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This paper studies the optimality of securitized debt when informa-
tion acquisition is endogenous and �exible. A seller designs an as-
set backed security and a buyer decides whether to buy it to provide
liquidity. Rather than treating the seller as an insider endowed with
information, we assume no information asymmetry before bargaining.
The buyer has an expertise in acquiring information of the fundamen-
tal in the manner of rational inattention. She collects the most relevant
information determined by the "shape" of the security, which may en-
dogenously generate adverse selection. Hence, the seller deliberately
designs the security in order to induce the buyer to acquire information
least harmful to the seller's interest. Issuing securitized debt is uniquely
optimal in raising liquidity, regardless of the stochastic interdependence
of underlying assets and the allocation of bargaining powers. Fixed to-
tal risk exposure and homogeneous information cost are the key factors
driving the results.
JEL: D86, D82, G32
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I. Introduction

Pooling assets and issuing asset-backed securities (ABSs), in particular, issuing a se-
curitized debt, is a popular way to raise liquidity. For example, commercial banks pool a
large number of individual home mortgages or automobile loans to create a special pur-
pose vehicle (SPV), which then issues ABSs to �nance the purchase of these loans. This
process can be modeled as the following story. A risk-neutral seller owns some assets
generating uncertain future cash �ows. She is impatient and wants to raise liquidity by
issuing an asset-backed security (ABS) to a risk-neutral buyer. To raise liquidity, the
seller proposes an ABS and its price, and sets it as a take-it-or-leave-it offer. Then the
buyer decides whether to accept the offer or not. This simple trading game will serve as
a benchmark throughout the paper, and will be greatly enriched in order to capture our
key ideas featuring the optimality of securitized debt.
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2 INFORMATION ACQUISITION AND SECURITY DESIGN

The security design literature has provided insightful viewpoints in investigating this
securitization process as described above. Much of this literature models sellers as �in-
siders� who are endowed with private information about the assets, which makes poten-
tial buyers hesitate to provide liquidity due to adverse selection. In overcoming such
adverse selection, this literature considers the possibility of signaling by sellers, where
buyers are passive because they cannot acquire any information about the assets. Also,
various assumptions on information, assets and feasible securities to be designed are im-
posed in these models, which lead to various conclusions on the optimality of different
forms of securities.

This paper explores another perspective to look into the problem of adverse selec-
tion, which is universal in liquidity provision. Speci�cally, in our benchmark model, the
buyer can acquire information about the assets according to the security proposed by the
seller, which endogenously generates adverse selection different from that in the security
design literature. We follow (Tri Vi Dang, Gary Gorton and Bengt Holmstrom 2011) in
treating the buyer as an �expert� who acquires information accordingly. In reality, buyers
involved in ABS transactions are skillful and sophisticated. Their expertise in assessing
investment opportunities is better modeled by endogenous information acquisition rather
than exogenous information endowment. Here endogeneity means that the agents can
choose from a set of information structures according to their investment opportunities.
Taking this endogeneity into account, sellers design securities generating least incentive
for buyers to acquire information. (Dang, Gorton and Holmstrom 2011) model such
information acquisition through the costly state veri�cation approach, in which buyers
either acquire a speci�c signal about the future cash �ows of assets or do not acquire
any information. In other words, the buyer can only choose from two speci�c informa-
tion structures. Based on this rigid information acquisition process, (Dang, Gorton and
Holmstrom 2011) show that debt is the least information-sensitive and thus is an optimal
contract to provide liquidity. However, there also exist in�nitely many other securities,
which are called �quasi-debts�, as information-sensitive as the standard debt contract.
Also, it is identi�ed that some restrictive conditions are required in order to ensure the
optimality of these quasi-debts when pooling is considered. As we discuss below, their
non-uniqueness result stems from the rigidity of information acquisition inhabits the
costly state veri�cation approach.

This paper differs from (Dang, Gorton and Holmstrom 2011) by allowing for �ex-
ible information acquisition, which helps achieve the unique optimality of securitized
debt, even if pooling of various assets is taken into account. Similar to (Dang, Gorton
and Holmstrom 2011), we assume no information asymmetry at the beginning to focus
on the adverse selection resulting from endogenous information acquisition. Given the
security backed by the cash �ows and its associated price proposed by the seller, �exi-
bility enables the buyer to acquire information accordingly about the underlying assets.
Here, speci�cally, �exibility means that the set of feasible information structures to be
acquired by the buyer consists of all conditional distributions of signals on the underlying
cash �ows. It captures the ability of the buyer to allocate her attention in whatever way
she wants. Hence, the buyer chooses not only the quantitative but also the qualitative
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nature of her information.

We model �exible information acquisition through the paradigm of rational inatten-
tion building upon (Christopher A. Sims 2003), where any information structure can be
acquired at a cost proportional to reduction of entropy. This cost could result from the re-
quired time or resource to run models, do statistical tests or write reports. Flexibility en-
ables the buyer to acquire payoff-relevant information accordingly, and the information
cost requires her to optimally acquire such information in both quantitative and qualita-
tive aspects. For example, to assess a collateralized debt with face value $1000 and price
$800, a potential buyer would like to analyze data more carefully to see when the under-
lying cash �ow possibly varies around $800, while put less attention to check whether
the cash �ow could reach $2000 or not. Similar to (Dang, Gorton and Holmstrom 2011),
standard securitized debt is optimal for liquidity provision in our model. But our result
is sharper in the sense that securitized debt is the uniquely optimal one. In (Dang, Gor-
ton and Holmstrom 2011), only two extreme information structures are available in the
setup of costly state veri�cation while in�nite forms of securities can be designed, which
inevitably results in the indistinguishability of some securities. In our framework, with
help of �exibility, the variety of available information structures matches the variety of
potential securities to be designed, and thus the uniqueness of the standard securitized
debt could be guaranteed. Quasi-debts are no longer optimal in our model. By reshaping
the uneven tail above the price of a quasi-debt to a �at one, not only the buyer's infor-
mation cost could be saved but also potential loss of trade from adverse selection could
be mitigated. The resulted surplus could be employed by the seller to make both parties
better off, and thus ultimately make a better provision of liquidity possible. Moreover,
�exible information acquisition provides a uni�ed framework to analyze securitization of
multiple assets. We show that pooling and issuing securitized debt is uniquely optimal to
raise liquidity, regardless of the stochastic interdependence among the underlying assets
and the allocation of bargaining power.

There are two key factors determining the unique optimality of standard securitized
debt. The �rst one is the �xed total risk exposure implicitly speci�ed in the benchmark
trading game in the sense that the total cash �ows owned by the seller and buyer are
invariant with respect to the success or failure of the transaction. As the total risk ex-
posure is �xed, information acquisition is not socially valuable. Acquiring information
is no more than waste of money when both parties are considered as a unity. More-
over, this trading game with �xed total risk exposure appears to be a zero-sum one, so
that the information acquired by the buyer may hurt the seller through adverse selection,
which further reduces the potential gain from trade. Since the buyer's incentive to ac-
quire information is shaped by the offer proposed to her, the seller deliberately designs
the ABS to optimally discourage information acquisition harmful to her own interests.
Due to the limited liability, any feasible ABS is bounded above by the sum of underlying
cash �ows. When information cost is not too high, the �exibility allows the buyer to
distinguish between any states with different payoffs. Hence the seller makes the ABS a
constant whenever it is off the boundary to discourage information acquisition and thus
mitigate adverse selection. This consideration gives rise to a �at tail. In states where
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the underlying cash �ows are too low to support such constant, the ABS reaches the
boundary and equals the sum of underlying cash �ows. Therefore, the �at tail and the
boundary component constitute a securitized debt, which is uniquely optimal for liquid-
ity provision. We also use an example with variable total risk exposure to illustrate the
importance of �xed total risk exposure in our framework. Consider the seller as an en-
trepreneur that raises funds from the buyer to take a project with uncertain future cash
�ows. They jointly expose themselves to a total risk if the buyer accepts the offer, and
are not exposed to such risk if the offer is rejected. In this case, information acquisition
could be socially valuable. The trading game is not a zero-sum one and the con�icting
interests of the two parties could be partly reconciled. Therefore, the seller could delib-
erately design a contract to encourage the buyer to acquire information that helps avoid
investing in states where cash �ows are too low. This increases her bene�t from the trade,
and also leads to a more socially desirable outcome.
Another key factor is the homogeneity in information acquisition. That is, no state is

more special than other states in terms of the dif�culty of information acquisition. This
feature stems from rational inattention and is the reason why our qualittive result does
not depend on the stochastic interdependence among the underlying assets. Intuitively,
if the information about some assets is much easier to acquire than the other assets, the
�at part of the securitized debt cannot be preserved in the optimal ABS. We provide an
example that illustrates this idea. The above two factors specify the boundary of our
theory.
Finally, the origin of the uniqueness of optimal contract is not only from the �exibility

itself, but from the double-sided symmetry of �exibility. In principle, general �exible
choice, not necessarily restricted to �exible information acquisition, enables an economic
agent to make state-contingent responses. In other words, the agent can make a best
response in one state, and can make another best response in another state. Double-
sided symmetry of �exibility requires that both parties engaged in a potential trade are
endowed with the same level of �exibility.
How this double-sided symmetry of �exibility works can be seen by comparing our

framework to (Dang, Gorton and Holmstrom 2011) and the traditional models of costly
state veri�cation like (Robert M. Townsend 1979). In all these three models, the contract
designer is endowed with �exibility, in the sense that she can assign state-contingent
repayment through designing any form of security. What matters to shape the different
results regarding uniqueness of the optimal contract relies on the potential �exibility of
the other party who decides whether to accept the offer. In our framework, ex-ante sym-
metric information in the form of a double-sided ignorance prevents the buyer to make
a state-contingent choice if she only follows the traditional costly state veri�cation ap-
proach to acquire information. However, the buyer in our framework is able to choose
state-contingent probability of accepting the offer, namely, she can perform �exible in-
formation acquisition. In this sense the buyer enjoys the same level of �exibility as the
seller. Given this double-sided symmetry of �exibility in our model, the uniqueness of
an optimal contract, which is the standard securitized debt, is guaranteed. In (Dang,
Gorton and Holmstrom 2011), however, the buyer can only follow the traditional costly
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state veri�cation approach to acquire information, in which only two options, namely, to
acquire a signal or not, are available. In other words, the buyer in (Dang, Gorton and
Holmstrom 2011) cannot make state-contingent decision. Hence, the desired double-
sided symmetry of �exibility fails and the uniqueness of the optimal contract fails as a
consequence. Interestingly, (Townsend 1979) also employs the costly state veri�cation
approach with two options to model information acquisition, namely, to audit or not, but
the unique optimality of a standard debt still emerges. Why it is this case? Different
from (Dang, Gorton and Holmstrom 2011) and our framework, in (Townsend 1979) the
entrepreneur has information advantage over the lender in the sense that the entrepreneur
knows the realized pro�t of the project which the lender does not know. Thanks to the
revelation principle, the lender who acquire information in the interim stage can decide
whether to audit or not in any state based on the truth told by the entrepreneur who has
private information. In other words, although the lender in (Townsend 1979) still only has
two options to acquire information as the buyer in (Dang, Gorton and Holmstrom 2011),
such two options in (Townsend 1979) are state-contingent while their counterparts in
(Dang, Gorton and Holmstrom 2011) are not. Therefore, the double-sided symmetry
of �exibility is still established in (Townsend 1979), and the uniqueness of the optimal
contract, also a standard debt, is ensured in their model as well.
We proceed as following. Section II studies �exible information acquisition in a binary

choice problem, which provides a solid foundation for analyzing players' behavior in the
trading game and liquidity provision. Section III derives the uniquely optimal contract
as the securitized debt in various circumstances and identi�es the two key driving forces
of this result. We conclude and discuss in Section IV.

