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Abstract
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ing is constrained ineffi cient. In particular, too many resources are de-
voted towards getting rather than vetting borrowers but, once properly
vetted, not enough of these matches are actually retained. Uninformed
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matching tax helps remedy the situation. (JEL D62, D83, E44)
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Toxic assets have led to huge losses over the past few years, prompting

many to explain the Great Recession as a miscalculation of risk by banks. In

theory, however, banks exist precisely because they are good at intermediation,

providing risk sharing in incomplete markets and screening under asymmetric

information. How, then, could they have gotten it so wrong? This paper con-

tributes to a growing literature on financial sector ineffi ciency by investigating

a new margin: ineffi ciencies arising from the allocation of bank resources across

intermediation activities.

The two activities I focus on are matching and screening. Due to com-

petition, we often observe banks creating financial products and advertising

their loan services in order to attract borrowers. At the same time though,

asymmetric information between borrowers and lenders means that banks also

devote some resources to learning about who they attract. The intensity with

which each of these activities is undertaken determines the quantity and qual-

ity of bank lending so any ineffi ciencies in the allocation of resources between

matching and screening can have serious implications for the health of the

financial system.

Consider the case of mortgage-backed securities. Increased bank involve-

ment in the MBS market following the repeal of Glass-Steagall fostered a credit

boom as banks packaged loans into securities, sold them, and used the pro-

ceeds to support new originations. Fallout from the ensuing bust, however,

made it clear that not enough was known about the underlying mortgages or

how they would interact once packaged. Securitization was thus associated

with too many originations (matches) and too little information (screening).

Although the ability to offl oad risk by selling MBSs certainly did not stoke

the incentive to screen, another interpretation is that the increase in matches

afforded by securitization was overly appealing to banks because of a more

fundamental problem in how they trade off quality and quantity. Stated oth-

erwise, the rapid flight to securitization may have been more a symptom than

a cause of banking ineffi ciency.1

1See Keys et al. (2010) for the negative effect of securitization on screening. Support
for the alternative interpretation - namely that banks sacrifice screening for reasons beyond
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To understand the tradeoff between matching and screening and to de-

termine whether it begets ineffi ciency, I build a model that formalizes the

allocation decision of banks. The goal is to understand this tradeoff in its

purest form so I abstract from mortgages, securitization, and anything else

that may have been unique to a particular financial episode. Instead, my

economy features a continuum of heterogeneous borrowers differing in pro-

duction ability. Each borrower needs one unit of capital to produce but this

capital can only be intermediated by a mass of ex ante identical lenders. As

described above, the intermediation process consists of attracting borrowers

and screening them. Matches are important because credit is needed for pro-

duction. At the same time though, screening is important because low quality

borrowers are more likely to destroy capital by running unprofitable projects.

Although lenders may want to undertake both matching and screening, the

allocation of resources across these activities will be non-trivial if it is either

too costly or too time-consuming to undertake each activity until its marginal

return is zero. To ease the exposition, I capture this restriction as a resource

constraint which precludes lenders from making both activities succeed with

probability 1.2

securitization - can be gleaned from the remarks of Ed Clark, chief executive offi cer of
Toronto-Dominion Bank. In an interview with Canada’s largest national newspaper, he
is quoted as follows: "If we said ‘Look, we’re going to be heroes and save Canada from
itself, and we’ll impose a whole new [mortgage] regime on everyone else,’ the other four
[large] banks would say ‘Let’s carve them up’" ... it is impossible to expect any bank to crack
the whip on borrowers because "market share loss is perceived as a strategic loss, not just
a numerical or dollar loss" (The Globe and Mail, "Banks won’t lead way on fixing debt
problem: TD’s Clark" by Tim Kiladze, 12/15/2010). While these remarks were made about
Canadian bankers, they also cast a shadow on American banks as the US financial system
is generally deemed the more competitive of the two.

2Note that the allocation decision in my model is fundamentally different from the one
in Shleifer and Vishny (2010). In the latter, banks divide scarce capital between traditional
lending and investment in securitized debt. This decision interacts with asset prices to
transmit investor sentiment to the real economy. In contrast, my model focuses on tradi-
tional lending so there is no alternative use for capital. Instead, banks allocate resources
other than this capital to determine the quantity and quality of their traditional loans. In
other words, I am essentially examining how banks allocate their staff between matchers
and screeners rather than how matchers (to extend the term) allocate capital between loans
and securities. Moreover, as we will see below, the mechanism through which my allocation
affects the real economy does not operate through asset prices.
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After analyzing an individual lender’s optimal division of resources between

attracting and screening borrowers, I demonstrate that the decentralized equi-

librium is constrained ineffi cient. In particular, unmatched lenders devote

too many resources to forming matches and too few to screening them. The

first externality operates through the distribution of available borrowers when

matches can be preserved over time. Since attracting a borrower today limits

the need for matching resources tomorrow, lenders who carry their clients over

can devote more of tomorrow’s resources towards screening if today’s screening

efforts are unsuccessful. The eventual rejection of unprofitable borrowers then

worsens the pool that currently unmatched lenders will draw from should they

try to attract someone later on. In this way, high matching effort by some

lenders induces others to also over-invest in matching, creating an "attract

now, screen later" motive that propels the market to a steady state with too

much uninformed lending and too many defaults. The problem is exacerbated

by a second externality which renders informed lenders overly selective in the

types they retain. An informed lender determines the lowest type he is willing

to finance by comparing the expected value from keeping that type to the

value attainable as an unmatched lender. By allocating resources to maximize

the latter, unmatched lenders increase the opportunity cost of being matched

and prompt increased selectivity among informed lenders. To decrease the

odds of rematching and thus decrease the endogenous destruction of informed

financing, the effi cient allocation again prescribes less matching.

A corollary of these results is that bank taxes which limit the drive to

attract borrowers can improve social welfare. I investigate a simple version of

this policy, namely a proportional tax on the matching activity. I find that

both uninformed financing and defaults decrease with the tax. Production

exhibits a hump-shaped response since the shift towards informed financing

has a positive effect as long as the frequency of new matches does not become

too small. I also find that a mild version of this tax can attenuate business

cycle fluctuations.

To the extent that my paper emphasizes financial non-neutrality, it is re-

lated to the macroeconomic literature on credit channels: Gurley and Shaw
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(1955), Williamson (1987), Bernanke and Gertler (1989), and Kiyotaki and

Moore (1997) are but a few examples. It is also related to a more recent

branch of this literature which builds on the asset price propagation mecha-

nism in Kiyotaki and Moore (1997) to investigate financial sector ineffi ciency.

In Lorenzoni (2008) and Korinek (2011), for instance, fire sales of collateraliz-

able assets impart pecuniary externalities which can culminate in a financial

crisis.3 In contrast, the externalities identified by model arise even if balance

sheets and credit contracts are decoupled from asset prices, thus providing

a new justification for regulatory intervention. Since the problem I propose

exists at the level of bank decision-making, my paper is also related to pre-

vious work on the microeconomics of credit markets.4 Examples here include

Broecker (1990), Cao and Shi (2001), and Direr (2008) who examine screening

externalities, Parlour and Rajan (2001) who examine competition externalities

with strategic default, and Becsi et al. (2009) who examine search frictions in

the credit market matching process. All these studies focus on either match-

ing or screening though so they cannot explain how banks allocate resources

between the two and how this allocation then affects the macroeconomy.

The paper proceeds as follows: Section 1 details the environment and sets

up the optimization problems; Section 2 analyzes the decentralized steady

state; Section 3 compares this steady state to the constrained effi cient alloca-

tion and discusses the externalities; Section 4 calibrates the model to illustrate

additional properties of the equilibrium and how they respond to corrective

taxation; Section 5 concludes. All proofs are presented in Appendix A.

1 The Model

1.1 Environment

Time is discrete. All agents are infinitely-lived, risk neutral, and endowed with

a unit of effort each period. There is a continuum of firm types, ω ∈ [0, 1],

3For more on fire sales in macroeconomics, see Shleifer and Vishny (2011) and the refer-
ences therein.

4See Freixas and Rochet (1997) for an overview of such models.
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with symmetric density function f (·). For simplicity, I set f (·) = 1. Each

firm has private information about its type. It also has access to a risky

production project that requires one unit of external capital to operate. A

type ω firm that obtains the necessary capital and exerts effort e into the

production project generates θ (ω) units of output with probability e and zero

units with probability 1 − e, where θ′ (·) > 0 and θ′′ (·) < 0. Project output

includes the original capital input so unsuccessful projects destroy capital. The

firm’s cost of exerting effort is −c ln (1− e), where c > 0 is a constant.5

Firms cannot store project output and they do not have direct access to

capital so they must borrow from a measure of ex ante identical lenders that

also populates the economy. Lenders cannot produce but, in addition to cap-

ital, they have access to two technologies that allow them to emerge as in-

termediaries. First, lenders can create and/or advertise financial products to

match firms with capital. The greater the number of matches, the greater

the lending intensity. I abstract from the exact process through which lenders

generate their matches, summarizing it instead as the operation of a matching

technology. Second, lenders can screen firms to determine whether facilitating

such matches is indeed profitable. Although lenders may want to undertake

both activities, it is either too costly or too time-consuming to undertake each

one until its marginal return is zero. This restriction is captured by a unit

resource constraint. In particular, a lender who devotes π units of his effort

endowment (interpreted as time) to matching gets a borrower with probabil-

ity π and discovers that borrower’s type with probability 1 − π immediately
thereafter.6 Lenders cannot support more than one match at a time and can-

not search "on the contract" so the matching technology is only available to

5This functional form rules out the corner choice of e = 1 and thus conserves on algebra.
As long as they are increasing and convex in the amount of effort, other functional forms
will yield similar qualitative results.

6The probabilities of forming informed and uninformed matches are then π (1− π) and
π2 respectively. Therefore, if one would rather think of unmatched lenders as operating a
single technology that combines getting and vetting borrowers, π and 1 − π can be inter-
preted as inputs into a credit market "production function" that yields an informed match
with probability π (1− π), an uninformed match with probability π2, and no match with
probability 1− π.
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unmatched lenders. In contrast, screening can be undertaken by all lenders.

At this point, it will be useful to provide a foundation for the unit re-

source constraint on lenders. To do so, consider a more general problem where

intertemporal resource accumulation is permitted and lenders face concave in-

termediation technologies. If these technologies have enough curvature - that

is, if the functions which transform resources into success probabilities for

each activity exhibit suffi ciently diminishing returns - then lenders will have

an incentive to smooth resources out across time. In other words, the total

amount of resources available each period will be roughly constant and the

relevant margin is the fraction of these resources that go to matching rather

than screening. Normalizing available resources in each period to one and in-

terpreting π and 1 − π as the matching and screening fractions thus proxies
for the more general problem. Now, since decisions in the proxy problem are

made subject to a fixed resource constraint each period, linear intermediation

technologies will provide just as much intuition as concave ones. The former

can then be used in conjunction with the unit constraint to further simplify

the exposition.

