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Abstract

We study the endogenous information acquisition and withdrawal-redeposit decisions of in-

dividual agents when a liquidity event triggers a spreading rumor and therefore exposes a bank

to a run. Uncertainty about the bank’s liquidity and potential failure motivates agents who

hear the rumor to acquire additional information. Although the bank run equilibrium is unique

given the additional signal’s quality, multiple equilibria emerge with endogenous information

acquisition activities. A bank run equilibrium exists when agents aggressively acquire informa-

tion. We study the threshold parameters that eliminate bank runs. Public provision of solvency

information (e.g. stress tests) can eliminate bank runs by indirectly crowding-out individual

depositors’ effort to acquire liquidity information. However, providing too much information

that slightly differentiates competing solvent-but-illiquid banks can result in inefficient runs.
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1 Introduction

Bank runs returned to the headlines during the financial crisis of 2007-2009 with the failures of

Northern Rock, IndyMac and other depository institutions. The largest ever failure by bank assets

resulted from the run on Washington Mutual (WaMu) in 2008. Figure 1 shows that the run on

WaMu was dynamic in its nature: the bank experienced the gradual withdrawal of more than $16

billion in the days leading up to its takeover by the FDIC. Moreover, recent empirical work by Iyer

and Puri (forthcoming 2011) uses depositor level data to study a solvent Indian bank that survived

a run, and their data shows running depositors returning to the surviving bank when they realize

the bank will not fail.

Redepositing after running suggests that uncertainty about bank strength plays an important

role in bank runs. In this paper, we provide a dynamic bank run model featuring learning and

endogenous information acquisition that sheds light on several important questions: Will endoge-

nous information acquisition exacerbate the inefficient bank run equilibrium? What are the policy

implications for a social planner aiming to eliminate run equilibria?

Learning and information acquisition are indeed considered some of the key drivers of bank

runs, both of which affect government disclosure policy regarding bank regulatory information.

One such situation where information is key is at the release of stress test results (Bernanke, 2010).

Given the newly found popularity of stress tests both in the U.S. and in Europe, we show that

public provision of solvency information can help curb the private information acquisition effort

on bank liquidity. As a result, carefully constructed stress tests can help prevent bank runs by

crowding out information acquisition by individuals. The planner must be careful however to avoid

providing too much information that differentiates competing solvent-but-illiquid banks, for such

information can start a run.1

We incorporate uncertainty about the bank’s liquidity into the asynchronous awareness frame-

work of Abreu and Brunnermeier (2003). In the baseline model, at some random time a liquidity

event may occur for a fundamentally solvent bank, so that it becomes illiquid (i.e., limited amount

of cash reserves and susceptible to a run) or remains liquid (with sufficient reserves and not subject
1One recent such case is the Bailout of the Big 9 banks on October 13, 2008, in which Treasury Secretary Paulson

forced all banks to accept the bailout package to hide any differences in the strength of the competing banks from
depositors.
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Figure 1: The Dynamic Nature of the Run on WaMu
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Daily net change in deposits as reported by Washington Mutual Bank to the Office of Thrift Supervision
(OTS). We take out Friday and end-of-month fixed effects, i.e. days with automatic payday deposits esti-
mated over the preceding 52 days. The OTS appointed the FDIC as receiver of WaMu on the evening of
September 25, 2008 (the vertical line in the figure) which then sold it to JPMorgan Chase.

to run). This triggers the spread of a rumor in the population that exposes the bank to a run.

Agents learn about whether the bank is liquid from the passage of time without failure, as well

as about the time that the liquidity event started. The redepositing behavior documented by Iyer

and Puri (forthcoming 2011) follows naturally from our introduction of uncertainty, as agents who

withdraw earlier would redeposit their funds into the bank if the bank turns out to be liquid.

Uncertainty motivates informed agents who hear the rumor to acquire additional information

at an endogenously determined signal quality. The realized signal may be utterly uninformative,

or reveals the bank liquidity state perfectly. The higher the signal’s quality, the more likely is the

signal to reveal the bank’s liquidity status. If the bank is indeed illiquid, then in aggregate a higher

quality translates to a greater (smaller) fraction of agents who (do not) know the bank is illiquid.

The presence of agents with heterogeneous information naturally allows us to derive the unique

(responsive) bank run equilibrium as an interior solution, given the signal quality about bank illiq-

uidity.2 Conditional on the bank being illiquid, the agents with informative, i.e., “low,” signals

withdraw immediately due to a high bank failure hazard rate according to their information, while

the agents with uninformative, i.e., “medium,” signals wait. When all agents with uninformative
2In Abreu and Brunnermeier (2003), the interior equilibrium is generated under the assumption that the bubble

component is exogenously decreasing over time. This time-varying attacking benefit drives arbitragers to attack only
when the bubble component drops to certain level.
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medium signals wait for a bit longer, they know that there are more agents with informative low

signals who have already withdrawn before them. As a result, the bank failure hazard rate endoge-

nously rises because more agents are running earlier. This “fear-of-low-signal-agents” generates a

time-varying marginal cost of waiting for agents with the medium signal, which allows us to find

the unique endogenous withdrawal time that equates the marginal benefit of waiting.

Given the unique bank run equilibrium, the optimal signal quality for individual agents trades

off the convex cost of acquiring it with a greater probability of receiving an informative signal.

Moreover, the chosen quality of information affects the equilibrium survival time of the failing

bank. This intricate feedback effect between bank runs and information acquisition generally leads

to at most two equilibria: one equilibrium where agents do not acquire information and also do not

run, while the other equilibrium where agents acquire information aggressively and also run on the

illiquid bank.

We perform comparative static analysis focusing on parameters such that the run equilibrium is

possible. When each agent finds it easier to acquire information, naturally the quality of information

increases. This further leads to a shorter survival period of the illiquid bank, which motivates each

agent to learn even more aggressively, and amplifies the initial effect of a lower information cost.3

We also decouple the speed by which information spreads from the length of the awareness

window over which information spreads.4 Contrary to the static intuition, we find that when the

awareness window widens so that everybody knows that potentially more agents run on the bank,

the illiquid bank survives longer. This counter-intuitive result arises due to the novel uncertainty

structure that we introduce in this framework, as the agent who hears the rumor also observes that

the bank is still alive. If the awareness window is wide, the rumor could have started spreading

a long time before he hears it. Thus, conditional on the bank surviving long enough, the bank is

more likely to be liquid, leading to lower running incentives.

Our rich dynamic setting allows us to study the threshold parameters that eliminate bank runs

altogether in a nontrivial way. The social planner can, for example, adjust bank reserve require-
3This effect suggests information acquisition complementarities among depositors. Hellwig and Veldkamp (2009)

show that information acquisition exhibits complementarity if and only if the actions are complementary. In our
model although running on the bank is complementary, sequential information acquisitions do not necessarily exhibit
complementarity.

4By contrast, in Abreu and Brunnermeier (2003) the speed by which information spreads is one over the length
of the awareness window.
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ments in response to heterogeneity in the rumor spreading rate and in the length of the awareness

window. In particular, the liquidity requirement is far less than the maximum potential withdrawal,

which is the minimum reserve requirement from a static Diamond and Dybvig perspective. Though

beyond the scope of the current paper, given the right data, a calibration of our model can certainly

result in quantitatively meaningful policy recommendations.

The first extension of our baseline model considers fundamentally insolvent banks. The presence

of insolvent banks implies that information might be socially good. However, when agents privately

collect information about bank solvency, they inevitably learn about bank liquidity. Although these

two layers of information are different, they are inevitably related because effort spent acquiring

one reduces the effort needed to acquire the other. The government can provide public information

about bank solvency to crowd out the private insolvency information acquisition; now since every-

one knows that other agents do not have superior information about bank liquidity, this reduces

individual liquidity information acquisition and can potentially eliminate runs on illiquid banks.

As we already mentioned, this result has important implications for the amount of information

released in stress tests of depository institutions.

A second extension we consider is competition between two solvent but potentially illiquid

banks. Instead of holding cash, a bank run in this setting involves the transfer of funds from one

bank to another. In a competitive environment, small differences in liquidity can result in runs on

slightly weaker banks and their subsequent failure. In this case, the planner would want to inject

noise into the system, so that individual agents with less informative signals are more likely to stay

in their original bank without knowing which one is more liquid. By forcing all of the “Big 9” banks

to take government capital on October 13, 2008, the U.S. government was in fact injecting noise

about the liquidity of competing solvent banks into the economy.

Our model belongs to a vast literature on the role of information in bank runs, and it is beyond

the scope of our paper to have a thorough review on this topic.5 Chari and Jagannathan (1988)

shares the same spirit on learning as the cause of panic-based bank runs. In their model, depositors

may withdraw early due to individual liquidity reasons as in the classic Diamond and Dybvig (1983),

or because they possess superior information about bank assets, and depositors cannot distinguish
5In early contributions, Gorton (1985) studies suspension of convertibility, Bhattacharya and Gale (1987) focus on

information about fraction of early depositors, and Jacklin and Bhattacharya (1988) places the emphasis of comparing
equity contracts with deposit contracts.
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between them. Since both elements are random, depositors might mistakenly run on the bank even

without bad news about bank assets. In a recent paper, Gu (2011) subdivides the interim period

of the static Diamond and Dybvig model into N periods and allows depositors to choose their

withdrawal time. Herding arises because depositors observe other depositors actions in addition to

a noisy private signal about the quality the bank. By contrast, in our model, synchronization risk

arises because agents cannot observe a line forming in front of the bank as one might expect in an

electronic age. Based on the Morris and Shin (2002) global games technique, Goldstein and Pauzner

(2005) study the optimal deposit contract by deriving a unique equilibrium when depositors in a

Diamond and Dybvig type setting are endowed with private noisy signals about bank fundamentals.

We allow for endogenous information acquisition, and show that excessive socially wasteful learning

may lead to socially inefficient runs on solvent-but-illiquid banks.6

Our paper contributes to a recent theoretical literature that studies dynamic bank runs. Wallace

(1988) and Green and Lin (2003) are earlier papers that study the sequential service constraint in

the Diamond and Dybvig model. Gu (2011) is a dynamic model in nature, that studies depositors’

withdrawal strategy sequentially. He and Xiong (forthcoming 2011a) develop a continuous-time

debt run model of a firm with a time-varying fundamental and a staggered debt structure. Similar to

the asynchronous timing structure employed in our paper, each creditor in He and Xiong coordinates

his rollover decision with future maturing creditors.7 We emphasize the role that information

and learning play in runs, and how the government can eliminate runs when individuals acquire

information.

Abreu and Brunnermeier (2002, 2003) consider the asynchronous timing of awareness to study

bubbles. In their model, delayed arbitrage is rational because agents do not know whether other

agents are aware of this arbitrage opportunity, and more importantly, when they are taking action

on it.8 We add to their model uncertainty about the capacity of the bubble (bank), allow agents

to acquire additional information upon awareness, and decouple the spreading rate from the length
6This result is related to Hellwig and Veldkamp (2009) who show that in the Morris and Shin (2002) beauty

contest framework, complementarity in actions leads to complementarity in information acquisition, therefore po-
tential multiplicity of equilibria. However, their setting is different from ours. In fact, as we shown in Section 4.4,
substitutability naturally arises in our endogenous dynamic learning framework.

7In other related papers, Acharya, Gale, and Yorulmazer (2011) shows the rollover of short-term debt may reduce
debt capacity to zero, and He and Xiong (forthcoming 2011b) analyze the role played by market illiquidity, through
the rollover channel, in exacerbating the conflict between debt and equity holders.

8Brunnermeier and Morgan (2010) generalize this idea to a class of “clock games” and test its main predictions
in controlled experiments.

6



of the awareness window.

The paper proceeds as follows. Section 2 describes the setting and solves the agent’s learning

problem. Section 3 characterizes the individual agent’s optimal withdrawal policy, and Section 4

analyzes the bank run equilibrium with information acquisition. Section 5 considers extensions,

and we conclude in Section 6. Proofs are in the Appendix.

2 The Model

We first describe the economy and the individual agent’s problem in our model. We then char-

acterize the agent’s belief updating, which is crucial in studying the individual agent’s optimal

strategy.