Relation to Literature. We model players' information acquisition behavior through
the framework of rational inattention building on (Christopher A. Sims 1998) and (Sims
2003).1 In applied work, rational inattention is mainly studied in two cases: the linear-
quadratic case (e.g., (Bartosz Mackowiak and Mirko Wiederholt 2009)), and the binary-
action case. A leading example of the latter is (Michael Woodford 2009) , where �rms
acquire information and then decide whether to review their prices. Similar to (Ming
Yang 2011), this paper also adopts the binary-action setup in a strategic framework,
which is different from the single-person decision problem as employed in (Woodford
2009). Compared to (Yang 2011) where both players acquire information and move si-
multaneously, this paper considers a case in which players move sequentially, and only
one party acquires information that results in information asymmetry. Also, this paper
focuses on a speci�c security design problem, rather than addresses a general coordina-
tion game as (Yang 2011). Together with (Yang 2011), our work makes early attempts
to incorporate rational inattention based �exible information acquisition into strategic
problems and offers various new results different from this trend of rational inattention
literature.

1To learn more about rational inattention, see (Christopher A. Sims 2005),(Christopher A. Sims 2006),
(Christopher A. Sims 2010), (Yulei Luo 2008), (Bartosz Mackowiak and Mirko Wiederholt 2011), (Stijn Van Nieuwer-
burgh and Laura Veldkamp 2009a), (Stijn Van Nieuwerburgh and Laura Veldkamp 2009b), (Luigi Paciello 2009), (Filip
Matejka 2010), (Jordi Mondria 2010), (Filip Matejka and Christopher A. Sims 2011).
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This paper is also closely related to the security design literature, in much of which
sellers are modeled as �insiders� exogenously endowed with private information. Sell-
ers' information advantage over buyers result in adverse selection which further leads to
inef�cient trade. In order to deal with the adverse selection problem given that buyers
cannot acquire information, sellers want to signal their private information out in order
to partly retrieve ef�cient trade. In this process, appropriate security design matters.
This is because signaling is costly, so that to design a security that is less information
sensitive than the original asset could save the signaling cost, which in turn adds to the
pro�t of sellers. This consideration is plausible and insightful results have been well
established in literature, but there may also be other interesting possibilities worth in-
vestigating. Also, various assumptions are imposed in this literature to deliver various
results. In our paper, buyers in �nancial markets may also actively acquire information,
which could result in different interplay between the two parties and different results of
security design, and we can get clearer results from a single assumption.
The key difference between our approach and much of the security design literature

could be clearly seen in discussing some of their assumptions and results in details. (Gary
Gorton and George G. Pennacchi 1990) shows that splitting assets into debt and equity
mitigates the lemon problem between outsiders and insiders. They directly assume the
existence of debt rather than considering a security design problem. In (Peter M. De-
Marzo and Darrell Duf�e 1999), informed sellers signal the quality of assets to compet-
itive liquidity suppliers through retaining part of the cash �ows. Equity is issued when
the contractible information is not very sensitive to sellers' private information. Standard
debt is optimal within the set of non-decreasing securities if the information structure al-
lows a uniform worst case. (Bruno Biais and Thomas Mariotti 2005) studies the effects
of market power on market liquidity. They derive both the optimal security and trading
mechanism through the approach of mechanism design. Debt contract turns out to be op-
timal under distributional conditions of underlying cash �ows. (Peter M. DeMarzo 2005)
focuses on the consequences of pooling and tranching. Pooling has an information de-
struction effect that destroys the seller's ability to signal the quality of her assets sepa-
rately. When tranching is possible, pooling may also have a risk diversi�cation effect
that reduces information sensitivity of the senior claim. Under speci�c distributional
assumptions of the noise structure, (DeMarzo 2005) shows that the risk diversi�cation
effect dominates the information destruction effect as the number of underlying assets
goes to in�nity. In this limit case, pooling and tranching become optimal. These models
also restrict their attention to non-decreasing securities2. (Robert D. Innes 1990) pro-
vides a standard motivation for this constraint. When the security is not monotone, a
seller may cheat through borrowing from a third party, reporting a high cash �ow to
reduce her repayment and then repaying the side loan. The validity of this argument de-
pends on the context. In the case of publicly traded stocks or bonds, this kind of cheat is
unlikely to happen because it is dif�cult or even illegal for seller to manipulate the cash
�ows. Moreover, when the security is written on multiple underlying assets, even the

2(Biais and Mariotti 2005) also assume dual monotonicity, i.e., both the security and the residual cash �ow are non-
decreasing.
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concept of monotonicity is not well de�ned. Our framework is free of these limits.

II. Binary Choice with Endogenous and Flexible Information Acquisition

Before introducing the economic environment of security design problem, we review
the logic of binary choice with �exible information acquisition, which will play a key role
in the following analysis. The readers mainly interested in the security design problem
can skip this section and go back to it when needed.
In our leading example, a buyer faces a take-it-or-leave-it offer. She has to acquire

information and then make a binary choice. We �rst focus on information structures
with binary signals and then show that it suf�ces to do so.

A. Decision Problem

Consider an agent who has to choose an action a 2 f0; 1g and will receive a payoff
u .a; �/, where � 2 2 � R is an unknown state distributed according to a continuous
probability measure P over 2.
The agent has access to the set of binary-signal information structures. In particular,

she observes signals x 2 f0; 1g parameterized by measurable function m : 2 ! [0; 1],
where m .�/ is the probability of observing signal 1 if the true state is � (and so 1�m .�/
is the probability of observing signal 0). The conditional probability function m .�/
describes the agent's information acquisition strategy. By choosing different functional
forms for m .�/, the agent can make her signal covary with fundamental in any way she
would like. Intuitively, if her welfare is sensitive to �uctuation of the state within some
range A � 2, she would pay much attention to this event by letting m .�/ be highly
sensitive to � 2 A. In this sense, choosing an information structure can be interpreted
as hiring an analyst to write a report with emphasis on your interests. This idea will be
made more clear through an example later in this section.

QUANTITY AND COST OF INFORMATION

Following (Sims 2003), we measure the quantity of information according to informa-
tion theory building on (Claude E. Shannon 1948). Information conveyed by an informa-
tion structure m .�/ is de�ned as the expected reduction of uncertainty through observing
signals generated by m .�/, where the uncertainty associated with a distribution is mea-
sured by Shannon's entropy.
Before observing her signal, the agent's uncertainty about � is given by Shannon's

entropy of her prior3

H .prior/ D �
Z
2

p .�/ ln p .�/ d� ,

3This is essentially the unique measure of uncertainty given three axioms. See (Thomas M. Cover and Joy A. Thomas
1991) for detailed discussion.
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where p is the density function of prior P4. After observing signal 1, the agent forms a
posterior of �

m .�/ p .�/R
2
m
�
� 0
�
dP

�
� 0
�

and her posterior uncertainty upon receiving signal 1 is measured by her posterior entropy

H .posterior j1/ D �

Z
2

m .�/ p .�/R
2
m
�
� 0
�
dP

�
� 0
� ln m .�/ p .�/R

2
m
�
� 0
�
dP

�
� 0
�! d�

D �

Z
2

m .�/R
2
m
�
� 0
�
dP

�
� 0
� ln m .�/ p .�/R

2
m
�
� 0
�
dP

�
� 0
�! dP .�/ .

Similarly, observing signal 0 leads to a posterior

[1� m .�/] p .�/
1�

R
2
m
�
� 0
�
dP

�
� 0
�

and posterior entropy

H .posterior j0/ D �
Z
2

1� m .�/
1�

R
2
m
�
� 0
�
dP

�
� 0
� ln [1� m .�/] p .�/

1�
R
2
m
�
� 0
�
dP

�
� 0
�! dP .�/ .

Then the agent's expected posterior entropy through choosing information structurem .�/
is

H .posterior/

D

Z
2

m
�
� 0
�
dP

�
� 0
�
� H .posterior j1/C

�
1�

Z
2

m
�
� 0
�
dP

�
� 0
��
� H .posterior j0/

D �

Z
2

m .�/ ln

 
m .�/ p .�/R

2
m
�
� 0
�
dP

�
� 0
�! dP .�/� Z

2

[1� m .�/] ln

 
[1� m .�/] p .�/

1�
R
2
m
�
� 0
�
dP

�
� 0
�! dP .�/ .

Let I .m/ denote the quantity of information gained through m .�/, which equals the
difference between the agent's prior entropy and expected posterior entropy, i.e.,

I .m/ D H.prior/� H .posterior/

D

�Z
2

g .m .�// dP .�/� g
�Z

2

m .�/ dP .�/
��

,(1)

where
g .x/ D x � ln x C .1� x/ � ln .1� x/ .

In information theory, I .m/ is called mutual information. It measures the quantity of

4Following the convention of information theory, we let 0 � ln 0 D 0. This is reasonable since limx!0 x � ln x D 0.
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information about � that is conveyed by the signal.
Write

M , fm 2 L .2; P/ : 8� 2 2;m .�/ 2 [0; 1]g
for the set of binary-signal information structures. Let c : M ! RC be the cost (in
terms of utility) of acquiring information. We assume that the cost is proportional to the
quantity of information gained, i.e.,

(2) c .m/ D � � I .m/ ,

where � > 0 is the marginal cost of information acquisition. It measures the dif�culty
in acquiring information. When � D 0, information acquisition incurs no cost and the
agent can directly observe the true state. When � ! 1, the agent cannot acquire any
information at all.
It is worth noting that mutual information I .m/ measures function m's variability,

which re�ects the informativeness of actions to the fundamental. For example, when
m .�/ is constant, the actions convey no information about � and the corresponding mu-
tual information is zero. This is because function g is strictly convex and thus I .m/ is
zero if and only if m .�/ is constant. Hence, a nice property of our technology of infor-
mation acquisition is that, there exists information acquisition if and only if m .�/ varies
over � , if and only if information cost is positive. Also note that the "shape" (functional
form) of m determines not only the quantity but also the qualitative nature of informa-
tion. For instance, an agent can concentrate her attention to some event through making
m .�/ highly sensitive to � within such event. In this sense, our technology of informa-
tion acquisition is �exible since the agent can decide both the quantity and quality of
their information through freely choosing from M . It is also worth noting that c .�/ is
convex, i.e.,

c .t � m1 C .1� t/ � m2/ � t � c .m1/C .1� t/ � c .m2/

for all m1;m2 2 M and t 2 [0; 1]. This convexity is strict when at least one of m1 and
m2 is not a constant in � .