To understand the implications of a lender’s resource allocation decision,

let us examine how lenders evolve over time. Begin with a lender who is un-

matched at the end of date t−1. At the beginning of date t, the lender chooses

π. If he fails to attract a borrower, then he stays unmatched throughout t and

must try again in t + 1. If, however, he succeeds in forming a match, then

he exerts screening effort 1 − π right after getting that match. Successful

screening means that the lender’s information set contains the borrower’s true

type whereas unsuccessful screening means that it only contains the lender’s

beliefs about the pool of borrowers from which he drew the match. To keep

the analysis tractable, I assume that these beliefs cannot be conditioned on

credit ratings if screening fails.7

Given his information set, the newly matched lender must make two more

7That is, discovering accurate credit histories requires screening to be at least partly
successful. I emphasize accuracy as the recent crisis revealed several instances where "off
the shelf" ratings were problematic.
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decisions at the beginning of date t. First, he must decide whether to fi-

nance the borrower he just attracted or whether to let him go and try for

another borrower in t+ 1. Information is clearly important here because only

lenders who have successfully screened will be able to gauge how profitable

their matches really are. In contrast, lenders who must rely on their beliefs

about the borrower pool can only gauge average profitability across types. In

what follows, I denote the retention strategy of a matched and informed lender

by a (ω), where a (ω) is an indicator function that equals 1 if and only if the

lender accepts to finance a type ω borrower.8 Conditional on him keeping the

borrower, the lender’s second decision is what contract terms to offer. I as-

sume no intertemporal commitment so each contract is defined by a one-period

loan rate. This rate includes the borrowed unit of capital and must be paid

to the lender if the project succeeds. Lenders cannot observe the exact out-

come of a project but can detect the presence of positive output so borrowers

repay if and only if their projects are successful. The information on which

the lender conditions his loan rate is again important. Since the same rate

can induce different ω’s to exert different production effort, the lender’s offer

affects whether the borrower’s project will fail and, therefore, whether capital

will be destroyed.

Once retention decisions have been made and loan rates set, matched bor-

rowers undertake production. The output of a successful project is then split

so that, given loan rate R, the borrower gets θ (ω) − R and the lender gets

R. Borrowers consume their entire cut. In contrast, lenders save (1− δ)R as
capital for future financing and deplete the rest, δR where δ ∈ [0, 1), as an

operating expense.9 In what follows, I assume the existence of a competitive

8To ease exposition, assume that creating and/or advertising financial products is en-
forceable in the sense that a lender who has exerted π > 0 in the current period and attracted
a match cannot reject that match unless he can prove that the applicant’s ω is too low (i.e.,
can only discriminate based on ω).

9Since the measure of borrowers is 1 and each borrower gets at most 1 unit of capital,
capital demand is bounded above by 1. There are no such restrictions on lender revenue
so δ is introduced to help ensure that capital supply is also bounded. Assumption 1 in
Section 2.3 provides a suffi cient condition for bounded capital accumulation. While δ = 0
is certainly permissible, lower values of θ (·) and/or higher values of c would be required for
market clearing.
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interbank market for capital and denote its market clearing cost by r. A lender

who does not have enough capital to finance his match must borrow at rate r

while a lender who does have enough capital interprets r as the opportunity

cost of accepting his match. A lender’s gross cost of funds is thus 1 + r, where

1 represents the loan made to the borrower. Combined with the fact that each

borrower needs only one unit of capital and the fact that lenders can finance

only one borrower at a time, the interbank market allows us to abstract from

the distribution of capital across lenders and focus instead on aggregate capital

accumulation.10

At the end of date t, matches are subject to an exogenous separation prob-

ability µ ∈ (0, 1). Separation implies that the lender starts t + 1 unmatched.

Non-separation implies that he carries his match into t + 1 and thus cannot

operate the matching technology that period. Since screening is still available

to all lenders and a lender’s effort endowment is not intertemporally transfer-

able, it then follows that any matched lender who enters t + 1 without full

information about his borrower’s type will undertake complete screening. As

a result, uninformedness lasts for at most one period and within-lender credit

history is rendered irrelevant.11 The lender’s problem is now that of a matched

lender who enters t + 1 with full information: at the beginning of the period

10In the spirit of Diamond (1984) and Rajan (1994), my model focuses on the lending func-
tion of banks. To justify the abstraction from deposit-taking decisions, one could imagine
something akin to deposit insurance. By making banks look equally riskless to depositors,
such insurance would dull both the need to compete for deposits and the fear of a bank
run, allowing all the action to come from the lending side. Interbank capital could then be
interpreted as the insured deposits held by the banking system and δ could be interpreted
as the exogenous fraction of deposits withdrawn each period. That banks funded entirely
by insured deposits would then just maximize expected interest income is consistent with
Stein (1998).
11That lenders are uninformed for at most one period also simplifies the inference problem

for unmatched lenders and keeps the model analytically tractable. In particular, if unin-
formed lenders did not fully screen in the second period, then inferences about the pool of
available borrowers would also depend on how long borrowers stay in their matches before
being let go and what the lenders that let them go may have learned in that time. In a
way, type discovery by the second period of a match is consistent with the literature on
relationship lending which argues that repeated interactions with the same borrower hasten
the rate at which a lender learns about that borrower. For more on relationship lending,
see Boot (2000), Hachem (2011), and the references therein.
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and conditional on ω, he decides whether to finance the borrower again and,

if he accepts to finance, then he also chooses a one-period loan rate. If he

rejects, then he enters t+ 2 unmatched.

1.2 Optimization Problems

1.2.1 Borrowers

Consider a type ω borrower who has obtained financing at loan rate R. With-

out credit ratings or intertemporal incentives, the borrower’s problem is a

static one: given R, he chooses how much effort to put into the production

project so as to maximize his one-period expected utility. Recall that a type ω

who exerts production effort e succeeds with probability e, in which case the

project generates θ (ω) and the borrower repays his lender R. Taking into ac-

count the disutility of effort, the borrower thus chooses e ∈ [0, 1] to maximize

e [θ (ω)−R] + c ln (1− e). Conditional on ω and R, this problem yields the

following optimal strategy:

e (ω,R) =

{
0 if R > θ (ω)− c
1− c

θ(ω)−R if R ≤ θ (ω)− c
(1)

If the loan rate is higher than the choke rate θ (ω) − c, then ω’s project fails
with certainty because he has no incentive to exert production effort. If the

loan rate is lower than the choke rate, then ω’s effort is positive but strictly

decreasing in R. Since θ′ (·) > 0, a higher type is more likely to exert positive

effort and his effort in this case will be higher for any given loan rate.

1.2.2 Lenders

As described earlier, a lender’s problem depends on whether he is matched

or unmatched and, if matched, it also depends on whether he is informed

or uninformed about his borrower’s type. Since a lender’s choices affect how

he evolves over time, I formulate the problem as a dynamic program. Let J

denote the value function of an informed lender, X the value function of an
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uninformed lender, U the value function of an unmatched lender, and β ∈ (0, 1)

the common discount factor. The aggregate state is summarized by S ≡{
K,V (·) , Ṽ (·) , λ−1 (·) , φ−1 (·)

}
, where K is the beginning-of-period capital

stock, V (ω) is the value of type ω under informed financing, Ṽ (ω) is the value

of ω if unmatched, λ−1 (ω) is the proportion of ω’s financed by informed lenders

last period, and φ−1 (ω) is the proportion financed by uninformed lenders.

Consider first an informed lender matched with a type ω borrower. The

lender takes as given S and his individual state {ω, v}, where v is the value
attained by his borrower. In turn, he must choose whether to keep the borrower

(a), what loan rate to charge if he does keep him (R), and what continuation

value to offer (v+1). Since the borrower has the option of turning down the

contract and hoping for a new lender next period, R and v+1 must make the

borrower want to participate (i.e., the present discounted value of staying with

an informed lender cannot be less than βṼ+1 (ω)). The informed problem can

be written as:

J (ω, v, S) = max
a,R,v+1


(1− a) βU

(
S+1, ψ+1

)
+a

[ (
1− c

θ(ω)−R

)
R− (1 + r (S))

+β
[
(1− µ) J (ω, v+1, S+1) + µU

(
S+1, ψ+1

)] ]


subject to

a ∈ [0, 1] , R ∈ [0, θ (ω)− c]

v = θ (ω)−R− c+ c ln
(

c
θ(ω)−R

)
+ β

[
(1− µ) v+1 + µṼ+1 (ω)

]
≥ βṼ+1 (ω)

S+1 = Γ (S) , ψ+1 = G (S+1)

(2)

Let us work through equation (2). If the lender rejects the borrower, then he

gets the discounted value of being unmatched next period (ψ, the individual

state of an unmatched or uninformed lender, is defined in the next paragraph).

In contrast, if he accepts the borrower, then his expected profit in the current

period is e (ω,R)R less the gross cost of funds 1 + r (S). The lender’s future

value is then J (ω, v+1, S+1) if the match is not exogenously destroyed and

U
(
S+1, ψ+1

)
otherwise. Note that e (ω,R) as in (1) means the lender will
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never want to charge above θ (ω) − c. Moreover, although higher values of R
increase the lender’s revenue if repaid, they also decrease the probability of

repayment so an informed lender will not want to monopolize his borrower and

the participation constraint may not actually bind. To complete the problem,

the lender’s beliefs about the evolution of S and ψ are governed by laws of

motion which, as will be discussed in Section 2.1, must be consistent with

aggregate behaviour.

