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Abstract

This paper develops a vector autoregression (VAR) for macroeconomic time se-

ries which are observed at mixed frequencies – quarterly and monthly. The mixed-

frequency VAR is cast in state-space form and estimated with Bayesian methods under

a Minnesota-style prior. Using a real-time data set, we generate and evaluate forecasts

from the mixed-frequency VAR and compare them to forecasts from a VAR that is

estimated based on data time-aggregated to quarterly frequency. We document how

information that becomes available within the quarter alters the forecasts in real time.
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1 Introduction

In macroeconomic applications, vector autoregressions (VARs) are typically estimated either

exclusively based on quarterly observations or exclusively based on monthly observations.

In a forecasting setting the advantage of using quarterly observations is that the set of

macroeconomic series that could potentially be included in the VAR is larger. In partic-

ular, Gross Domestic Product (GDP) as well as many other series that are published as

part of the National Income and Product Accounts (NIPA), are only available at quarterly

frequency. The advantage of using monthly information, on the other hand, is that the VAR

is able to track the economy more closely in real time, since many important indicators,

e.g. unemployment, prices, and interest rates get updated by the statistical agencies within

each quarter. To exploit the respective advantages of both monthly and quarterly VARs,

this paper develops a mixed-frequency VAR (MF-VAR) that allows some series to be ob-

served at monthly and others at quarterly frequency. The MF-VAR can be conveniently

represented as a state-space model, in which the state-transition equations are given by a

VAR at monthly frequency and the measurement equations relate the observed series to the

underlying, potentially unobserved, monthly variables that are stacked in the state vector.

The main contribution of this paper is an empirical one. We compile a real-time data set

for an eleven-variable VAR that includes observations on real aggregate activity, prices, and

financial variables. Using this data set, we recursively estimate our MF-VAR and compare

its forecasting performance to a standard VAR in which all series are time-aggregated to

quarterly frequency (QF-VAR). We carefully document how within-quarter information from

variables that are observed at monthly frequency, can drastically increase the precision of

GDP growth, unemployment, inflation, and interest rate forecasts of quarterly averages in the

short-run. Over a one- to two-year horizon, the gain from using monthly information tends to

vanish. We also compare real-time MF-VAR forecasts to the Greenbook forecasts prepared by

the Board of Governors prior to meetings of the Federal Open Market Committee (FOMC).

We assess the MF-VAR density forecasts based on probability integral transformations and

conduct a small case-study and compare how monthly information altered and improved

density forecasts generated during the 2008-09 recession.

To cope with the high dimensionality of the parameter space, the MF-VAR is equipped

with a Minnesota prior, e.g. Sims and Zha (1998) or Del Negro and Schorfheide (2011), and
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estimated using Bayesian methods. By and large we are building on existing approaches of

treating missing observations in state-space models (see, for instance, the textbook treatment

by Durbin and Koopman (2001)). More specifically, we use data-augmentation to construct

a Gibbs sampler along the lines of Carter and Kohn (1994) that alternates between the

conditional distribution of the VAR parameters given the unobserved monthly series, and

the conditional distribution of the missing monthly observations given the VAR parameters.

Draws from the former distribution are generated by direct sampling from a Normal-Inverted

Wishart distribution whereas draws from the latter are obtained by applying a simulation

smoother to the state-space representation of the MF-VAR.

To the extent that there exist very few studies that estimate MF-VARs, the implementation

of the Bayesian inference contains several noteworthy aspects. In the filtering/smoothing step

of the Gibbs sampler we are alternating between different state-space representations of the

MF-VAR in order keep the vector of latent state variables as small as possible while at the

same time being able to handle irregular patterns of missing monthly variables toward the

end of the estimation sample (ragged edges). As is common for the estimation of Bayesian

VARs on single-frequency data, the prior is indexed by hyperparameters that are selected in

a data-driven way by maximizing the marginal likelihood function.

Our paper is related to several strands of the time series literature. An alternative Gibbs

sampling approach for the coefficients in an MF-VAR is explored in Eraker, Chiu, Foerster,

Kim, and Seoane (2011). Their algorithm also iterates over the conditional posterior distri-

butions of the VAR parameters and the missing monthly observations, but utilizes a different

procedure to draw the missing observations. The focus of their paper is on parameter es-

timation rather than forecasting. The authors link the coefficients of the MF-VAR to the

coefficients of a QF-VAR via a transformation. Eraker, Chiu, Foerster, Kim, and Seoane

(2011) then compare the posterior distributions of parameters and impulse response func-

tions obtained from the estimation of the two models to document the value of the monthly

observations.

Mixed frequency observations have also been utilized in the estimation of dynamic factor

models (DFMs). Mariano and Murasawa (2003) apply maximum-likelihood factor analysis

to a mixed-frequency series of quarterly real GDP and monthly business cycle indicators

to construct an index that is related to monthly real GDP. Aruoba, Diebold, and Scotti

(2009) develop a DFM to construct a broad index of economic activity in real time using a
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variety of data observed at different frequencies. Giannone, Reichlin, and Small (2008) use

a mixed-frequency DFM to evaluate the marginal impact that intra-monthly data releases

have on current-quarter forecasts (nowcasts) of real GDP growth.

When using our MF-VAR to forecast quarterly GDP growth, we are essentially predicting

a quarterly variable based on a mixture of quarterly and monthly regressors. Ghysels, Sinko,

and Valkanov (2007) proposed a simple univariate regression model, called mixed data sam-

pling (MIDAS) regression, to exploit high-frequency information without having to estimate

a state-space model. To cope with a potentially large numbers of regressors, the coefficients

for the high-frequency regressors are tightly restricted through distributed lag polynomials

that are indexed by a small number of hyperparameters.

Bai, Ghysels, and Wright (2011) examine the relationship between MIDAS regressions and

state-space models applied to mixed-frequency data. They consider dynamic factor models

and characterize conditions under which the MIDAS regression exactly replicates the steady

state Kalman filter weights on lagged observables. They conclude that Kalman filter forecasts

are typically a little better, but MIDAS regressions can be more accurate if the state-space

model is misspecified or over-parameterized. Kuzin, Marcellino, and Schumacher (2011)

compare the accuracy of Euro Area GDP growth forecasts from MIDAS regressions and MF-

VARs estimated by maximum likelihood. The authors find that the relative performances

of MIDAS and MF-VAR forecasts differ depending on the predictors and forecast horizons.

Overall, the authors do not find a clear winner in terms of forecasting performance.

The remainder of this paper is organized as follows. Section 2 presents the state-space

representation of the MF-VAR and discusses Bayesian inference and forecasting. The em-

pirical results are presented in Section 3. We begin with a description of the real-time data

set used for the recursive forecast evaluation. We then document how the within-quarter

monthly information reduces the root-mean-squared error (RMSE) of VAR forecasts. Finally

we evaluate MF-VAR density forecasts based on probability integral transformations and il-

lustrate how these forecasts evolved during the 2008-09 recession. We conclude in Section 4.

The Online Appendix provides detailed information about the Bayesian computations, the

construction of the data set, as well as additional empirical results.
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2 A Mixed-Frequency Vector Autoregression

The MF-VAR considered in this paper is based on a standard constant-parameter VAR in

which the length of the time period is one month. Since some macroeconomic time series, e.g.

GDP, are measured only at quarterly frequency, we treat the corresponding monthly values

as unobserved. To cope with the missing observations, the MF-VAR is represented as a state-

space model in Section 2.1. In order to ease the exposition, we use a representation with a

state vector that includes even those variables that are observable at monthly frequency, e.g.

the aggregate price level, the unemployment rate, and the interest rate. A computationally

more efficient representation is presented in the Appendix. Bayesian inference and forecasting

are discussed in Section 2.2.