2.1 The Setting

2.1.1 Technology

Time is continuous on t ∈ [0,∞). A continuum of risk-neutral agents (depositors) with unit mass

have an infinite horizon and maximize their expected utility from consumption with a zero discount

rate.

Bank deposits yield a constant rate of return r > 0 when the bank is operating, while holding

cash outside the bank earns zero return. Broadly, one can interpret the bank as some investment

vehicles in the shadow banking system or even the entire financial system, and the positive relative

wedge r > 0 reflects either a higher investment growth rate or a convenience yield for keeping funds

in the institution. To avoid exploding values, we assume that the bank’s growth stops at some

“maturing” event modeled as a Poisson shock with intensity δ > r. Following this public event, the

growth-less bank liquidates without loss, and the game ends in the sense that each agent gets his

deposit back for consumption. Throughout, this maturing event will be independent of any other

random variables that we consider.9
9This assumption plays no role in our analysis except making the value of the one dollar inside the bank finite

(as the liquid bank will grow always). Alternatively, we could assume that each individual agent suffers liquidity
shocks that require immediate consumption (therefore withdrawal). Unfortunately, this brings the troublesome issue
of agent replacement.
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2.1.2 Uncertainty about Bank Liquidity

In our model there are two potential types of banks that are fundamentally solvent, with one type

of bank being “illiquid,” and a second “liquid” bank impervious to runs. The uncertainty is crucial

to our analysis. Later we will introduce insolvent banks as an extension.

Throughout, bank liquidity is defined as the amount of depositors that it takes to run down

the bank. For simplicity, we assume a binary structure for the state of bank liquidity κ̃. For the

liquid bank, κ̃ = κH > 1, i.e., the bank can survive any severe run. However, when the bank is

illiquid, κ̃ takes a lower value κL below 1, and the bank is potentially subject to runs. In other

words, the illiquid bank fails when more than a κ measure of the depositors have fully withdrawn

their funds. One can literally interpret κ̃ as the bank’s cash reserves to meet withdrawals; in this

paper we broadly interpret κ̃ as the liquidity of the bank.

In our economy, upon awareness, informed agents begin with a prior that Pr {κ̃ = κL} = p0 ∈

(0, 1) . When the illiquid bank fails, all remaining depositors in the failed bank recover a fraction

γ ∈ (0, 1) of their deposits. Afterwards, all agents go to autarky consuming their remaining wealth.

2.1.3 Liquidity Event and Spreading Rumors

At t = 0 the fundamentally solvent bank is liquid, i.e., κ̃ = κH . At some unobservable random

time t̃0 > 0 which we refer to as the liquidity event, the solvent bank may become illiquid, and the

uncertainty is as modeled in Section 2.1.2.

Moreover, this liquidity event triggers information to spread in the population. We call those

agents who have heard the information as “informed,” and those who have not as “uninformed.”

Since at t = 0 the bank is liquid, we assume that the agents’ beliefs are such that they expect to

hold money in the bank unless they hear the information that the bank might be illiquid.

Although the exact liquidity event time t0 is publicly unobservable, it is common knowledge that

t̃0 is exponentially distributed on [0,∞) with cumulative distribution function Φ (t0) ≡ 1 − e−θt0 ,

and density φ(t0) ≡ θe−θt0 . This information structure is meant to capture the essence of an

unverified rumor of uncertain origin that spreads gradually in the depositor population. Later on

we will call this information about bank’s liquidity status a “rumor.”

Given a realization of t̃0 = t0, the rumor begins to spread over an interval [t0, t0 + η] with a
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positive constant (exogenous) length η. Following Abreu and Brunnermeier (2003) we refer to η

as the “awareness window.” At any interval dt where t ∈ (t0, t0 + η), uninformed agents become

informed by receiving this signal with a probability of βdt, and this information shock is i.i.d.

across the population of uninformed agents. To make the problem interesting, we assume that at

time t0 + η the fraction of informed agents will be sufficient to take down the bank, if they decide

to do so.

This information spreading technology is different from that of Abreu and Brunnermeier (2003)

in that we allow for separation between the spreading rate β and the awareness window η. Abreu

and Brunnermeier assume a linear spreading technology with rate 1
η so that the entire population

becomes informed at t0 + η. This way, the awareness window η is artificially tied to the spreading

rate 1
η . As we show later, because of the endogenous learning effect, the awareness window η has

interesting effects opposite to common wisdom.

Given t0 and some future time t ∈ [t0, t0 + η], denote by U (t|t0) ∈ [0, 1] the measure of unin-

formed agents who have not heard the rumor yet. At t = t0, every agent is uninformed, so that

U (t0|t0) = 1. The population of uninformed agents evolves as dU (t|t0) = −βU (t|t0) dt, which

implies that

U (t|t0) = e−β(t−t0) for t ∈ [t0, t0 + η] ,

and the mass of newly informed agents within [t, t+ dt] is

βU (t|t0) dt = βe−β(t−t0)dt for t ∈ [t0, t0 + η] . (1)

2.1.4 Information Acquisition

At time ti when the agent hears the rumor, he can acquire additional information about the bank’s

type at some convex cost. Specifically, the agent makes an endogenous choice of information quality

q ∈ [0, 1] at the cost χ (q) = αq2/2, where α > 0 is a positive constant. For tractability, we assume

that χ (q) is the per dollar information cost, so that informed agents face the same problem when

they are informed at different times.
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Figure 2: Probability Distribution of the Additional Signal ỹ with Quality q
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This additional signal takes three possible values y ∈ {yL, yM , yH} with conditional probabilities:

Pr {y = yH |κ̃ = κH} = q,Pr {y = yM |κ̃ = κH} = 1− q, and Pr {y = yL|κ̃ = κH} = 0;

Pr {y = yL|κ̃ = κL} = q,Pr {y = yM |κ̃ = κL} = 1− q, and Pr {y = yH |κ̃ = κL} = 0. (2)

Figure 2 summarizes this distribution. With probability q, the bank’s liquidity is perfectly revealed

by the signal yH (yL). With probability 1− q, the agent does not learn anything by receiving the

medium signal yM .10 The realizations of these signals are i.i.d. across agents, conditional on the

underlying state.

2.1.5 Information Structure

Call the agent who is informed at ti ≥ t0 simply agent ti. Denote by F tit the information set of

agent ti at t > ti, and let 1BFt ∈ {1, 0} indicate whether the bank has failed or not by time t. The

agent ti’s information set is F tit =
{
t, ti, ỹti ,1BFt

}
, i.e. the informed agent knows the current time,

the time that he hears the rumor, the additional signal that he acquired, and whether the bank

has failed or not. Recall that the liquidity event t0 is not public information.
10Upon receiving yM , the posterior probability of the bank being illiquid remains p0(1−q)

p0(1−q)+(1−p0)(1−q) = p0.
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2.1.6 Agent’s Problem

Now we summarize the problem of an informed agent ti with deposits inside the bank. He will

acquire an additional signal ỹ ∈ {yL, yM , yH}. Based on this information, he can withdraw his

deposits whenever he believes bank failure is imminent, and redeposit this cash in the future if

the bank’s survival sufficiently improves his posterior belief about bank liquidity. To eliminate

strategies with infinite transactions, we assume a constant (proportional) transaction cost k per

dollar of deposits when the agent (re)deposits his cash into the bank.

The risk neutrality and the bank’s superior investment technology imply that it is optimal for the

agent to consume only at the bank’s exogenous maturing event, or when the bank endogenously

failed due to runs. Also, the linearity of this problem implies that a “bang-bang” strategy, i.e.

keeping the entire wealth either in or out of the bank, is optimal.

2.2 Learning

In our model informed agents need to assess the posterior probability of bank failure based on

their information set. To this end we derive the bank failure hazard rate in this section, which is

important for later analysis.

2.2.1 Posterior Belief about t0

The agent ti updates the posterior distribution of t0 conditional on his hearing the rumor at ti.

Given t0, for an individual uninformed agent the probability of getting informed over [ti, ti + dt] is

determined as follows. For ti ∈ [t0, t0 + η), the probability of becoming informed at [ti, ti + dt] but

not before ti is f (ti|t0) ≡ βU (ti|t0) dt = βe−β(ti−t0)dt. And, since the rumor stops spreading after

t0 + η, we have

f (ti|t0) =

 βe−β(ti−t0)dt if ti ∈ [t0, t0 + η) ,

0 if ti ≥ t0 + η
. (3)

Combining with the density of φ (t0), the informed agent ti updates his posterior distribution about

the liquidity event timing t0.

Similar to Abreu and Brunnermeier (2003) we focus on realizations of t0 ≥ η such that the

economy is already in this stationary phase; as shown shortly agent ti’s equilibrium strategy will
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be independent of the exact timing of being informed.11

With t0 ≥ η, the informed agent ti ≥ t0 ≥ η will update his posterior belief about t0 as

φ (t0|ti) ≡
f (ti|t0)φ (t0)∫ ti

ti−η f (ti|s)φ (s) ds
= βe−β(ti−t0)θe−θt0∫ ti

ti−η βe
−β(ti−s)θe−θsds

= θ − β
e(θ−β)η − 1

e(θ−β)(ti−t0).

Define λ ≡ θ − β > 0 so that the liquidity event intensity is greater than the rumor spreading

rate.12 Then

φ (t0|ti) = λeλ(ti−t0)

eλη − 1 . (4)

Integrating (4) over t0 we get the conditional distribution function for t0:

Φ (t|ti) ≡ Pr
(
t̃0 ≤ t|ti

)
=
∫ t

ti−η
φ (s|ti) ds =



0 t < ti − η

eλη−eλ(ti−t)
eλη−1 ti − η ≤ t ≤ ti

1 t > ti

(5)

2.2.2 Bank Failure Hazard Rate

Suppose that in a symmetric equilibrium, agents believe that the illiquid bank fails at t̃0 + ζ where

ζ is a constant to be determined in equilibrium (potentially infinite). Let F (t0) ≡ t0 + ζ denote

the failure time for a given realization of t0, conditional on the bank being illiquid, i.e., κ = κL.

Obviously, the event of bank failure is {F (t0) < t, κL} . Moreover, if the bank fails at t, then the

inferred t0 is

t0 = F−1 (t) = t− ζ. (6)

Denote by p (t|ti) ≡ Pr
{
κ̃ = κL|F tit

}
the posterior probability at time t for the bank being

illiquid. Trivially, bank failure at t reveals that p (t|ti) = 1. Also given yL or yH signals, p (t|ti) = 1

or 0. For agent ti with yM signal, if the bank has not failed at t (i.e. t < F (t0)), then his posterior
11This implies that the economy is stationary. Note that the finite awareness window η over which the rumor

spreads makes the cases of t0 < η and t0 ≥ η different. In the event of t0 ≥ η, it always holds that ti ≥ η, and
rational agents know that t0 ∈ [ti − η, ti]. In Appendix B we consider the equilibrium behavior for t0 < η.

12The assumption of λ > 0 is for exposition purpose, and the analysis goes though if λ < 0. To see this, if λ < 0,
then the conditional density φ (t0|ti) has to be written as (−λ)eλ(ti−t0)

1−eλη which is still positive.
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belief of bank being illiquid is (recall that κ̃ is independent of t0):

p (t|ti) = Pr {κL|t < F (t0), ti} = Pr {t < F (t0)|κL, ti}Pr {κL}
Pr {t < F (t0)|κL, ti}Pr (κL) + Pr {κH}

=
[
1− Φ

(
F−1 (t) |ti

)]
p0

[1− Φ (F−1 (t) |ti)] p0 + 1− p0
, (7)

We then use (5) and (6) to derive p (t|ti) in closed form. Moreover, as shown later in Section 4.2,

in equilibrium if ζ is finite, then we must have ζ ≤ η. In this case, when agent ti hears the rumor,

his posterior probability of the bank being illiquid is

p (ti|ti) =

(
eλζ − 1

)
p0

(1− p0) (eλη − 1) + (eλζ − 1) p0
.

The cumulative distribution of bank failure times ti + τ , conditional on hearing the rumor at ti

and the bank has not failed at ti, can be derived as

Π (ti + τ |ti) ≡ p (ti|ti) Pr {ti < F (t0) ≤ ti + τ |ti, κL} = p (ti|ti)
Φ
(
F−1 (ti + τ) |ti

)
− Φ

(
F−1 (ti) |ti

)
1− Φ (F−1 (ti) |ti)

.