Consider now an uninformed lender. Without knowledge of ω, this lender

can only offer a pooled rate R which induces e
(
ω,R

)
> 0 if and only if

R < θ (ω) − c. Let η
(
R
)
denote the highest type that does not exert effort

under R and let ψ (·) denote the density function that the lender believes
characterizes the pool of borrowers from which he drew. The expected one-

period profit of an uninformed lender is then
∫ 1

η(R)

(
1− c

θ(ω)−R

)
Rψ (ω) dω less

the gross cost of funds. Recall from Section 1.1 that uninformedness lasts for

at most one period so, if the match is not exogenously destroyed at the end

of this period, the lender’s future value is J (ω, V+1 (ω) , S+1). Since ω is not

known at the time of the uninformed problem though, this value must be

weighted by ψ (ω) and integrated. If the match is exogenously destroyed, then

the lender’s future value is U
(
S+1, ψ+1

)
. The uninformed problem is thus:

X (S, ψ) = max
R



∫ 1

η(R)

(
1− c

θ(ω)−R

)
Rψ (ω) dω − (1 + r (S))

+β (1− µ)

∫ 1

0

J (ω, V+1 (ω) , S+1)ψ (ω) dω

+βµU
(
S+1, ψ+1

)


subject to

R ∈ [0, θ (1)− c] , η
(
R
)

= arg min
w∈[0,1]

∣∣θ (w)− c−R
∣∣

S+1 = Γ (S) , ψ+1 = G (S+1)

(3)

Finally, consider an unmatched lender who must decide how to divide re-

sources between getting matches and screening applicants. A lender who de-

votes π units to attracting a borrower becomes matched and informed with

12



probability π (1− π), matched and uninformed with probability π2, and stays

unmatched with probability 1−π. We thus have the following problem for an
unmatched lender:

U (S, ψ) = max
π

 π (1− π)

∫ 1

0

J (ω, V (ω) , S)ψ (ω) dω

+π2X (S, ψ) + (1− π) βU
(
S+1, ψ+1

)


subject to

π ∈ [0, 1] , S+1 = Γ (S) , ψ+1 = G (S+1)

(4)

1.3 Laws of Motion

1.3.1 Capital

The evolution of the capital stock is governed by:

K+1 = (1− δ)
[∫ 1

0
e (ω,R (ω))R (ω)λ (ω) dω +

∫ 1

0
e
(
ω,R

)
Rφ (ω) dω

]
(5)

Starting from K, K+1 is calculated by subtracting the amount of capital put

into production then adding the share of output saved by lenders. Each loan

transfers one unit of capital to the borrower so the amount of capital put

into production equals the measure of borrowers financed. This is essentially

capital demand and it is given by K̃ ≡
∫ 1

0
[λ (ω) + φ (ω)] dω. In equilibrium

though, the cost of funds r(S) adjusts to yield aggregate versions of a (·) and
π that clear the capital market.12 Therefore, K̃ = K and, as per equation (5),

K+1 just equals the output saved by lenders during the previous period.

1.3.2 Distributions

I now present the laws of motion for the proportion of type ω’s with informed

financing and the proportion with uninformed financing, λ (ω) and φ (ω) re-

12The role of r is entirely indirect. If r is interpreted as an opportunity cost that the
lender must be compensated for, then it does not enter into aggregate accounting. If it is
instead interpreted as a direct cost - namely the cost of borrowing the required unit from
another lender on the interbank market - then r is subtracted from the revenues of the
borrowing lender and added to the revenues of the lending lender, effectively washing out.
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spectively. Let Π denote the aggregate lending intensity of unmatched lenders

and A (·) the aggregate retention strategy of informed lenders. The evolution
of λ (ω) follows:

λ (ω) = A (ω)

[
(1− µ)

[
λ−1 (ω) + φ−1 (ω)

]
+
[
1− (1− µ)

[
λ−1 (ω) + φ−1 (ω)

]]
Π (1− Π)

]
(6)

If A (ω) = 0, then all ω’s are rejected by informed lenders so λ (ω) = 0. Con-

sider now A (ω) = 1. Borrowers who were financed by informed lenders last

period and who are still matched with their lenders at the beginning of this

period will again obtain informed financing. Since uninformedness lasts for at

most one period, borrowers who were financed by uninformed lenders last pe-

riod and who are still matched this period will also obtain informed financing.

These two statements explain (1− µ)
[
λ−1 (ω) + φ−1 (ω)

]
in equation (6). To

see where the second term comes from, note that some borrowers who start the

current period unmatched may also obtain informed financing. The mass of

ω’s available to be matched is the total mass of ω’s, 1, minus the mass that is

already in matches, (1− µ)
[
λ−1 (ω) + φ−1 (ω)

]
. Fraction Π of these available

borrowers are drawn into new matches and, out of these new matches, fraction

1− Π are informed.

Turning to the law of motion for φ (ω):

φ (ω) =
[
1− A (ω) (1− µ)

[
λ−1 (ω) + φ−1 (ω)

]]
Π2 (7)

Since borrowers previously matched with uninformed lenders are either sep-

arated or discovered, there is no carry-over of uninformed matches. Instead,

φ (ω) is composed entirely of new matches that were unsuccessfully screened.

If A (ω) = 0, then all ω’s are available for new matches at the start of this pe-

riod and, if A (ω) = 1, then only 1− (1− µ)
[
λ−1 (ω) + φ−1 (ω)

]
are available.

Fraction Π of these available borrowers are drawn into new matches and, out

of these new matches, fraction Π are uninformed.

With λ (ω) and φ (ω) characterized, we can also formalize ψ (ω). For any ω,

the proportion of unmatched borrowers at the beginning of the current period
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can be written as 1 − A (ω) (1− µ)
[
λ−1 (ω) + φ−1 (ω)

]
so equilibrium beliefs

about the composition of available borrowers must satisfy:

ψ (ω) =
1− A (ω) (1− µ)

[
λ−1 (ω) + φ−1 (ω)

]∫ 1

0

[
1− A (x) (1− µ)

[
λ−1 (x) + φ−1 (x)

]]
dx

(8)

2 Decentralized Equilibrium

2.1 Definition of Equilibrium

A symmetric equilibrium in this model is a set of lender value functions

{J,X, U} and sequences of borrower continuation values
{
V, Ṽ

}
, individual

decision rules
{
a, π,R,R, v+1

}
, aggregate decision rules {A,Π}, distributions

{λ, φ}, financing capital {K+1}, costs of funds {r}, and beliefs {ψ,Γ,G} sat-
isfying:

1. Lender optimality as per the optimization problems in Section 1.2.2.

2. Symmetry (i.e., A = a, Π = π, and V = v).

3. Capital market clearing as described in Section 1.3.1.

4. Laws of motion (5), (6), and (7).

5. Functional equations for V and Ṽ .13

6. Consistency of beliefs and, in particular, ψ as given by (8).

13Recall that V (ω) and Ṽ (ω) are just used to construct the participation constraint that
an informed lender must satisfy in order to retain ω. The functional equations for the types
that the lender does indeed want to keep are:

V (ω) = θ (ω)−R (ω)− c+ c ln
(

c
θ(ω)−R(ω)

)
+ β

[
(1− µ)V+1 (ω) + µṼ+1 (ω)

]
Ṽ (ω) = Π2

[
max

{
θ (ω)−R− c+ c ln

(
c

θ(ω)−R

)
, 0
}

+ β
[
(1− µ)V+1 (ω) + µṼ+1 (ω)

]]
+Π (1−Π)V (ω) + (1−Π)βṼ+1 (ω)
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The rest of this paper focuses on symmetric equilibria with non-binding

borrower participation constraints. In effect, I am restricting attention to equi-

libria where R (·) is independent of Π for analytical tractability. Participation

constraints are thus ignored until Section 2.3. At that point, I will present

conditions under which the resulting choices do indeed satisfy the constraints.

2.2 Optimal Lending Intensity

The key allocation decision in my model is the choice of π so I start by char-

acterizing the best response function of an unmatched lender. That is, for any

state of affairs on the informed side of the market, how does π respond to aggre-

gate lending intensity? Proposition 1 eases notation by reducing the informed

retention strategy from an indicator function to a cutoff type. Proposition 2

then establishes that the steady state best response function of an unmatched

lender is decreasing in Π when interior:

Proposition 1 There is a scalar ξ such that A (ω) = 1 if and only if ω ≥ ξ.

Proposition 2 Let πl (Π|ξ) denote the steady state best response of π to Π

for a particular value of ξ. There exists a scalar ξ̂ and a function Π̂ (·) such
that Π̂′ (·) ≤ 0 and:

1. If ξ < ξ̂, then πl (·|ξ) = 1.

2. If ξ ∈
[
ξ̂, 1
)
, then πl (Π|ξ) = 1 for all Π < Π̂

(
ξ̂
)
and πl (Π|ξ) ∈ (0, 1)

with ∂πl(Π|ξ)
∂Π

< 0 for all Π ∈
[
Π̂
(
ξ̂
)
, 1
]

3. If ξ = 1, then πl (·|ξ) = 0.

To better understand the content of Proposition 2, notice that a lender has

two incentives to learn his borrower’s type. First, the information will help

him reject unprofitable applicants and, second, it will help him determine how

much surplus he can extract from the profitable ones. Very high values of

ξ mean that only a small group of borrowers are profitable so the desire to
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identify them drives lending intensity down and, in the extreme case, we get

πl (·|1) = 0. On the other hand, very low values of ξ mean that almost all types

are profitable so the first incentive is diminished. Moreover, for ξ suffi ciently

low, the risk of not forming a match this period outweighs the second incentive

and lending intensity tends to 1.

The interesting case is ξ ∈
[
ξ̂, 1
)
. If Π = 0, then any unmatched lender

who successfully expends π > 0 will have drawn from the initial distribution

of types. As long as this distribution yields profitable expectations (which

it must in order for the credit market to get off the ground), the lender will

indeed choose π > 0. What happens if Π is slightly positive? Although other

lenders are only getting a few borrowers, they screen them so intensely that

at least some good types are pulled off the market while almost all the bad

types remain. The average quality of available borrowers is thus lower relative

to the case with Π = 0, increasing any individual lender’s incentive to screen

and decreasing the choice of π. Consider now a high value of Π, denoted

by ΠH . A lot of matches are being formed but immediate type discovery is

not common among other lenders so both good and bad borrowers are pulled

off the market. This effect will be even more pronounced at ΠH + ε so, if

uninformed matches were to stay uninformed, beliefs under ΠH + ε would be

closer to the initial distribution than beliefs under ΠH , increasing the choice

of π and delivering a U-shaped best response function. Recall, however, that

uninformedness is eventually resolved (and bad borrowers thus released) when

lenders can preserve their matches across periods. In turn, higher values of Π

do not translate into better steady state beliefs and the best response function

slopes downwards.14

14Three comments are in order. First, the deterioration in beliefs would not be eliminated
by the entry of new borrowers. To see why, suppose that exogenously separated borrowers
are replaced by new draws from f (·). Exogenous separations will still inject good and
bad types into the available pool whereas endogenous separations will still only inject bad
types. Once again then, the steady state pool will be characterized by a higher density
of bad types than the initial distribution. Second, the deterioration will also be robust to
multiple matches per lender. Suppose, for example, uninformed lenders can split resources
between three activities: attracting a second borrower, screening the second borrower, and
learning about the first borrower. Discovery of the first borrower’s type may thus get delayed
(potentially destroying more capital) but it cannot be delayed indefinitely for all lenders so
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2.3 Existence and Uniqueness

With the best response non-increasing in Π, each value of ξ yields at most one

symmetric equilibrium in the game between unmatched lenders. The question

is now whether there is a unique ξ which, when combined with the solution

to Π = πl (Π|ξ), clears the capital market. To establish the existence and
uniqueness of such a steady state, I assume the following:

Assumption 1
∫ 1

0

(√
θ (ω)−

√
c
)2

dω < 1
1−δ

Assumption 2 θ (1) <
(

1 +
√
θ (0)

)2

Assumption 1 ensures that capital cannot be accumulated unboundedly while

Assumption 2 regulates the worst borrower by putting a lowerbound on his

output if successful. Proposition 3 summarizes the results:

Proposition 3 There exist scalars c and c such that 0 < c < c ≤ θ (0) and:

1. For c ∈ (c, c), the set of symmetric equilibria with non-binding borrower

participation constraints contains a trivial steady state (i.e., Π = 0, ξ =

1, and K = 0) and a unique non-trivial steady state.