Throughout this paper we use Yt0:t1 to denote the sequence of observations or random

variables {yt0 , . . . , yt1}. If no ambiguity arises, we sometimes drop the time subscripts and

abbreviate Y1:T by Y . If θ is the parameter vector, then we use p(θ) to denote the prior

density, p(Y |θ) is the likelihood function, and p(θ|Y ) the posterior density. We use iid

to abbreviate independently and identically distributed, and N(µ,Σ) denotes a multivari-

ate normal distribution with mean µ and covariance matrix Σ. Let ⊗ be the Kronecker

product. If X|Σ ∼ MNp×q(M,Σ ⊗ P ) is matricvariate Normal and Σ ∼ IWq(S, ν) has an

Inverted Wishart distribution, we say that (X,Σ) has an Normal-Inverted Wishart distribu-

tion: (X,Σ) ∼MNIW (M,P, S, ν).

2.1 State-Transitions and Measurement

We assume that the economy evolves at monthly frequency according to the following VAR(p)

dynamics:

xt = Φ1xt−1 + . . .+ Φpxt−p + Φc + ut, ut ∼ iidN
(
0,Σ

)
. (1)

The n×1 vector of macroeconomic variables xt can be composed into xt = [x′m,t, x
′
q,t]
′, where

the nm × 1 vector xm,t collects variables that are observed at monthly frequency, e.g. the

consumer price index and the unemployment rate, and the nq × 1 vector xq,t is comprised

of unobserved monthly variables that are only published at quarterly frequency, e.g. GDP.

Define zt = [x′t, . . . , x
′
t−p+1]

′ and Φ = [Φ1, . . . ,Φp,Φc]
′. Write the VAR in (1) in companion

form as

zt = F1(Φ)zt−1 + Fc(Φ) + vt, vt ∼ iidN
(
0,Ω(Σ)

)
(2)
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where the first n rows of F1(Φ), Fc(Φ), and vt are defined to reproduce (1) and the remaining

rows are defined to deliver the identities xq,t−l = xq,t−l for l = 1, . . . , p− 1. The n×n upper-

left submatrix of Ω equals Σ and all other elements are zero. (2) is the state-transition

equation of the MF-VAR.

We proceed by describing the measurement equation. To do so, some additional notation

is useful. Let T denote the forecast origin and let Tb ≤ T be the last period that corresponds

to the end of a quarter and for which all quarterly observations are available.1 The vector of

monthly series xm,t is observed every month. If the actual observations are denoted by ym,t

then we obtain

ym,t = xm,t, t = 1, . . . , Tb. (3)

Assuming that the underlying monthly VAR has at least three lags, that is p ≥ 3, we express

the three-month average of xq,t as

ỹq,t =
1

3
(xq,t + xq,t−1 + xq,t−2) = Λqzzt. (4)

This three-month average, however, is only observed for every third month, which is why we

use a tilde superscript. Let Mq,t be a selection matrix that equals the identity matrix if t

corresponds to the last month of a quarter and is empty otherwise. Adopting the convention

that the dimension of the vector yq,t is nq in periods in which quarterly averages are observed

and zero otherwise, we write

yq,t = Mq,tỹq,t = Mq,tΛqzzt. (5)

For periods t = Tb + 1, . . . , T no additional observations of the quarterly time series are

available. However, the forecaster might observe additional monthly variables. Let ym,t

denote the subset of monthly variables for which period t observations are reported by the

statistical agency prior to period T and let Mm,t be a deterministic sequence of selection

matrices such that (3) can be extended to

ym,t = Mm,txm,t, t = Tb + 1, . . . , T. (6)

Notice that dimension of the vector ym,t is potentially time varying and less than nm. The

measurement equations (3) to (6) can be written more compactly as

yt = MtΛzzt, t = 1, . . . , T. (7)

1The subscript b stands for balanced sample.
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Here Mt is a sequence of selection matrices that selects the time t variables that have been

observed by period T and are part of the forecaster’s information set. In sum, the state-space

representation of the MF-VAR is given by (2) and (7).

2.2 Bayesian Inference

Starting point of Bayesian inference for the MF-VAR is a joint distribution of observables

Y1:T , latent states Z0:T , and parameters (Φ,Σ), conditional on a pre-sample Y−p+1:0 to ini-

tialize lags. Using a Gibbs sampler, we generate draws from the posterior distributions of

(Φ,Σ)|(Z0:T , Y−p+1:T ) and Z0:T |(Φ,Σ, Y−p+1:T ). Based on these draws we are able to simu-

late future trajectories of yt to characterize the predictive distribution associated with the

MF-VAR and to calculate point and density forecasts.

Prior Distribution. An important challenge in practical work with VARs is to cope with

the dimensionality of the coefficient matrix Φ. Informative prior distributions can often

mitigate the curse of dimensionality. A widely used prior in the VAR literature is the so-

called Minnesota prior. This prior dates back to Litterman (1980) and Doan, Litterman,

and Sims (1984). We use the version of the Minnesota prior described in Del Negro and

Schorfheide (2011)’s handbook chapter, which in turn is based on Sims and Zha (1998).

The main idea of the Minnesota prior is to center the distribution of Φ at a value that

implies a random-walk behavior for each of the components of xt in (1). Our version of

the Minnesota prior for (Φ,Σ) is proper and belongs to the family of MNIW distributions.

We implement the Minnesota prior by mixing artificial (or dummy) observations into the

estimation sample. The artificial observations are computationally convenient and allow us

to generate plausible a priori correlations between VAR parameters. The variance of the

prior distribution is controlled by a low-dimensional vector of hyperparameters λ. Details

of the prior are relegated to the Appendix and the choice of hyperparameters is discussed

below.

Posterior Inference. The joint distribution of data, latent variables, and parameters

conditional on some observations to initialize lags can be factorized as follows

p(Y1:T , Z0:T ,Φ,Σ|Y−p+1:0, λ) (8)

= p(Y1:T |Z0:T )p(Z1:T |z0,Φ,Σ)p(z0|Y−p+1:0)p(Φ,Σ|λ).
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The distribution of Y1:T |Z1:T is given by a point mass at the value of Y1:T that satisfies (7).

The density p(Z1:T |z0,Φ,Σ) is obtained from the linear Gaussian regression (2). The condi-

tional density p(z0|Y−p+1:0) is chosen to be Gaussian and specified in the Appendix. Finally,

p(Φ,Σ|λ) represents the prior density of the VAR parameters. The factorization (8) implies

that the conditional posterior densities of the VAR parameters and the latent states of the

MF-VAR take the form

p(Φ,Σ|Z0:T , Y−p+1:T ) ∝ p(Z1:T |z0,Φ,Σ)p(Φ,Σ|λ) (9)

p(Z0:T |Φ,Σ, Y−p+1:T ) ∝ p(Y1:T |Z1:T )p(Z1:T |z0,Φ,Σ)p(z0|Y−p+1).

We follow Carter and Kohn (1994) and use a Gibbs sampler that iterates over the two

conditional posterior distributions in (9). Conditional on Z0:T the companion-form state-

transition (2) is a multivariate linear Gaussian regression. Since our prior for (Φ,Σ) belongs

to the MNIW family, so does the posterior and draws from this posterior can be obtained

by direct Monte Carlo sampling. Likewise, since the MF-VAR is set up as a linear Gaussian

state-space model, a standard simulation smoother can be used to draw the sequence Z0:T

conditional on the VAR parameters. The distribution p(z0|Y−p+1) provides the initialization

for the Kalman-filtering step of the simulation smoother. A detailed discussion of these

computations can be found in textbook treatments of the Bayesian analysis of state-space

models, e.g., the handbook chapters by Del Negro and Schorfheide (2011) and Giordani,

Pitt, and Kohn (2011).

Computational Considerations. For expositional purposes it has been convenient to

define the vector of state variables as zt = [x′t, . . . , xt−p+1]
′, which includes the variables

observed at monthly frequency. From a computational perspective this definition is inefficient

because it enlarges the state space of the model unnecessarily. We show in the Appendix

how to rewrite the state-space representation of the MF-VAR in terms of a lower-dimensional

state vector st = [x′q,t, . . . , xq,t−p]
′ that only includes the variables (and their lags) observed at

quarterly frequency. Our simulation smoother uses the small state vector st for t = 1, . . . , Tb

and then switches to the larger state vector zt for t = Tb + 1, . . . , T to accommodate missing

monthly observations toward the end of the sample.