By calculating the density π (ti + τ |ti) ≡ dΠ(ti+τ |ti)
dτ , we derive the bank failure hazard rate from

the perspective of the informed agent ti as

h (ti + τ |ti) ≡
π (ti + τ |ti)

1−Π (ti + τ |ti)
. (8)

We present the closed form expression for h (ti + τ |ti) in the following proposition, and in the proof

(placed in Appendix) readers can find expressions for Π (ti + τ |ti) and π (ti + τ |ti).

Proposition 1. Suppose that the illiquid bank fails at t0+ζ where ζ ≤ η which holds in equilibrium.

Then the bank failure hazard rate is

h (τ) ≡ h (ti + τ |ti) = λeλ(ζ−τ)p0
(1− p0) (eλη − 1) +

(
eλ(ζ−τ) − 1

)
p0

for τ ∈ [0, ζ] . (9)

For τ > ζ, h (τ) = 0 as the bank is revealed to be liquid.

We have three noteworthy observations. First, the hazard rate in (9) is independent of the

absolute timing of agent ti becoming informed, therefore we can denote h (ti + τ |ti) by h (τ). This
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property guarantees the stationarity of our model.

Second, the hazard rate only depends on the remaining survival time from the potential bank

failure time, i.e., ζ − τ . This is intuitive: because the agents in our economy are uncertain about

the exact timing of liquidity event t0 that the rumor starts to spread, from the perspective of the

agents the bank failure hazard rate will depend on how far the economy is away from the maximum

potential failure time t0 + ζ. The equilibrium remaining survival time is important for our later

analysis.

Third, the above analysis is carried out for yM agents who remain uncertain about the bank’s

type. The analysis for yL (yH) agents are straightforward by simply replacing p0 with 1 (0) in

equation (9).

2.3 Parameter Restrictions

We impose the following parametrization condition throughout the paper:

p0
1− p0

> eλη − 1. (10)

This condition implies that the bank hazard rate given in Proposition 1 is increasing with τ , i.e.,

the time that elapsed since hearing the rumor. Equivalently, this implies that the bank failure

hazard rate is decreasing in the remaining survival time ζ − τ .

Second, since the upper bound of the measure of informed agent is 1−U (t0 + η|t0) = 1− e−βη,

for the model to be interesting we require that the illiquid bank can potentially fail if all informed

agents run immediately, i.e.,

1− e−βη > κL. (11)

Third, we focus on the case where both yM agents and yL agents are driving the bank failure.

Conditional on the bank being illiquid, there will be q measure of yL agents. Therefore, instead of

q ∈ [0, 1], we further impose that the signal quality has to satisfy

q ∈
[
0, κL

1− e−βη
]
. (12)

Under this condition, because signal quality q < κL
1−e−βη , agents with yL signal alone are not enough
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to take down the bank.

Fourth, we require that the maturity shock intensity δ is moderate so that

δ (1− p0)
(
eλη − 1

)
r(r−kδ)
δ−r

λ (r − λ (1− γ)) p0
∈ (0, 1) . (13)

Note that this requirement implies that r− λ (1− γ) > 0. The only purpose of this condition is to

guarantee the optimality of thresholds strategy even if the bank randomly matures.

Finally, we assume that

(λ (1− γ)− r) eλη + r > 0; (14)

as we will see in Section 3.3, this implies that the agent with yL signal withdraw immediately, if

the bank run equilibrium exists.

3 Optimal Withdrawal Strategies

In this section, we present the key proposition that characterizes the individual agent’s optimal

withdrawal policy, taking both the equilibrium bank survival time ζ and information quality q as

given.

3.1 Hamilton-Jacobi-Bellman (HJB) Equations

Denote by VI (τ ; ti) the agent’s value of one dollar inside the bank at time ti+ τ , where τ ≥ 0 is the

time elapsed since agent ti heard the rumor. Due to stationarity, VI (τ ; ti) is a function of τ only

and we suppress the argument ti wherever appropriate. Similarly, denote by VO (τ ; ti) = VO (τ) the

value of one dollar outside of the bank at time ti + τ . Because withdrawal involves no transaction

cost while redepositing costs k, VI (τ) ≥ VO (τ) and VO (τ) ≥ (1− k)VI (τ) for all τ ≥ 0.

When τ ≥ ζ, the surviving bank is for sure safe. One dollar inside the bank will grow at r until

the maturing event (occurs with Poisson intensity δ), which has a value of

VI (τ) =
∫ ∞

0
ersδe−δsds = δ

δ − r
for τ ≥ ζ. (15)

The value of one dollar outside the bank is VO (ζ) = (1− k)VI (ζ) = (1−k)δ
δ−r > 1, which holds when
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k is sufficiently small.

For τ < ζ the agent has not fully been assured that the bank is liquid, and consider a dollar

outside the bank. At any point in time, if the status-quo position (i.e. keeping the dollar outside

the bank) is optimal, then the following HJB equation must hold:

0 = h (τ) (1− VO (τ))
Bank failure

+ δ (1− VO (τ))
Bank matures

+ V ′O (τ)
Time change

(16)

Here, the first term is the impact of bank failure: with hazard rate h (τ) the bank fails so that the

agent receives 1 and loses his value VO (τ).13 The second term captures the bank asset maturing

event, and the third term is the change due to time elapse. Combined with the option of redepositing

immediately (with transaction cost k), the HJB equation for one-dollar outside the bank is

0 = max

{
h (τ) (1− VO (τ))

Bank failure
+ δ (1− VO (τ))

Bank matures
+ V ′O (τ)

Time change
, (1− k)VI (τ)− VO (τ)

Redepositing

}
(17)

Similarly, for a dollar inside the bank, its value VI (τ) must satisfy the following HJB equation:

0 = max

{
rVI (τ)

Interest growth
+ h (τ) (γ − VI (τ))

Bank failure
+ δ (1− VI (τ))

Bank matures
+ V ′I (τ)

Time change
, VO (τ)− VI (τ)

Withdrawal

}
(18)

3.2 Optimal Strategies

We solve the ordinary differential equation (16) in the interval[τ, ζ] with the boundary condition

V̂O (ζ) = VO (ζ), and denote its solution as V̂O (τ). It admits the following closed-form solution:

V̂O (τ) =
eλη (1− p0)− 1 + eλ(ζ−τ)p0 + e−δ(ζ−τ) (1− p0)

(
eλη − 1

)
r−kδ
δ−r

(1− p0) (eλη − 1) +
(
eλ(ζ−τ) − 1

)
p0

. (19)

which allows us to characterize the agent’s optimal strategy parsimoniously. In general VO (τ) ≥

V̂O (τ): V̂O (τ) is the value at time τ by simply staying outside the bank until ζ (and redepositing

at ζ+ if the bank is liquid and survives the run), and a priori this simple continuation strategy may

not be optimal.

Define the following function g (τ) which captures the first-order impact of the withdrawal
13The analysis holds for all signals as Proposition 1 gives h (τ) as a function of p0.
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decision:

g (τ) ≡ h (τ) (1− γ)− rV̂O (τ) . (20)

Here, g (τ) is difference between the instantaneous loss from one dollar due to potential bank failure

(i.e. h (τ) (1− γ)), and rV̂O (τ) which is the instantaneous return of taking one dollar out now,

keeping outside the bank until ζ, and redepositing back if the bank survives. The underlying

assumption here is that a threshold strategy is optimal (i.e. redepositing is never optimal before

ζ) which is verified in Proposition 2.

At the optimal withdrawal time τw, we have the first-order condition g (τw) = 0, i.e.,

h (τw) (1− γ) = rV̂O (τw) = r

[
1 + (1− p (ti + τw|ti)) e−δ(ζ−τw) r − kδ

δ − r

]
, (21)

where we have used (19) and (7) in rewriting this intuitive expression. As mentioned above, the

left hand side captures the marginal cost of staying, which is the hazard rate multiplying the bank

failure loss. The right hand side captures the marginal benefit of staying, which is the growth rate

r multiplying the agent’s continuation value of one dollar by withdrawing and redepositing after

ζ. For the total continuation value in the bracket of right hand side in (21), the first term 1 is the

principal amount which is present in Abreu and Brunnermeier (2003). The second term consists of

the option value of future redepositing. Here, 1− p (ti + τw|ti) is the probability of the bank being

liquid (and surviving eventually) conditional on bank survival at τw, e−δ(ζ−τw) is the discounting,

and finally
r − kδ
δ − r

= VO (ζ)− 1 = (1− k) δ
δ − r

− 1 > 0

is the additional payoff from redepositing. Apparently, when p0 = 1 so that there is no uncertainty

about bank liquidity, this option value term vanishes.

The next proposition shows formally that a threshold strategy is optimal based on the function

g (τ).

Proposition 2. Given the equilibrium bank survival time ζ, the optimal policy for the agent with

yM is as follows:

1. If g (ζ) ≤ 0, then it is optimal to stay in the bank always.
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2. If g (0) ≥ 0, then it is optimal to withdraw at 0 and redeposit right after ζ.

3. Otherwise, we must have g (0) < 0 and g (ζ) > 0, and there exists a unique waiting time

τw ∈ (0, ζ) so that g (τw) = 0, and withdrawing at τw and redepositing at ζ+ is optimal.

3.3 Value Functions

In this section we derive the agent’s value as a function of signals. We have studied the optimal

strategy for the agent with yM signal. It is clear that the agents with high signal yH should keep

their deposits in the bank always. And, for agents who receive low signals, if

g (0; p0 = 1) = (λ (1− γ)− r) eλζ + r

eλζ − 1 > 0 (22)

then it is optimal to withdraw immediately. Because ζ < η and λ (1− γ) < r, (22) is implied by

parameter condition (14). In fact, we will show later in Section 4.2 that condition (22) has to hold

for any interior bank run equilibria. In our model, if yL agents want to wait some positive amount

of time, then generically bank run equilibria do not exist.

Proposition 3. Suppose that g (0) < 0 and g (ζ) > 0 so that the agents with yM signals are waiting

τw given in (21). Then upon hearing the rumor, the values conditional on signals are

VI (0|yL) = 1, VI (0|yH) = δ

δ − r
,

VI (0|yM ) =
δ(eλη(1−p0)−1)

δ−r

(
1− e−(δ−r)τw

)
+ δ+λγ

λ+δ−re
λζp0 + e−(δ−r)τweλ(ζ−τw)p0

(
(λ+δ)(λ(1−γ)−r)

r(λ+δ−r)

)
eλη − 1− eληp0 + eλζp0

,

where τw satisfies the first-order condition in (21).

4 Bank Run Equilibrium

4.1 Cumulative Withdrawals Given q

In our model, the illiquid bank fails at t0 +ζ so that aggregate cumulative withdrawals by informed

agents deplete the illiquid bank’s capacity κL. Two groups of informed agents withdraw from the

illiquid bank. The first group is yL agents with q measure in aggregate per unit of time. Therefore
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Figure 3: Cumulative Withdrawals
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Cumulative withdrawal patterns for an illiquid bank with capacity κL and a liquid bank with capacity
κH > 1. At τ = 0 the rumor starts to spread. Agents with a yM signal wait in equilibrium τw = 0.85
before withdrawing. The illiquid bank fails while the liquid bank starts experiencing redeposits at ζ = 1.8.
Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, p0 = 0.8, δ = 0.12, k = 10−6, κL = 0.65, α = 0.7,
γ = 0.75.

at t0 + ζ total withdrawals by yL agents are

q

∫ t0+ζ

t0
βU (ti|t0) dti = q

(
1− e−βζ

)
. (23)

Agents with yM signals wait for τw, and at t0 + ζ their total withdrawals are

(1− q)
∫ t0+ζ−τw

t0
βU (ti|t0) dti = (1− q)

(
1− e−β(ζ−τw)

)
. (24)

Figure 3 depicts the cumulative withdrawal patterns for both banks. For illiquid banks, yL

agents begin to withdraw first right after the liquidity event t0 as the rumor starts spreading. At

t0+τw to be determined shortly in equilibrium, agents with yM signals join the force of withdrawals,

until eventually cumulative withdrawals reach κL at t0 + ζ.