2. For c ≥ c, the aforementioned set only contains the trivial steady state.

To understand the role of c here, recall the borrower strategy in equation (1).

Without c, borrower effort is unaffected by the loan rate as long as the latter

does not exceed the entire output of the project. Higher values of c introduce

a moral hazard problem and, the higher the c, the more surplus an informed

an eventual rejection of bad borrowers still occurs. Third, if one wants to interpret higher
Π as "more banks," then my downward sloping best response function is consistent with
the screening literature’s prediction that more banks can decrease any one bank’s desire to
provide credit. Unlike this literature, however, my mechanism evolves from an endogenous
resource allocation decision, not from the one-period winner’s curse faced by bidding banks
who incur no extra costs to attract borrowers. Moreover, as I show below, the best response
that results here is actually less downward sloping than the planner’s prescription (i.e., in
equilibrium, the desire to get borrowers is ineffi ciently high and the desire to screen them is
ineffi ciently low, which is not the usual prediction of screening models).
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lender will have to concede to any ω in order to incentivize him. Provided

c is not so high that it shuts down the market, this surplus-sharing motive

makes the participation constraint redundant and produces an equilibrium

where R (·) is independent of Π. Going forward, I thus focus on c ∈ (c, c) and

the non-trivial steady state.

3 Constrained Effi ciency

3.1 Benchmark for Comparison

Consider a steady state social planner who holds the entire capital stock and

who must allocate it to firms in order to achieve production. He faces the same

constraints and intermediation technologies as lenders in the decentralized

economy. In particular, Π determines the fraction of firms the planner reaches,

1− Π determines how many of these firms he is informed about, and ξ is the

worst firm he allocates to if informed. Aggregate feasibility requires that the

total amount of capital he allocates does not exceed the total amount he

holds. Subject to aggregate feasibility, the planner chooses Π, ξ, R (·), and R
to maximize the total present discounted value of capital. The R’s are now

interpreted as the division of project output into capital and consumption. A

similar interpretation is valid for the decentralized economy since borrowers

only consume while lenders only save. Loan rates were thus more than just

prices so, to shut down any distortions stemming from how lenders versus

planners want to divide output into its components, I start with a planner

who uses capital rather than net output in his objective function. This yields:

Proposition 4 Letting γ denote the multiplier on the aggregate feasibility con-
straint, the Lagrangian for the constrained effi ciency problem is:

L = [1 + γ (1− β) (1− δ)]
[
Π2
∫ ξ
η(R)e

(
ω,R

)
dω + µΠ2

µ+(1−µ)Π

∫ 1

ξ
e
(
ω,R

)
dω
]
R

+ [1 + γ (1− β) (1− δ)] Π(1−µΠ)
µ+(1−µ)Π

∫ 1

ξ
e (ω,R (ω))R (ω) dω

−γ (1− β)
[

Π(1−ξ)
µ+(1−µ)Π

+ Π2ξ
]
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Whether the decentralized equilibrium is effi cient can now be addressed. Com-

paring the equilibrium conditions to the planner’s first order conditions yields

the following steady state results:

Proposition 5 Denote the equilibrium allocation by (ξ∗,Π∗) and the con-

strained effi cient allocation by (ξ′,Π′).

1. If µ = 1, then the equilibrium is constrained effi cient.

2. If µ 6= 1 and β is high, then the equilibrium is ineffi cient. For high values

of c not exceeding c, the direction of ineffi ciency is Π∗ > Π′ and ξ∗ > ξ′.

Relative to the decentralized market, the second part of Proposition 5 says that

the planner would devote more resources to screening new matches but be less

restrictive in his cutoff once informed. Unmatched lenders are thus too liberal

in their provision of credit while informed lenders are too conservative. As

we will see later on, this leads to an ineffi ciently large market for uninformed

financing and, on aggregate, an ineffi ciently high rate of delinquencies.

3.2 Externalities

Before proceeding, it will be useful to establish some intuition for Proposition

5. When µ = 1, all matches are destroyed at the end of every period so the

pool of available borrowers next period is always the initial distribution. That

the equilibrium is effi cient in this case suggests the externalities underlying the

ineffi ciency when µ 6= 1 stem from the intertemporal preservation of at least

some matches. Indeed, high values of β confirm the intertemporal nature of the

externality by ensuring that lenders care enough about the future implications

of µ 6= 1.

Starting from any given distribution, these implications are as follows.

Since attracting a borrower today limits the need for matching resources to-

morrow, lenders who carry their clients over can devote more of tomorrow’s

resources towards screening if today’s screening efforts are unsuccessful. The
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eventual rejection of unprofitable borrowers then worsens the pool that cur-

rently unmatched lenders will draw from should they try to attract someone

later on. In this way, high matching effort by some lenders will induce other

lenders to also over-invest in matching, creating an "attract now, screen later"

motive that propels the market to an ineffi cient steady state. In the language

of Section 2.2, the externality is that unmatched lenders do not account for the

fact that their lending intensity adversely affects the steady state pool of avail-

able borrowers. Just as Section 2.2 established that any Π > 0 worsens this

pool relative to the initial distribution, the same line of reasoning establishes

that any πl (Π|ξ) > 0 also worsens the pool when adopted by all unmatched

lenders. Each lender, however, sets πl (Π|ξ) without internalizing this negative
feedback effect, making aggregate lending intensity ineffi ciently high.15

Unmatched lenders also fail to internalize their effect on the informed prob-

lem. Recall from equation (2) that an informed lender only retains borrowers

who yield him at least as much as his outside option, βU . Unmatched lenders,

however, choose individual lending intensity to maximize U , not recognizing

that it then feeds back into the choice of ξ. Proposition 5 demonstrates that ξ

is ineffi ciently high in the decentralized equilibrium, suggesting that the out-

side option of an informed lender is too large. The planner thus prescribes

a lower value of Π both because he internalizes the effect on the distribution

of available borrowers and because he internalizes the effect on the endoge-

nous destruction of informed matches. To see how implementing the planner’s

allocation would make informed lenders less selective, note the two compet-

ing effects on U : while lowering Π may give informed lenders an incentive to

hold out for better borrowers by mitigating the eventual deterioration in the

quality of the available pool (the intensive effect), prescribing lower lending

intensity to everyone also means a lower rematching rate should any informed

lender decide to dissolve his current match (the extensive effect). Lower lend-

ing intensity thus lowers ξ through the extensive margin and results in more

15I emphasize that this externality operates through the quality of available borrowers,
not the quantity. Indeed, by not making Π an argument in the matching technology of an
individual lender, I have expressly shut down the type of congestion externality that the
search literature is concerned with.
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informed matches being preserved.

3.3 Corrective Taxation

The direction of the ineffi ciency identified in Proposition 5 motivates a tax

on lending intensity. Consider a linear tax which makes activities designed to

attract borrowers more costly. The tax rate is denoted by τ and only affects

unmatched lenders. In particular, the maximization problem on the right-hand

side of equation (4) now includes the term −τπ. The tax revenues are then
added back to aggregate capital so that all other equations are unchanged.

Proposition 6 establishes that this tax does indeed have the desired effect:

Proposition 6 Under the conditions that guarantee Π∗ > Π′ and ξ∗ > ξ′ in

Proposition 5, dΠ∗

dτ
< 0 and dξ∗

dτ
< 0.

Since τ makes lending intensity more costly, the negative response of Π∗ is

straightforward. The negative response of ξ∗ then follows from the fact that

higher taxes and lower rematching probabilities decrease the outside option of

informed lenders, making them less restrictive in their retention of borrowers.

Although alternative specifications of τ are certainly possible, I begin with the

simple version described here to fix ideas. This τ can be interpreted as either

a direct tax on the number of loans or a regulation which increases the cost of

engaging in the matching activity.16

4 A Calibrated Example

Recall from Proposition 5 that high values of c are a suffi cient condition for

Π∗ > Π′ and ξ∗ > ξ′ when the decentralized equilibrium is ineffi cient. All

16The tax could also be implemented through the activities of bank examiners. As argued
in Kashyap et al. (2008), the regulatory response to the recent crisis could include monitoring
bank decision-making subject to the caveat that centralizing governance and restructuring
employee compensation may distort the "search for performance" that allows banks to
allocate resources. As I have shown, however, the decentralized allocation of internal bank
resources is itself distorted so there is indeed scope for examiners to monitor the composition
of a bank’s workforce and levy costs accordingly.
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else constant, higher c increases the probability of capital destruction by in-

creasing the disutility of borrower effort. Economies with high c are thus ones

where we might have actually expected careful lending practices, making their

ineffi ciently low screening all the more interesting. In this section, I conduct

a set of numerical exercises to investigate how high c has to be in order to

guarantee both non-bindingness of the borrower participation constraints and

Π∗ > Π′. I also use the calibrated model to illustrate additional properties of

the decentralized equilibrium and its response to the corrective tax proposed

above.

4.1 Parameterization

For different values of c, I calibrate the model’s steady state to match features

of the US credit market over the period 1995-2005. Although the Gramm-

Leach-Bliley Act did not offi cially institute broad banking until 1999, the Fed

began easing Glass-Steagall in the late 1980s, effectively expanding the range

of activities that banks could engage in. As such, I calibrate the model under

τ = 0 before considering policy experiments where τ 6= 0.

I employ production functions of the form θ (ω) = y0 + y1ω
α, normalizing

y0 = 1 so that every successful project returns enough to cover its capital

input. I also define the model period to be a quarter and use the standard

discount factor β = 0.99. The parameters left to be calibrated are: the exoge-

nous separation probability µ, the depletion parameter δ, and the production

parameters y1 and α.

From the 1997 Census of Manufactures, Dziczek et al. (2008) estimate that

the difference between the log labour productivity of the 90th and 10th per-

centile manufacturing plants is 1.62 so I use this figure to target the dispersion

of production among successful borrowers. I also target K/Y to match the ra-

tio of net business loans to GDP. Defining net loans as the difference between

the credit market debt and the credit market assets of non-farm non-financial

businesses, FRED data yields a ratio of 0.57. To help pin down µ, I use the

estimate of Bharath et al. (2011) that 71% of business loans come from lenders
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who recently provided the firm with another loan. The target in my model is

the proportion of loans not in their first period. Finally, I use the capacity uti-

lization rate for manufacturing, roughly 0.78 in the FRED database, to target

the model’s ratio of actual production to capacity. Here, capacity is defined as

the production that could be achieved if, all else constant, borrowers exerted

effort e (·, 0). The resulting values of µ, δ, α, and y1 are listed in Table 1.