SOLVING BINARY DECISION PROBLEM WITH INFORMATION ACQUISITION

Now we are interested in the problem of an agent choosing an information structure
m 2 M and a stochastic decision rule f : f0; 1g ! [0; 1] to maximize her expected
utility
(3)

V .m; f / D
Z
2

� �
m .�/ f .1/C .1� m .�// f .0/

�
� u .1; �/

C
�
m .�/ .1� f .1//C .1� m .�// .1� f .0//

�
� u .0; �/

�
dP .�/�c .m/ .

Without loss of generality, we can let f D f � where f � .1/ D 1 and f � .0/ D 0. This
simpli�cation is based on the following observation. If we let

m� .�/ D m .�/ f .1/C .1� m .�// f .0/ ;
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then V .m�; f �/ � V .m; f /, since the �rst term of (3) remains the same, while, by the
convexity of c .�/, the information cost becomes smaller.5
Fixing f D f �, we can interpret m as a joint information structure and decision rule

specifying that the agent will take action 1 with probability m .�/ in state � .
Now the agent's problem is to choose m 2 M to maximize

V � .m/ D

Z
2

[m .�/ � u .1; �/C [1� m .�/] � u .0; �/] dP .�/� c .m/

D

Z
2

m .�/ � [u .1; �/� u .0; �/] dP .�/� c .m/C
Z
2

u .0; �/ dP .�/ .

Since
R
2
u .0; �/ dP .�/ is a constant that does not depend on m, we can rede�ne the

agent's objective as

max
m2M

V � .m/ D
Z
2

1u .�/ � m .�/ dP .�/� c .m/ ,

where
1u .�/ D u .1; �/� u .0; �/

is the payoff gain from taking action 1 over action 0. It shapes the agent's incentive of
information acquisition.
The following lemma characterizes the optimal strategy m for the agent.6

PROPOSITION 1: 7Let Pr .1u .�/ 6D 0/ > 0 to exclude the trivial case that the agent
is always indifferent between the two actions. Let m 2 M be an optimal strategy and

p1 D
Z
2

m .�/ dP .�/

be the corresponding unconditional probability of taking action 1. Then,

5A simple proof: the convexity of c .�/ implies

c .� � m/ D c .� � m C .1� �/ � 0/
< � � c .m/C .1� �/ � c .0/
D � � c .m/

for � 2 [0; 1/. Without loss of generality, let1 f D f .1/� f .0/ � 0. Note that if f .1/ D 0 or f .1/ D 1 and f .0/ D 0,
we are done. Let � D 1 f= f .1/. Thus at least one of f .1/ and � is strictly less than 1:Then

c
�
m�
�
D c . f .1/ � [� � m C 1� �]/

� f .1/ � c .[� � m C 1� �]/
� f .1/ � .[� � c .m/C 0]/
� 1 f � c .m/ < c .m/ .

6We became aware of the related work (Michael Woodford 2008) while working on this paper. Here we use Lemma
2 of (Woodford 2008) to characterize the optimal strategy. To maintain the completeness of our paper, we give a proof in
our context.

7We do not have to require 2 � R. This proposition holds for any probability space 2.
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i) the optimal strategy is unique;
ii) there are three possibilities for the optimal strategy:

a) p1 D 1 (i.e., m .�/ D 1 almost surely) if and only if

(4)
Z
2

exp
�
���11u .�/

�
dP .�/ � 1 ;

b) p1 D 0 (i.e., m .�/ D 0 almost surely) if and only if

(5)
Z
2

exp
�
��11u .�/

�
dP .�/ � 1 ;

c) p1 2 .0; 1/ if and only if

(6)
Z
2

exp
�
��11u .�/

�
dP .�/ > 1 and

Z
2

exp
�
���11u .�/

�
dP .�/ > 1 ;

in this case, the optimal strategy m is characterized by

(7) 1u .�/ D � �
�
g0 .m .�//� g0 .p1/

�
for all � 2 2, where

g0 .x/ D ln
�

x
1� x

�
.

PROOF:
See Appendix A.
These results are intuitive. Since the information cost is convex, the agent's objective

is concave, which gives rise to the uniqueness of the optimal strategy.
In case a), condition (4) holds if action 1 is very likely the ex ante best action and the

cost of acquiring information is suf�ciently high. Hence the agent just takes action 1
without acquiring any information. Similarly, case b) implies that if action 0 is ex ante
very likely to dominate action 1 and the information cost is suf�ciently high, the agent
always takes action 0. In this two cases, marginal bene�t of acquiring information is less
than the marginal cost. Hence the decision maker chooses not to acquire any information.
In case c), as captured by the two inequalities, neither action 1 nor action 0 is ex ante

dominant, thus there is information acquisition and m .�/ is no longer a constant.
In order to get some intuition, consider an extreme case where action 1 is dominant,

i.e., the payoff gain 1u .�/ > 0 almost surely. It is obvious that the agent will always
take action 1 regardless of �, the marginal cost of information acquisition.
When neither action is dominant, i.e.,

Pr .1u .�/ > 0/ > 0 and Pr .1u .�/ < 0/ > 0 ,
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the marginal cost of information acquisition � plays a role.

On the one hand,

lim
�!1

Z
exp

�
���11u .�/

�
dP .�/ D 1 .

Hence Proposition 1 predicts that no information is acquired if � is high enough.

On the other hand, since

lim
�!0

d
d��1

Z
exp

�
��11u .�/

�
dP .�/

D lim
�!0

Z
exp

�
��11u .�/

�
1u .�/ dP .�/

D lim
�!0

Z
1u.�/>0

exp
�
��11u .�/

�
1u .�/ dP .�/

CPr .1u .�/ D 0/C lim
�!0

Z
1u.�/<0

exp
�
��11u .�/

�
1u .�/ dP .�/

D C1C Pr .1u .�/ D 0/C 0
D C1 ,

we have
lim
�!0

Z
exp

�
��11u .�/

�
dP .�/ > 1 .

A similar argument leads to

lim
�!0

Z
exp

�
���11u .�/

�
dP .�/ > 1 .

Therefore, Proposition 1 reads that there must exist information acquisition if the mar-
ginal cost of information is suf�ciently low. This interpretation coincides with our intu-
ition that the agent rationally decides whether to acquire information through comparing
the cost to the bene�t of information acquisition.

When neither action is dominant and the marginal cost of information acquisition takes
intermediate values, the agent �nds it optimal to acquire some information to make her
action (partially, in a random manner) contingent on � . This is the case speci�ed by
condition (6). Since g0 is strictly increasing, (7) implies that m .�/, the conditional prob-
ability of choosing action 1, is increasing with respect to payoff gain 1u .�/. This is
intuitive. The left hand side of (7) represents the marginal bene�t of increasing m .�/,
while the right hand side of (7) is the marginal cost of information when increasingm .�/.
Therefore, if deciding to acquire information, the agent will equate her marginal bene�t
with her marginal cost of doing so.
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AN EXAMPLE

The following example provides some intuition behind the agent's information acqui-
sition strategy.
Let � distribute according to N .t; 1/ and

1u .�/ D � .

It is easy to verify that the agent always chooses action 1 (action 0) if and only if t �
��1=2 (t � ���1=2). In this case, action 1 (action 0) is superior to action 0 (action 1)
ex ante (i.e., jt j is large) and the cost in acquiring information is relatively high (i.e., � is
large). Hence it is not worth acquiring any information at all.
Let t D 0, then the agent �nds it optimal to acquire some information. According to

(7), the optimal information acquisition strategy m .�/ satis�es

(8) �=� D g0 .m .�//� g0
�Z

2

m .�/ dP .�/
�
;

where
g0 .m/ D ln

m
1� m

.

Since prior N .0; 1/ is symmetric about the origin and payoff gain 1u .�/ is an odd
function, the agent is indifferent on average, i.e.,Z

2

m .�/ dP .�/ D 1=2 .

Hence
g0
�Z

2

m .�/ dP .�/
�
D 0

and (8) becomes

�=� D ln
m .�/

1� m .�/
.

Therefore,

(9) m .�/ D
1

1C exp .��=�/
.

First note that
lim
�!0

m .�/ D a .�/ ,
�
1 if � � 0
0 if � < 0 .

Step function a .�/ captures the agent's choice under complete information. In this case,
the agent can observe the exact value of � . When � > 0, the best response is character-
ized by (9). Since information is no longer free, the agent has to allow some mistake in
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her response. The conditional probability of mistake is given by

jm .�/� a .�/j ,

which is decreasing in j� j, the "price" of mistake. Therefore, the agent deliberately
acquires information to balance the price of mistake and the cost of information.
Second, parameter � measures the dif�culty in acquiring information. Figure 1 shows

how m .�/ varies with this parameter.

FIGURE 1. INFORMATION ACQUISITION UNDER VARIOUS INFORMATION COSTS

When � D 0, information acquisition incurs no cost and the agent's response is a step
function. She never makes mistake. When � becomes larger, she starts to compromise
the accuracy of her decision to save information cost. Larger � leads to �atter m .�/.
Finally, when � is extremely large, m .�/ is almost constant and the agent almost stops
acquiring information.
Third, since the agent's action is highly sensitive to � where slope

��� dm.�/d�

��� is large,��� dm.�/d�

��� re�ects her attentiveness around � . Under this interpretation, Figure 1 reveals
that the agent actively collects information for intermediate values of the fundamental
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but is rationally inattentive to values at the tails. This result coincides with our intuition.
When � is too high (low), the agent should take action 1 (action 0) anyway. Hence
the information about � on the tails are not so relevant to her payoff. When � takes
intermediate values, the agent's payoff gain from taking action 1 over action 0 depends
crucially on the sign of � . Therefore, the information about � around zero is payoff-
relevant and attracts most of her attention.
We have been focusing on binary-signal information structures. Next subsection justi-

�es this setup.

B. Justifying the Binary-signal Information Structure

Generally, an agent can purchase any information structure ..X; � / ; �/. Here X is the
set of realizations of the signal, � is a � -algebra on X , and 8� 2 2, � .�j�/ is a proba-
bility measure on X . � .�j�/ conveys information about state � in the sense that for any
event A � X , � .Aj�/ speci�es the conditional probability of A given � . Before making
a decision, the agent can acquire information about the state in the form of an informa-
tion structure. An information structure speci�es both the quantity and qualitative nature
of the information.
The binary-signal information structure analyzed above is a special case with X D

f0; 1g and � .1j�/ D m .�/ (and so � .0j�/ D 1 � m .�/). For binary choice problem
with �exible information acquisition, it suf�ces to restrict our attention to this special
class of information structures. To see this, let ..X; � / ; �/ be any information structure
chosen by the agent. Given ..X; � / ; �/, the agent optimally chooses her action rule as
a : X ! [0; 1], where a .x/ is the probability of taking action 1 upon receiving signal x .
Let

X1 D fx 2 X : a .x/ D 1g ;
X0 D fx 2 X : a .x/ D 0g ;

and

X ind D fx 2 X : a .x/ 2 .0; 1/g :
X1 (X0) is the set of signal realizations such that the agent de�nitely takes action 1 (0).
She is indifferent when her signal belongs to X ind . Then .X1; X0; X ind/ forms a partition
of X . Since the only use of the signal is to make a binary decision, a signal differentiating
more �nely among the states just conveys redundant information and wastes the agent's
attention. Hence the agent will not discern signal realizations within any of X1, X0 and
X ind . In addition, because she is indifferent between action 0 and 1 upon event X ind ,
she would rationally pay no attention to distinguish this event from other realizations.
Hence, the agent always play pure strategies upon receiving her signal. Therefore, the
agent always prefers binary-signal information structures.8

8(Woodford 2009) has a similar argument that the agent only needs to acquire a "yes/no" signal.
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III. Security Design with Information Acquisition

A. Basic Setup

We consider a two-period game with two players. One player is a seller that owns N
assets at period 0. These assets generate veri�able random cash �ows

�!
� 2 2 � RNC in

period 19. The other player is a potential buyer holding consumption goods (money) at
period 0. Player i's utility function is given by

(10) ui D ci0 C �i � ci1;

where ci t denotes player i's consumption at period t and �i 2 [0; 1] is her subjective
discount factor, i 2 fs; bg(fs; bg stands for fseller; buyerg). We assume �b > �s to rep-
resent that the seller has a better investment opportunity than the buyer. This assumption
creates the trading demand. Both agents may bene�t from transferring some goods to the
seller at date 0 and compensating the buyer with repayment backed by the random cash
�ows

�!
� at date 1.