For liquid banks, things are different. No agents are withdrawing immediately after t0, but

yM agents start withdrawing at t0 + τw. At t0 + ζ those early informed yM agents realize the

bank is liquid and start redepositing, which makes aggregate withdrawals decrease over time. In

this range, interestingly, at the same time late informed agents are still withdrawing while early

informed agents who learned that the bank is liquid begin redepositing. The intriguing empirical

pattern of simultaneous withdrawing-depositing is unique to our model with rumor-based bank
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runs, and we wait for future more detailed data sets to test this implication.

4.2 Bank Run Equilibrium Given q

4.2.1 Two-step Procedure

Define τr ≡ ζ− τw as the time period that yM agents stay outside the bank. The label “r” captures

the “remaining survival time” when they decide to stay out of the bank. The bank run equilibrium

given q is determined in a straight-forward two-step procedure. Define G (τr) ≡ g (ζ − τr), i.e.,

replace ζ − τ by τr in (20). From the individual yM agent’s optimal withdraw condition in (21),

the equilibrium redepositing time τ∗r must satisfy

G (τ∗r ) =
(λ (1− γ)− r) eλτ∗r p0 − (1− p0)

(
eλη − 1

)
r(r−kδ)
δ−r e−δτ

∗
r + r

(
1− eλη (1− p0)

)
(1− p0) (eλη − 1) + (eλτ∗r − 1) p0

= 0. (25)

One important observation emerge. In (25), the equilibrium survival time τ∗r is uniquely deter-

mined, without using other endogenous variables q or ζ. This is because in the agent’s first-order

condition regarding optimal withdrawal, both the hazard rate h (τw) in (9) and the continuation

value V̂O (τw) in (19) only depend on the remaining survival time τr = ζ − τw.

Once we pin down τ∗r from (25), the equilibrium survival time ζ∗ follows from the aggregate

withdrawal condition. Combing (23) and (24), the illiquid bank fails when

κL = (1− q)
(
1− e−βτr

)
+ q

(
1− e−βζ

)
. (26)

Interestingly, the remaining survival time τr also determines the cumulative withdrawals by yM

agents. We can now solve for the equilibrium survival time ζ∗ as

ζ∗ = − 1
β

log

1−
κL − (1− q)

(
1− e−βτ∗r

)
q

 . (27)

4.2.2 Why ζ∗ ≤ η Holds Generically?

We next show that in our model generically the illiquid bank fails before the rumor stops spreading

in the equilibrium, i.e., ζ∗ ≤ η. In fact, our previous analysis relies on this assumption. When

we wrote down the aggregate failure condition (23), we implicitly assume that at the failure time
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t0 +ζ∗ there are still newly informed yL agents withdrawing, which exactly requires that the illiquid

bank fails before the rumor stops spreading, i.e., ζ∗ ≤ η.

A natural question follows: Is it possible to have ζ∗ > η in our equilibrium? The answer is

negative generically,14 unless ζ∗ =∞ so that there is no bank run. The following lemma states this

result formally.

Lemma 1. Generically, the equilibrium bank survival time ζ∗, if finite, cannot exceed the awareness

window η, so that ζ∗ ≤ η.

Intuitively, we have seen that (25), which is the individual yM agent’s first-order condition, pins

down the equilibrium remaining survival time τ∗r based on primitives. On the other hand, from

(24), the asynchronous timing structure implies that the remaining survival time τ∗r = ζ∗ − τw

also determines the cumulative withdrawal of yM agents to run down the illiquid bank. Therefore

we need an extra degree of freedom to ensure that the remaining survival time derived from the

individual yM agent’s optimality condition is consistent with the remaining survival time required

to run down the bank.

It is clear that in the above two-step procedure, the presence of yL agents who withdraw

immediately after hearing the rumor offers such flexibility. Because the required yM withdrawal

is the gap between the capacity κL and the cumulative yL withdrawal q
(
1− e−βζ

)
, we can find

such ζ so that yM agents’ individual incentives to withdraw coincide with the required aggregate

yM withdrawal. Note that this argument also implies the crucial role that heterogeneous agents

play in generating the interior bank run equilibrium, which becomes more clear when we discuss

the equilibrium mechanism in the next subsection.

4.2.3 Equilibrium Mechanism

Based on the aggregate bank failure condition, we can determine natural bounds for yM agents’

remaining survival time time τ∗r in equilibrium. When yM agents withdraw immediately as yL

agents, i.e., τw = 0, the distance from the yM agent’s withdrawing time to potential bank failure,
14Here, “a statement holds generically” means that this statement may not hold only for some parameter set which

is zero measure. This convention comes from the general equilibrium literature.
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i.e., the remaining survival time ζ − τw, will assume its upper bound value:

τur = 1
β

ln 1
1− κL

< η. (28)

On the other hand, ζ ≤ η in the above lemma gives the lower bound of τ∗r :

τ lr = 1
β

ln
( 1− q

1− κL − qe−βη
)
. (29)

Because of the parameter condition (12), τ lr > 0 so that yM withdrawals are also contributing to

the bank’s failure. These bounds are helpful in understanding the economic mechanism that pins

down the equilibrium.

Intuitively, G (τr) in (25) gives the sign of marginal cost minus the marginal benefit if the

yM agent waits a bit longer. For illustration, start with the hypothetical situation where all yM

agents withdraw immediately after hearing the rumor (i.e., τw = 0). Then remaining survival time

τr = ζ − τw takes its upper bound τur . Then, if G (τur ) < 0 so that the marginal benefit of waiting

exceeds the marginal cost, then it implies that each individual yM agent wants to postpone his

withdrawal.

Now suppose that every yM agent decides to wait τw > 0. Importantly, there are more agents

with yL signal withdrawing before yM agents, and bank failure requires less cumulative mass of

withdrawing yM agents. This implies that the remaining survival time τr = ζ − τw goes down

(check (26)). Thus, the closer bank failure leads to a higher failure hazard rate (check (9)), and the

marginal cost of waiting goes up. To the extreme that all yM agents are waiting for sufficiently long,

then the survival time takes the upper bound η and the remaining survival time attains the lower

boundτr = τ lr. Then G
(
τ lr

)
> 0 says each individual yM agent wants to withdraw a bit earlier.

Therefore at some equilibrium withdrawal time τ∗w we have G (τ∗r = ζ∗ − τ∗w) = 0 to satisfy the

individual optimality condition. We have the following proposition to summarize this discussion.

Proposition 4. Given q, the bank run equilibrium is characterized by follows:

1. If G
(
τ lr

)
≤ 0, then there does not exist a bank run equilibrium.

2. If G (τur ) ≥ 0, then the unique bank run equilibrium is τ∗r = ζ∗ = τur and τ∗w = 0.
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3. Otherwise, we must have G (τur ) < 0 and G
(
τ lr

)
> 0, and there exists a unique bank run

equilibrium τ∗r ∈
(
τ lr, τ

u
r

)
so that G (τ∗r ) = 0, and

ζ∗ = ζ (τ∗r ) = 1
β

ln
[

q

1− κL − (1− q) e−βτ∗r

]
,

and τ∗w = ζ (τ∗r )− τ∗r . The equilibrium is stable.

Before moving to the next section, we briefly discuss the possibility that yL agents wait for

some positive time. Interestingly, the argument similar to Lemma 1 implies that this cannot occur

generically. If yL agents set a positive waiting time τLw > 0, then it is obvious that yM agents will

set τMw > τLw > 0. Importantly, their respective redepositing times (τMr and τLr ) have to satisfy the

individual optimality conditions in the nature of (25). However, we require that these τMr and τLr

satisfy the aggregate withdrawal condition as well, which generically cannot hold.15

4.3 Endogenous Information Acquisition

In our model, each informed agent endogenously acquires information about the bank’s liquidity

because of the potential bank failure. Therefore we first characterize the individual agent’s optimal

information acquisition condition, given the bank run equilibrium. On the other hand, we have

seen that information quality q also affects the bank run equilibrium. This intricate feedback effect

between bank runs and information acquisition generally leads to two equilibria: one equilibrium

where agents do not acquire information and also do not run, while the other equilibrium where

agents acquire information aggressively and also run on the illiquid bank.

4.3.1 The First-Order Condition of Information Acquisition

We next characterize the optimal information choice. Recall that by setting q, we have

Pr {y = yL|ti} = qp (ti|ti) , Pr {y = yM |ti} = 1− q, and Pr {y = yH |ti} = q (1− p (ti|ti)) .

The information cost is χ (q) = α
2 q

2, which is increasing and convex in the information quality q.

15The aggregate withdrawal condition becomes κL = (1− q)
(

1− e−βτ
M
r

)
+ q

(
1− e−βτ

L
r

)
if both agents are

withdrawing at ζ. If yL agents already stopped, then κL = (1− q)
(

1− e−βτ
M
r

)
+ q
(
1− e−βη

)
and we get back to

the same situation as discussed in the main text.
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Denote the signal with quality q as yq. When agent ti hears the rumor he spends his information

collection effort to maximize the following object, taking the equilibrium survival time ζ∗ as given:

v (0) = Pr {y = yL|ti}VI (0|yL) + Pr {y = yM |ti}VI (0|yM ) + Pr {y = yH |ti}VI (0|yH)− χ (q)

= qp (ti|ti) + q (1− p (ti|ti))
δ

δ − r
+ (1− q)VI (0|yM )− χ (q) , (30)

where we have used the result in Proposition 3 which also provides an expression for VI (0|yM ).

Note that we are implicitly taking the bank run equilibrium here, so that the agent with yL finds

immediate withdrawal to be optimal.

Therefore, take the first order condition for v (0) with respect to q, the optimal q∗ satisfies

(recall that parameter restriction (12))16

p (ti|ti) + (1− p (ti|ti))
δ

δ − r︸ ︷︷ ︸
E[VI(0)|informative signal]

− VI (0|yM )︸ ︷︷ ︸
E[VI(0)|uninformative signal]

− αq∗ > 0, with equality if q∗ < κL
1− e−βη

(31)

This expression is intuitive. Raising q increases (lowers) the probability of (un)informative signals,

but costs more.

Combining with the dependence of ζ∗ on q∗ in Proposition 4 and the individual agent’s optimal

information acquisition condition (31), we can solve for the endogenous information acquisition q∗

and survival time ζ∗ simultaneously.

4.3.2 Run and No-Run Equilibria

We show that with endogenous information acquisition, in general multiple equilibria emerge. First,

we check whether q∗ = 0 is an equilibrium. Since the marginal cost of acquiring information is zero,

in order for q∗ = 0 to hold in equilibrium, it must be that there is no bank run.17 Of course, no

bank run is also sufficient for not acquiring additional information q∗ = 0. According to Proposition
16The fact that we are focusing on bank run equilibrium and that the agent with yL finds immediate withdrawal

to be optimal also imply that in (31) q∗ cannot bind at zero, as the Blackwell information theorem implies that
p (ti|ti) + (1− p (ti|ti)) δ

δ−r − VI (0|yM ) > 0 always, i.e., information has positive value as it improves the agent’s
decision. On the other hand, the equilibrium without bank run must have q∗ = 0 and is analyzed in Section 4.3.2.

17Otherwise, with bank run, immediate withdraw with yL signals implies a positive value for the signal. See related
argument in footnote 16.
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4, the condition for existence of a no-run equilibrium in this case is

G
(
τ lr (q)

)
|q=0 ≤ 0. (32)

When (32) fails, i.e., bank run occurs even fixing q = 0 exogenously, then bank runs with positive

information acquisition must exist. The next lemma summarizes this result.

Lemma 2. Condition (32) is the necessary and sufficient condition for the existence of an equilib-

rium where no bank run occurs (and therefore q∗ = 0). If (32) fails, there exist bank run equilibria

with positive information acquisition q∗ > 0.

The above lemma only provides sufficient conditions for the existence of bank run equilibria.

Interestingly, bank run equilibrium (with q∗ > 0) could exist even when (32) holds. Intuitively,

although no-run-no-acquisition is an equilibrium, run-acquisition might also be an equilibrium.

Once every agents raise the equilibrium q∗ above zero, a bank run is possible, and this makes

individual information acquisition self-enforcing.