Forecasting. For each draw (Φ,Σ, Z0:T ) from the posterior distribution we simulate a tra-

jectory ZT+1:T+H based on the state-transition equation (2). Since we evaluate forecasts of

quarterly averages in our empirical analysis, we time-aggregate the simulated trajectories ac-

cordingly. Based on the simulated trajectories (approximate) point forecasts can be obtained
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by computing means or medians. Interval forecasts and probability integral transformations

(see Section 3.3) can be computed from the empirical distribution of the simulated trajecto-

ries.

Hyperparameter Selection. The empirical performance of the MF-VAR is sensitive to

the choice of hyperparameters. The prior is parameterized such that λ = 0 corresponds to

a flat (and therefore improper) prior for Φ and Σ. As λ −→ ∞, the MF-VAR is estimated

subject to the random walk restriction implied by the Minnesota prior. The best forecasting

performance of the MF-VAR is likely to be achieved for values of λ that are in between

the two extremes. From a practitioner’s view, choosing λ based on the marginal likelihood

function

p(Y1:T |Y−p+1:0, λ) (10)

=

∫
p(Y1:T , Z0:T ,Φ,Σ|Y−p+1:0, λ)d(Φ,Σ, Z0:T )

=

∫
p(Y1:T |Z0:T )

[∫
p(Z1:T |z0,Φ,Σ)p(Φ,Σ|λ)d(Φ,Σ)

]
p(z0|Y−p+1:0)dZ0:T

tends to work well for forecasting purposes (see Giannone, Lenza, and Primiceri (2010) for a

recent study). The log marginal likelihood p(Y1:T |Y−p+1:0, λ) can be interpreted as the sum

of one-step ahead predictive scores:

ln p(Y1:T |Y−p+1:0, λ) =
T∑
t=1

ln

∫
p(yt|Y−p+1:t−1,Φ,Σ)p(Φ,Σ|Y−p+1:t−1, λ)d(Φ,Σ). (11)

The terms on the right-hand side of (11) provide a decomposition of the one-step ahead

predictive densities p(yt|Y1−p:t−1, λ). This decomposition highlights the fact that inference

about the parameter is based on time t − 1 information, when making a one-step-ahead

prediction for yt.

From (10) we see that the computation of the marginal likelihood involves integrating out

the latent state which is very time-consuming. As a short-cut we use the posterior median

values of the latent states Ẑ0:T and approximate the marginal likelihood as follows to reduce

the computational burden:

p(Y1:T |Y−p+1:0, λ) '
∫
p(Ẑ1:T |ẑ0,Φ,Σ)p(Φ,Σ|λ)d(Φ,Σ). (12)

An analytical expression for the approximate marginal likelihood can be obtained by using

the normalization constants for the MNIW distribution and is provided in Section 2 of
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Del Negro and Schorfheide (2011). We maximize the right-hand side of (12) with respect to

λ over a grid. More specifically, we start from an initial choice of λ to generate an initial

sequence Ẑ0:T . Subsequently, the marginal likelihood is maximized with respect to λ and we

generate a new sequence Ẑ0:T . These steps are repeated until the changes in λ̂ are negligible.

This method appears to be sufficiently robust and reliable in selecting the hyperparameters.

3 Empirical Analysis

The goal of the empirical analysis is to study the extent to which the incorporation of

monthly observations via a MF-VAR model improves upon forecasts generated with a VAR

that is based on time-aggregated quarterly data (QF-VAR). We consider a MF-VAR and

a QF-VAR for eleven macroeconomic variables, of which three are observed at quarterly

frequency and eight are observed at monthly frequency. The quarterly series are GDP,

Fixed Investment (INVFIX), and Government Expenditures (GOV). The monthly series

are the Unemployment Rate (UNR), Hours Worked (HRS), Consumer Price Index (CPI),

Industrial Production Index (IP), Personal Consumption Expenditure (PCE), Federal Fund

Rate (FF), Treasury Bond Yield (TB), S&P 500 Index (SP500). Precise data definitions are

provided in the Appendix.

Series that are observed at a higher than monthly frequency are time-aggregated to monthly

frequency. The variables enter the VARs in log levels with the exception of UNR, FF, and

TB which are divided by 100 in order to make them commensurable in scale to the other

log transformed variables. Based on some preliminary exploration of marginal likelihood

functions, we set the number of lags in the (monthly) state-transition of the MF-VAR to

p = 6 and the number of lags in the QF-VAR to 2.

The remainder of this section is organized as follows. The construction of our real-time

data set and the grouping of forecast origins according to within-quarter information is

discussed in Section 3.1. We present RMSE statistics in Section 3.2 and assess VAR density

forecasts based on probability integral transformations in Section 3.3. Finally, we compare

forecasts from the MF-VAR and QF-VAR during the 2008-09 recession in Section 3.4.
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3.1 Real-Time Data Set and Information Structure

To compare the empirical performance of our MF-VAR with a standard QF-VAR we conduct

a pseudo-out-of-sample forecast experiment. In this forecast experiment we consider an in-

creasing sequence of estimation samples Y−p+1:T , T = Tmin, . . . , Tmax, and generate forecasts

for periods T + 1, . . . , T +H. The maximum forecast horizon H is chosen to be 24 months.

The period t = 1 corresponds to 1968:M1. We align Tmin with 1997:M7 and Tmax with

2009:M3, which yields 141 estimation samples.2 The estimation samples are constructed

from real-time data sets, assuming that the forecasts are generated on the last day of each

month. Due to data revisions by statistical agencies, observations of Y1:T−1 published in

period T are potentially different from the observations that had been published in period

T − 1. For this reason, time series are often indexed by a superscript, say τ ≥ T , which

indicates the vintage or data release date. Using this notation, a forecaster at time T has po-

tentially access to a triangular array of data Y 1
−p+1:1, Y

2
−p+1:2, ..., Y

T
−p+1:T . Rather than using

the entire triangular array and trying to exploit the information content in data revisions,

we estimate the MF-VAR and QF-VAR for each forecast origin T based on the information

set Y T
−p+1:T = {yT−p+1, . . . , y

T
T }. As in Section 2 we are using the convention that the vector

yTt contains only the subset of the eleven variables listed above for which observations are

available at the end of month T .

The real-time-forecasting literature is divided as to whether forecast errors should be com-

puted based on the first release following the forecast date, say yT+hT+h, or based on the most

recent vintage, say yT∗t+h. The former might do a better job capturing the forecaster’s loss,

whereas the latter is presumably closer to the underlying “true” value of the time series. We

decided to follow the second approach and evaluate the forecasts based on actual values from

the T∗ = 2011:M7 data vintage. While the MF-VAR in principle generates predictions at

the monthly frequency, we focus on the forecasts of quarterly averages, which can be easily

compared to forecasts from the QF-VAR.

In order to assess the usefulness of within-quarter information from monthly variables we

sort the forecast origins Tmin, . . . , Tmax into three groups that reflect different within-quarter

information sets. Forecast error statistics are computed for each group separately. Before

discussing the classification of forecast origins, we begin with a brief review of NIPA release

2We eliminated four of the 141 samples because the real-time data for PCE were incomplete.
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Figure 1: Classification of the Information Set

10     11     12       1       2       3         4       5       6          7       8       9         10     11     12       

R: Q4             R+1: Q1          R+1: Q2           R+1: Q3           R+1: Q4

Forecasts Data

Forecasts (+1Q) Forecasts (+2Q) Forecasts (+3Q)

+0 Months +1 Months +2 Months

dates. For concreteness, consider GDP for 1994:Q4. The Bureau of Economic Analysis

(BEA) published an advance estimate of 1997:Q4 GDP at the end of 1998:M1 (January).

A preliminary estimate was subsequently published by the end of 1998:M2 (February). At

last, a final release was available with a 3 month delay. Thus, a QF-VAR estimated in

1997:M12 cannot use any information about 1997:Q4 GDP. QF-VARs estimated at the end

of January, February, and March, on the other hand, can be based, respectively, on the

advance, preliminary, and final estimate of 1997:Q4 GDP.