4.2 Steady State Results

Consider first the effect of c. The black squares in Figure 1 plot Π∗ and

ξ∗ when the model is calibrated using the indicated c. The lines emanating

from each black square then plot Π∗ and ξ∗ when c is varied but the other

parameters are not. Each line starts at the lowest c for which the borrower

participation constraints do not bind (i.e., the lowest c). The c at which

Π∗ = 0 then represents c. Figure 1 also plots in red the planner’s solution

for each parameterization. As we can see, the direction of the ineffi ciency in

Proposition 5 is robust to a wide range of c’s.

Turn now to the macroeconomic implications of Π∗ > Π′ and ξ∗ > ξ′.

To conduct the remaining analysis, I calibrate c in addition to µ, δ, α, and

y1. BEA Economic Accounts report that the value-added of the financial

industry as a fraction of GDP is 0.075 for the period under consideration.

Value-added sums compensation to employees, production taxes, and gross

operating surplus (at least part of which is distributed as dividends and thus

not available for future loans) so I interpret δK as the model’s counterpart and

use δK/Y as the additional target. The resulting parameters are c = 0.285,

µ = 0.14, δ = 0.13, α = 0.5, and y1 = 2.05.

Table 2 shows how the decentralized equilibrium (market) and the con-

strained effi ciency benchmark (k-max) differ for several variables. It also

compares the allocations of a planner who maximizes the total present dis-

counted value of capital (k-max) to those of a planner who maximizes the

total present discounted value of net output (w-max).17 Whether the planner

17Given R, the net output of type ω is e (ω,R) θ (ω)+c ln (1− e (ω,R)). The total present
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cares about capital or net output, the conclusions are the same: uninformed

lending in the decentralized economy is too high, informed lending is too low,

defaults are in excess, and a welfare loss obtains.18

4.3 Effect of the Corrective Tax

Figure 2 illustrates how the decentralized steady state varies with the lending

intensity tax τ . The top two panels confirm the content of Proposition 6,

namely that higher values of τ lead to lower values of Π∗ and ξ∗. There are

four other noteworthy features. First, market size (the measure of borrow-

ers financed or, equivalently, total credit) exhibits a hump-shaped response

to increases in τ .19 Two competing forces drive this result. On one hand,

the decline in lending intensity decreases match formation but, on the other,

the decline in informed selectivity increases match preservation. The latter

effect dominates at low tax rates but is eventually overtaken by the former.

Second, higher values of τ increase the average quality of the credit market.

Since a borrower’s default probability depends on both his type and the loan

rate he is charged, one of the advantages of informed lenders is that they

can give borrowers better incentives to run successful projects. Although the

decline in ξ∗ lowers the average type financed, it (along with the increase in

screening, 1 − Π∗) increases the proportion of financing that is informed and

thus decreases the average delinquency rate. Third, production exhibits a

hump-shaped response to increases in the tax. In particular, the shift towards

informed financing has a positive effect as long as the frequency of new matches

does not become too small. Finally, welfare increases as ξ∗ and Π∗ approach

the effi cient allocation.

Figure 3 illustrates the effect of τ on dynamics. Suppose a borrower who

exerts effort e now succeeds with probability (1 + z) e, where z ∈ (−ε, ε) is an
unanticipated mean-zero aggregate productivity shock that is IID over time.

z is realized after all decisions have been made and is not contractible. The

discounted value of net output is thus a measure of aggregate welfare.
18Since uninformed loans are the main source of new lending, new lending is also too high.
19Note that market clearing also makes total credit equivalent to aggregate capital.
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shock I consider in Figure 3 is negative and temporary, with z1 = −0.01 and

zt = 0 for all t ≥ 2. Appendix B describes the algorithm used to compute

the responses. A negative shock to the probability of project success increases

capital destruction in t = 1. This then implies a higher cost of funds in t = 2,

reducing the incentive to lend and prompting both a decline in lending intensity

and an increase in the informed cutoff. There is, however, a countervailing

force acting on the informed cutoff: by lowering the value of being unmatched,

a higher r2 and a lower rematching probability also deteriorate the outside

option of an informed lender. A small lending intensity tax reinforces the

deterioration both by introducing a tangible cost to being unmatched and by

prolonging the recovery path of Πt. Although total credit still falls under this

tax, a short-term decline in ξt combines with the increase in 1 − Πt to limit

the contraction of informed financing, thereby hastening the reaccumulation

of capital and fostering a faster recovery in production.

Figure 3 also provides some insight into the effects of contractionary mone-

tary policy. Since the fall in z occurred after all t = 1 decisions were made, K2

was the only t = 2 state variable affected. The lower value of K2 was entirely

captured by the higher value of r2 so the dynamics from t = 2 onwards can also

be viewed as the dynamics following an open market operation that increases

the interbank rate to r2 at the beginning of t = 2.

5 Conclusion

This paper has examined the allocation of bank resources across two impor-

tant intermediation activities: creating credit market matches and screening

the borrowers in those matches. I began by constructing a model to disentan-

gle the implications of this allocation decision in an environment with private

information and competing lenders. I then showed that banks are ineffi cient at

allocating resources between matching and screening, leading to too much low-

quality credit. There are two externalities at play. The first operates through

the distribution of available borrowers when matches can be preserved over

time while the second arises because unmatched lenders also fail to internalize
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their effect on the informed problem. From a policy perspective, these results

contribute to the current debate on bank taxes. In particular, the ineffi cien-

cies identified by my model suggest that taxing and/or regulating matching

activities would be more effective than imposing a general profit tax. Indeed,

steady state results show that production exhibits a hump-shaped response to

increases in a matching tax and the model’s dynamics indicate that a mild

such tax can also attenuate business cycle fluctuations. Extending the model

to evaluate different implementations of this matching tax is therefore an in-

teresting avenue for future research.
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Table 1: Calibration Results for Different Values of c

µ δ α y1

c = 0.1 0.20 0.260 0.30 1.365

c = 0.2 0.16 0.175 0.45 1.765

c = 0.3 0.13 0.120 0.55 2.140

c = 0.4 0.11 0.060 0.60 2.415

c = 0.5 0.10 0.020 0.63 2.700

Figure 1: Ineffi ciency Results for Different Values of c

Table 2: Steady State Comparison Using c = 0.285

market k-max w-max

Lending Intensity (Π) 0.4309 0.3634 0.3637

Informed Cutoff (ξ) 0.4901 0.3667 0.3770

Amount of Informed Credit 0.4044 0.4827 0.4750

Amount of Uninformed Credit 0.1169 0.0743 0.0753

Total Credit 0.5213 0.5570 0.5503

Total New Credit 0.1512 0.1196 0.1199

Average Type Financed 0.6578 0.6399 0.6432

Average Delinquency Rate 0.3426 0.3388 0.3201

Aggregate Welfare 75.100 79.634 80.551
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Figure 2: Effect of Corrective Tax on Steady State
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Figure 3: Effect of Corrective Tax on Dynamics
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Appendix A - Proofs

Proof of Proposition 1

The proof amounts to showing that J , the informed value function, is increas-

ing in ω so I first establish that J exists. Define indicator i and value function

D such that TD (S, ω, v, ψ, i) = i×D (S, ω, v, ψ, 1) + (1− i)×D (S, 0, 0, ψ, 0)

where D (S, ω, v, ψ, 1) ≡ J (ω, v, S) and D (S, 0, 0, ψ, 0) ≡ U (S, ψ). Now sup-

poseD exists in the set of bounded and continuous functions (C). By the Theo-
rem of the Maximum, the right-hand side of equation (2) produces D (·, 1) ∈ C
while the right-hand side of (4) withX as per (3) producesD (·, 0) ∈ C. There-
fore, TD ∈ C. We can also show that Blackwell’s suffi cient conditions for a
contraction are satisfied so, by the Contraction Mapping Theorem, there is in-

deed a unique D ∈ C. By implication, J and U exist and are unique, bounded,
and continuous. A similar contraction mapping argument can then be used to

show that J lies in the set of increasing-in-ω functions. �

Proof of Proposition 2

In what follows, J (ω, v, S) and U (S, ψ) are shortened to J (ω) and U while r

is used in place of r (S). I start with the value of an informed lender, ignoring

the borrower’s participation constraint. If ω is kept, then the optimal loan

rate is R (ω) = θ (ω)−
√
cθ (ω). Defining g (ω) ≡

(√
θ (ω)−

√
c
)2

then gives:

J (ω) =

{
βU if ω < ξ
g(ω)−(1+r)+βµU

1−β(1−µ)
if ω ≥ ξ

where

ξ = arg min
x∈[0,1]

|g (x)− (1 + r)− β (1− β) (1− µ)U |

Turn now to the distribution of borrowers across financing class. In steady

state, equations (6) and (7) simplify to:

λ (ω) =

{
0 if ω < ξ
Π(1−µΠ)
µ+(1−µ)Π

if ω ≥ ξ
and φ (ω) =

{
Π2 if ω < ξ

µΠ2

µ+(1−µ)Π
if ω ≥ ξ
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Equation (8) then implies the following beliefs:

ψ (ω|ξ,Π) =

{
µ+(1−µ)Π
µ+(1−µ)Πξ

if ω < ξ
µ

µ+(1−µ)Πξ
if ω ≥ ξ

Going forward, let ψL (ξ,Π) denote the first row of the above equation and let

ψH (ξ,Π) denote the second. Also let Γ (ξ,Π) denote the expected one-period

profit of an uninformed lender evaluated at the optimal choice of R. Defining

h
(
ω,R

)
≡
(

1− c
θ(ω)−R

)
R, we can write Γ (ξ,Π) as:

Γ (ξ,Π) = ψL (ξ,Π)
∫ ξ
η(R)h

(
ω,R

)
dω + ψH (ξ,Π)

∫ 1

ξ
h
(
ω,R

)
dω

The value of an unmatched lender pursuing optimal strategy π∗ is then:

U = π∗2
[
Γ (ξ,Π)− (1 + r) + β (1− µ)

∫ 1

0

J (ω)ψ (ω|ξ,Π) dω + βµU

]
+π∗ (1− π∗)

∫ 1

0

J (ω)ψ (ω|ξ,Π) dω + (1− π∗) βU

Substituting in for J (ω), we can rearrange the above expression to isolate U .