In general, even among the class of bank run equilibria with positive endogenous information

acquisition, multiplicity may occur. The next lemma shows that under certain sufficient condition

provided in the Appendix, we will have at most one such equilibrium. Essentially, this condition,

by guaranteeing that at the equilibrium q∗ > 0 the marginal benefit of information acquisition has

to go below the marginal cost of information acquisition for q slightly above q∗, implies that the

resulting equilibria (if exist) must be unique and stable.

Lemma 3. Under condition (39) provided in Appendix, the bank-run equilibrium with positive

endogenous information acquisition, if one exists, is unique and stable.

The next proposition follows from the two above lemmas.

Proposition 5. Under (32) and the condition in Lemma 3, we have at most two equilibria. The

first is no-run equilibrium without information acquisition, i.e., q∗ = 0. The other is the bank run

equilibrium with information acquisition so that q∗ > 0 and ζ∗ < η.

From now on, to facilitate analysis, we will assume that conditions imposed in Proposition 5

hold, so that we have at most two equilibria: one with active information acquisition and bank
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Figure 4: Survival Time and Information Acquisition Response to Information Cost
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Solid lines show the equilibrium survival time of the illiquid bank ζ∗, and the information choice q∗ as a
function of the cost of information α. The dashed line allows the equilibrium q∗ to change but holds fixed
ζ∗ at its baseline level. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, p0 = 0.8, δ = 0.12, k = 10−6,
κL = 0.65, α = 0.7, γ = 0.75.

runs, and a second without information acquisition and no run. In particular, we will be interested

in parameters that eliminate the bank run equilibrium.

4.4 Comparative Statics

We perform comparative static analysis in this section. The following analysis focuses on the run

equilibrium with endogenous information acquisition.

4.4.1 Information Acquisition Cost α

When each agent finds it easier to acquire information, naturally the precision q∗ increases (the

right panel in Figure 4). As shown in the left panel in Figure 4, this further leads to a shorter

survival of the illiquid bank, i.e., ζ∗ becomes lower. A lower ζ∗ motivates each agent to learn

even more aggressively, and this feedback mechanism amplifies the initial effect of a lower α. The

dashed line in Figure 4 graphs the endogenous information quality q∗ by fixing the survival time

at its baseline level. When α drops by one percent from the baseline level 0.7 to 0.693, the bank

failure feedback mechanism leads agents to acquire 1.2 percent more information than otherwise.

This effect suggests information acquisition complementarities among depositors. Hellwig and

Veldkamp (2009) show that information acquisition exhibits complementarity if and only if the

actions are complementary. In our model, although running on the bank is complementary, se-
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Figure 5: Rumor Spreading Rate β and Awareness Window η
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Solid lines show the equilibrium survival time of the illiquid bank ζ∗ as a function of the rumor spreading
rate β and the length of the awareness window η. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2,
p0 = 0.8, δ = 0.12, k = 10−6, κL = 0.65, α = 0.7, γ = 0.75.

quential information acquisitions do not necessarily exhibit complementarity. The substitutability

naturally arises in the sequential learning setting through the dependence of the posterior belief

on the survival time of the bank, which is analyzed in (33). When other depositors acquire more

information, the survival time ζ∗ is shorter. Then, the mere survival of the bank coveys more

information about the bank’s liquidity so that upon hearing the rumor agents perceive the bank

to be stronger. Substitutability naturally arises because this effect discourages each individual

depositor’s motivation for information acquisition.

4.4.2 Rumor Spreading Rate β and Awareness Window η

When the rumor spreading rate β increases, all else equal, the illiquid bank will fail faster. This

effect is illustrated in Figure 5. In response, each individual agent acquires more information, and

the illiquid bank fails even faster. The feedback effects as discussed before are also present here,

and this result is intuitive.

Relative to Abreu and Brunnermeier (2003), our model decouples the rumor spreading rate from

the awareness window. When we turn to the effect of the awareness window η on the equilibrium

survival time ζ∗ and information precision q∗, a surprising result emerges. When η increases so that

everybody knows that potentially there will be more informed agents attacking the bank, in our

model each individual agent acquires information less aggressively and the illiquid bank survives

longer.
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It turns out that this surprising result not only comes from our decoupling of these two effects,

but also relies on the novel uncertainty structure that we introduce in this framework. The intuition

can be understood by investigating the posterior probability that the bank is illiquid upon hearing

the rumor and observing that the bank is still alive:

p (ti|ti) = Pr {illiquid bank survives at ti|κL, ti}Pr {κL}
Pr {illiquid bank survives at ti|κL, ti}Pr (κL) + Pr {κH}

=
eλζ−1
eλη−1p0

eλζ−1
eλη−1p0 + 1− p0

(33)

When η is large, t0 ∈ [ti − η, ti] could occur a long time ago, and the probability

Pr {illiquid bank survives at ti|κL, ti} = eλζ − 1
eλη − 1

is lower. Consequently, conditional on the bank being alive at ti, the bank is more likely to be

liquid. Without uncertainty (p0 = 0 or 1), p (ti|ti) does not depend on the awareness window η.

This interesting result differs from that of static models where usually a greater pool of prone-

to-run agents leads to more severe runs. Clearly, the casual intuition that runs are more severe

with more prone-to-run agents comes from the argument that bank failure requires a sufficient

mass of running depositors. However, our result shows that when cumulative informed agents are

enough to run down the bank, artificially shortening the awareness window will gives rise to a novel

information effect with the exact opposite direction.

5 Policy Analysis and Extensions

How much cash reserves should banks hold to prevent runs? In this section we analyze this major

question, of concern to both banks and their regulators. We then extend our base model. First, we

introduce fundamentally insolvent banks, so that it is also socially efficient for individual agents to

acquire information. We then consider a two-bank economy where competition amplifies the indi-

vidual agent’s socially wasteful information production. For both extensions we discuss government

policy in the recent crisis.
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Figure 6: Minimal Capacity Required to Eliminate Runs
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The solid line is the minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function
of the rumor spreading rate β and the length of the awareness window η. The dashed line is the potential
mass of informed agents as in (11). Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, p0 = 0.8,
δ = 0.12, k = 10−6, α = 0.7, γ = 0.75.

5.1 Minimum Reserve to Eliminate Bank Runs

In Proposition 5 we have shown that similar to static Diamond and Dybvig setting, generally in our

model there are two equilibria: one equilibrium without learning and bank runs, and the other with

active learning and bank runs. However, unlike the typical static setting where runs occur if the

bank reserve is below all potential withdrawals, our rich dynamic setting gives non-trivial reserve

threshold that eliminates the dynamic run equilibrium. In other words, due to uncertainty about

the bank illiquidity and other depositors’ withdrawal timings, the minimum reserve requirement

that will fence off the bank run equilibrium with endogenous learning might be far below the level

that is sufficient to cover all potential withdrawals.

In Figure 6, we plot the minimum reserve level κL so that the bank run equilibrium does

not exist. We plot the threshold κL as a function of β̂ (the left panel) and η̂ (the right panel).

Intuitively, when rumors spread faster (higher β) the bank is more susceptible to runs. The reason

is that there will be more informed agents at any point in time who can potentially run on the

bank. The figure shows that a faster spreading rumor requires higher cash reserves κL to eliminate

the run equilibrium. On the other hand, as discussed above, increasing the length of the awareness

window η has the counter-intuitive effect of increasing the equilibrium survival time through its

effect on p (ti|ti). For this reason, when the awareness window is larger, smaller cash reserves are

required to prevent bank runs.
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In Figure 6 we also show that the minimal liquidity level to eliminate the run is much lower

than the potential mass of informed agents. From the view of static Diamond and Dybvig runs,

the potential mass of informed agents is the relevant liquidity reserve required to eliminate runs.

However, due to the asynchronous nature of our rumor-based setting, even without information

acquisition, immediate withdrawal after hearing the rumor might not be an equilibrium as the

bank may survive for a while. Thus, eliminating dynamic rumor-based runs requires much less

liquidity reserve than the one suggested by the static perspective.

One potential criticism to the above discussion is that we have so far only focused on responsive

equilibria, i.e. only informed agents will run on the bank. Interestingly, in our dynamic setting

with uncertainty, we can rule out one class of synchronized sun-spot type pure-strategy bank run

equilibrium (a la Diamond and Dybvig), where all agents (including the uninformed) run at some

arbitrary but fixed time tR ≥ 0.18 First, suppose to the contrary that everyone runs at some

tR > 0, which must be because the bank has some strictly positive probability being illiquid at

tR (otherwise waiting is optimal). But if the bank is indeed potentially illiquid at tR, then every

agent would like to preempt. The reason is simple: conditional on the bank being illiquid, running

at tR (with others) gives the agent κL + γ (1− κL) < 1, while he will receive his entire deposit if

he preempts the run and withdraws at tR − ε for some ε > 0. This argument implies that the only

possible synchronized run occurs at tR = 0. However, at tR = 0, it is common knowledge that the

bank is liquid almost surely, as the bank starts liquid and only becomes illiquid at some liquidity

event t0 > 0 (recall Section 2.1.3), i.e. with probability 1, at tR = 0 we have and κ = κH > 1.

Thus, even if everyone else withdraws immediately, an individual agent would remain in the bank

and this behavior is not an equilibrium.

Finally, it is clear that for the model to generate quantitatively meaningful policy recommen-

dations on banks’ capital reserve requirement, one needs reasonable parameters to begin with. As

a first step toward this goal, our stylized model falls short on this dimension. However, though

beyond the scope of the current paper, given the right data, a calibration (or even estimation) of

our model can certainly achieve this more ambitious goal.
18It is beyond the scope of this paper to study the interaction between our responsive equilibrium where only

informed agents run gradually and this class of sunspot equilibrium where everyone runs.
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5.1.1 Policy Implication: Subprime Mortgage Crisis

On May 17, 2007 Fed Chairman Bernanke indicated in a speech about the subprime mortgage mar-

ket that looser lending standards where pervasive especially in loans originated in 2006 (Bernanke,

2007). The speech took place at a time when low teaser rates on these adjustable-rate mortgages

were set to expire, suggesting that the rise in defaults was just the tip of an iceberg. Subsequently,

money market funds experienced the modern-day equivalent of a bank “run” as asset-backed com-

mercial paper outstanding dropped from $1.3 trillion in July 2007 to $833 billion in December 2007

Acharya, Schnabl, and Suarez (2011).

One interpretation within our model of this speech is that it signaled that the awareness window

was relatively short, in which case there was not much to learn from the survival of the money market

to that point in time. Suppose that instead, the analysis revealed that looser lending standards were

pervasive in loans originated since 2003. In that case, information about the resulting weakness

must have been spreading for a long time. Having observed that the money market kept growing

despite this fact, investors would conclude that the probability of the system being liquid enough

is high and a run might not occur.

5.2 Insolvent Banks and Stress Tests

So far our model focuses on runs on fundamentally solvent but potentially illiquid banks. Because

the first best allocation is keeping the bank alive always, information is socially “bad.” Of course,

in practice information may be “good” because of the presence of fundamentally insolvent banks

so that runs on them are socially efficient. To address this issue, we introduce insolvency into our

model. We then argue that the planner may mitigate running on fundamentally solvent banks by

helping individual agents spot those insolvent banks more easily through stress tests.

5.2.1 Setup

Suppose that after the liquidity event that occurs at t0, the bank in our model might be insolvent,

which randomly fails (rather than matures) with intensity ξ > r. In this event deposits recover 0

for each dollar, and therefore ξ > r implies that the bank is indeed insolvent. Of course the bank

can also be solvent, and if so it can be either liquid or illiquid as we modeled before.
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Naturally, there will be two layers of information. The first layer of information is regarding

the bank’s solvency which is both socially and individually valuable. The second is information

regarding the bank’s liquidity condition, which is individually valuable (and socially destructive)

when agents realize that runs on the illiquid bank become a concern. We assume that although

these two layers of information are different, they are inevitably related when individual agents are

acquiring them. As shown shortly, this way we endogenize individuals endowed liquidity information

precision via the active information collection about bank solvency.