While the QF-VAR forecasts do not use any within-quarter monthly information, the MF-

VAR forecasts can exploit monthly observations that become available between 1998:M1

to 1998:M3. Figure 1 illustrates our classification of information sets with respect to non-

financial variables for prototypical years R and R + 1. For instance, collecting all available
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non-financial data at the end of January 1998 (R+1), leaves the forecaster with the advance

estimate of 1997:Q4 GDP as well as values for the monthly macroeconomic indicators until

1997:M12. A similar situation arises at the end of April, July, and October. We refer to this

group of forecast origins as “+0 months,” because the current quarter forecasts do not use

any additional non-financial monthly variables. At the end of February 1998, the forecaster

has access to the observations of unemployment, industrial production, and so forth, for

January 1998. Thus, we group February, May, August, and November forecasts and refer

to them as “+1 month.” Following the same logic, the last subgroup of forecast origins

has two additional monthly indicators (“+2 months”) and the third release of GDP in the

information set. Unlike the non-financial variables, which are released with a lag, financial

variables are essentially available instantaneously. In particular, at the end of each month,

the forecaster has access to average interest rates (FF and TB) and stock prices (S&P500).

The typical information sets for the three subgroups of forecast origins are summarized in

Table 1.

Unfortunately, due to variation in release dates, not all 140 estimation samples mimic

the information structure in Table 1. For 44 samples the last PCE figure is released with

a two-period (approximately five weeks) instead of one-period (approximately four weeks)

lag. This exception occurs for 26 samples of the “+0 months” group. For these samples a

late release of PCE implies the quarterly consumption for the last completed quarter is not

available. In turn, the QF-VAR could only be estimated based on information up to T − 4

instead of T−1 and would be at a severe disadvantage compared to the MF-VAR. Since PCE

is released only a few days after the period T forecasts are made, we pre-date its release.

Thus, for the 26 samples of the “+0 months” group that are subject to the irregular timing,

we use PCET−1 in the estimation of both the QF-VAR and MF-VAR. No adjustments are

made for the “+1 month” and “+2 months” groups. Further details about these exceptions

are provided in the Appendix.

Before presenting the pseudo-out-of-sample forecast results we briefly examine the monthly

GDP series that is implicitly extracted during the smoothing step of the Gibbs sampler

(see Section 2.2) from the eleven macroeconomic time series that enter the MF-VAR. A

time series plot of monthly GDP growth is depicted in Figure 2. For each trajectory of

log GDP generated with the Gibbs sampler, we compute month-on-month growth rates

(scaled by a factor of 3 to make them comparable to quarter-on-quarter rates). For each
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Table 1: Illustration of Information Sets

January (+0 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M10 X X X X X X X X QAv QAv QAv

Q4 M11 X X X X X X X X QAv QAv QAv

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

February (+1 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M11 X X X X X X X X QAv QAv QAv

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

March (+2 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 X X X X X X X X ∅ ∅ ∅
Q1 M3 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Notes: ∅ indicates that the observation is missing. X denotes monthly observation and QAv

denotes quarterly average. “+0 Months” group: January, April, July, October; “+1 Month”

group: February, May, August, November; “+2 Month” group: March, June, September,

December.
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Figure 2: Monthly GDP Growth (Scaled to a Quarterly Rate)

month we then plot the median growth rate across the simulated trajectories. We overlay

monthly GDP growth rates published by Stock and Watson (2010), who combine monthly

information about GDP components to distribute quarterly GDP across the three months

of the quarter.3 Moreover, we plot growth rates computed from NIPA’s quarterly GDP,

implicitly assuming that GDP growth is constant within a quarter. Two observations stand

out. First, at a monthly frequency GDP growth is much more volatile than at a quarterly

level. Second, the monthly GDP growth series obtained from the MF-VAR estimation is

somewhat smoother than the Stock-Watson series. While the two monthly measures are

positively correlated, they are not perfectly synchronized, which is consistent with these

measures being constructed from very different source data.

3Frale, Marcellino, Mazzi, and Proietti (2011) use a similar approach to construct a monthly GDP series

for the Euro Area.
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3.2 MF-VAR Point Forecasts

MF-VAR versus QF-VAR. We begin by comparing RMSEs for MF-VAR and QF-VAR

forecasts of quarterly averages to assess the usefulness of monthly information. The RMSEs

are computed separately for the “+0 months,” “+1 month,” and “+2 months” forecast

origins defined in the previous section. Hyperparameters λ for the two VARs are selected

by maximizing the respective marginal likelihood functions p(Y1:T |Y−p+1:0, λ) for the first

estimation sample Y−p+1:Tmin
. The hyperparameters are held constant for the subsequent

samples (T > Tmin). Results for GDP growth (GDP), unemployment (UNR), inflation

(INF), and the Federal Funds rate (FF) are reported in Figure 3. The figure depicts relative

RMSEs defined as

RelativeRMSE(i|h) = 100× RMSE(i|h)−RMSEBenchmark(i|h)

RMSEBenchmark(i|h)
, (13)

where i denotes the variable and we adopt the convention (in slight abuse of notation) that

the forecast horizon h is measured in quarters. The QF-VAR serves as a benchmark model

and h = 1 corresponds to the quarter in which the forecast is generated. The h = 1 forecast

is often called a nowcast.

For all four series the use of monthly information via the MF-VAR leads to a substantial

RMSE reduction in the short-run. The “+2” GDP growth nowcasts have a 25% lower RMSE

than the QF-VAR nowcasts. For the “+1” group and the “+0” group the reductions are

17% and 12% respectively. Thus, the monthly series provide important information in the

short run. As the forecast horizon increases to h = 4 the relative ranking between the “+0”

and “+1” forecasts becomes ambiguous and the QF-VAR catches up with the MF-VAR. For

horizons h ≥ 4. The precision of QF-VAR and MF-VAR GDP growth forecasts is essentially

identical.

Not surprisingly, the short-run RMSE reductions attained by the MF-VAR for the monthly

series are even stronger than for GDP growth, which is observed at the quarterly frequency.

At the nowcast horizon the MF-VAR is able to improve over the precision of the QF-VAR for

the “+2” forecasts by 65% for unemployment, 70% for inflation, and 100% for the Federal

Funds rate. Recall that “+2” corresponds to the last month of the quarter, which means

that at the end of the last month the average quarterly interest rate is known. Thus, by

construction the RMSE reduction for the Federal Funds rate is 100%. The RMSE reduc-

tions for the “+1” group range from 40% (unemployment) to 80% (Federal Funds rate).
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Figure 3: Relative RMSEs of 11-Variable MF-VAR versus QF-VAR

Interestingly the nowcast improvements of the “+0”group for unemployment and inflation

are only 10%. The gains from using monthly information tend to persist for unemployment

and interest rates as the forecast horizon h increases. Only for a two-year horizon, h = 8,

the QF-VAR catches up with the MF-VAR. For inflation, monthly observations generate no

improvements of forecast performance beyond the nowcast horizon.

MF-VAR versus QF-AR. We also compare the MF-VAR forecasts to univariate forecasts

from AR(2) models estimated on quarterly-frequency data (QF-AR). Just as the QF-VAR,

the QF-AR models are equipped with a Minnesota prior and estimated on time-aggregated

quarterly data. The hyperparameters are chosen to maximize the marginal likelihood func-

tion for the first estimation sample and kept constant subsequently. Relative RMSEs, now

with the QF-AR models as benchmarks, are plotted in Figure 4. The results are qualita-

tively similar to the ones depicted in Figure 3. At the nowcast horizon the monthly infor-

mation used by the MF-VAR leads to a substantial improvement in forecast accuracy also

in comparison to univariate quarterly models. At the medium term horizon a comparison



Schorfheide and Song (2011): December 5, 2011 17

Figure 4: Relative RMSEs of 11-Variable MF-VAR versus QF-AR

between Figures 4 and 3 reveals differences in the forecast performance of the QF-AR and

the QF-VAR models. The univariate models tend to be more accurate for GDP growth and

unemployment, whereas the multivariate QF-VAR tends to dominate for inflation and the

Federal Funds rate. Overall, we find that the use of within quarter information on monthly

indicators can result in marked reductions in RMSEs.