Similar to (Dang, Gorton and Holmstrom 2011), we assume no information asymmetry
at period 0 to focus on the adverse selection resulting from endogenous information
acquisition. Hence the two agents start with identical information about

�!
� , which is

represented by a full support common prior P over 2. Without loss of generality, we
assume that P is absolutely continuous with respect to Lebesgue's measure on RNC .
A security backed by

�!
� , the cash �ows of the N assets, is a mapping s : 2 ! RC

such that 8
�!
� 2 2, s

��!
�
�
2
h
0;
PN
nD1 �n

i
. A contract .s .�/ ; q/ is a security s .�/

associated with a price q > 0. Throughout the paper, we focus on the case where
one player proposes a take-it-or-leave-it contract .s .�/ ; q/ to her opponent, who then
acquires information and decides whether to accept it. This setup captures the idea that
some agents in the markets of securitized assets are less sophisticated than others and
cannot produce private information about the underlying cash �ows. This separation
between bargaining power and ability of information acquisition also makes our problem
tractable.10
We �rst study the case where the seller designs the contract and the buyer acquires

information. We then highlight two key factors driving the unique optimality of issuing
securitized debt. We �nally exchange the bargaining power and the ability of information
acquisition to show the robustness of our main results.

9Here the assumption of veri�able cash �ows is natural, since we generally have third parties monitor and collect the
underlying loans and distribute the cash �ows to the holders of asset backed securities.
10We would have to study a much more complicated signaling game if the issuer can produce private information

before her proposal. In that case, the set of possible signals consists of all contracts, which is a functional space. To
the best of our knowledge, this kind of signaling games are rarely studied before. (Peter M. DeMarzo, Ilan Kremer
and Andrzej Skrzypacz 2005) does consider a security design problem where potential signals are securities. But their
approach does not �t our framework of �exible information acquisition. In the literature, either the informed agent
chooses �nite-dimension signals (e.g., the level of debt in (Stephen A. Ross 1977), the retaining fraction of the equity in
(Hayne E Leland and David H Pyle 1977), etc.), or the issuer designs the security before obtaining her information (e.g.,
(DeMarzo and Duf�e 1999), (Biais and Mariotti 2005)).



INFORMATION ACQUISITION AND SECURITY DESIGN 17

B. Optimal Contract when the Seller Designs

Consider the particular binary choice problem where the agent is a risk neutral buyer
with utility (10). Action 1 corresponds to buying the ABS s

��!
�
�
at price q and action

0 corresponds to not buying. Write ms;q for the buyer's optimal strategy when facing
contract .s; q/. Let

ps;q D
Z
2

ms;q
��!
�
�
dP

��!
�
�

be the buyer's unconditional probability of accepting the offer. The seller thus enjoys an
expected utility

(11) W .s; q/ D
Z
2

ms;q
��!
�
�
�
h
q � �s � s

��!
�
�i
dP

��!
�
�
.

The seller's problem is to choose a contract .s; q/ satisfying s
��!
�
�
2
h
0;
PN
nD1 �n

i
to

maximize W .s; q/. Let .s� .�/ ; q�/ denote the optimal contract and

ps�;q� D
Z
2

ms�;q�
��!
�
�
dP

��!
�
�

be the corresponding probability of trade.

According to Proposition 1, there are three possible cases: a) ps�;q� D 1; b) ps�;q� D 0;
and c) ps�;q� 2 .0; 1/. We �rst argue that case b) is impossible.

PROPOSITION 2: ps�;q� > 0, i.e., trade happens with positive probability.

PROOF:

We prove by constructing a securitized debt that generates positive expected payoff to
the seller. Let � 2

�
�s�

�1
b ; 1

�
and

f .q/ D
Z
2

min

 
NX
nD1

�n; ��
�1
s q

!
dP

��!
�
�
.

Since P is a continuous distribution and ��1�s��1b < 1, there exists q0 > 0 s.t.

Pr

 
NX
nD1

�n � ��
�1
s q

!
> ��1�s�

�1
b



18 INFORMATION ACQUISITION AND SECURITY DESIGN

for all q 2
�
0; q0

�
. Hence for any q 2 .0; q0/,

f 0 .q/ D ���1s

Z
n�!
� 22:

PN
nD1 �n���

�1
s q

o 1 � dP ��!� �
D Pr

 
NX
nD1

�n � ��
�1
s q

!
� ���1s

> ��1�s�
�1
b � ���1s D ��1b .

Note that
f .0/ D 0 ,

which implies that
f .q/ > ��1b q

for all q 2 .0; q0/.

Consider a securitized debt

s
��!
�
�
D min

 
NX
nD1

�n; D

!

with face value D D ���1s q and price q 2 .0; q0/. The buyer's payoff gain from accept-
ing this offer over rejecting it is

(12) 1u
��!
�
�
D �b � s

��!
�
�
� q .

By Jensen's inequality,Z
2

exp
�
��11u

��!
�
��
dP

��!
�
�

� exp
�
��1

Z
2

1u
��!
�
�
dP

��!
�
��

D exp

 
��1

"
�b �

Z
2

min

 
NX
nD1

�n; ��
�1
s q

!
dP

��!
�
�
� q

#!
D exp

�
��1

�
�b � f .q/� q

��
> exp .0/ D 1,

where the last inequality comes from (12). Hence according to Proposition 1, ps;q > 0.
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Then, the seller's expected payoff from this contract is

W .s; q/ D

Z
2

ms;q
��!
�
�
�
h
q � �s � s

��!
�
�i
dP

��!
�
�

D

Z
2

ms;q
��!
�
�
�

"
q � �s �min

 
NX
nD1

�n; ��
�1
s q

!#
dP

��!
�
�

�

Z
2

ms;q
��!
�
�
�
�
q � �s � ���1s q

�
dP

��!
�
�

D .1� �/ q � ps;q > 0 .

By de�nition, the seller's expected payoff through the optimal contract is W .s�; q�/ �
W .s; q/ > 0. This directly implies ps�;q� > 0 since ps�;q� D 0 always generates zero
expected payoff to the seller. This concludes the proof.
The key of the proof is to show that the seller can always enjoy a positive expected

payoff through proposing a securitized debt. Hence her optimal contract must also gen-
erate a positive expected payoff, which can be achieved only through a successful trade.
Although facing adverse selection, the seller always prefers trade. This is because she
owns all bargaining power. She is able to minimize the negative effect of information
acquisition through appropriately designing a contract and thus enjoy the bene�t from
trade.
According to Proposition 2, only case a) and c) are possible. In case a) ps�;q� D 1 and

the buyer does not acquire any information. In case c), ps�;q� 2 .0; 1/ and the buyer does
acquire some information. We �rst study the seller's optimal contract in case a).

OPTIMAL CONTRACT WITHOUT INDUCING INFORMATION ACQUISITION

A direct application of Proposition 1 suggests that any contract .s; q/ that does not
induce information acquisition must satisfy

E exp
�
���1

h
�b � s

��!
�
�
� q

i�
� 1 ,

i.e.,

(13) q � �� lnE exp
�
���1�b � s

��!
�
��
.

Intuitively, the buyer just accepts the offer when the price is low enough relative to the
repayment of the security. This inequality must bind for seller's optimal contract, other-
wise she can bene�t from increasing the price q . Hence, (13) reduces to

(14) q D �� lnE exp
�
���1�b � s

��!
�
��
.
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Since the contract is always accepted, the seller's expected payoff becomesZ
2

h
q � �s � s

��!
�
�i
dP

��!
�
�

D q � �s � Es
��!
�
�

D �� lnE exp
�
���1�b � s

��!
�
��
� �s � Es

��!
�
�
.

Hence the seller's problem can be formalized as

min
s.�/
� lnE exp

�
���1�b � s

��!
�
��
C �s � Es

��!
�
�

subject to the feasibility condition

(15) s
��!
�
�
2

"
0;

NX
nD1

�n

#
.

PROPOSITION 3: If the seller's optimal contract induces the buyer to always accept it
without acquiring information, it must be a securitized debt

s�
��!
�
�
D min

 
NX
nD1

�n; D�
!

with price q�, where the face value is determined by

D� D D
�
q�
�

D ���1b � [ln �b � ln �s]C ��1b q
� ,

q� > 0 is the unique �xed point of

h .q/ D �� lnE exp

 
���1�b �min

 
NX
nD1

�n; D .q/

!!

and the expectation is taken under common prior P.

PROOF:

See Appendix A.

First note that the face value has a lower bound, i.e.,

D� > ���1b � [ln �b � ln �s] .
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Hence if the maximal cash �ow

sup

(
NX
nD1

�n :
�!
� 2 2

)
� ���1b � [ln �b � ln �s] ,

the optimal security is actually the pool of all assets. This could happen when the seller
has an extremely good investment opportunity relative to the buyer (i.e., ln �b�ln �s � 1)
or it is too hard for the buyer to acquire information (i.e., �� 1). As a direct implication,
when the buyer cannot acquire any information (i.e., � ! 1), the seller just sells the
pool of all assets at price

�b � E

"
NX
nD1

�n

#
and enjoys the maximal trading surplus

.�b � �s/ � E

"
NX
nD1

�n

#
.

Another interesting observation comes from equation (14), which implies

q� D �� lnE exp
�
���1�b � s�

��!
�
��

� �� ln
�
exp

�
���1�b � Es�

��!
�
���

D �b � Es�
��!
�
�
,

where the inequality follows Jensen's inequality. Since the offer induces no informa-
tion acquisition, both parties remain symmetrically informed and the seller should have
charged the buyer �b � Es�

��!
�
�
. However, the seller �nds it optimal to charge a lower

price q� to bribe the buyer not to acquire information.
In the rest of this section, we show that securitized debt remains uniquely optimal even

if there is information acquisition.