Now when agent ti hears the rumor, the possibility of insolvency motivates him to spend a

fixed amount of effort e > 0 to obtain a signal 1z ∈ {0, 1}; for simplicity, this signal 1z perfectly

reveals whether the bank is solvent or not.19 We focus on situations where, in equilibrium, the

agent always finds it optimal to acquire this solvency signal (which is guaranteed by a sufficiently

high default intensity ξ). Therefore, conditional on the bank being insolvent, all agents who hear

the rumor know that the bank is insolvent and therefore run on the bank immediately.20

A by-product of the agent’s private learning about the bank solvency is that he also learns

something about the liquidity of the bank. Given the effort e of figuring out whether the bank is

insolvent, if the bank turns out to be solvent, then the baseline quality of the bank’s liquidity signal

y—which is the signal we modeled in Section 2.1.4—is just e. As a result, the agent’s additional

liquidity information precision choice is q ≥ e with acquisition cost α
2 (q − e)2. The interpretation

is that the process of collecting insolvency information inevitably teaches the agent more about the

bank’s liquidity. The longer the process of collecting insolvency information, the more the agent

knows about the bank’s liquidity. Our modeling that the effort of collecting insolvency information

(i.e., e) becomes the baseline quality of liquidity information captures this idea in the simplest way.

5.2.2 Policy Implication: Stress Tests

The above setting has important implications for stress tests in revealing the fundamentally prob-

lematic banks. By providing insolvency information only, the government can use stress tests to

reduce e to eliminate runs on solvent-but-illiquid banks.

According to our model, if a great effort is required to learn about insolvent banks (say Lehman),
19This assumption is for clarifying the economic channel and innocuous. See detailed discussion in footnote 21.
20Suppose that the insolvent bank has a capacity of κZ ; therefore the equilibrium failure time for insolvent bank

is t0 + ζ∗z = t0 + 1
β

ln 1
1−κZ

.
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i.e., a higher e, then each agent will be automatically endowed with significant information about

the liquidity of solvent banks (say Citibank). Given that, it is more likely that bank runs exist in

the equilibrium, and therefore they are more likely to acquire even more information. As a result,

runs on solvent banks start.

Stress tests provide transparency on potentially insolvent banks (Bernanke, 2009), and therefore

reduce e. Government, by providing higher quality information about banks’ insolvency, can crowd

out private acquisition of insolvency information. Because public information can be better targeted

at insolvency alone, while the process of private acquisition of solvency information inevitably

reveals liquidity information, public provision of solvency information helps all agents know that

other agents do not have superior information regarding banks liquidity situation. Therefore, our

model suggests that the public provision of insolvency information indirectly reduces the socially

wasteful information acquisition regarding liquidity, and therefore make runs on illiquid banks less

likely.

We emphasize that the perfect revelation of insolvent bank in our setting helps clarify the

channel of releasing better solvency information to help illiquid banks; more precisely, it is not

through higher average bank quality once the stress test isolates those insolvent ones.21 Rather,

the channel is through the fact that now everybody knows that everybody will wait to see the stress

test and therefore not scramble to search the insolvent banks. As a result everybody will have less

precise information on which solvent bank is less liquid and susceptible to a run.

This view is consistent with the Federal Reserve Board’s recent break from the traditional

supervisory view of opaqueness in favor of more public disclosure to restore the confidence of

investors. However, our rationale is different than the one described by Bernanke (2010) who

argues that the release of detailed information about the banks subjected the tests to scrutiny by

outside analysts, thereby enhancing the credibility of the tests. Instead, we argue that by providing

more information, the government crowds out the information collection effort by individuals about
21When the planner varies e, agents can always perfectly spot insolvent banks, therefore the channel of insolvency

information is shut down. Rather, the channel is the strategic interaction of individual agents who make their
endogenous acquisition decision on liquidity information. In fact, our model can be handle the case that insolvent
banks are imperfectly revealed. As discussed after Proposition 4, in our model generically a bank run equilibrium
exists only when yL agents withdraw immediately, and the equilibrium analysis is identical if we instead assume that
agents cannot perfectly tell insolvent banks from illiquid ones (so they will withdraw immediately once receiving yL
signal or 1z = 1). However, under this alternative assumption, it is quite obvious that better solvency information
helps illiquid banks since it allows individual agents to tell them apart from insolvent ones.
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Figure 7: Minimal Capacity and Information Collection Effort Required to Eliminate Runs
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We plot the minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function of the
information collection effort e. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, p0 = 0.8, δ = 0.12,
k = 10−6, κL = 0.65, α = 0.7, γ = 0.75.

the solvency of the banks. Since liquidity and solvency are tightly related, this government policy

has the useful by-product of reducing information collection about bank liquidity and therefore

reducing the incidence of runs on illiquid banks.

Figure 7 plots the minimal illiquid bank capacity κL that eliminates the bank run equilibrium

as a function of the information collection effort e. We see from Figure 7 that as the government

provides more information about the solvency of the bank (lower e), less liquid banks (lower κL)

can avoid runs.

5.3 Multiple Solvent Banks and Policy Implications

We now investigate the behavior of depositors and their incentives to acquire information in the

presence of competing solvent banks. Instead of holding cash, a bank run in this setting involves

the transfer of deposited funds from one bank to another.

We show that greater information quality leads agents to inefficient runs on the otherwise

identical solvent bank.22 Here, the two banks’ difference might be minuscule, and in fact transfers

between the two institutions only involve social losses (transaction fees and bank failure). The

planner thus can inject noise into the system, so that individual agents with less informative signals
22Some anecdotal evidence that differences in depositor perception about bank liquidity motivates them to withdraw

from illiquid banks is provided by Sidel, Enrich, and Fitzpatrick (2008): “Melody Williams, 50 years old, said in the
past 30 days she has moved about $25,000 out of Washington Mutual, spreading it to other financial institutions she
thought were stronger, including Wells Fargo & Co. Ms. Williams, the controller for an architecture firm, said she
thought that Washington Mutual had gotten ’too big for their britches’ with too many deals over the years.”
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are more likely to stay in their original bank without knowing which one is the (more) liquid one.

5.3.1 Analysis

Suppose there are two banks, ex-ante identical except that half the population deposits in bank A

and half deposits in bank B. Both banks promise the same rate of return r. However, transferring

funds between banks requires a transaction cost k. A liquidity event occurs at a random time t0,

and the rumor starts that exactly one of the banks is illiquid (0 < κL < 1) while the other is

liquid (κH > 1). The prior probability that each bank is illiquid is p0 = 0.5 since they are ex-ante

identical. The learning process in the two bank set-up is simpler, because the passage of time

without a failure teaches agents nothing about the relative viability of their bank.

As in the setup above, agents are allowed to acquire a costly signal ỹ ∈ {yL, yM , yH} about the

status of their bank with probability distribution as in (2). Agents who receive the yH signal know

that their bank is the liquid one and therefore never withdraw. Agents who receive the yM signal

gain no useful information. Since there is a small transaction cost k, remaining in their original

bank is optimal.23 Finally, agents who draw the yL signal run on their bank immediately. From

their perspective, the value of a dollar in their bank falls and the value of a dollar in the competing

bank increases to a riskless δ
δ−r . Thus, as long as the transaction cost k is small enough, immediate

withdraw is optimal.24 Information is (privately) more valuable in this setup since the outside

option is a nearly identical bank rather then holding cash.

The following proposition characterizes the equilibrium in this setting with two banks.

Proposition 6. Under the two banks setup, the bank run equilibrium {ζ∗, q∗} is determined by the

following two equations:

ζ∗ = − 1
β

ln
(

1− κL
q∗

)
, (34)

1
2 (1− k) δ

δ − r
+ 1

2
δ

δ − r
− VI (0|yM ; ζ∗, q∗) = αq∗, (35)

where the expression for VI (0|yM ; ζ∗, q∗) is given in the Appendix.
23Formally, let V−I (0|yM ) be the value of a dollar in the other bank from these agents’ perspective. Then

V−I (0|yM ) = (1− k)VI (0|yM ) < VI (0|yM ), which is the value of a dollar in the original bank.
24More specifically, we require k is sufficiently small that VI (0|yM ) < (1− k)V−I (0|yH) = (1− k) δ

δ−r .

35



Figure 8: Minimal Capacity and Information Cost Required to Eliminate Runs
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We plot the minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function of the
information cost α for the two bank setup. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, δ = 0.12,
k = 10−6, κL = 0.3, α = 1, γ = 0.75.

5.3.2 Injecting Noise

In this extension, higher information quality q about the liquidity of two solvent banks is socially

undesirable, as it shortens the survival time of the illiquid bank by introducing more agents who

realize that one bank strictly dominates the other. Injecting noise can alleviate the problem, and

the simplest interpretation of injecting noise is to raise the information acquisition cost α.

A bank run equilibrium requires that withdrawals by the yL agents alone can destroy a bank,

i.e. κL < q
(
1− e−βη

)
.25 The threshold q so that no run would occur is q ≡ κL

1−e−βη . If the planner

raises α so that the marginal benefit of acquiring information is below its marginal cost, i.e.,

1
2 (1− k) δ

δ − r
+ 1

2
δ

δ − r
− VI (0|yM ) ≤ αq,

then the illiquid bank is always liquid enough to sustain a run. Figure 8 plots the minimal illiquid

bank capacity κL that eliminates the bank run equilibrium as a function of the information cost

α for the two bank setup. The injection of noise into the economy (higher α) blurs the differences

between the competing solvent banks. The noise reduces the equilibrium information quality q,

and as a result, a run is easier to eliminate and requires less reserves by the illiquid bank.

Consider the recent financial crisis in 2008. A fear that some banks were insolvent prompted

the Capital Purchase Program commonly known as the bailout of the nine largest U.S. financial
25In this two-bank setting we no long impose the restriction of q ≤ κL

1−e−βη as in condition (12), because now only
yL agents are withdrawing to potentially take down the illiquid bank.
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institutions on October 13, 2008. When presenting the program to the CEOs of the 9 banks,

Secretary of Treasury Henry M. Paulson was concerned that the strongest banks, e.g., JPMorgan,

would not participate.26 To make sure that they do, government officials suggested that if a bank

refused the funds, its regulator would later force it to raise capital anyway and under worse terms.27

The government was in fact injecting noise about the liquidity of competing solvent banks into the

economy. By pooling banks together the incentive to transfer funds between them was kept low

enough so that none of the nine banks suffered a run.

6 Conclusion

We study the endogenous information acquisition and withdrawal-redeposit decisions of individual

agents when a liquidity event triggers a spreading rumor and therefore exposes a bank to a run.

Uncertainty about the bank’s liquidity and potential failure motivate agents who hear the rumor

to acquire additional information to improve signal quality. Although the bank run equilibrium

is unique given the signal’s quality, multiple equilibria emerge with endogenous information ac-

quisition activities. We show that a bank run equilibrium exists when agents aggressively acquire

information, and study several tools that the government can use to prevent runs.

Learning and information acquisition are indeed considered some of the key drivers of bank runs,

both of which affect government disclosure policy regarding bank regulatory information. Given

the newly found popularity of stress tests both in the U.S. and in Europe, we show that public

provision of insolvency information can help curb the private information acquisition effort on bank

liquidity. As a result, carefully constructed stress tests can help prevent bank runs by crowding out

information acquisition by individuals. The planner must be careful however to avoid providing

too much information that differentiates competing solvent-but-illiquid banks from liquid ones, for

such information can start a run.

Finally, the dynamic bank run model we provide above can shed new light on other economic

settings such as arbitrageur behavior, currency attacks, and R&D investment games.
26“I was concerned about Jamie Dimon, because JPMorgan appeared to be in the best shape of the group, and I

wanted to be sure he would accept the capital.” - Paulson (2010)
27“Look, we’re making you an offer,” I said, jumping in. “If you don’t take it and sometime later your regulator

tells you that you are undercapitalized and you have to raise private-sector capital but you are unable to do so, you
may not like the terms if you have to come back to me.” - Paulson (2010)
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A Appendix A

A.1 Proof of Proposition 1

We have two cases to consider for the hazard rate. First, suppose ζ > η. Then an agent
informed at ti learns nothing from the fact that the bank has not failed by ti. His distribution of
failure dates ti + τ is

Π (ti + τ |ti) =


0 τ < ζ − η
p0

eλη−eλ(ζ−τ)

eλη−1 ζ − η ≤ τ < ζ

p0 ζ ≤ τ.

with non-zero density π (ti + τ |ti) = p0
λeλ(ζ−τ)

eλη−1 for ζ−η < τ < ζ. On the other hand, if ζ ≤ η, then
agent ti’s distribution of failure dates ti + τ is

Π (ti + τ |ti) =


0 τ < 0
p (ti|ti) 1−e−λτ

1−e−λζ 0 ≤ τ < ζ

p (ti|ti) ζ ≤ τ.

non-zero density π (ti + τ |ti) = p (ti|ti) λe−λτ

1−e−λζ for 0 < τ < ζ. Plugging either of the pairs into the
definition of the hazard rate (8) yields after some algebraic manipulation the same expression (9)
for any τ ≥ max {0, ζ − η} and zero elsewhere.