MF-VAR versus Greenbook Forecasts. We also compare the MF-VAR forecasts to

Greenbook forecasts, prepared by the staff of the Board of Governors for the FOMC meetings.

Greenbook forecasts are publicly available with a five-year delay. Our comparison involves

63 Greenbook forecasts from March 19, 1997 to December 8, 2004. We repeat the recursive

estimation of the MF-VAR to align the information that is used for the MF-VAR forecasts

with the information that was available to the staff of the Board of Governors. As in the

previous analysis, period t = 1 corresponds to 1968:M1. One important difference is that

financial data from the month in which the forecast is made are not included in the MF-

VAR’s information set.
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Figure 5: RMSEs of 11-Variable MF-VAR versus Greenbook

Results are plotted in Figure 5, which depicts absolute RMSEs for quarter-on-quarter GDP

growth (annualized), CPI inflation (annualized), and the unemployment rate. The figure also

shows RMSEs for the QF-VAR. Unlike in the previous figures, we are now pooling the forecast

errors for all estimation samples. As before, the forecasts from the MF-VAR attain a smaller

RMSE than the QF-VAR forecasts in the short-run. For horizons h ≥ 3 the two VARs deliver

forecasts that are similarly accurate. While the MF-VAR produces GDP growth predictions

that dominate those published in the Greenbook. The Greenbook forecasts for inflation and

unemployment, on the other hand, are more precise than the MF-VAR forecasts.

3.3 MF-VAR Density Forecasts

The MF-VAR generates an entire predictive distribution for the future trajectories of the

eleven macroeconomic variables. While, strictly speaking, predictive distributions in a

Bayesian framework are subjective, it is desirable that predicted probabilities are consis-

tent with observed frequencies if the forecast procedure is applied in a sequential setting.

To assess the MF-VAR density forecasts, we construct probability integral transformations
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Figure 6: PIT Histograms for 11-Variable MF-VAR

Notes: Probability integral transforms for forecasts of inflation (INF), unemployment rate

(UNR), federal fund rate (FF), and GDP growth (GDP). The bars represent the frequency

of PITs falling in each bin. The solid line marks 20 percent.

(PITs) from (univariate) marginal predictive densities. The probability integral transforma-

tion of an h-step ahead forecast of yi,t+h based on time t information is defined as

zi,h,t =

∫ yi,t+h

−∞
p(ỹi,t+h|Y1:t)dỹi,t+h. (14)

Starting with Dawid (1984) and Kling and Bessler (1989) the use of PITs has a fairly long

tradition in the literature on density forecast evaluation. PITs, sometimes known as gener-

alized residuals, are relatively easy to compute and facilitate comparisons among elements

of a sequence of predictive distributions, each of which is distinct in that it conditions on

the information available at the time of the prediction. It is shown in Rosenblatt (1952) and

Diebold, Gunther, and Tay (1998) that for h = 1 the zi,h,t’s are independent across time and

uniformly distributed: zi,h,t ∼ iidU [0, 1]. For h > 1 the PITs remain uniformly distributed

but they are no longer independently distributed.
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Figure 6 displays histograms for the PITs based on density forecasts from the MF-VAR.

The PITs are computed from the empirical distribution of the simulated trajectories YT+1:T+H .

To generate the histogram plots, the unit interval is divided into J = 5 equally sized subin-

tervals and we depict the fraction of PITs (measured in percent) that fall in each bin. Since,

under the predictive distribution, the PITs are uniformly distributed on the unit interval, we

also plot the 20 percent line. For h = 1 (nowcast) and h = 2 (forecast for next quarter) the

frequency of PITs falling in each of the five bins is close to 20% for inflation, unemployment,

and output growth, indicating that the predictive densities are well calibrated.4 The Federal

Funds rate density forecasts, on the other hand, appear to be too diffuse, because of the

small number of PITs falling into the 0-0.2 and 0.8-1 bins. Over longer horizons, specifically

for h = 4 and h = 8, the deviations from uniformity become more pronounced. The Federal

Funds rate density forecasts remain to diffuse and the MF-VAR tends to overpredict GDP

growth and underpredict unemployment. We also computed PITs for the QF-VAR (reported

in the Appendix) and found that deviations from uniformity tend to be larger than for the

MF-VAR forecasts.

3.4 Predicting the Crisis: Interval Forecasts and Actuals

Finally, we examine how the use of monthly real-time information affected the VAR forecasts

during the recent recession. We focus on the period from July to December 2008. Figures 7

to 9 depict real-time interval forecasts from the MF-VAR and the QF-VAR. Moreover, we

plot actual values using the 2011:M7 data vintage. Each figure is divided into subpanels that

correspond to particular estimation samples and forecast horizons. The first column of panels

depicts forecasts from the “+0 Months” group and the second and third column correspond

to “+1 Month” and “+2 Months” forecasts, respectively. Thus, each row indicates how

monthly within-quarter information alters the density forecast.

The most striking feature of Figure 7 is the -2% quarter-on-quarter growth rate of GDP

in 2008:Q4. The magnitude of the drop in output growth in late 2008 is unexpected by

the model. It is, at all times, outside of the 90% predictive interval. Interestingly, the

MF-VAR does a reasonably good job forecasting output growth for 2009. After missing

the large drop in the last quarter of 2008, the forecast is essentially back on track for the

4A Bayesian predictive check that formally assess the uniformity of PITs is developed in Herbst and

Schorfheide (2011).
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subsequent quarters. A comparison of the MF-VAR and QF-VAR forecast highlights how

monthly information alters the within-quarter predictions. Notice from the bottom panels of

Figure 7 that the QF-VAR forecasts do not stay constant within the quarter. The variation

is caused by data revisions. As discussed in Section 3.1 each month new data releases for the

previous quarter becomes available and change the lagged observations that determine the

initial conditions for the VAR at the forecast origin. However, the within-quarter variation

of the QF-VAR forecasts is fairly small. Even by December 2008 the QF-VAR nowcasts and

forecasts show no evidence of a severe downturn, because the latest information that is used

to generate the predictions stems from 2008:Q3. The MF-VAR forecasts, on the other hand,

do get revised more substantially during each quarter. In addition to the presence of data

revisions, the forecasts are updated based on the information that is available at monthly

frequency. For instance, throughout 2008:Q3 the GDP growth forecasts become more and

more pessimistic.

Figure 8 depicts the evolution of inflation forecasts in the second half of 2008. Since the CPI

is published at a monthly frequency, the differences between within-quarter inflation forecasts

from the MF-VAR and QF-VAR are much more pronounced than for GDP. Throughout

2008:Q4 the inflation forecasts from the QF-VAR stay essentially constant and miss the

-2% inflation rate in the current quarter. The MF-VAR, on the other hand, picks up the

deflation by November 2008 as it occurs. Finally, we consider the unemployment forecasts in

Figure 9. Neither the QF-VAR nor the MF-VAR anticipate the large rise in unemployment

between 2008:Q4 to 2009:Q3. However, due to the use of monthly data, the MF-VAR forecast

adapts between January and March 2009 to the rising level of unemployment. In February

and March 2009 the MF-VAR generates 90% predictive intervals for 2009:Q2 and Q3 that

include unemployment rates near 10%. The QF-VAR, on the other hand, predicts that

unemployment is unlikely to rise about 8.5%, which turned out to be incorrect.
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Figure 7: GDP Growth Forecasts

MF-VAR

QF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.
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Figure 8: Inflation Forecasts

MF-VAR

QF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.
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Figure 9: Unemployment Forecasts

MF-VAR

QF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.
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4 Conclusion

We have specified a VAR for observations that are observed at different frequencies, namely

monthly and quarterly. Markov-Chain-Monte-Carlo methods were utilized to conduct Bayesian

inference for model parameters and unobserved monthly variables. To cope with the di-

mensionality of the MF-VAR we used a Minnesota prior that shrinks the VAR coefficients

toward univariate random walk representations. The degree of shrinkage is determined in

a data-driven way, by maximizing the marginal likelihood function with respect to a low-

dimensional vector of hyperparameters. Finally, we used the model to generate forecasts.