With π∗ optimal, dU/dπ∗ = 0 so differentiating the isolated expression yields

an implicit definition of π∗. The definition can be simplified by combining

terms to reconstitute U then using the definition of ξ to sub U out. After

some algebra, we get the following best response:

π∗ = min

{
1

2[1−β(1−µ)]

( ∫ 1
ξ [g(ω)−g(ξ)]dω∫ 1

ξ [g(ω)−g(ξ)]dω+
(
g(ξ)−Γ(ξ,Π)
ψH (ξ,Π)

)
)
, 1

}
≡ πl (Π|ξ) (A.1)

Note that πl (Π|ξ) = 0 if and only if ξ = 1. Consider now ξ < 1 and the inte-

rior solution for πl (Π|ξ). Taking derivatives and using the envelope theorem to
replace ΓΠ (ξ,Π) and Γξ (ξ,Π) yields ∂πl(Π|ξ)

∂Π
∝ −g (ξ) ξ+

∫ ξ
η(R)h

(
ω,R

)
dω and

∂πl(Π|ξ)
∂ξ

∝ − (1−µ)Π[g(ξ)−h(ξ,R)]
∫ 1
ξ [g(ω)−g(ξ)]dω

µ+(1−µ)Πξ
−
[∫ 1

ξ
g (ω) dω − (1− ξ) Γ (ξ,Π)

]
g′ (ξ).

Since an informed lender can always charge type ω loan rate R, g (ω) must

be greater than or equal to h
(
ω,R

)
for all ω. This inequality will be strict
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for at least some types, implying
∫ 1

ξ
g (ω) dω > (1− ξ) Γ (ξ,Π). Combining

with g′ (ω) > 0 and hω (ω, ·) > 0, we can now conclude that ∂πl(Π|ξ)
∂ξ

< 0 and
∂πl(Π|ξ)
∂Π

< 0 whenever πl (Π|ξ) is interior. To complete the proof, notice that
πl (Π|0) is independent of Π. If πl (·|0) < 1, then ∂πl(Π|ξ)

∂ξ
and ∂πl(Π|ξ)

∂Π
imply

ξ̂ = Π̂ (·) = 0. In contrast, if πl (·|0) = 1, then the derivatives imply ξ̂ > 0 and

Π̂ (·) ≥ 0 with Π̂′ (·) ≤ 0. �

Proof of Proposition 3

Abstracting again from the participation constraint, the revenue of an informed

lender is given by g (ω) as defined in the proof of Proposition 2. The steady

state market clearing equation can then be written as:

Π = max

 1
µ

 ∫ 1
ξ [g(ω)− 1

1−δ ]dω∫ 1
ξ [g(ω)− 1

1−δ ]dω+

(
1

1−δ−Γ(ξ,Π)

ψH (ξ,Π)

)
 , 0

 ≡ πm (Π|ξ) (A.2)

Proving that a steady state exists amounts to proving the existence of a ξ and

Π that satisfy Π = πl (Π|ξ) and Π = πm (Π|ξ), where πl (Π|ξ) and πm (Π|ξ)
are as defined in equations (A.1) and (A.2) respectively. Let Πl (ξ) denote the

solution to Π = πl (Π|ξ) and let Πm (ξ) denote the solution to Π = πm (Π|ξ).

If ξ = 1, then πl (·|1) = πm (·|1) = 0 and thus Πl (1) = Πm (1) = 0. Stated

otherwise, there exists a trivial equilibrium with ξ = 1 and Π = 0 for any value

of c. Focus now on ξ < 1. Notice that ∂g (ω) /∂c < 0 and ∂Γ (ξ,Π) /∂c < 0 so

∂πm (Π|ξ) /∂c < 0 and thus ∂Πm (ξ) /∂c < 0 when
∫ 1

ξ

[
g (ω)− 1

1−δ
]
dω > 0. In

other words, higher values of c decrease the feasible values of Π. We can also

show that Πm (·) = 0 if c = θ (0). To see how, note that Πm (ξ) > 0 requires

πm (Πm (ξ) |ξ) > 0 and a necessary condition for the latter is g (1) > 1
1−δ or,

equivalently, θ (1) >
(√

1
1−δ +

√
c
)2

. This requires at least θ (1) > (1 +
√
c)

2

which, given Assumption 2, cannot be true for c = θ (0). Since ∂g (ω) /∂c < 0,

we can further conclude that there exists a c ≤ θ (0) such that Πm (ξ) = 0 for

all ξ if and only if c ≥ c. As a result, there is no non-trivial steady state with

non-binding borrower participation constraints when c ≥ c.
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Consider then ξ < 1 and c < c. That there exists one and only one point such

that Πl (ξ) = Πm (ξ) > 0 is established in a series of lemmas.

Lemma 1 Any non-trivial steady state has Π ∈ (0, 1), allowing us to use the

interior solutions for πl (Π|ξ) and πm (Π|ξ) from hereon in.

Proof. Non-triviality rules out Π = 0 so focus on Π = 1. (A.2) reduces to

(1− µ)
∫ 1

ξ
g (ω) dω + [µ+ (1− µ) ξ] Γ (ξ, 1) = 1

1−δ . Since g (·) > 0, we have∫ 1

ξ
g (ω) dω <

∫ 1

0
g (ω) dω. Moreover, h

(
ω,R

)
≤ g (ω), η

(
R
)
≥ 0, ψL (ξ,Π) ≥

ψH (ξ,Π), and ψH (ξ,Π) ≤ 1 imply Γ (ξ,Π) <
∫ 1

0
g (ω) dω. Therefore, given

Assumption 1, Π = 1 cannot satisfy market clearing. �

Lemma 2 Πl (ξ) and Πm (ξ) intersect at least once.

Proof. Define ξ and ξ such that
∫ 1

ξ

[
g (ω)− 1

1−δ
]
dω = 0 and g

(
ξ
)

= 1
1−δ

respectively. Some algebra then yields Πl

(
ξ
)
> Πm

(
ξ
)
and Πl (ξ) < Πm (ξ)

for all ξ ≥ ξ. �

Lemma 3 All intersections between Πl (ξ) and Πm (ξ) are associated with the

same value of Π, labelled Π0.

Proof. Rearrange Π = πl (Π|ξ) and Π = πm (Π|ξ) to get two expressions for
Γ(ξ,Π)
ψH(ξ,Π)

. Equating these expressions and rearranging again yields a quadratic

in Π, where the roots of this quadratic determine the values Π can achieve at

an intersection. Recall from the proof of Lemma 2 that intersections require

ξ < ξ which, given g′ (·) > 0, is equivalent to g (ξ) < 1
1−δ . This fact combined

with Π > 0 can be used to eliminate one of the roots, implying that any

intersection achieves the same value of Π. �

Lemma 4 Π′l (ξ) < 0 so there is only one value of ξ such that Πl (ξ) = Π0.

Proof. Totally differentiate Π = πl (Π|ξ). Based on the resulting expres-
sion, a suffi cient condition for Π′l (ξ) < 0 is Γ (ξ,Π) ≤ 1

1−ξ
∫ 1

ξ
g (ω) dω. Since

h
(
ω,R

)
≤ g (ω), η

(
R
)
≥ 0, ψL (ξ,Π) ≥ ψH (ξ,Π), and ψH (ξ,Π) ≤ 1, this

condition is satisfied. �
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Conditional on the participation constraints not binding, we can now con-

clude that there is a unique point such that Πl (ξ) = Πm (ξ) > 0 when

c < c. Completing the proof thus requires finding values of c for which

the unconstrained informed loan rate, R (ω) = θ (ω) −
√
cθ (ω), does indeed

induce ω to participate. The steady state participation constraint for type

ω ≥ ξ simplifies to Θ (ω,R (ω)) ≥
(

β(1−µ)Π2

1+β(1−µ)Π2

)
Θ
(
ω,R

)
where Θ (ω,R) ≡

θ (ω)− R − c + c ln
(

c
θ(ω)−R

)
. Note that Θ (ω,R (ω)) > 0 for all c ∈ (0, θ (0))

while Π = 0 in the extreme case of c = c. Therefore, there exists a c < c such

that the participation constraint is indeed satisfied when c ∈ (c, c). �

Proof of Proposition 4

Let WI (ω) denote the present discounted value of putting ω in an informed

match, WU (ω) the value of putting him in an uninformed match, and WN (ω)

the value of keeping him unmatched. As before, λ (ω) denotes the proportion

of ω’s in informed matches and φ (ω) the proportion in uninformed matches.

For a given Π and ξ, the proportions are still governed by equations (6) and

(7), with steady state values as in the proof of Proposition 2. Measured just

prior to production, the planner’s objective function is then:

W =
∫ 1

0
WI (ω)λ (ω) dω+

∫ 1

0
WU (ω)φ (ω) dω+

∫ 1

0
βWN (ω) [1− λ (ω)− φ (ω)] dω

Suppressing their dependence on the choice variables, the steady state func-

tional equations are:

WI (ω) =

{
βWN (ω)

e (ω,R (ω))R (ω) + β (1− µ)WI (ω) + βµWN (ω)

if ω < ξ

if ω ≥ ξ

WU (ω) =

{
e
(
ω,R

)
R + βWN (ω)

e
(
ω,R

)
R + β (1− µ)WI (ω) + βµWN (ω)

if ω < ξ

if ω ≥ ξ

WN (ω) =

{
Π2WU (ω) + (1− Π2) βWN (ω)

Π2WU (ω) + Π (1− Π)WI (ω) + (1− Π) βWN (ω)

if ω < ξ

if ω ≥ ξ
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Solving for WI (ω), WU (ω), and WN (ω) then substituting into the objective

function (along with the steady state versions of λ (ω) and φ (ω)) yields:

W = Π2

∫ ξ

η(R)

e(ω,R)R
1−β dω+ µΠ2

µ+(1−µ)Π

∫ 1

ξ

e(ω,R)R
1−β dω+ Π(1−µΠ)

µ+(1−µ)Π

∫ 1

ξ

e(ω,R(ω))R(ω)
1−β dω

Recall that the planner’s problem is to choose Π, ξ, R, and R (·) in order to
maximize W subject to an aggregate feasibility constraint. The constraint

requires that the amount of capital allocated to firms equals the amount of

capital available to the planner each period. It is thus equivalent to the market

clearing equation presented earlier. Letting γ denote the Lagrange multiplier,

the planner’s Lagrangian can now be written as in the statement of Proposition

4. �

Proof of Proposition 5

I start by deriving the planner’s first order conditions from the Lagrangian in

Proposition 4. Optimizing with respect to R (·) and R yields:

R (ω) = θ (ω)−
√
cθ (ω)∫ ξ

η(R)

(
1− cθ(ω)

[θ(ω)−R]
2

)
dω + µ

µ+(1−µ)Π

∫ 1

ξ

(
1− cθ(ω)

[θ(ω)−R]
2

)
dω = 0

Note that these are the same equations generated by the decentralized economy

so, as desired, there are no direct ineffi ciencies stemming from R (·) and R.
Stated otherwise, the market’s choice of R will be ineffi cient if and only if ξ

and/or Π is ineffi cient. Consider now the first order conditions for ξ and Π.