A.2 Proof of Proposition 2

We first establish the following lemma.

Lemma 4. The function g (τ) crosses zero from below at most once in the interval [0, ζ].
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Proof. Since it is the change in the numerator that dominates around g (τ) = 0, it suffices to show
that the numerator of g (τ) (ignoring the constant)

(λ (1− γ)− r) eλ(ζ−τ)p0 − (1− p0)
(
eλη − 1

) r (r − kδ)
δ − r

e−δ(ζ−τ) (36)

is increasing over the interval [0, ζ]. Furthermore, since λ (1− γ) − r < λ (1− γ) − r (1− k) < 0
from (13), it follows that (36) is concave in τ . Let τ be the unique maximizer. At the maximum

ζ − τ = 1
λ+ δ

ln
δ (1− p0)

(
eλη − 1

)
r(r−kδ)
δ−r

λ (r − λ (1− γ)) p0
< 0

due to (13). Thus, the function in (36) attains its maximum to the right of ζ and is therefore
increasing over [0, ζ].

Lemma 4 implies that if g (ζ) ≤ 0 (g (0) ≥ 0) then g (τ) < 0 (g (τ) ≥ 0) always for τ ∈ [0, ζ].
We next consider the optimal strategy for the three cases of the proposition:

Case 1. If g (ζ) ≤ 0, then it is optimal to stay in the bank always. To prove our claim, it suffices
to show that VI (τ) > VO (τ) for τ ∈ [0, ζ]. Suppose not, then there must exist some τw so that
VI (τw) = VO (τw) and V ′I (τw) > V ′O (τw) because VI (ζ) > VO (ζ). From HJB equations, we have

h (τw) (1− γ)− rVI (τw) = V ′I (τw)− V ′O (τw) > 0

However, since VI (τw) ≥ VO (τw) ≥ V̂O (τw) by definition (the first inequality is because there is
no transaction cost to take one dollar out, and the second inequality is because V̂O (τw) may be
derived under suboptimal policy), we have

h (τw) (1− γ)− rVI (τw) < h (τw) (1− γ)− rV̂O (τw) = g (τw) ≤ 0,

a contradiction.

Case 2. If g (0) ≥ 0, then it is optimal to withdraw at 0 and redeposit right after ζ. Well, if
g (0) ≥ 0, then g (τ) ≥ 0 always for τ ∈ [0, ζ], and g (ζ) > 0. Using g (ζ) > 0, we first show that
since k is arbitrarily small, there exists some τ̂ close to ζ so that VO (τ̂) = VI (τ̂). To show this, we
show that V ′O (ζ) − V ′I (ζ) is strictly below zero when k is arbitrarily small. To see this, from the
HJB equations we know that

V ′O (ζ)− V ′I (ζ) = h (ζ) (VO (ζ)− VI (ζ) + γ − 1) + δ (VI (ζ)− VO (ζ)) + rVI (ζ)
= −g (ζ) + (h (ζ) + δ − r) (VO (ζ)− VI (ζ))

The first is strictly negative while the second term converges to zero as k → 0. Therefore, when
k is arbitrary small there exists some ε so that VI (ζ − ε) < VO (ζ − ε). Due to continuity and the
fact that VI (ζ) = VO(ζ)

1−k > VO (ζ), there exists some τ̂ close to ζ so that VI (τ̂) = VO (τ̂). Note that
VO (τ̂) = V̂O (τ̂).

40



Now to prove that "it is optimal to withdraw at 0 and redeposit right after ζ," we only need to
show that VI (τ) = VO (τ) holds for all τ ∈ [0, τ̂ ] (intuitively, at any point of time a dollar inside the
bank has the value of taking outside, it is always optimal to keep the money outside). Suppose that
this does not hold; since VI (τ) ≥ VO (τ) in general, there must exits some point τw ∈ [0, τ̂ ] so that
VI (τw) = VO (τw) and V ′I (τw) < V ′O (τw). Choosing the largest value τw, so that VO (τw) = V̂O (τw)
holds (i.e., the optimal continuation strategy is wait outside the bank until ζ). Similar to the
argument before, we have

h (τw) (1− γ)− rVO (τw) = V ′I (τw)− V ′O (τw) < 0,

but this contradicts the fact that h (τw) (1− γ) − rVO (τw) = h (τw) (1− γ) − rV̂O (τw) ≥ 0 since
g (τ) ≥ 0 always.

Case 3. It follows from the Lemma 4 that g (ζ) > 0 and g (0) < 0 imply that there exists a unique
τw ∈ (0, ζ) so that g (τw) = 0, g (τ) > 0 for τ ∈ (τw, ζ) and g (τ) < 0 for τ ∈ (0, τw). Following the
same argument in the second part by replacing 0 with τw, we know that it is optimal to withdraw
at τw and redeposit at ζ+, and VI (τw) = VO (τw) = V̂O (τw). Then to prove our claim we only need
to show that VI (τ) > VO (τ) for τ ∈ (0, τw).
Let H (τ) ≡ VI (τ) − VO (τ) with H (τw) = 0, we need to show that H (τ) > 0 for τ ∈ (0, τw), as
H (τ) = VI (τ) − VO (τ) > 0 in general. First, we show that it is impossible to have H (τ) = 0
uniformly on any interval (τw −∆, τw) where ∆ > 0; if it is true then it must be that VI (τ) =
VO (τ) = V̂O (τ) on that interval so that

0 = rVI (τ) + h (τ) (γ − VI (τ)) + δ (1− VI (τ)) + V ′I (τ)
= rV̂O (τ) + h (τ)

(
γ − V̂O (τ)

)
+ δ

(
1− V̂O (τ)

)
+ V̂ ′O (τ)

= rV̂O (τ)− h (τ) (1− γ) = −g (τ) > 0

where the first equality is (18) and third equality is using the ODE for V̂O (τ) with 0 = h (τ)
(
1− V̂O (τ)

)
+

δ
(
1− V̂O (τ)

)
+ V̂ ′O (τ) . This contradiction implies that we must have VI (τ) > VO (τ) for some τ

close to τw. Now suppose that there exists another point τ1
w < τw so that VI

(
τ1
w

)
= VO

(
τ1
w

)
. Take

τ1
w that is closet to τw so that V ′I

(
τ1
w

)
≥ V ′O

(
τ1
w

)
. At τ1

w, VO
(
τ1
w

)
must satisfy the HJB in (18)

(because τ1
w is in the inaction region around the neighborhood, i.e., (1− k)VI (τ) < VO (τ) for τ

close to τw). Then

0 = rVI
(
τ1
w

)
+ h

(
τ1
w

) (
γ − VI

(
τ1
w

))
+ δ

(
1− VI

(
τ1
w

))
+ V ′I

(
τ1
w

)
≥ rVO

(
τ1
w

)
+ h

(
τ1
w

) (
γ − VO

(
τ1
w

))
+ δ

(
1− VO

(
τ1
w

))
+ V ′O

(
τ1
w

)
= rVO

(
τ1
w

)
− h

(
τ1
w

)
(1− γ) ≥ −g

(
τ1
w

)
> 0

where we have used the HJB for VO
(
τ1
w

)
, and the fact that VO

(
τ1
w

)
≥ V̂O

(
τ1
w

)
in general. Again

we get a contradiction with (18).
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A.3 Proof of Proposition 3

Proof. Given τw simple integration yields

VI (0|yM ) =

 δ(eλη(1−p0)−1)
δ−r

(
1− e−(δ−r)τw

)
+ δ+λγ

λ+δ−re
λζp0

(
1− e−(λ+δ−r)τw

)
+e−(δ−r)τw

(
eλη − 1−

(
eλη − eλ(ζ−τw)

)
p0
)
VO (τw)


eλη − 1− eληp0 + eλζp0

Note that h (τw) (1− γ) = rVO (τw) implies that

(
eλη − 1−

(
eλη − eλ(ζ−τw)

)
p0
)
VO (τw) = λ (1− γ) eλ(ζ−τw)p0

r

where we used the definition of h in (8). Then note that

λ (1− γ)
r

− δ + λγ

λ+ δ − r
= (λ+ δ) (λ (1− γ)− r)

r (λ+ δ − r)

which gives our expression.

A.4 Proof of Lemma 1

Proof. Suppose that ζ > η, so that at ζ the cumulative withdrawal from yL agents is q
(
1− e−βη

)
.

Then using the aggregate condition (26), we can back out the equilibrium τr for yM agents as

τr = − 1
β

ln

1−
κL − q

(
1− e−βη

)
1− q

 . (37)

However, unless parameters are such that the above τr happens to satisfy G (τr) = 0 which is the
yM agents’ optimal waiting decision, generically this cannot occur.

A.5 Proof of Proposition 4

First note that the G function is the mirror image of individual FOC condition function, i.e.,
G (τr) = g (ζ − τr) , and it shares the same (but opposite) property of g (·) shown in Lemma 4:

Corollary 1. G (τr) crosses zero from above at most once on τr ∈ [0, ζ].

This result implies that the following holds for the three cases of the proposition:
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Case 1. If G
(
τ lr

)
≤ 0, then G (τr) ≤ 0 for all τr ≥ τ lr. Thus if all other agents strategy is to

redeposit after any τr ≥ τ lr, it is optimal for the individual agent to deviate and wait a bit longer.
Therefore, ζ∗ →∞ and no run equilibrium exists.

Case 2. If G (τur ) ≥ 0, then G (τr) ≥ 0 for all τr ≤ τur . Thus, if all other agents’ strategy is to
withdraw at some interior τr ≤ τur , it is optimal for the individual agent to deviate and withdraw
earlier. Therefore, agents withdraw immediately in the only symmetric equilibrium.

Case 3. Finally, if G (τur ) < 0 and G
(
τ lr

)
> 0 then by continuity of G and Corollary 1, there

exists a unique bank run equilibrium τ∗r ∈
(
τ lr, τ

u
r

)
so that G (τ∗r ) = 0. Plugging into (26) we get

the equilibrium survival time ζ∗ and waiting time τ∗w. A second implication of Corollary 1 is that
G′ (τ∗r ) < 0. Therefore the equilibrium is stable.

A.6 Proof of Lemma 2

Proof. The proof of the first statement is given in the text. To show the second statement, we need
to show that the agent’s FOC in information acquisition

A (q) ≡ p (ti|ti) + (1− p (ti|ti))
δ

δ − r
− VI (0|yM )− αq > 0 with equality if q < κL

1− e−βη ,

combined with bank-run equilibrium condition, has a solution. Note that both p (ti|ti) and VI (0|yM )
(given in (33) and Proposition 3) depend on ζ that is determined in Proposition 4 about bank run
equilibrium given q. Now because (32) fails, the bank run equilibrium exists even with exogenously
given q = 0. From (22) it is optimal to withdraw given yL. The agent’s strategy depends on his
signal, and therefore information has a positive value, i.e. A (0) = p (ti|ti) + (1− p (ti|ti)) δ

δ−r −
VI (0|yM ) > 0. Now suppose that q takes its upper bound κL

1−e−βη ; if A
(
q = κL

1−e−βη
)
> 0 then

the upper bound information quality and associated bank run equilibrium is just the equilibrium
that we are after. If instead A

(
q = κL

1−e−βη
)
< 0, then an interior equilibrium exists because of the

continuity of A (q).

A.7 Proof of Lemma 3

Proof. First, when the bank run equilibrium occurs with corner solution ζ = τur = 1
β ln 1

1−κL , then
the marginal benefit of information MB = p (ti|ti) + (1− p (ti|ti)) δ

δ−r − VI (0|yM ) is independent
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of q, and the equilibrium q∗ equates MC = αq∗ = MB. Therefore the equilibrium is unique and
stable (MB is constant whileMC increases with q). Also if q∗ takes the upper bound corner value,
the associated run equilibrium is unique as well. So the rest of proof focus on the case where both
the information quality of equilibrium survival time take interior solutions.