The main finding is that within-quarter monthly information leads to drastic improvements

in the short-horizon forecasting performance. These improvements are increasing in the time

that has passed since the beginning of the quarter. Over a one- to two-year horizon there are,

however, no noticeable gains from using the monthly information. The short-term density

forecasts appear to be well calibrated in the sense that the empirical distribution of proba-

bility integral transformations are nearly uniform. Over a longer horizon, on the other hand,

there appear to be some deficiencies. Recent work by Clark (2011) suggests that real-time

VAR density forecasts can be improved by adding stochastic volatility to the VAR. We plan

to incorporate time-varying volatilities into our MF-VAR in future work.
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Online Appendix for
Real-Time Forecasting with a Mixed-Frequency VAR

Frank Schorfheide and Dongho Song

Section A of this appendix provides details of the implementation of the Bayesian computa-

tions for the MF-VAR presented in the main text. Section B discusses the construction of

the real-time data set. Finally, Section C of this appendix provides tables and figures with

additional empirical results. References to equations, tables, and figures without an A, B,

or C prefix refer to equations, tables, and figures in the main text.

A Implementation Details

Recall from the exposition in the main text (see Equation (9)) that the Bayesian computa-

tions are implemented with a Gibbs sampler that iterates over the conditional distributions:

p(Φ,Σ|Z0:T , Y−p+1:T ) and p(Z0:T |Φ,Σ, Y−p+1:T ).

Conditional on Z0:T the MF-VAR reduces to a standard linear Gaussian VAR with a conju-

gate prior. The reader is referred to Section 2 of the handbook chapter by Del Negro and

Schorfheide (2011) for a detailed discussion of posterior inference for such a VAR.

We limit the exposition in this appendix to a brief presentation of the Minnesota prior and

the hyperparameter selection (Section A.1). The sampling from the conditional posterior

of Z0:T |(Φ,Σ, Y−p+1:T ) is implemented with a standard simulation smoother, discussed in

detail, for instance in Carter and Kohn (1994), the state-space model textbook of Durbin

and Koopman (2001), or the handbook chapter by Giordani, Pitt, and Kohn (2011). The only

two aspects that of our implementation that deserve further discussion are the initialization

(Section A.2) and the use of the more compact state-space representation for periods t =

1, . . . , Tb (Section A.3).

A.1 Minnesota Prior and Its Hyperparameters

To simplify the exposition, suppose that n = 2 and p = 2. A transposed version of (1) can

be written as

x′t = [x′t−1, x
′
t−2, 1]′Φ + u′t = w′tΦ + u′t, ut ∼ iidN(0,Σ). (A-1)
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We generate the Minnesota prior by dummy observations (x∗, w∗) that are indexed by a 5×1

vector of hyperparameters λ with elements λi. Using a pre-sample, let x and s be n × 1

vectors of means and standard deviations. For time series that are observed at monthly

frequency the computation of pre-sample moments is straightforward. In order to obtain

pre-sample means and standard deviations for those series that are observed at quarterly

frequency, we simply equate xq with the pre-sample mean of the observed quarterly values

and set s equal to the pre-sample standard deviation of the observed quarterly series.

Dummy Observations for Φ1.[
λ1s1 0

0 λ1s2

]
=

[
λ1s1 0 0 0 0

0 λ1s2 0 0 0

]
Φ +

[
u11 u12

u21 u22

]
. (A-2)

We can rewrite the first row of (A-2) as

λ1s1 = λ1s1φ11 + u11, 0 = λ1s1φ21 + u12.

Since, according to (A-1) the ut’s are normally distributed we can interpret the relationships

as

φ11 ∼ N (1,Σ11/(λ
2
1s

2
1)), φ21 ∼ N (0,Σ22/(λ

2
1s

2
1)).

φij denotes the element i, j of the matrix Φ, and Σij corresponds to element i, j of Σ. The

hyperparameter λ1 controls the tightness of the prior.

Dummy Observations for Φ2.[
0 0

0 0

]
=

[
0 0 λ1s12

λ2 0 0

0 0 0 λ1s22
λ2 0

]
Φ + U, (A-3)

where the hyperparameter λ2 is used to scale the prior standard deviations for coefficients

associated with xt−l according to l−λ2 .

Dummy Observations for Σ. A prior for the covariance matrix Σ, centered at a matrix

that is diagonal with elements equal to the presample variance of xt, is obtained by stacking

the observations [
s1 0

0 s2

]
=

[
0 0 0 0 0

0 0 0 0 0

]
Φ + U (A-4)

λ3 times.
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Sums-of-coefficients Dummy Observations. When lagged values of a variable xi,t are

at the level xi, the same value xi is a priori likely to be a good forecast of xi,t, regardless of

the value of other variables:[
λ4x1 0

0 λ4x2

]
=

[
λ4x1 0 λ4x1 0 0

0 λ4x2 0 λ4x2 0

]
Φ + U. (A-5)

Co-persistence Dummy Observations. When all lagged xt’s are at the level x, a priori

xt tends to persist at that level:[
λ5x1 λ5x2

]
=
[
λ5x1 λ5x2 λ5x1 λ5x2 λ5

]
Φ + U. (A-6)

Prior Distribution. After collecting the T ∗ dummy observations in matrices X∗ and W ∗,

the likelihood function associated with (A-1) can be used to relate the dummy observa-

tions to the parameters Φ and Σ. If we combine the likelihood function with the improper

prior p(Φ,Σ) ∝ |Σ|−(n+1)/2, we can deduce that the product p(X∗|Φ,Σ) · |Σ|−(n+1)/2 can be

interpreted as

(Φ,Σ) ∼MNIW (Φ, (W ∗′W ∗)−1, S, T ∗ − k), (A-7)

where Φ and S are

Φ = (W ∗′W ∗)−1W ∗′W ∗, S = (X∗ −W ∗Φ)′(X∗ −W ∗Φ).

Provided that T ∗ > k + n and W ∗′W ∗ is invertible, the prior distribution is proper.

Hyperparameter Choices. We use the same set of dummy observations for the MF-

VAR, the QF-VAR, and the quarterly AR(2) models. The hyperparameters are selected

based on the first sample that is used for parameter estimation in the pseudo-out-of-sample

forecasting. The hyperparameter choices are summarized in Tables A-1 and A-2.

A.2 Initial Distribution p(z0|Y−p+1:0)

Recall that t = 1 corresponds to 1968:M1. Let T− = −11 such that t = T− corresponds

to 1967:M1. We then initialize zT− using actual observations. This is straightforward for

xm,T− , xm,T−−1, xm,T−−p because they are observed. We set xq,T− , xq,T−−1, xq,T−−p equal

to the observed quarterly values, assuming that during these periods the monthly-within-

quarter values simply equal the observed averages during the quarter. This provides us
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Table A-1: Hyperparameters: VAR

11-MF-VAR 4-MF-VAR 11-QF-VAR 4-QF-VAR

λ1 0.81 0.29 2.85 0.41

λ2 2.18 2.18 0.10 0.10

λ3 1 1 1 1

λ4 1.66 1.66 0.11 0.11

λ5 2.14 2.14 10.64 10.64

Notes: Hyperparameters are selected based on the first recursive sample.

Table A-2: Hyperparameters: QF-AR

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

λ1 0.32 0.39 0.09 0.59 0.57 11.40 0.00 0.00 0.48 0.51 80.23

λ2 0.00 0.00 0.00 0.00 0.00 0.00 11.35 11.43 0.00 0.00 105.00

λ3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

λ4 105.00 10.56 10.56 10.56 0.00 31.67 105.00 10.56 10.56 10.56 10.56

λ5 10.56 11.67 105.00 105.00 10.56 0.00 10.56 10.56 10.56 105.00 0.00

Notes: Hyperparameters are selected based on the first recursive sample.
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with a distribution for p(zT−) that is simply a point mass. We then set Φ and Σ equal to

their respective prior means and apply the Kalman filter for t = T− + 1, . . . 0 to the state

space system described in (2) and (7), updating the beliefs about the latent state zt with

pre-sample observations YT−:0. In slight abuse of notation, we denote the distribution of zt

obtained after the period 0 updating by p(z0|Y−p+1). Note that this distribution does not

depend on the “unknown” parameters Φ and Σ, because the Kalman filter iterations were

implemented based on the prior means of these matrices.

