)

]2

,

εhie =
whe
Ih

+
γie

ωhi
− 1

ωhi

[
βi +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αe + γee lnwhe + γek lnwhk +

n∑
i=1

γie ln pi

]
− λiβe

ωhi b(w
h,p)

[
ln

Ih

a(wh,p)

]2

,

εhke =
whe
Ih
− δke +

γke

ωhk
− 1

ωhk

[
βk +

2λi
b(wh,p)

ln
Ih

a(wh,p)

]
×[

αe + γee lnwhe + γek lnwhk +

n∑
i=1

γie ln pi

]
− λkβe

ωhkb(w
h,p)

[
ln

Ih

a(wh,p)

]2

.

Expressions when there is no secondary worker:

ln a(wh,p) ≡ α0 + αp lnwhp +
n∑
i=1

αi ln pi

+ lnwhp

n∑
i=1

γip ln pi +
1

2

γpp (lnwhp

)2
+

n∑
i=1

n∑
j=1

γij ln pi ln pj

 ,
b(wh,p) ≡

(
whp

)βp n∏
i=1

pβii ,

λ(wh,p) ≡ λp lnwhp +

n∑
i=1

λi ln pi,
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