OPTIMAL CONTRACT WITH INFORMATION ACQUISITION

According to Proposition 1, any contract .s .�/ ; q/ that induces the buyer to acquire
information must satisfy

(16) E exp
�
��1

h
�b � s

��!
�
�
� q

i�
> 1

and

(17) E exp
�
���1

h
�b � s

��!
�
�
� q

i�
> 1 ,
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where the expectation is taken according to common prior P . That is, neither accepting
nor rejecting the offer is dominant ex ante, and thus the buyer �nds it optimal to acquire
some information.
Given such a contract, Proposition 1 prescribes that the buyer's optimal strategy ms;q

is uniquely characterized by

(18) �b � s
��!
�
�
� q D � �

h
g0
�
ms;q

��!
�
��
� g0

�
ps;q

�i
,

where
ps;q D

Z
2

ms;q
��!
�
�
dP

��!
�
�

is the buyer's unconditional probability of accepting the offer.
Taking into account of the buyer's response ms;q , the seller chooses .s .�/ ; q/ to max-

imize her expected payoff

W .s; q/ D
Z
2

ms;q
��!
�
�
�
h
q � �s � s

��!
�
�i
dP

��!
�
�

subject to (16), (17), (18) and the feasibility condition

(19) s
��!
�
�
2

"
0;

NX
nD1

�n

#
.

It is worth noting that both (16) and (17) should not bind for the optimal contract,
otherwise no information will be acquired according to Proposition 1. Hence, condi-
tional on the fact that the optimal contract does induce information acquisition, these
two constraints could be ignored during optimization.
We derive the optimal contract .s� .�/ ; q�/ through calculus of variations. That is, see

how the seller's expected payoff responds to the perturbation of her optimal contract.
Let s

��!
�
�
D s�

��!
�
�
C � � "

��!
�
�
be an arbitrary perturbation of s� .�/. The buyer's

best response ms;q� .�/ is implicitly determined by s .�/ through functional equation (18).
Hence we need �rst characterize how ms;q� .�/ varies with respect to the perturbation of
s� .�/.

LEMMA 1: For any perturbation s
��!
�
�
D s�

��!
�
�
C � � "

��!
�
�
, the response of the

buyer's strategy ms;q� .�/ is characterized by

dms;q�
��!
�
�

d�

������
�D0

D ��1�b �
h
g00
�
ms�;q�

��!
�
��i�1

"
��!
�
�

C

h
g00
�
ms�;q�

��!
�
��i�1

��1�b
R
2

h
g00
�
ms�;q�

��!
�
��i�1

"
��!
�
�
dP

��!
�
�

�
g00
�
ps�;q�

���1
�
R
2

h
g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
� .(20)
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PROOF:
See Appendix A.

The �rst term of the right hand side of (20) is the buyer's local response to "
��!
�
�
. It

is of the same sign as the perturbation "
��!
�
�
. When the repayment increases at state

�!
� , the buyer is more likely to accept the offer at this state. The second term measures
the buyer's average response to perturbation "

��!
�
�
over all states. It is straightforward

to verify that the denominator is positive due to Jensen's inequality. Hence, if on average
the perturbation increases her repayment, the buyer would like to accept the offer more
often.
Now we can calculate the variation of the seller's expected payoff W .s; q�/. Taking

derivative with respect to � at � D 0 for both sides of (11) leads to
(21)

dW .s; q�/
d�

����
�D0

D

Z
2

dms;q�
��!
�
�

d�

������
�D0

h
q� � �s � s�

��!
�
�i
dP

��!
�
�
��s

Z
2

ms�;q�
��!
�
�
"
��!
�
�
dP

��!
�
�
.

Substitute (20) into (21) and manipulate we get

(22)
dW .s; q�/

d�

����
�D0

D

Z
2

r
��!
�
�
� "
��!
�
�
dP

��!
�
�
,

where
(23)
r
��!
�
�
D ��sms�;q�

��!
�
�
C ��1�b

h
g00
�
ms�;q�

��!
�
��i�1 �

q� � �s � s�
��!
�
�
C w

�
and

w D

R
2

h
q� � �s � s�

��!
�
�i h

g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
�

�
g00
�
ps�;q�

���1
�
R
2

h
g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
� .

Note that w is a constant that does not depend on
�!
� . Its value is endogenously de-

termined in equilibrium. Here r
��!
�
�
is the Frechet derivative11 of W .s; q�/ at s�, it

measures the marginal contribution of any perturbation to the seller's expected payoff.
The �rst term of (23) is the direct contribution of perturbing s� while ignoring the vari-
ation of ms�;q�

��!
�
�
. The second term measures the indirect contribution through the

variation of ms�;q�
��!
�
�
. This expression represents the chain rule of the calculus of

variations.

11For the readers not familiar with this concept, just think of Frechet derivative as the gradient of W
�
s; q�

�
at "vector"

s. Indeed, the gradient is a special case of Frechet derivative when #2 is �nite.
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Let
A0 D

n�!
� 2 2 :

�!
� 6D

�!
0 ; s�

��!
�
�
D 0

o
;

A1 D

(
�!
� 2 2 :

�!
� 6D

�!
0 ; s�

��!
�
�
2

 
0;

NX
nD1

�n

!)
and

A2 D

(
�!
� 2 2 :

�!
� 6D

�!
0 ; s�

��!
�
�
D

NX
nD1

�n

)
:

In regions A0 and A2, s� .�/ is bounded by its lower bound and upper bound, respectively.
In region A1, s� .�/ is off the boundaries. Then fA0; A1; A2g is a partition of 2n

n�!
0
o
.

Since s� .�/ is the optimal security,

dW .s; q�/
d�

����
�D0

� 0

holds for any feasible12 perturbation "
��!
�
�
. Hence (22) implies

(24) r
��!
�
�8><>:

� 0 if
�!
� 2 A0

D 0 if
�!
� 2 A1

� 0 if
�!
� 2 A2

.

Since g is strictly convex, g00 > 0 and (24) can be rewritten as

r
��!
�
�
� g00

�
ms�;q�

��!
�
��

D ��sms�;q�
��!
�
�
g00
�
ms�;q�

��!
�
��
C ��1�b

�
q� � �s � s�

��!
�
�
C w

�
8><>:
� 0 if

�!
� 2 A0

D 0 if
�!
� 2 A1

� 0 if
�!
� 2 A2

.(25)

Recall that given the optimal contract .s� .�/ ; q�/, the buyer's best response ms�;q�
��!
�
�

is characterized by

(26) �b � s�
��!
�
�
� q� D � �

h
g0
�
ms�;q�

��!
�
��
� g0

�
ps�;q�

�i
,

where
ps�;q� D

Z
2

ms�;q�
��!
�
�
dP

��!
�
�

12A perturbation " is feasible with respect to s� if 9� > 0, s.t. 8�!� 2 2, s�
��!
�
�
C � � "

��!
�
�
2
h
0;
PN
nD1 �n

i
.
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is the buyer's unconditional probability of accepting the optimal contract .s� .�/ ; q�/.
Then, (25)13 together with (26) determines the optimal contract .s� .�/ ; q�/. Let m D
f1 .s/ and m D f2 .s/ be the two continuous functions implicitly de�ned by

(27) ��s � m � g00 .m/C ��1�b
�
q� � �s � s C w

�
D 0

and

(28) �b � s � q� D � �
�
g0 .m/� g0

�
ps�;q�

��
,

respectively. We have f 01 .s/ < 0 and f 02 .s/ > 0 since
�
m � g00 .m/

�0
> 0 and g00 .m/ > 0.

By de�nition,

ms�;q�
��!
�
�
D f1

�
s�
��!
�
��
implies r

��!
�
�
D 0 .

Also note that ms�;q�
��!
�
�
D f2

�
s�
��!
�
��
for all

�!
� 2 2. Now we can characterize the

optimal security through analyzing f1 and f2 together.

PROPOSITION 4: Pr .A0/ D 0, where A0 D
n�!
� 2 2 :

�!
� 6D

�!
0 ; s�

��!
�
�
D 0

o
.

PROOF:
See Appendix A.
This proposition states that constraint s

��!
�
�
� 0 never binds. The logic underlying

the proof is that on the boundary s
��!
�
�
D 0, although an increment of s

��!
�
�
increases

the seller's repayment, it increases the probability of trading even more. Hence the seller
on average gains through deviating from the lower boundary. As its implication, it is not
optimal to issue equity residual/call option to raise liquidity.
For those states in A1, where the limited liability constraint

s
��!
�
�
�

NX
nD1

�n

does not bind either, both

ms�;q�
��!
�
�
D f1

�
s�
��!
�
��

and
ms�;q�

��!
�
�
D f2

�
s�
��!
�
��

13One may criticize that Equation (25) is just the �rst order condition of the seller's optimization problem. It only
characterizes the critical points. In principle, we should characterize the largest critical point. However, our argument
works for any critical point and thus our results are immune to this critique.
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must hold. Since f 01 .s/ < 0 and f 02 .s/ > 0, f1 .s/ and f2 .s/ intersect at most once.
Hence s�

��!
�
�
should be a constant and the buyer has no incentive to acquire informa-

tion within region A1. This result coincides with our intuition. If the limited liability
constraint never binds, the seller would issue a security with constant repayment to avoid
the buyer's information acquisition. However, once the underlying cash �ows are too
low to support such constant, s�

��!
�
�
reaches the limited liability boundary and equalsPN

nD1 �n . The next proposition shows that the optimal security must be a securitized
debt.

PROPOSITION 5: If the seller's optimal contract induces the buyer to acquire infor-
mation, it must be a securitized debt s�

��!
�
�
D min

�PN
nD1 �n; D�

�
.

PROOF:
See Appendix A.
Together with Proposition 2 and 3, this proposition enables us to conclude that pool-

ing the assets and issuing a senior tranche is always the uniquely optimal way to raise
liquidity. Pooling is directly derived from the seller's desire to maximize liquidity. It
has nothing to do with the consideration of risk diversi�cation since both agents are risk-
neutral. The �at tail of the optimal security results from the seller's effort to minimize her
opponent's information acquisition. In contrast to the non-uniqueness result in (Dang,
Gorton and Holmstrom 2011), we can show the unique optimality of debt because of our
�exible information acquisition framework. In (Dang, Gorton and Holmstrom 2011),
only two extreme information structures are available in the setup of costly state veri-
�cation while in�nite forms of securities can be designed, which inevitably results in
the indistinguishability of some securities. In our framework, with help of �exibility,
the variety of available information structures matches the variety of potential securities
to be designed, and thus the uniqueness of the standard securitized debt could be guar-
anteed. Quasi-debts are no longer optimal in our model. By reshaping the uneven tail
above the price of a quasi-debt to a �at one, not only the buyer's information cost could
be saved but also potential loss of trade from adverse selection could be mitigated. The
resulted surplus could be employed by the seller to make both parties better off, and thus
ultimately make a better provision of liquidity possible. Moreover, this �exibility also
enables us to show the optimality of pooling and tranching in a broader class of envi-
ronments than (Dang, Gorton and Holmstrom 2011) and without assuming a suf�ciently
large number of underlying assets as in (DeMarzo 2005)14.
In addition, our qualitative result does not rely on the distributional details of underly-

ing assets, while most models in literature are built upon speci�c assumptions about the
cash �ows. Since the stochastic interdependence among the underlying assets could be
complex and violate such assumptions, our model provides a better explanation for the
prevalence of securitization in �nancial markets.