Optimizing with respect to ξ yields:

(1−µΠ)
1−µΠ−(1−µ)Π2 g (ξ)− (1−µ)Π2

1−µΠ−(1−µ)Π2h
(
ξ, R

)
= γ(1−β)

1+γ(1−β)(1−δ)

where g (·) and h
(
·, R
)
are as defined in the proof of Proposition 2. After

some algebra, optimization with respect to Π yields:
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2Π

(∫ 1

ξ

[
g (ω)− γ(1−β)

1+γ(1−β)(1−δ)

]
dω +

γ(1−β)
1+γ(1−β)(1−δ)−Γ(ξ,Π)

ψH(ξ,Π)

)
= 1

µ+(1−µ)Π

∫ 1

ξ

[
g (ω)− γ(1−β)

1+γ(1−β)(1−δ)

]
dω + (1−µ)Π2

µ+(1−µ)Π

∫ 1

ξ

[
g (ω)− h

(
ω,R

)]
dω

Combining the first order conditions for ξ and Π then produces:

Π = 1+(1−µ)Π2

2[µ+(1−µ)Π]

 ∫ 1

ξ
[g(ω)−g(ξ)]dω−Q(ξ,Π)∫ 1

ξ
[g(ω)−g(ξ)]dω+

(
g(ξ)−Γ(ξ,Π)
ψH(ξ,Π)

)
 ≡ πe (Π|ξ) (A.3)

where

Q (ξ,Π) ≡ (1−µ)Π2[µ+(1−µ)Π]
1+(1−µ)Π2

[
Π[µ(1+ξ)+2(1−µ)Πξ][g(ξ)−h(ξ,R)]

µ[1−µΠ−(1−µ)Π2]
+

∫ 1

ξ [h(ω,R)−h(ξ,R)]dω
[µ+(1−µ)Π]

]

The first order condition for γ just returns the aggregate feasibility constraint

which, as explained in the proof of Proposition 4, is equivalent to the market

clearing equation. Therefore, the constrained effi cient solution is implicitly de-

fined by Π = πe (Π|ξ) and Π = πm (Π|ξ) whereas the decentralized equilibrium
was implicitly defined by Π = πl (Π|ξ) and Π = πm (Π|ξ). The two parts of
Proposition 5 can now be proven:

1. If µ = 1, then πe (Π|ξ) = πl (Π|ξ). The decentralized equilibrium and

the constrained effi cient allocation are thus defined by the same system of

equations and, from Proposition 3, this system has a unique solution. �

2. Ineffi ciency: Let Πj (ξ) denote the solution to Π = πj (Π|ξ) for j ∈ {e, l,m}.
The decentralized equilibrium is defined by Πl (ξ

∗) = Πm (ξ∗) while the con-

strained effi cient allocation is defined by Πe (ξ′) = Πm (ξ′) so showing that

Πe (·) never intersects Πl (·) will be enough to show ξ∗ 6= ξ′ and thus (ξ∗,Π∗) 6=
(ξ′,Π′). In fact, the lack of an intersection just needs to be established over

the interval ξ ∈
[
ξ̂, 1
)
since Proposition 2 and Lemma 1 imply ξ∗ ≥ ξ̂.20 More-

20To see why, consider any ξ0 < ξ̂. From Proposition 2, πl (Π|ξ0) = 1 for all Π so

39



over, when ξ ∈
[
ξ̂, 1
)
, Proposition 2 says that πl (Π|ξ) is downward-sloping in

Π so πe (Π|ξ) < πl (Π|ξ) for all Π ≥ Πl (ξ) would guarantee Πe (ξ) < Πl (ξ).

Figure S.1 illustrates why (ignore Π for the moment). If πe (Π|ξ) < πl (Π|ξ)
for all Π ≥ Πl (ξ), then πe (Π|ξ) < Π for all Π ≥ Πl (ξ) so any Π that yields

πe (Π|ξ) = Π —that is, any Πe (ξ) —must be less than Πl (ξ). A suffi cient condi-

tion for ineffi ciency of the decentralized equilibrium is thus πe (Π|ξ) < πl (Π|ξ)
for all Π ≥ Πl (ξ) and all ξ ∈

[
ξ̂, 1
)
.21

Fix any such ξ. WithQ (ξ,Π) ≥ 0, a suffi cient condition for πe (Π|ξ) < πl (Π|ξ)

is 1+(1−µ)Π2

µ+(1−µ)Π
< 1

1−β(1−µ)
or, equivalently, Π ∈

(
1−
√
S(β)

2[1−β(1−µ)]
,

1+
√
S(β)

2[1−β(1−µ)]

)
≡
(
Π,Π

)
where S (β) ≡ 1 − 4 (1− β) [1− β (1− µ)]. Note that β > 1

2−µ ensures both

S (β) > 0 and Π > 1. Therefore, the suffi cient condition for πe (Π|ξ) < πl (Π|ξ)
is just Π > Π and it will be enough to show Πl (ξ) > Π in order to show

πe (Π|ξ) < πl (Π|ξ) for all Π ≥ Πl (ξ). Return to Figure S.1 and notice that

Πl (ξ) > Π will certainly be true if πl (Π|ξ) > Π for all Π. The latter reduces to√
S (β) >

g(ξ)−Γ(ξ,Π)
fH (ξ,Π)∫ 1

ξ
[g(ω)−g(ξ)]dω+

g(ξ)−Γ(ξ,Π)
fH (ξ,Π)

, abbreviated as LHS > RHS and satisfied

by g (ξ) < Γ (ξ,Π).22 If instead g (ξ) > Γ (ξ,Π), then RHS is positive but less

Πl (ξ0) = 1. From Lemma 1 though, Π = 1 violates market clearing —that is, πm (1|·) 6= 1
—so Πm (ξ0) 6= 1. As a result, Πl (ξ0) 6= Πm (ξ0) and ξ∗ 6= ξ0.
21For an arbitrary ξ, note that πe (0|ξ) = 1−β(1−µ)

µ πl (0|ξ) > πl (0|ξ) > 0 so πe (Πl (ξ) |ξ) <
πl (Πl (ξ) |ξ) ≡ Πl (ξ) will also establish Π = πe (Π|ξ) for some Π ∈ (0,Πl (ξ)). In other
words, it will also establish the existence of Πe (ξ).
22
∫ 1

ξ
[g (ω)− g (ξ)] dω+ g(ξ)−X(ξ,Π)

fH(ξ,Π) is always positive since g (ω) ≥ h
(
ω,R

)
and g′ (ω) > 0.
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than 1 for ξ < 1 while LHS increases with β and goes to 1 as β goes to 1.

Since RHS is independent of β, high values of β thus ensure LHS > RHS

and, therefore, Πl (ξ) > Π. As explained above, this then ensures πe (Π|ξ) <
πl (Π|ξ) for all Π ≥ Πl (ξ). Recall that ξ was set arbitrarily so we can now

conclude that πe (Π|ξ) < πl (Π|ξ) for all Π ≥ Πl (ξ) and all ξ ∈
[
ξ̂, 1
)
. �

Direction of ineffi ciency: Recall that Πl

(
ξ
)
> Πm

(
ξ
)
and Πl

(
ξ
)
< Πm

(
ξ
)

from the proof of Lemma 2. Uniqueness implies only one point satisfying

Πl (ξ
∗) = Πm (ξ∗) so it follows that Πl (ξ) < Πm (ξ) for all ξ ∈ (ξ∗, 1). Com-

bining with ξ̂ ≤ ξ∗ and Πe (ξ) < Πl (ξ) for all ξ ∈
[
ξ̂, 1
)
as shown above, we

can also conclude that Πe (ξ) < Πm (ξ) for all ξ ∈ [ξ∗, 1). In other words,

only ξ′ < ξ∗ can satisfy Πe (ξ′) = Πm (ξ′) and be part of the effi cient allo-

cation. Turn now to Π′. Both (ξ∗,Π∗) and (ξ′,Π′) satisfy Π = Πm (ξ) so

Π′m (ξ) > 0 for all ξ ∈
(
ξ, ξ∗

]
would ensure Π′ < Π∗ given ξ′ < ξ∗.23 Differenti-

ating Πm (ξ) = πm (Πm (ξ) |ξ) yields Π′m (ξ) = ∂πm(Π|ξ)/∂ξ
1−∂πm(Π|ξ)/∂Π

∝ A (ξ,Π) where

A (ξ,Π) ≡ (1− µΠ)
[

1
1−δ − g (ξ)

]
− (1− µ) Π2

[
1

1−δ − h
(
ξ, R (ξ,Π)

)]
and Π is

evaluated at Πm (ξ). Any critical point of Πm (ξ), denoted as
(
ξ̃, Π̃

)
, is im-

plicitly defined by A
(
ξ̃, Π̃

)
= 0 and Π̃ = πm

(
Π̃|ξ̃
)
which combine to give:

µΠ̃ =

[
1

1−δ−h(ξ̃,R(ξ̃,Π̃))
] ∫ 1
ξ̃ [g(ω)− 1

1−δ ]dω−[ 1
1−δ−g(ξ̃)][

1
1−δ−Γ(ξ̃,Π̃)]ξ̃[

1
1−δ−h(ξ̃,R(ξ̃,Π̃))

]
(
∫ 1
ξ̃ [g(ω)− 1

1−δ ]dω+[ 1
1−δ−Γ(ξ̃,Π̃)])−[ 1

1−δ−g(ξ̃)][
1

1−δ−Γ(ξ̃,Π̃)]ξ̃
≡ p

(
ξ̃, Π̃

)
Consider now (ξ∗,Π∗) which, as described earlier, is defined by Π∗ = πl (Π

∗|ξ∗)
and Π∗ = πm (Π∗|ξ∗). Combining these two equations yields:

µΠ∗ =
µ

2[1−β(1−µ)] [
1

1−δ−Γ(ξ∗,Π∗)]
∫ 1
ξ∗ [g(ω)−g(ξ∗)]dω−[g(ξ∗)−Γ(ξ∗,Π∗)]

∫ 1
ξ∗ [g(ω)− 1

1−δ ]dω

[ 1
1−δ−Γ(ξ∗,Π∗)]

∫ 1
ξ∗ [g(ω)−g(ξ∗)]dω−[g(ξ∗)−Γ(ξ∗,Π∗)]

∫ 1
ξ∗ [g(ω)− 1

1−δ ]dω
≡ q (ξ∗,Π∗)

We can now say that Π̃ = πm

(
Π̃|ξ̃
)
and µΠ̃ = p

(
ξ̃, Π̃

)
implicitly define(

ξ̃, Π̃
)
while Π∗ = πl (Π

∗|ξ∗) and µΠ∗ = q (ξ∗,Π∗) implicitly define (ξ∗,Π∗).