From now on we focus on interior bank run equilibrium. Importantly, this implies that τr
is determined in (25) which only depends on primitives. Therefore we treat τr as a primitive
parameter. The FOC (31) when the agent sets q∗ is (

eλζ − 1
)
p0 + (1− p0)

(
eλη − 1

)
δ
δ−r −

δ(eλη(1−p0)−1)
δ−r

(
1− e−(δ−r)τw

)
− δ+λγ
λ+δ−r e

λζp0 − e−(δ−r)τweλτrp0

(
(λ+δ)(λ(1−γ)−r)

r(λ+δ−r)

)
− αq

(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)


(1− p0) (eλη − 1) + (eλζ − 1) p0
= 0 (38)

where ζ and τw = ζ − τr depend on q through (27). We have

ζ ′ (q) = τ ′w (q) = e−βζ − e−βτr
qβe−βζ

= 1− eβτw
qβ

< 0.

The derivative at the point where (38) takes zero value yields:

λζ′eλζp0 − δ
(
eλη (1− p0)− 1

)
e−(δ−r)τw τ ′w −

δ + λγ

λ+ δ − r
p0λe

λζζ′ + (δ − r) e−(δ−r)τweλτrp0

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
τ ′w

− α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)
− αqeλζλζ′p0

= λζ′eλζp0

[
λ (1− γ)− r
λ+ δ − r

− αq
]

+ e−(δ−r)(ζ−τr)τ ′w

[
eλτrp0 (δ − r)

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ
(
eλη (1− p0)− 1

)]
− α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)

= ζ′ (q) e−(δ−r)ζ
[
λe(λ+δ−r)ζp0

[
λ (1− γ)− r
λ+ δ − r

− αq
]

+ e(δ−r)τr
[
eλτrp0 (δ − r)

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ
(
eλη (1− p0)− 1

)]]
− α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)

The second line is clearly negative. Assume that (note that eλη (1− p0) < 1)

e(δ−r)τr
[
eλτrp0 (δ − r)

((λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ

(
eλη (1− p0)− 1

)]
(39)

+λe(λ+δ−r)ηp0

[
λ (1− γ)− r
λ+ δ − r

− α κL
1− e−βη

]
> 0.

Then, since ζ < η, q∗ < κL
1−e−βη , and ζ ′ (q) < 0, the first line is also negative. As a result,

the derivative of (38) is always negative. As a result, when (38) equals zero, it must go down.
Combined with differentiability of (38), this result rules out multiple solutions, because if there
exist, then there must have one solution with the local slope being nonnegative. Therefore, (38)
crosses zero at most once from above, which implies that the bank run equilibrium, if exists, is
unique and stable.
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A.8 Proof of Proposition 5

Proof. Now suppose that q∗ = κL
1−e−βη which is the upper bound, so that τ lr = 0. Suppose that

(λ (1− γ)− r) p0 − (1− p0)
(
eλη − 1

) r (r − kδ)
δ − r

+ r
(
1− eλη (1− p0)

)
≥ 0

so that run equilibrium occurs. There must be another smallest q so that run could occur. The
lower bound q satisfies G

(
τ lr

(
q
))

= 0, i.e., q solves

(λ (1− γ)− r)
(

1− q
1− κL − qe−βη

)λ
β

p0 −

(1− p0)
(
eλη − 1

) r (r − kδ)
δ − r

(
1− q

1− κL − qe−βη

)− δ
β

+ r
(
1− eλη (1− p0)

)
= 0.

At this q, ζ = η and τw = η − 1
β ln

(
1−q

1−κL−qe−βη

)
, and we need to check if agents has sufficient

incentives to improve signal quality (note that in this case p (ti|ti) = p0 because ζ = η)

p0 + (1− p0) δ

δ − r
− VI (0|yM ) > αq∗

If this is true, then we will have another point q∗ > q to be the bank run equilibrium. Otherwise,
each individual agent would like to lower their information q below q—but we know lower q cannot
trigger bank run, contradiction. Moreover, it implies that at q, FOC = MB −MC < 0. Given
the following conditions, FOC has to goes down once it touches zero, so there will be no q > q to
generate bank run equilibrium. The FOC in (31) is (

eλζ − 1
)
p0 + (1− p0)

(
eλη − 1

)
δ
δ−r −

δ(eλη(1−p0)−1)
δ−r

(
1− e−(δ−r)τw

)
− δ+λγ
λ+δ−re

λζp0 − e−(δ−r)τweλτrp0
(

(λ+δ)(λ(1−γ)−r)
r(λ+δ−r)

)
− αq∗

(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)


(1− p0) (eλη − 1) + (eλζ − 1) p0

we know that that τr is independent of q, and

ζ ∈
[ 1
β

ln 1
1− κL

, η

]
τw ∈ [0, η − τr]

and
ζ ′ (q) = τ ′w (q) = e−βζ − e−βτr

qβe−βζ
= 1− eβτw

qβ
>

1− eβ(η−τr)

qβ
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derivative at FOC=0

λζ′eλζp0 − δ
(
eλη (1− p0)− 1

)
e−(δ−r)τw τ ′w −

δ + λγ

λ+ δ − r
p0λe

λζζ′ + (δ − r) e−(δ−r)τweλτrp0

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
τ ′w

−α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)
− αq∗eλζλζ′p0

= λζ′eλζp0

[
λ (1− γ)− r
λ+ δ − r

− αq∗
]

+ e−(δ−r)τw τ ′w

[
eλτrp0 (δ − r)

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ
(
eλη (1− p0)− 1

)]
−α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)

= ζ′ (q)
[
λeλζp0

[
λ (1− γ)− r
λ+ δ − r

− αq∗
]

+ e−(δ−r)τw
[
eλτrp0 (δ − r)

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ
(
eλη (1− p0)− 1

)]]
−α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)

Assume that (note that eλη (1− p0) < 1)

eλτrp0 (δ − r)
((λ+ δ) (λ (1− γ)− r)

r (λ+ δ − r)

)
− δ

(
eλη (1− p0)− 1

)
> 0

Now we put bounds on each term. we have

0 > λeλζp0

[
λ (1− γ)− r
λ+ δ − r

− αq∗
]
> λeληp0

[
λ (1− γ)− r
λ+ δ − r

− α
]

and

e−(δ−r)τw
[
eλτdp0 (δ − r)

((λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ

(
eλη (1− p0)− 1

)]
> e−(δ−r)(η−τd)

[
eλτdp0 (δ − r)

((λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ

(
eλη (1− p0)− 1

)]
and finally the last term is

−α
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)
< −α

(
(1− p0)

(
eλη − 1

)
+
(
e
λ 1
β

ln 1
1−κL − 1

)
p0

)
therefore the FOC are bounded above by

1− eβ(η−τd)

qβ

{
λeληp0

[
λ (1− γ)− r
λ+ δ − r

− α
]

+ e−(δ−r)(η−τd)
[

(δ − r)
λ (1− γ)

r
eλτdp0 − δ

(
eλη (1− p0)− 1

)
−

δ + λγ

λ+ δ − r
p0 (δ − r) eλτd

]}
−α
(

(1− p0)
(
eλη − 1

)
+
(
e
λ 1
β

ln 1
1−κL − 1

)
p0

)
if this quantity is negative, then there is only one interior solution.

A.9 Proof of Proposition 6

Proof. At the time of hearing the rumor, the value of a dollar in the bank for agents with yL and
yH signals are respectively VI (0|yL) = (1−k)δ

δ−r and VI (0|yH) = δ
δ−r . In order to calculate the value

for agents with the yM signal, note that with probability 1/2 the original bank is the illiquid one,
but the agent can deposit his funds (after the liquidation cost 1− γ) to the liquid one. As a result,
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the value with yM signal is

VI (0|yM ) =
1
2

1
1−Π (0|κL)

∫ ζ

0

[
δe−(δ−r)s (1−Π (s|κL)) + e−(δ−r)sπ (s|κL) γ (1− k)

δ

δ − r

]
ds+

1
2

δ

δ − r

=
1
2

∫ ζ

0

[
δe−(δ−r)s

(
1−

1− e−λs

1− e−λζ

)
+ e−(δ−r)s λe−λs

1− e−λζ
γ (1− k)

δ

δ − r

]
ds+

1
2

δ

δ − r

=
1
2

1
1− e−λζ

∫ ζ

0

[
−e−λζδe−(δ−r)s + δe−(δ−r+λ)s + λγ (1− k)

δ

δ − r
e−(δ−r+λ)s

]
ds+

1
2

δ

δ − r

=
1
2

1
1− e−λζ

[
−e−λζ

δ

δ − r
(
1− e−(δ−r)ζ

)
+

δ

δ − r + λ

(
1− e−(δ−r+λ)ζ

)
+
λγ (1− k)
δ − r + λ

δ

δ − r
(
1− e−(δ−r+λ)ζ

)]
+

1
2

δ

δ − r

=
1
2

1
1− e−λζ

[
−e−λζ

δ

δ − r
(
1− e−(δ−r)ζ

)
+

δ

δ − r + λ

(
1 +

λγ (1− k)
δ − r

)(
1− e−(δ−r+λ)ζ

)]
+

1
2

δ

δ − r
.

B Appendix B

We consider the non-stationary part of the model here. If t0 < η, then some early informed
agents with ti < η knows that t0 ∈ [0, ti], and this truncation implies strategy may be ti-dependent.
However, as shown in Abreu and Brunnermeier (2003), those early agents will be bunching together
to eliminate the non-stationarity. We modify their results to our setting.

Focus on the bank being illiquid. To be precise, follow Abreu and Brunnermeier (2003) in our
model the agents who hears the rumor before ζ − τw = τr will behave as if the agent who hears the
rumor exactly at τr. The strategy of the agent who hears rumor at τr is that, independent of signal
(yL or yM ) he will withdraw at τr + τw = ζ. Moreover, for agents who hear rumor at ti ∈ [τr, ζ],
they take the following strategy. If they receive yL signal then he will withdraw at ζ, while if they
get yM signal then they withdraw at ti + τw. This additional modification is because relative to
Abreu and Brunnermeier (2003) agents may have different signals in our model.

For illustration, suppose that t0 = 0 so the bank should fail at ζ. Recall that there are q measure
of yL signals and 1−q measure of yM signals. Since the information keeps spreading at ζ (recall that
η < ζ) and all agents hears the rumor before ζ will withdraw at ζ, there are q

(
1− e−βζ

)
measure

of yL agents withdrawing. On the other hand, yM agents who hear the rumor in the interval [0, τr]
are withdrawing at ζ, with a total mass of (1− q)

(
1− e−βτr

)
. Therefore, we have

(1− q)
(
1− e−βτr

)
+ q

(
1− e−βζ

)
= κL, (40)

which is exactly (26). A similar argument can be applied to the case of t0 > 0 so that the bank
failure time is t0 + ζ: this is because endogenously there are less agents bunching at the physical
time ζ, so the bank failure time is postponed to t0 + ζ > ζ.

There is one issue that our richer (than Abreu and Brunnermeier (2003)) setting leads to poten-
tial non-stationarity. Although withdraw behavior can be stationary, the endogenous learning about
bank liquidity is non-stationary when η < ζ. In fact, initially when t0 = 0, agents have no other in-
formation so p (ti|ti) = p0 must holds. In stationary state, p (ti|ti) = p̂0 ≡

(eλζ−1)p0

(1−p0)(eλη−1)+(eλζ−1)p0
<

p0. This difference potentially alters the optimal withdraw strategies for agents with different
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timings. To resolve this issue, we simply assume that for ti < η, the prior is time-varying

p0 (ti) =

(
eλti − 1

)
p0

[(1− p0) (eλη − 1) + p0 (eλti − 1)] ,

and one can show that with this specification, the resulting posterior upon hearing the rumor,
p (ti|ti), is always p̂0. One can presumably achieve this by a more structural way; for instance,
introduce other shocks so that, conditional on survival and hearing the rumor, the posterior of the
bank being illiquid is always p̂0. Also, we have to fix the signal quality structure the q in (2) is
the same as in the stationary phase. We deem these technical issue non-essential for the economic
questions that we are after in this paper.
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