14(DeMarzo 2005) shows that the bene�t of pooling achieves a theoretical maximum as the number of underlying
assets approaches in�nity.
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The security design literature usually assumes Monotone Likelihood Ratio Property
(MLRP) or similar conditions to guarantee a meaningful result. Our framework justi�es
this assumption through endogenizing the information structure. According to Proposi-
tion 5, the optimal security s�

��!
�
�
is non-decreasing in the sum of cash �ows. Proposi-

tion 1 implies that the best information structure ms�;q�
��!
�
�
is increasing in the payoff

gain �b � s�
��!
�
�
� q�. Hence ms�;q�

��!
�
�
is also non-decreasing in the sum of the

cash �ows. Therefore, the larger the cash �ows, the higher the probability that the buyer
gets a signal asking her to accept. This can be interpreted as a generalized MLRP for
multi-dimensional states.
To facilitate the analysis, the security design literature usually restrict their attention

to the set of "regular" securities, which are non-decreasing in the underlying cash �ows
(e.g., (DeMarzo and Duf�e 1999), (DeMarzo 2005)). We do not have such restriction,
but show that the optimal security naturally turns out to be non-decreasing.
Finally, (Dang, Gorton and Holmstrom 2011) get debt contract uniquely optimal when

their �xed information cost is zero. This can be viewed as a special case of our model
where marginal cost of information acquisition vanishes.

UNDERSTANDING THE ORIGIN OF UNIQUENESS

For readers familiar with the approach of costly state veri�cation (CSV), a question
naturally arises regarding the uniqueness of the optimal contract. Both (Townsend 1979)
and (Dang, Gorton and Holmstrom 2011) employ CSV, why does the former but not
the latter get debt uniquely optimal? In last subsection, we have attributed the non-
uniqueness in (Dang, Gorton and Holmstrom 2011) to the rigidity of CSV. This argument
is correct when comparing (Dang, Gorton and Holmstrom 2011) to our model, but not
fully convincing when (Townsend 1979) is also considered. To fully understand the dif-
ferent results in (Dang, Gorton and Holmstrom 2011), (Townsend 1979) and our model,
we �rst highlight the essence of �exibility. In principle, general �exible choice, not nec-
essarily restricted to �exible information acquisition, enables an economic agent to make
state-contingent responses. In other words, the agent can make a best response in one
state, and can make another best response in another state. In all these three models,
the contract designer is endowed with �exibility, in the sense that she can assign state-
contingent repayment through designing any form of security. What matters to shape
the different results regarding uniqueness of the optimal contract relies on the potential
�exibility of the other party who decides whether to accept the offer. Through com-
paring these three models, we argue that the origin of the uniqueness is not only from
the �exibility itself, but from the double-sided symmetry of �exibility. Here, double-
sided symmetry of �exibility requires that both parties engaged in a potential trade are
endowed with the same level of �exibility.
In our framework, ex-ante symmetric information in the form of a double-sided igno-

rance prevents the buyer to make a state-contingent choice if she only follows the tra-
ditional CSV approach to acquire information. However, the buyer in our framework is
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able to choose state-contingent probability (i.e., m
��!
�
�
) of accepting the offer, namely,

she can perform �exible information acquisition. In this sense the buyer enjoys the same
level of �exibility as the seller. Given this double-sided symmetry of �exibility in our
model, the uniqueness of an optimal contract, which is the standard securitized debt,
is guaranteed. In (Dang, Gorton and Holmstrom 2011), however, the buyer can only
follow the traditional CSV approach to acquire information, in which only two options,
namely, to acquire a signal or not, are available. Moreover, ex-ante symmetric igno-
rance precludes the possibility of conditioning the action on any private information.
Hence the CSV makes the buyer in (Dang, Gorton and Holmstrom 2011) unable to make
state-contingent decision. As a result, the desired double-sided symmetry of �exibility
fails and the uniqueness of the optimal contract fails as a consequence. Interestingly,
(Townsend 1979) also employs the costly state veri�cation approach with two options
to model information acquisition, namely, to audit or not, but the unique optimality of
a standard debt still emerges. Why it is this case? Different from (Dang, Gorton and
Holmstrom 2011) and our framework, in (Townsend 1979) the entrepreneur has infor-
mation advantage over the lender in the sense that the entrepreneur knows the realized
pro�t of the project which the lender does not know. Thanks to the revelation principle,
the lender who acquire information in the interim stage can decide whether to audit or
not in any state based on the truth told by the entrepreneur who has private information.
In other words, although the lender in (Townsend 1979) still only has two options to
acquire information as the buyer in (Dang, Gorton and Holmstrom 2011), such two op-
tions in (Townsend 1979) are state-contingent while their counterparts in (Dang, Gorton
and Holmstrom 2011) are not. Therefore, the double-sided symmetry of �exibility is
still established in (Townsend 1979), and the uniqueness of the optimal contract, also a
standard debt, is ensured in their model as well. Figure 2 shows the relation among these
three models.
This subsection explores the origin of uniqueness of the optimal contract. We address

the optimality of securitized debt in next subsection.

TWO KEY FACTORS DRIVING THE OPTIMALITY OF SECURITIZED DEBT

Although our model explains the popularity of securitized debt contracts, it is impor-
tant to �gure out the boundary of our theory. In this subsection, we propose two key
factors that drive our results. We show that issuing securitized debt is no longer optimal
in absence of these factors.
The �rst feature of our model is its �xed total risk exposure. Before designing the

contract, the seller has already owned assets
�!
� . Hence the assets owned by the seller

and the buyer as a whole is invariant with respect to the success or failure of the transac-
tion. This �xed total risk exposure leads to a situation like "zero-sum" game, where any
information acquired by the buyer makes herself better off but hurts the seller's bene�t
through adverse selection. That is, the buyer attempts to acquire information that helps
her reject the offer once the repayment is lower than the price and accept the offer in the
opposite case. However, whatever quantity and quality of information is acquired has
nothing to do with their total risk exposure.
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FIGURE 2. RELATION AMONG OUR MODEL, DANG, GORTON & HOLMSTROM (2011) AND TOWNSEND (1979)

The importance of this factor can be seen clearly in our derivation of the optimal
security. Since the buyer's incentive to acquire information and the seller's incentive to
design the security are totally shaped by their payoff gains from the success over the
failure of the transaction, it makes sense to examine their payoff gains. Conditional on
�!
� , the buyer's and seller's payoff gains are

�b � s
��!
�
�
� q

and
q � �s � s

��!
�
�
,

respectively. Both these payoff gains do not explicitly depend on
�!
� . The future cash

�ows
�!
� can affect their incentives only through the security s

��!
�
�
. This is the reason

that we can de�ne the functions m D f1 .s/ and m D f2 .s/ rather than m D f1
�
s;�!�

�
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or m D f2
�
s;�!�

�
in (27) and (28). The simple shape of securitized debt comes from

this independence of f1 and f2 on
�!
� .

To make our point more clear, we consider a similar problem with variable total risk
exposure. The seller is an entrepreneur who wants to raise capital q to take a project
that generates cash �ow � . As before, she designs a security s .�/ and proposes a take-
it-or-leave-it offer .s; q/ to the bank, who is the buyer that acquires information in the
present problem. The entrepreneur's project gets funded and generates future cash �ow
� only if the bank accepts the offer. Hence, the total risk exposure depends on whether
the transaction succeeds. In this case, the buyer's payoff gain remains the same but the
seller's payoff gain becomes

�s � [� � s .�/] ,
which explicitly depends on � . As a result, we have m D f1 .s; �/ rather than m D f1 .s/
and the �at part of the debt is no longer optimal. Even if s .�/ is off the boundaries, the
seller would like to �uctuate s .�/ to induce the buyer to acquire some information. In
general, information acquisition bene�ts the buyer and seller as a whole. It prevents the
project to be taken when the cash �ow is too low. In fact, this is a story of consulting. The
seller designs a state contingent repayment to elicit information from the buyer. Their
incentives are aligned rather than opposite to each other.
The second factor that drives our results is homogeneous information acquisition. That

is, no state is more special than other states in terms of the dif�culty of information
acquisition. This property stems from rational inattention15 and is the reason why our
qualittive result does not depend on the stochastic interdependence among the underlying
assets. Recall the binary decision problem in Section II, the decision maker's optimal
strategy m is characterized by equation (7)

1u .�/ D � �
�
g0 .m .�//� g0 .p1/

�
,

where
p1 D

Z
2

m .�/ dP .�/ .

The right hand side of equation (7) is the Frechet derivative16 of information cost. It does
not explicitly depends on � . This is the homogeneity we referred to. As an example,
homogeneity fails if we replace the term

g0 .m .�//� g0 .p1/

with
g0 .m .�//� g0 .p1/C k .�/

for some non-constant function k .�/. In this case, we should de�ne m D f2 .s; �/

15There are many information cost functions satisfying this property. For example, any strictly concave and symmetric
function g in (1) corresponds to an information cost with this property.
16For the readers not familiar with this concept, just think of the Frechet derivative as the gradient of the cost function.
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instead of m D f2 .s/ in (28). This dependence re�ects the buyer's varying dif�culties
in discerning different states. Hence the optimal contract may not have a �at part as in
debt.
We use a non-homogeneous information cost to illustrate our idea. Speci�cally, let

� 2 [0; 1] and

c .m/ D
�

Pr .� 2 [0; a]/
�

�Z
[0;a]

g .m .�// dP .�/� g
�Z

[0;a]
m .�/ dP .�/

��
for some a 2 .0; 1/. Hence the state is directly observable for � 2 .a; 1]. For � 2 [0; a],
the buyer can acquire its information at marginal cost �

Pr.�2[0;a]/ . Let �b D 1 and the
seller's optimal contract be .s; q/. Given this contract, the buyer's optimal strategy is
characterized by

s .�/� q D � �
�
g0 .m .�//� g0 .p1/

�
if � 2 [0; a] ,

and
m .�/ D

�
1 if � 2 .a; 1] and s .�/� q � 0
0 if � 2 .a; 1] and s .�/� q < 0

,

where

p1 D

R
[0;a]m .�/ dP .�/
Pr .� 2 [0; a]/

.

For � 2 .a; 1], the buyer accepts the offer if and only if s .�/�q � 0, thus we must have

s .�/ D q

for � 2 .a; 1]. Information remains costly in region [0; a], thus a debt contract is optimal
within this region according to our previous argument. However, the optimal contract on
interval [0; 1] is no longer a debt, as shown in Figure 3.

C. Allocation of Bargaining Power

One may wonder if our results are sensitive to the allocation of bargaining power.
The answer is no. This subsection introduces the case where the buyer owns bargaining
power and then presents the main results. Due to the similarity between the two cases,
we omit most proofs here.
Suppose the buyer proposes the contract .s .�/ ; q/ and the seller acquires information.

Write ms;q for the seller's optimal strategy. The uninformed buyer thus enjoys expected
payoff

W .s; q/ D
Z
ms;q

��!
�
�
�
h
�b � s

��!
�
�
� q

i
dP

��!
�
�
:

The buyer's problem is to choose a feasible contract .s; q/ satisfying s
��!
�
�
2
h
0;
PN
nD1 �n

i
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FIGURE 3. OPTIMAL CONTRACT UNDER NON-HOMOGENEOUS INFORMATION COST

to maximize W .s; q/. Let .s� .�/ ; q�/ denote the optimal contract for the buyer and

ps�;q� D
Z
2

ms�;q�
��!
�
�
dP

��!
�
�

be the corresponding probability of trade.