Lemma 5 If q
(
ξ̃, ·
)
< p

(
ξ̃, ·
)
, then Π′m (ξ) > 0 for all ξ ∈

(
ξ, ξ∗

]
.

23Recall that Πm (ξ) is only defined for ξ ∈
[
ξ, 1
]
, with Πm

(
ξ
)

= 0.
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Proof. Let Πq (ξ) denote the solution to µΠ = q (ξ,Π) and let Πp (ξ) denote

the solution to µΠ = p (ξ,Π). If q
(
ξ̃, ·
)
< p

(
ξ̃, ·
)
, then Πq

(
ξ̃
)
< Πp

(
ξ̃
)
.

By definition though, Πp

(
ξ̃
)

= Π̃ = Πm

(
ξ̃
)
so Πq

(
ξ̃
)
< Πp

(
ξ̃
)
implies

Πq

(
ξ̃
)
< Πm

(
ξ̃
)
. In contrast, Πq

(
ξ
)

= 1
2[1−β(1−µ)]

> 0 = Πm

(
ξ
)
. We can

thus conclude that Πq (·) intersects Πm (·) for some ξ ∈
(
ξ, ξ̃
)
. Since any

such intersection constitutes the unique decentralized equilibrium, we have

just shown ξ∗ ∈
(
ξ, ξ̃
)
. The analysis applies for any critical point

(
ξ̃, Π̃

)
so it applies in particular for the first critical point. Given Πm

(
ξ
)

= 0 and

Πm

(
ξ + ε

)
> 0, the first critical point is a maximum and, therefore, Π′m (ξ) > 0

for all ξ ∈
(
ξ, ξ∗

]
. �

With Lemma 5 in hand, showing p
(
ξ̃, ·
)
> q

(
ξ̃, ·
)
will be enough to estab-

lish Π′ < Π∗. Since h
(
ω,R

)
≤ g (ω) for all ω, a lowerbound for p

(
ξ̃, ·
)
is

obtained by replacing h
(
ξ̃, R

(
ξ̃, ·
))

with g
(
ξ̃
)
in the definition of p

(
ξ̃, ·
)
.

Moreover, since µ
2[1−β(1−µ)]

< 1
2
, an upperbound for q

(
ξ̃, ·
)
is obtained by re-

placing µ
2[1−β(1−µ)]

with 1
2
in the definition of q

(
ξ̃, ·
)
. A suffi cient condition

for p
(
ξ̃, ·
)
> q

(
ξ̃, ·
)
is then that the lowerbound of p

(
ξ̃, ·
)
exceeds the up-

perbound of q
(
ξ̃, ·
)
. Defining B (ξ) ≡ 2

1−δ − (1 + ξ) g (ξ) −
∫ 1

ξ
g (ω) dω, this

condition simplifies to B
(
ξ̃
)(

1− ξ̃
)

Γ
(
ξ̃,Π

)
≥ B

(
ξ̃
) ∫ 1

ξ̃
g (ω) dω. Having

h
(
ω,R

)
≤ g (ω) for all ω (with strict inequality for at least some ω) implies(

1− ξ̃
)

Γ
(
ξ̃,Π

)
<
∫ 1

ξ̃
g (ω) dω so the suffi cient condition is true if and only if

B
(
ξ̃
)
≤ 0 or, equivalently:

∫ 1

ξ̃

[
g (ω)− 1

1−δ
]
dω ≥

(
1 + ξ̃

) [
1

1−δ − g
(
ξ̃
)]

(A.4)

Recall that differentiatingΠm (ξ) = πm (Πm (ξ) |ξ) givesΠ′m (ξ) = ∂πm(Π|ξ)/∂ξ
1−∂πm(Π|ξ)/∂Π

withΠ evaluated atΠm (ξ). SinceΠ′m

(
ξ̃
)

= 0 at any critical point and πm (·|ξ)

is well behaved, it follows that
∂πm(Π̃|ξ)

∂ξ

∣∣∣∣
ξ=ξ̃

= 0. Lemma 6 completes the proof
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of Proposition 5 by establishing a contradiction of
∂πm(Π̃|ξ)

∂ξ

∣∣∣∣
ξ=ξ̃

= 0 if (A.4) is

not satisfied.

Lemma 6 If (A.4) is untrue, then ∂πm(·|ξ)
∂ξ

∣∣∣
ξ=ξ̃

> 0 for high c not exceeding c.

Proof. Write πm (Π|ξ) = 1
µ

(
1

1+M(Π|ξ)

)
whereM (Π|ξ) ≡

1
1−δ−Γ(ξ,Π)

µ
µ+(1−µ)Πξ

∫ 1
ξ [g(ω)− 1

1−δ ]dω
.

Note that ∂
∂ξ

(
1

1−δ − Γ (ξ,Π)
)
∝ Γ (ξ,Π) − h

(
ξ, R

)
is negative if and only if

−
∫ η(R)

0 h
(
ξ, R

)
dω+

∫ ξ
η(R)

[
h
(
ω,R

)
− h

(
ξ, R

)]
dω+

µ
∫ 1
ξ [h(ω,R)−h(ξ,R)]dω

µ+(1−µ)Π
< 0.

Given hω (ω, ·) > 0, the latter is true at suffi ciently high ξ. Differentiating

the equation that defines ξ, namely
∫ 1

ξ

[
g (ω)− 1

1−δ
]
dω = 0 where g (ω) =(√

θ (ω)−
√
c
)2

, yields ∂ξ/∂c > 0. That is, higher values of c increase the low-

est value of ξ that can be considered, prompting Γ (ξ,Π) < h
(
ξ, R

)
and thus

∂
∂ξ

(
1

1−δ − Γ (ξ,Π)
)
< 0. Consider now ∂

∂ξ

(
µ

µ+(1−µ)Πξ

∫ 1

ξ

[
g (ω)− 1

1−δ
]
dω
)∣∣∣

ξ=ξ̃
∝(

µ

(1−µ)Π̃
+ ξ̃
) [

1
1−δ − g

(
ξ̃
)]
−
∫ 1

ξ̃

[
g (ω)− 1

1−δ
]
dω. If (A.4) does not hold, then

low Π̃ will guarantee that ∂
∂ξ

(
µ

µ+(1−µ)Πξ

∫ 1

ξ

[
g (ω)− 1

1−δ
]
dω
)∣∣∣

ξ=ξ̃
cannot be

very negative. Recall from the proof of Proposition 3 that higher values of c

decrease the feasible values of Π (in the extreme case of c = c, only Π = 0 is

feasible), thus completing the proof. � �

Proof of Proposition 6

With the tax, πl (Π|ξ) = 1
2[1−β(1−µ)]

( ∫ 1
ξ [g(ω)−g(ξ)]dω− [1−β(1−µ)]

ψH (ξ,Π)
τ∫ 1

ξ [g(ω)−g(ξ)]dω+
(
g(ξ)−Γ(ξ,Π)
ψH (ξ,Π)

)
)
while πm (Π|ξ)

is unchanged. It is straightforward to show that ∂πl (·|ξ) /∂τ < 0 and thus

∂Πl (ξ) /∂τ < 0 for any relevant ξ. Recall from the proof of Proposition 5

that Π′m (ξ) > 0 for all ξ ∈
(
ξ, ξ∗

]
where ξ∗ is the equilibrium ξ under τ = 0.

Therefore, starting from (ξ∗,Π∗), the downward shift in Πl (·) caused by an
increase in τ yields a decrease in ξ∗ and Π∗. The new informed cutoff, call

it ξ∗τ , is lower than ξ
∗ so we have Π′m (ξ) > 0 for all ξ ∈

(
ξ, ξ∗τ

]
. Starting

from (ξ∗τ ,Π
∗
τ ) then, another increase in τ shifts Πl (·) further down and yields

a decrease in ξ∗τ and Π∗τ . Continuing in this way establishes the result. �

43



Appendix B - Algorithm for Computing Dy-

namics

Suppose a one-time aggregate productivity shock hits at t = 1. Recall that

z1 < 0 is realized after lending and production decisions have been made so all

credit market variables are still in steady state at t = 1. The capital available

for t = 2 is then:

K2 = (1− δ) (1 + z)

 ∫ 1

ξss

(
1−

√
c

θ(ω)

)
R (ω)λss (ω) dω

+
∫ 1

ηss

(
1− c

θ(ω)−Rss

)
Rssφss (ω) dω

 < Kss

Although z returns to its expected value by t = 2, the effects of the t = 1 shock

are propagated over time due to the change in capital. I start by computing

the propagation in absence of the participation constraints. Let T + 1 denote

the date at which ξt returns to ξss and let T denote the date at which the entire

economy returns to steady state. Note that T+1 < T since the partition of the

type space implied by the evolution of ξt must stabilize before the distribution

over that space can stabilize. The rest of the transition path is computed in

four steps:

1. For t = 2, . . . , T :

• Guess Πt.

• Use Πt, λt−1 (·), and φt−1 (·) to get λt (·), φt (·), Rt, and Kt+1.

• By bisection, find the ξt that equates K̃t (capital demand as defined

in Section 1.3.1) to Kt.

2. For t = T + 1, . . . , T − 1:

• Use λt−1 (·), φt−1 (·), and ξt = ξss to get beliefs ψt (·).

• Use Jt+1 (ξss, ·) = βUt+2 (·) to get an expression for rt.
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• Recursive substitution of Jt+1 (ω, ·) into Jt (ω, ·) yields:

Jt (ω, ·) =
g (max {ω, ξss})− g (ξss)

1− β (1− µ)
+βUt+1 (·) for t ∈

[
T + 1, T − 1

)
• Use ψt (·), rt, and the expression for Jt (ω, ·) to get Ut (·).

• Based on the first order condition for πt, get the optimal π∗t .

3. For t = T − 1, . . . , T + 1:

• Recall that the value functions at date T are the steady state ones.
Starting at t = T − 1, use π∗t as computed in step 2 to get Ut (·)
and Jt (·).

• Work back until t = T + 1.

4. For t = T, . . . , 2

• From step 3, we know the date T + 1 value functions. Starting at

t = T , determine the optimal choice π∗t then the value functions

Ut (·) and Jt (·).

• Work back until t = 2.

Symmetry requires Πt = πt so compare the guess {Πt}Tt=2 with the result

{π∗t}
T
t=2. If the root mean squared error is not suffi ciently small, then up-

date the guess in the direction suggested by the result. Repeat until RMSE-

convergence then verify that the unconstrained choice of R (·) does indeed
satisfy the borrower participation constraint.
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