A.3 Compact State-Space Representation

As discussed in the main text, the computational efficiency of the simulation-smoother step

in the Gibbs sampler can be improved by eliminating, for t = 1, . . . , Tb, the monthly ob-

servations xm,t from the state vector zt that appears in the measurement equation (7). We

begin by re-ordering the lags of xt and the VAR coefficients in (1) to separate lags of xm,t

from lags of xq,t. Define the pnm × 1 vector zm,t and pnq × 1 vector zq,t as

z′m,t =
[
x′m,t, . . . , x

′
m,t−p+1

]
, z′q,t =

[
x′q,t, . . . , x

′
q,t−p+1

]
.

In a similar manner, define the nm×pnm matrix Φmm, the nm×pnq matrix Φmq, the nq×pnm
matrix Φqm, and the nq × pnq matrix Φqq such that (1) can be rewritten as[

xm,t

xq,t

]
=

[
Φmm Φmq

Φqm Φqq

][
zm,t−1

zq,t−1

]
+

[
Φmc

Φqc

]
+

[
um,t

uq,t

]
. (A-8)

Recall that for t ≤ Tb all the monthly series are observed. Thus, ym,t = xm,t and, in slight

abuse of notation, zm,t−1 = ym,t−p:t−1. Now define st = [x′q,t, z
′
q,t−1]

′ and notice that based

on the second equation in (A-8) one can define matrices Γs, Γzm, Γc, and Γu such that we

obtain a state-transition equation in companion form

st = Γsst−1 + Γzmym,t−p:t−1 + Γc + Γuuq,t. (A-9)

The measurement equation for the monthly series takes the form

ym,t = Λmsst + Φmmym,t−p:t−1 + Φmc + um,t. (A-10)

Finally, the measurement equation for the quarterly series can be expressed as

yq,t = Mq,tΛqsst, (A-11)
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where the matrix Λqsst averages xq,t, xq,t−1, and xq,t−2 and Mq,t is a time-varying selection

matrix that selects the elements of Λqsst that are observed in period t. In sum, (A-9), (A-10),

and (A-11) provide an alternative state-space representation of the MF-VAR that reduces

the dimension of the state vector from np to nq(p+ 1). In this alternative representation the

“measurement errors” um,t in (A-10) are correlated with the innovations uq,t in the state-

transition equation (A-9). Moreover, the lagged observables ym,t−p:t−1 directly enter the

state-transition and measurement equations. Since these observables are part of the t − 1

information the modification of the Kalman filter and simulation smoother is straightforward.

At the end of period t = Tb we switch from the state-space representation in terms of st =

[x′q,t, . . . , x
′
q,t−p]

′ to a state-space representation in terms of z̃t = [z′t, x
′
t−p] = [x′t, . . . , x

′
t−p]

′.5

In the forward pass of the Kalman filter, let ŝt|t = E[st|Y−p+1:t] and P s
t|t = V[st|Y−p+1:t]

(omitting (Φ,Σ) from the conditioning set). Since xm,t, . . . , xm,t−p+1 is known conditional on

the Y−p+1:t, we can easily obtain ˆ̃zt|t = E[z̃t|Y−p+1:t] by augmenting ŝt|t with ym,t, . . . , ym,t−p.

Moreover, P z̃
t|t = V[z̃t|Y−p+1:t] can be obtained by augmenting P s

t|t by zeros, to reflect that

xm,t, . . . , xm,t−p are known with certainty. In the backward pass of the simulation smoother

we start out with a sequence of draws from z̃T |Y−p+1:T and z̃t|(Z̃t+1:T , Y−p+1:T ) for t = T −
1, . . . Tb+1. Let ˆ̃zt|T and P z̃

t|T denote the mean and variance associated with this distribution.

At t = Tb we convert the conditional mean and variance of z̃Tb into a conditional mean and

variance for sTb . This is done by eliminating all elements associated with xm,t, . . . , xm,t−p.

B Construction of Real-Time Data Set

The eleven real-time macroeconomic data series are obtained from the ALFRED database

maintained by the Federal Reserve Bank of St. Louis. Table B summarizes how the series

used in this paper are linked to the series provided by ALFRED.

We construct two sequences of dates that contain the set of forecast origins (Tmin, . . . , Tmax).

One sequence contains the last day of each month and the other sequence will be comprised

of the Greenbook forecast dates. ALFRED provides a publication date for each data vin-

tage. We wrote a computer program that for every forecast origin, selects the most recent

5We augment the state vector zt in (2) and (7) by an additional lag of xt to ensure that st is a sub-

vector of the resulting z̃t. This augmentation requires a straightforward modification of the state-transition

equation (2) and the measurement equations (7).
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Table B-1: ALFRED Series Used in Analysis

Time Series ALFRED Name

Gross Domestic Product (GDP) GDPC1

Fixed Investment (INVFIX) FPIC1

Government Expenditures (GOV) GCEC1

Unemployment Rate (UNR) UNRATE

Hours Worked (HRS) AWHI

Consumer Price Index (CPI) CPIAUCSL

Industrial Production Index (IP) INDPRO

Personal Consumption Expenditure (PCE) PCEC96

Federal Fund Rate (FF) FEDFUNDS

Treasury Bond Yield (TB) GS10

SP 500 (SP500) SP500

ALFRED vintage for each of the eleven variables and combines the series into a single data

set. This leaves us with a real-time data set for each forecast origin. Based on the missing

values in each real-time data set, we construct the selection matrices Mt, t = Tb + 1, . . . , T ,

that appear in (7). The patterns of missing values are summarized in Tables 1 and C-1.

Greenbook forecasts are also obtained from the ALFRED database.

Some of the vintages of PCE and INVFIX extracted from ALFRED were incomplete. The

recent vintages of PCE and INVFIX from ALFRED do not include data prior to 1990 or

1995 (depending on the vintages). However, the most recent data for PCE and INVFIX can

be obtained from BEA or NIPA, say from 1/1/1967 to 7/1/2011. Let us consider PCE for

illustration. For the vintages between 12/10/2003 and 6/25/2009, data start from 1/1/1990

and for the vintages between 7/31/2009 and present, data start from 1/1/1995. First, we

compute the growth rates from the most recent data. Based on the computed growth rates,

we can backcast historical series up to 1/1/1967 using the 1/1/1990 (1/1/1995) data points

as initializations. We think this is a reasonable way to construct the missing points. We

eliminated 4 of the 141 samples (28, 29, 33, 96) because the vintages for PCE and INVFIX

were incomplete. In principle, we could backcast as for the other vintages but we took a

short cut.
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C Additional Tables and Figures

Table C-1 lists exceptions for the classification of information sets for specific forecast origins.

Table C-2 provides numerical values for the RMSEs attained by the eleven-variable MF-VAR.

Figure C-1 displays PITs for the eleven-variable QF-VAR.

We also consider a four-variable MF-VAR based on one quarterly series and three monthly

series. The three monthly series are: Consumer Price Index (CPI), Unemployment Rate

(UNR), Federal Fund Rate (FF). The quarterly series is Real GDP. Real GDP and CPI

enter the MF-VAR in log levels, whereas UNR and FF are simply divided by 100 to make

their scale comparable to the scale of the two other variables. As for the eleven-variable

VAR, the number of lags is set to six.

Figure C-2 reports RMSE ratios for the four-variable MF-VAR versus a four-variable QF-

VAR.

Figure C-3 reports RMSE ratios for the four-variable MF-VAR versus univariate QF-AR(2)

models.

Figure C-4 to C-6 report PIT histograms for the four-variable MF-VAR, QF-VAR, and for

univariate QF-AR(2) models.