PROPOSITION 6: ps�;q� > 0, i.e., trade happens with positive probability.

PROOF:
See Appendix A.

PROPOSITION 7: If the buyer's optimal contract induces the seller to always accept it
without acquiring information, it must be a securitized debt

s�
��!
�
�
D min

 
NX
nD1

�n; D�
!

with price q�, where

D� D ���1s � [ln �b � ln �s]C ��1s q
� ,

q� is the unique �xed point of

h .q/ D � lnE exp

 
��1�s �min

 
NX
nD1

�n; ��
�1
s � [ln �b � ln �s]C ��1s q

!!

and the expectation is taken according to common prior P.
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PROOF:
The proof is very similar to that of Proposition 3 and is omitted here.

PROPOSITION 8: If the buyer's optimal contract induces the seller to acquire infor-
mation, it must be a securitized debt s�

��!
�
�
D min

�PN
nD1 �n; D�

�
.

PROOF:
The proof is very similar to that of Proposition 5 and is omitted here.
Proposition 3, 5, 7 and 8 show that the optimal security is always a securitized debt, no

matter who owns bargaining power.17 This result is consistent with our previous analysis.
Exchanging bargaining power does not change the facts that total risk exposure is �xed
and information acquisition is homogeneous.

IV. Conclusions and Discussions

This paper studies liquidity provision in presence of endogenous and �exible infor-
mation acquisition. In our model, there is no information asymmetry before bargaining.
Also, the buyer has an expertise in acquiring information of the fundamental in the man-
ner of rational inattention. She collects the most payoff-relevant information according
to the contract proposed to her, which may endogenously generate adverse selection.
Hence, the seller deliberately designs the security in order to induce the buyer to acquire
information least harmful to the seller's interest. It is shown that pooling and issuing
securitized debt is the uniquely optimal way to raise liquidity, regardless of the stochas-
tic interdependence among the underlying assets and the allocation of bargaining power.
Compared to the security design literature, our results are clearer. We neither restrict
our attention to non-decreasing securities nor impose various assumptions on informa-
tion structures like MLRP. Instead, these properties of the optimal security are justi�ed
in equilibrium. Our results are driven by two key factors. The one is the �xed total risk
exposure and the other is homogeneous information cost, without which the securitized
debt may not be optimal.
The role of �xed total risk exposure sheds light on a general classi�cation of infor-

mation, namely, to classify what information is socially valuable and what information
is not. In particular, �exibility enables economic agents to acquire these two types of
information separately, which results in different welfare implications of information
acquisition. At the level of the society, acquisition of information that is not socially
valuable not only wastes social resource but also leads to endogenous adverse selection,
which in turn harms social welfare. Hence, desired organizational form of the society
should deter acquisition of such information. On the contrary, acquisition of socially
valuable information generally increases social welfare and thus should be encouraged
in principle. In our model with �xed total risk exposure, none of information is socially
valuable, so that securitized debt is optimal because it best deters information acquisi-
tion. On the other hand, as the example mentioned with variable total risk exposure,

17However, reallocating the bargaining power does affect the face value and price of the debt, and thus affects the
agents' expected payoffs.
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some certain information is socially valuable as it helps prevent investing in bad states.
Consequently, acquisition of such socially valuable information should be encouraged,
and thus securitized debt may not be the optimal contract. This classi�cation of infor-
mation also provides a new perspective to look into the mutual existence of debt and
equity, both as popular forms of �nancial contracts in reality. For start-ups and projects
with high risk, issuing equity could be more desired because it encourages acquisition
of socially valuable information, which helps to screen projects and control the total risk
exposure of the entire society. In contrast, for mature corporations with robust growth, in
which the provision of liquidity is of the priority, debt could be more desired as it deters
unnecessary acquisition of information that is not socially valuable. This consideration is
partly consistent with the well-known packing-order theory, and future work may further
unify the life-cycle evolution of capital structure of corporations along the line of �exible
information acquisition.
Under a similar mentality, �exibility also helps revisit the endogenous determination

of capital structure in literature by specializing information acquisition. Given �exible
information acquisition, agents who monitor may have different incentives in acquiring
different information regarding various forms of �nancial contracts. Hence, different
layers of �nancial contracts in certain capital structure enable a specialization of infor-
mation acquisition. In other words, layers of capital structure correspond to specialized
layers of information to be acquired. This specialization may in turn affect production of
information as well as ef�ciency of monitoring, and further reshape the optimal capital
structure. In this way, it is seen that �exibility plays an role in determining the capital
structure, and more results regarding its effects on corporate �nance as well as social
welfare are to be expected.
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MATHEMATICAL APPENDIX

Proof of Proposition 1.
PROOF:
Suppose m is an optimal strategy. Let " be any feasible perturbation function. The

payoff from the perturbed strategy m C � � " is

V � .m C � � "/

D

Z
2

.m .�/C � � " .�// �1u .�/ dP .�/

�� �

�Z
2

g .m .�/C � � " .�// dP .�/� g
�Z

2

[m .�/C � � " .�/] dP .�/
��

,

where � 2 R, and " is feasible with respect tom if 9� > 0, s.t. 8� 2 2,m .�/C��" .�/ 2
[0; 1] . Then the �rst order variation is

dV � .m C � � "/
d�

����
�D0

D

Z
2

" .�/ �1u .�/ dP .�/

�� �

�Z
2

" .�/ � g0 .m .�// dP .�/� g0
�Z

2

m .�/ dP .�/
�
�

Z
2

" .�/ dP .�/
�

D

Z
2

" .�/ �
�
1u .�/� � �

�
g0 .m .�//� g0 .p1/

��
dP .�/ .

Note that
1u .�/� � �

�
g0 .m .�//� g0 .p1/

�
is the Frechet derivative of V � .�/ at m. Hence the tangent hyperplane at m can be ex-
pressed as�em 2 M : V � .em/� V � .m/ D Z

2

�
1u .�/� �g0 .m .�//C �g0

�Z
2

m .�/ dP .�/
��
.em .�/� m .�// dP .�/� .

An important observation: since V � .�/ is a concave functional on M , V � is upper
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bounded by any hyperplane tangent at any m 2 M , i.e., 8m; em 2 M ,
V � .em/� V � .m/

�

Z
2

�
1u .�/� � � g0 .m .�//C � � g0

�Z
2

m .�/ dP .�/
��
.em .�/� m .�// dP .�/ .

This inequality is strict when

m 2 Mo , Mn fm 2 M : m .�/ is a constant almost surelyg

and Pr .em .�/ 6D m .�// > 0, since V � .�/ is strictly concave on Mo. We will use this
observation later in this proof.

The optimality of m requires dV
�.mC��"/
d�

���
�D0

� 0 for all feasible perturbation ". Hence
we must have

(A1) 1u .�/� � �
�
g0 .m .�//� g0 .p1/

�8<: � 0 if m .�/ D 1
D 0 if m .�/ 2 .0; 1/
� 0 if m .�/ D 0

.

Note that Pr .m .�/ D 1/ > 0 implies Pr .m .�/ D 1/ D 1. Otherwise,

p1 D
Z
2

m .�/ dP .�/ < 1

and for � 2 B D f� 2 2 : m .�/ D 1g,

1u .�/� � �
�
g0 .m .�//� g0 .p1/

�
D �1

since limx!1 g0 .x/ D 1. Then " .�/ D �1B is a feasible perturbation and

dV � .m C � � "/
d�

����
�D0

D

Z
2

�
1u .�/� � �

�
g0 .m .�//� g0 .p1/

��
� " .�/ dP .�/

D

Z
B
.�1/ � .�1/ dP .�/

D C1 ,

which contradicts the optimality of m. Hence we know that Pr .m .�/ D 1/ > 0 if and
only if Pr .m .�/ D 1/ D 1. By the same argument, we can show that Pr .m .�/ D 0/ > 0
if and only if Pr .m .�/ D 0/ D 1. Therefore, the optimal strategy m must be one of the
three scenarios: a) p1 D 1, i.e., m .�/ D 1 a:s:; b) p1 D 0, i.e., m .�/ D 0 a:s:; c)
p1 2 .0; 1/ and m .�/ 2 .0; 1/ a:s:.
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We �rst search for the suf�cient condition for scenario c). According to (A1), we have

(A2) 1u .�/� � �
�
g0 .m .�//� g0 .p1/

�
D 0 a:s:.

By de�nition,
g0 .x/ D ln

x
1� x

,

thus (A2) implies

m .�/ D
p1

p1 C .1� p1/ � exp
�
���11u .�/

� .

Let

(A3) M1 D

(
m .�; p/ D

p
p C .1� p/ � exp

�
���11u .�/

� : p 2 [0; 1])

and
J .p/ D

Z
2

m .�; p/ dP .�/ ,

then there exists p1 2 [0; 1] such that m .�; p1/ 2 M1 � M is an optimal strategy. Note
that J .p1/ D p1 is a necessary condition.

Since m .�; p1/ 2 M1 � M , the original problem is reduced to

max
p2[0;1]

V � .m .�; p// D
Z
2

1u .�/ � m .�; p/ dP .�/� c .m .�; p// .

The �rst order derivative with respect to p is

dV � .m .�; p//
dp

D

Z
2

1u .�/ �
@m .�; p/
@p

dP .�/

�� �

�Z
2

g0 .m .�; p//
@m .�; p/
@p

dP .�/� g0
�Z

2
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@m .�; p/
@p

dP .�/
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2

�
1u .�/� � � g0 .m .�; p//C � � g0 .J .p//

�
�
@m .�; p/
@p

dP .�/ .

By de�nition,
1u .�/� � � g0 .m .�; p// D �� � g0 .p/ ,



INFORMATION ACQUISITION AND SECURITY DESIGN 39

thus

dV � .m .�; p//
dp

D

Z
2

�
�� � g0 .p/C � � g0 .J .p//

�
�
@m .�; p/
@p
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Since

@m .�; p/
@p

D

�
p � exp

�
1
2
��11u .�/

�
C .1� p/ � exp

�
�
1
2
��11u .�/

���2
> 0

for all � 2 2,
dV � .m .�; p//

dp
� 0

if and only if
g0 .J .p//� g0 .p/ � 0 .

Since g0 is strictly increasing in its argument, we have

dV � .m .�; p//
dp

� 0

if and only if
J .p/ � p .

In order to be a global maximum, m .�; p1/ must �rst be a local maximum within M1.
This requires

(A5) J .p1/ D p1 .

But (A5) is not suf�cient. The suf�cient condition for m .�; p1/ to be a local maximum
within M1 is

9 neighborhood .p1 � �; p1 C �/ ,

s.t. J .p/ � p for all p 2 .p1 � �; p1]
and J .p/ � p for all p 2 [p1; p1 C �/ .

Note that
J .0/ D 0; J .1/ D 1 ,

d J
dp

����
pD0

D

Z
2
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�
��11u .�/

�
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and
d J
dp

����
pD1

D

Z
2

exp
�
���11u .�/

�
dP .�/ .

Case i): Z
2

exp
�
��11u .�/

�
dP .�/ > 1

and Z
2

exp
�
���11u .�/

�
dP .�/ > 1 .

In this case, J .p/ > p for p close enough to 0 and J .p/ < p for p close enough
to 1. Since J .p/ is continuous, the set fp 2 .0; 1/ : J .p/ D pg is non-empty. For any
p1 2 fp 2 .0; 1/ : J .p/ D pg, the Frechet derivative at m .�; p1/ is

1u .�/� � � g0 .m .�; p1//C � � g0 .J .p1//
D 1u .�/� � � g0 .m .�; p1//C � � g0 .p1/
D 0

and thus m .�; p1/ is a critical point of functional V � .�/. Since m .�; p1/ 2 Mo, the
observation mentioned above implies

V � .em/� V � .m .�; p1//
<

Z
2

�
1u .�/� � � g0 .m .�; p1//C � � g0

�Z
2

m .�; p1/ dP .�/
��
.em .�/� m .�; p1// dP .�/

D

Z
2

�
1u .�/� � � g0 .m .�; p1//C � � g0 .J .p1//

�
.em .�/� m .�; p1// dP .�/

D 0

for all em 2 M such that Pr .em .�/ 6D m .�; p1// > 0. Hence, V � .m .�; p1// is strictly
higher than the values achieved at any other em 2 M , i.e., fp 2 .0; 1/ : J .p/ D pg D
fp1g and m .�; p1/ is the unique global maximum. This actually proves (6).

Case ii):

(A6)
Z
2

exp
�
��11u .�/

�
dP .�/ > 1

and

(A7)
Z
2

exp
�
���11u .�/

�
dP .�/ � 1 .
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(A6) implies J .p/ > p for p close enough to 0. Note that

d2 J
dp2

����
pD1
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Z
2

�
exp

�
���11u .�/

�
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�
�2��11u .�/

��
dP .�/
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�
E exp

�
���11u .�/

�
� E exp

�
�2��11u .�/

��
,

where the expectation is taken according to prior P . Since

f .x/ D x2

is a strictly convex function, Jensen's inequality implies

E exp
�
���11u .�/

�
� E exp

�
�2��11u .�/

�
.

The inequality is not strict only if1u .�/ Dconstant almost surely. SinceE exp
�
���11u .�/

�
�

1, this constant must be non-negative. Moreover, since Pr .1u .�/ 6D 0/ > 0, this con-
stant must be strictly positive. Hence

E exp
�
���11u .�/

�
> E exp

�
�2��11u .�/

�
and

(A8)
d2 J
dp2

����
pD1

< 0 .

Together with (A7), (A8) implies J .p/ > p for p close enough to 1. Hence there exists
� > 0, s.t. J .p/ > p for all p 2 [0; �] [ [1� �; 1].
We claim that J .p/ > p for all p 2 .0; 1/. If this is not true, let p1 D sup fp 2 .0; 1/ : J .p/ � pg.

The continuity of J .p/ implies J .p1/ D p1. Hence m .�; p1/ 2 Mo and it is a crit-
ical point of functional V � .�/. By the same argument as in Case i), m .�; p1/ is the
unique global maximum. However, by de�nition, p1 < 1 � � and J .p/ > p for all
p 2 .p1; 1/. Then V � .m .�; p// > V � .m .�; p1// for all p 2 .p1; 1/ since dV

�.m.�;p//
dp is

of the same sign as J .p/� p. This contradicts the unique optimality of m .�; p1/. There-
fore, J .p/ > p for all p 2 .0; 1/ and the optimal strategy cannot be an interior point of
M (i.e., it cannot be the case p1 2 .0; 1/.) Then according to our previous discussion,
only scenarios a) that p1 D 1 and scenario b) that p1 D 0 are possible. Since we have
shown J .p/ > p for all p 2 .0; 1/, we know that

V � .m .�; 1// > V � .m .�; 0// .

Hence, p1 D 1, i.e., m .�/ D 1 a:s: is the unique optimal strategy. This actually proves
(4).
case iii): Z

2

exp
�
��11u .�/

�
dP .�/ � 1
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and Z
2

exp
�
���11u .�/

�
dP .�/ > 1 .

In this case, by the same argument as in case ii), m .�/ D 0 a:s: is the unique optimal
strategy. This actually proves (5).

Now we show that it is impossible to have the case

(A9)
Z
2

exp
�
��11u .�/

�
dP .�/ � 1

and

(A10)
Z
2

exp
�
���11u .�/

�
dP .�/ � 1 .

Since
f .x/ D x�1

is strictly convex for x > 0, Jensen's inequality impliesZ
2

exp
�
���11u .�/

�
dP .�/ �

�Z
2

exp
�
��11u .�/

�
dP .�/

��1
.

The inequality is not strict only if 1u .�/ Dconstant almost surely. If this is true, (A9)
and (A10) implies 1u .�/ D 0 almost surely. This is the trivial case excluded by our
assumption. HenceZ

2

exp
�
���11u .�/

�
dP .�/ >

�Z
2

exp
�
��11u .�/

�
dP .�/

��1
and (A9) and (A10) cannot be simultaneously satis�ed.

Since cases i), ii) and iii) exhaust all possibilities, for each case, the corresponding
conditions are not only suf�cient but also necessary.

The uniqueness of the optimal strategy is proved in each case.

This concludes the proof.

Proof of Proposition 3.

PROOF:

Let s
��!
�
�
D s�

��!
�
�
C� � "

��!
�
�
be an arbitrary perturbation of the optimal security

s� .�/. Let
J .�/ D � lnE exp

�
���1�b � s

��!
�
��
C �s � Es

��!
�
�
.
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Taking �rst order variation leads to

d J
d�

����
�D0

D ��b
h
E exp

�
���1�b � s�

��!
�
��i�1

E
h
exp
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��!
�
��
� "
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�
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h
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.(A11)

Let
A0 D

n�!
� 2 2 :

�!
� 6D

�!
0 ; s�

��!
�
�
D 0

o
;

A1 D

(
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� 2 2 :
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� 6D

�!
0 ; s�

��!
�
�
2

 
0;

NX
nD1

�n

!)
and

A2 D
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� 2 2 :
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� 6D
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��!
�
�
D

NX
nD1

�n

)
:

Then fA0; A1; A2g is a partition of 2n
n�!
0
o
. Since s� .�/ is the optimal security,

d J
d�

����
�D0

� 0

holds for any feasible perturbation "
��!
�
�
. Hence, we have
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.
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i.e.,

ln �s � ln �b � lnE exp
�
���1�b � s�

��!
�
��

D ln �b C ��1q� ,

where the last equality comes from (14). Hence,

��1q� � ln �s � ln �b < 0 ,

which is a contradiction. Therefore,

(A13) Pr .A0/ D 0 .

For any
�!
� 0 2 A1, (A12) implies r

��!
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�
D 0, i.e.,

�s D �b
h
E exp
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�
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exp
�
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��!
� 0
��
,

i.e.,

ln �s D ln �b � lnE exp
�
���1�b � s�

��!
�
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� ��1�b � s�

��!
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��!
� 0
�
,

where the last equality follows (14). Therefore,

(A14) s�
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�
D ���1b � [ln �b � ln �s]C ��1b q
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i.e.,

ln �s � ln �b � lnE exp
�
���1�b � s�

��!
�
��
� ��1�b �

NX
nD1

� 0n

D ln �b C ��1q� � ��1�b �
NX
nD1

� 0n ,



INFORMATION ACQUISITION AND SECURITY DESIGN 45

where the last equality comes from (14). Therefore,

(A15)
NX
nD1

� 0n � ��
�1
b � [ln �b � ln �s]C ��1b q

�.

Let
D� D ���1b � [ln �b � ln �s]C ��1b q

�.

Then, (A13), (A14) and (A15) imply that

s�
��!
�
�
D min

 
NX
nD1

�n; D�
!
,

i.e., the optimal security must be a securitized debt.

Finally, let
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b � [ln �b � ln �s]C ��1b q

!!
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We show that q� > 0 and it is the unique �xed point of h .q/.

By (14), we have
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D h

�
q�
�
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Hence q� is a �xed point of h .q/. First note h .0/ > 0. Second note that
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Hence, h .q/ has a unique �xed point q� > 0. This concludes the proof.

Proof of Lemma 1.

PROOF:

Taking derivative with respect to � at � D 0 for both sides of (18) leads to
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�
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.
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Take integral of both sides and manipulate we get

Z
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h
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.

Combining the above two equations leads to (20).
Proof of Proposition 4.

PROOF:
We �rst prove f1 .0/ > f2 .0/. If not, f1 .s/ < f2 .s/ for all s > 0. Hence 8
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where the inequality holds since
�
m � g00 .m/

�0
> 0. Then (25) implies s�

��!
�
�
D 0

almost surely. Therefore, there is no trade, which contradicts Proposition 2.

Now we know f1 .0/ > f2 .0/. 8
�!
� 2 A0,
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where the second equality follows the de�nition that s�
��!
�
�
D 0 for

�!
� 2 A0, the last

equality comes from the de�nition of f1 .s/, and the inequality holds since
�
m � g00 .m/

�0
>

0. This result contradicts (25), which states r
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�
�
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�
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�
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� 0 for
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This concludes the proof.
Proof of Proposition 5.

PROOF:
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Let .s;m/ be the unique intersection of f1 .s/ and f2 .s/. 8
�!
� such that
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where the inequality holds since
�
m � g00 .m/
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> 0. According to (25), s�
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which is a contradiction. Hence Proposition 4 implies s�
��!
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�
D s for all �!� such thatPN

nD1 �n > s.
For any

�!
� such that

PN
nD1 �n D s, s�

��!
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D s is a direct implication of Proposition

4.
Therefore, the optimal security is a securitized debt with face value s, i.e., s�

��!
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�
D

min
�PN

nD1 �n; s
�
.

It is also possible that s D 1, i.e., f1 .s/ and f2 .s/ never intersects. Then the optimal
security
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!
D
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is a special securitized debt, i.e., equity. This concludes the proof.
Proof of Proposition 6.
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PROOF:

Let � 2
�
�s�

�1
b ; 1

�
and

f .q/ D �b � Emin
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where the expectation is taken according to common prior P . Since P is a continuous
distribution and ��1�s��1b < 1, there exists q0 > 0 s.t.
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Note that
f .0/ D 0 ,

which implies that
f .q/ > q

for all q 2 .0; q0/.

Consider a securitized debt
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with face value D D ���1s q and price q 2 .0; q0/. Since the seller's payoff gain from
accepting this offer over rejecting it is
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for all
�!
� 2 2, the seller will accept this offer without acquiring any information. Hence

the buyer's expected payoff from proposing .s .�/ ; q/ is

W .s; q/ D �b � Emin

 
NX
nD1

�n; ��
�1
s q

!
� q

D f .q/� q
> 0 .

By de�nition, the seller's expected payoff through the optimal contract is W .s�; q�/ �
W .s; q/ > 0. This directly implies ps�;q� > 0 since ps�;q� D 0 always generates zero
expected payoff to the buyer.