Figures C-7 to C-10 report interval forecast and actual values for GDP growth, inflation, the

unemployment rate, and the Federal Funds rate from the eleven-variable MF-VAR.
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Table C-1: Illustration of Information Sets: Exceptions

Exceptions E0: January (+0 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M10 X X X X X X X X QAv QAv QAv

Q4 M11 X X X X X X X X QAv QAv QAv

Q4 M12 X X X X ∅ X X X QAv QAv QAv

Q1 M1 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Exceptions E1: February (+1 Month)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M11 X X X X X X X X QAv QAv QAv

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X ∅ X X X ∅ ∅ ∅
Q1 M2 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Exceptions E2: March (+2 Months)

UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

Q4 M12 X X X X X X X X QAv QAv QAv

Q1 M1 X X X X X X X X ∅ ∅ ∅
Q1 M2 X X X X ∅ X X X ∅ ∅ ∅
Q1 M3 ∅ ∅ ∅ ∅ ∅ X X X ∅ ∅ ∅

Notes: ∅ indicates that the variable is missing. X denotes monthly observation and QAv

denotes quarterly average. “+0 Months” group: January, April, July, October; “+1 Month”

group: February, May, August, November; “+2 Month” group: March, June, September,

December. The table illustrates exceptions that arise due to an occasional two-month pub-

lication lag for PCE. Exception E0 occurs for 26 out of 140 recursive samples (1, 4, 7, 10,

13, 16, 19, 22, 28, 37, 43, 52, 61, 64, 73, 79, 85, 88, 96, 105, 108, 114, 123, 129, 132, 138).

Exception E1 occurs for 13 out of 140 recursive samples (8, 20, 44, 53, 56, 68, 89, 97, 100,

103, 115, 118, 139). Exception E2 occurs for 5 out of 140 recursive samples (21, 27, 48, 51,

78).
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Table C-2: RMSEs for 11-Variable MF-VAR

Horizon UNR HRS CPI IP PCE FF TB SP500 GDP INVFIX GOV

+0 Months

1 0.21 0.48 0.59 0.97 0.52 0.22 0.17 3.12 0.61 1.69 0.80

2 0.45 0.73 0.64 1.37 0.69 0.72 0.43 8.19 0.77 2.36 0.76

3 0.75 0.93 0.68 1.68 0.75 1.09 0.60 8.34 0.86 2.78 0.75

4 1.07 1.00 0.66 1.73 0.75 1.41 0.68 8.31 0.89 2.86 0.75

5 1.35 0.98 0.66 1.68 0.72 1.69 0.78 8.12 0.86 2.81 0.70

6 1.60 0.92 0.64 1.61 0.70 1.94 0.86 8.13 0.83 2.70 0.67

7 1.81 0.86 0.64 1.57 0.66 2.14 0.87 8.26 0.79 2.61 0.67

8 1.99 0.85 0.63 1.57 0.67 2.27 0.88 8.19 0.79 2.64 0.71

+1 Month

1 0.13 0.37 0.34 0.97 0.44 0.08 0.08 1.28 0.57 1.55 0.81

2 0.39 0.70 0.66 1.36 0.68 0.60 0.34 8.22 0.79 2.25 0.77

3 0.68 0.91 0.68 1.70 0.76 0.97 0.55 8.32 0.86 2.77 0.76

4 1.01 1.00 0.67 1.74 0.76 1.29 0.63 8.34 0.90 2.88 0.75

5 1.31 0.99 0.66 1.72 0.73 1.59 0.71 8.08 0.88 2.84 0.69

6 1.56 0.94 0.64 1.65 0.70 1.85 0.78 8.11 0.83 2.76 0.68

7 1.78 0.89 0.64 1.61 0.67 2.06 0.80 8.22 0.82 2.65 0.67

8 1.97 0.86 0.63 1.59 0.67 2.21 0.83 8.18 0.79 2.67 0.71

+2 Months

1 0.08 0.32 0.19 0.75 0.38 0.00 0.00 0.00 0.52 1.44 0.80

2 0.29 0.56 0.62 1.09 0.66 0.44 0.39 7.29 0.72 1.96 0.81

3 0.56 0.84 0.67 1.62 0.75 0.83 0.62 8.49 0.85 2.68 0.76

4 0.89 0.98 0.68 1.74 0.77 1.14 0.72 8.27 0.90 2.88 0.77

5 1.21 1.00 0.66 1.71 0.74 1.46 0.78 8.21 0.87 2.86 0.70

6 1.48 0.95 0.67 1.65 0.71 1.72 0.87 8.27 0.84 2.77 0.67

7 1.71 0.91 0.63 1.60 0.69 1.94 0.85 8.12 0.82 2.69 0.70

8 1.91 0.87 0.63 1.62 0.67 2.07 0.83 8.39 0.81 2.65 0.69

All Forecasts

1 0.15 0.39 0.41 0.91 0.45 0.14 0.11 1.95 0.57 1.56 0.80

2 0.38 0.67 0.64 1.28 0.68 0.60 0.39 7.92 0.76 2.20 0.78

3 0.67 0.89 0.68 1.67 0.75 0.97 0.59 8.38 0.85 2.74 0.76

4 0.99 0.99 0.67 1.74 0.76 1.29 0.68 8.31 0.90 2.88 0.76

5 1.29 0.99 0.66 1.70 0.73 1.58 0.76 8.14 0.87 2.84 0.70

6 1.55 0.94 0.65 1.64 0.70 1.84 0.84 8.17 0.83 2.74 0.67

7 1.77 0.89 0.64 1.59 0.68 2.05 0.84 8.20 0.81 2.65 0.68

8 1.95 0.86 0.63 1.59 0.67 2.19 0.85 8.25 0.80 2.65 0.70

Notes: RMSEs for UNR (%), FF (annualized %), and TB (annualized %) refer to forecasts

of levels. The remaining RMSEs refer to forecasts of quarter-on-quarter growth rates in

percentages.



Schorfheide and Song (2011): Online Appendix A-11

Figure C-1: PIT Histograms for 11-Variable QF-VAR

Notes: Probability integral transforms for forecasts of inflation (INF), unemployment rate

(UNR), federal fund rate (FF), and GDP growth (GDP). The bars represent the frequency

of PITs falling in each bin. The solid line marks 20 percent.



Schorfheide and Song (2011): Online Appendix A-12

Figure C-2: Relative RMSEs of 4-Variable MF-VAR versus QF-VAR
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Figure C-3: Relative RMSEs of 4-Variable MF-VAR versus QF-AR



Schorfheide and Song (2011): Online Appendix A-14

Figure C-4: PIT Histograms for 4-Variable MF-VAR

Notes: Probability integral transforms for forecasts of inflation (INF), unemployment rate

(UNR), federal fund rate (FF), and GDP growth (GDP) using the MF-VAR. The bars show

how many of the realized observations fall into each bin. If the density forecast is accurate,

than the bars should be equally distributed across the bins. Solid line is the 20 percent line.
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Figure C-5: PIT Histograms for 4-Variable QF-VAR

Notes: Probability integral transforms for forecasts of inflation (INF), unemployment rate

(UNR), federal fund rate (FF), and GDP growth (GDP). The bars represent the frequency

of PITs falling in each bin. The solid line marks 20 percent.
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Figure C-6: PIT Histograms for QF-AR

Notes: Probability integral transforms for forecasts of inflation (INF), unemployment rate

(UNR), federal fund rate (FF), and GDP growth (GDP). The bars represent the frequency

of PITs falling in each bin. The solid line marks 20 percent.
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Figure C-7: GDP Growth Forecasts of 11-Variable MF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.
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Figure C-8: Inflation Forecasts of 11-Variable MF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.
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Figure C-9: Unemployment Forecasts of 11-Variable MF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.
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Figure C-10: Federal Funds Rate Forecasts of 11-Variable MF-VAR

Notes: Actual values are from the T∗ = 2011 : M7 data vintage and are denoted as the red

dashed line. Starting from the leftmost column, we show the results of “+0 Months”, “+1

Months”, and “+2 Months” subgroups. The title in each subplot indicates the data vintage

that are used in the estimation.


